1
|
Tang X, Li H, Gu J, Fu Y, Yu J, Li Z, Li Y, Wang X, Wang X. Preparation of diacylglycerol by lipase-catalyzed glycerolysis in the presence of polar adsorption materials. Food Chem 2024; 467:142330. [PMID: 39647386 DOI: 10.1016/j.foodchem.2024.142330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Diacylglycerol (DAG) is a functional oil used extensively in various industries. Glycerolysis of a natural oil with glycerol was widely employed for DAG preparation. Numerous studies have demonstrated that glycerol in the reaction affects lipase performance. We hypothesized that adsorption of glycerol onto an adsorbent might decrease effect of glycerol on lipase activity. To test the hypothesis, the role of silica gel in the enzymatic glycerolysis for DAG preparation was first investigated. The results showed that four type of lipases had better performances in the system containing silica gel. Subsequently, polar adsorbent type was screened. The results indicated that Amberlite FPA54 resin modified with tertiary amine groups significantly improved catalytic efficiency of Lipozyme TL IM. Under optimized conditions, DAG content in the glycerolysis products reached 51.3 %. A novel finding in this study is that type and polarity of adsorbent have significant effect on catalytic performance of lipase in the glycerolysis.
Collapse
Affiliation(s)
- Xiao Tang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Houyue Li
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Jialing Gu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yijie Fu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Junwen Yu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Zongrun Li
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yuqi Li
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiaowen Wang
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi 030801, PR China
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi 030801, PR China.
| |
Collapse
|
2
|
Lim G, Calabrese D, Wolder A, Cordero PRF, Rother D, Mulks FF, Paul CE, Lauterbach L. H 2-driven biocatalysis for flavin-dependent ene-reduction in a continuous closed-loop flow system utilizing H 2 from water electrolysis. Commun Chem 2024; 7:200. [PMID: 39244618 PMCID: PMC11380674 DOI: 10.1038/s42004-024-01288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate flavin-dependent biocatalysis, targeting as a proof-of-concept asymmetric alkene reduction. The system integrates a flavin-dependent Old Yellow Enzyme (OYE) and a soluble hydrogenase to enable H2-driven regeneration of the OYE cofactor FMNH2. Molecular hydrogen was produced by water electrolysis using a proton exchange membrane (PEM) electrolyzer and introduced into the flow system via a designed gas membrane addition module at a high diffusion rate. The flow system shows remarkable stability and reusability, consistently achieving >99% conversion of ketoisophorone to levodione. It also demonstrates versatility and selectivity in reducing various cyclic enones and can be extended to further flavin-based biocatalytic approaches and gas-dependent reactions. This electro-driven continuous flow system, therefore, has significant potential for advancing sustainable processes in fine chemical synthesis.
Collapse
Affiliation(s)
- Guiyeoul Lim
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Donato Calabrese
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Allison Wolder
- Biocatalysis Section, Department Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Paul R F Cordero
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Dörte Rother
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
- Institute for Bio-and Geosciences 1: Biotechnology Forschungzentrum Jülich GmbH, Jülich, Germany
| | - Florian F Mulks
- Institute of Organic Chemistry-iOC RWTH Aachen University, Aachen, Germany
| | - Caroline E Paul
- Biocatalysis Section, Department Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lars Lauterbach
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
3
|
Greening C, Kropp A, Vincent K, Grinter R. Developing high-affinity, oxygen-insensitive [NiFe]-hydrogenases as biocatalysts for energy conversion. Biochem Soc Trans 2023; 51:1921-1933. [PMID: 37743798 PMCID: PMC10657181 DOI: 10.1042/bst20230120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
The splitting of hydrogen (H2) is an energy-yielding process, which is important for both biological systems and as a means of providing green energy. In biology, this reaction is mediated by enzymes called hydrogenases, which utilise complex nickel and iron cofactors to split H2 and transfer the resulting electrons to an electron-acceptor. These [NiFe]-hydrogenases have received considerable attention as catalysts in fuel cells, which utilise H2 to produce electrical current. [NiFe]-hydrogenases are a promising alternative to the platinum-based catalysts that currently predominate in fuel cells due to the abundance of nickel and iron, and the resistance of some family members to inhibition by gases, including carbon monoxide, which rapidly poison platinum-based catalysts. However, the majority of characterised [NiFe]-hydrogenases are inhibited by oxygen (O2), limiting their activity and stability. We recently reported the isolation and characterisation of the [NiFe]-hydrogenase Huc from Mycobacterium smegmatis, which is insensitive to inhibition by O2 and has an extremely high affinity, making it capable of oxidising H2 in air to below atmospheric concentrations. These properties make Huc a promising candidate for the development of enzyme-based fuel cells (EBFCs), which utilise H2 at low concentrations and in impure gas mixtures. In this review, we aim to provide context for the use of Huc for this purpose by discussing the advantages of [NiFe]-hydrogenases as catalysts and their deployment in fuel cells. We also address the challenges associated with using [NiFe]-hydrogenases for this purpose, and how these might be overcome to develop EBFCs that can be deployed at scale.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC 3800, Australia
| | - Ashleigh Kropp
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kylie Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford OX1 3QR, U.K
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Centre for Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| |
Collapse
|
4
|
Al-Shameri A, Siebert DL, Sutiono S, Lauterbach L, Sieber V. Hydrogenase-based oxidative biocatalysis without oxygen. Nat Commun 2023; 14:2693. [PMID: 37258512 DOI: 10.1038/s41467-023-38227-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Biocatalysis-based synthesis can provide a sustainable and clean platform for producing chemicals. Many oxidative biocatalytic routes require the cofactor NAD+ as an electron acceptor. To date, NADH oxidase (NOX) remains the most widely applied system for NAD+ regeneration. However, its dependence on O2 implies various technical challenges in terms of O2 supply, solubility, and mass transfer. Here, we present the suitability of a NAD+ regeneration system in vitro based on H2 evolution. The efficiency of the hydrogenase-based system is demonstrated by integrating it into a multi-enzymatic cascade to produce ketoacids from sugars. The total NAD+ recycled using the hydrogenase system outperforms NOX in all different setups reaching up to 44,000 mol per mol enzyme. This system proves to be scalable and superior to NOX in terms of technical simplicity, flexibility, and total output. Furthermore, the system produces only green H2 as a by-product even in the presence of O2.
Collapse
Affiliation(s)
- Ammar Al-Shameri
- Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Dominik L Siebert
- Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Samuel Sutiono
- Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Lars Lauterbach
- RWTH Universität Aachen, Institute of Applied Microbiology, Worringerweg 1, 52074, Aachen, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany.
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany.
- SynBiofoundry@TUM, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany.
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
5
|
Partipilo M, Claassens NJ, Slotboom DJ. A Hitchhiker's Guide to Supplying Enzymatic Reducing Power into Synthetic Cells. ACS Synth Biol 2023; 12:947-962. [PMID: 37052416 PMCID: PMC10127272 DOI: 10.1021/acssynbio.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 04/14/2023]
Abstract
The construction from scratch of synthetic cells by assembling molecular building blocks is unquestionably an ambitious goal from a scientific and technological point of view. To realize functional life-like systems, minimal enzymatic modules are required to sustain the processes underlying the out-of-equilibrium thermodynamic status hallmarking life, including the essential supply of energy in the form of electrons. The nicotinamide cofactors NAD(H) and NADP(H) are the main electron carriers fueling reductive redox reactions of the metabolic network of living cells. One way to ensure the continuous availability of reduced nicotinamide cofactors in a synthetic cell is to build a minimal enzymatic module that can oxidize an external electron donor and reduce NAD(P)+. In the diverse world of metabolism there is a plethora of potential electron donors and enzymes known from living organisms to provide reducing power to NAD(P)+ coenzymes. This perspective proposes guidelines to enable the reduction of nicotinamide cofactors enclosed in phospholipid vesicles, while avoiding high burdens of or cross-talk with other encapsulated metabolic modules. By determining key requirements, such as the feasibility of the reaction and transport of the electron donor into the cell-like compartment, we select a shortlist of potentially suitable electron donors. We review the most convenient proteins for the use of these reducing agents, highlighting their main biochemical and structural features. Noting that specificity toward either NAD(H) or NADP(H) imposes a limitation common to most of the analyzed enzymes, we discuss the need for specific enzymes─transhydrogenases─to overcome this potential bottleneck.
Collapse
Affiliation(s)
- Michele Partipilo
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nico J. Claassens
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Jan Slotboom
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Joseph Srinivasan S, Cleary SE, Ramirez MA, Reeve HA, Paul CE, Vincent KA. E. coli Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases*. Angew Chem Int Ed Engl 2021; 60:13824-13828. [PMID: 33721401 PMCID: PMC8252551 DOI: 10.1002/anie.202101186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Indexed: 11/10/2022]
Abstract
A new activity for the [NiFe] uptake hydrogenase 1 of Escherichia coli (Hyd1) is presented. Direct reduction of biological flavin cofactors FMN and FAD is achieved using H2 as a simple, completely atom-economical reductant. The robust nature of Hyd1 is exploited for flavin reduction across a broad range of temperatures (25-70 °C) and extended reaction times. The utility of this system as a simple, easy to implement FMNH2 or FADH2 regenerating system is then demonstrated by supplying reduced flavin to Old Yellow Enzyme "ene-reductases" to support asymmetric alkene reductions with up to 100 % conversion. Hyd1 turnover frequencies up to 20.4 min-1 and total turnover numbers up to 20 200 were recorded during flavin recycling.
Collapse
Affiliation(s)
- Shiny Joseph Srinivasan
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| | - Sarah E Cleary
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| | - Miguel A Ramirez
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| | - Holly A Reeve
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| |
Collapse
|
7
|
Joseph Srinivasan S, Cleary SE, Ramirez MA, Reeve HA, Paul CE, Vincent KA. E. coli Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:13943-13947. [PMID: 38529476 PMCID: PMC10962552 DOI: 10.1002/ange.202101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Indexed: 11/10/2022]
Abstract
A new activity for the [NiFe] uptake hydrogenase 1 of Escherichia coli (Hyd1) is presented. Direct reduction of biological flavin cofactors FMN and FAD is achieved using H2 as a simple, completely atom-economical reductant. The robust nature of Hyd1 is exploited for flavin reduction across a broad range of temperatures (25-70 °C) and extended reaction times. The utility of this system as a simple, easy to implement FMNH2 or FADH2 regenerating system is then demonstrated by supplying reduced flavin to Old Yellow Enzyme "ene-reductases" to support asymmetric alkene reductions with up to 100 % conversion. Hyd1 turnover frequencies up to 20.4 min-1 and total turnover numbers up to 20 200 were recorded during flavin recycling.
Collapse
Affiliation(s)
- Shiny Joseph Srinivasan
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Sarah E. Cleary
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Miguel A. Ramirez
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Holly A. Reeve
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Kylie A. Vincent
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| |
Collapse
|
8
|
Al-Shameri A, Willot SJP, Paul CE, Hollmann F, Lauterbach L. H 2 as a fuel for flavin- and H 2O 2-dependent biocatalytic reactions. Chem Commun (Camb) 2020; 56:9667-9670. [PMID: 32696786 DOI: 10.1039/d0cc03229h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The soluble hydrogenase from Ralstonia eutropha provides an atom efficient regeneration system for reduced flavin cofactors using H2 as an electron source. We demonstrated this system for highly selective ene-reductase-catalyzed C[double bond, length as m-dash]C-double bond reductions and monooxygenase-catalyzed epoxidation. Reactions were expanded to aerobic conditions to supply H2O2 for peroxygenase-catalyzed hydroxylations.
Collapse
Affiliation(s)
- Ammar Al-Shameri
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany.
| | | | | | | | | |
Collapse
|
9
|
Al‐Shameri A, Petrich M, junge Puring K, Apfel U, Nestl BM, Lauterbach L. Künstliche Enzymkaskaden angetrieben mittels elektrischer Energie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ammar Al‐Shameri
- Technische Universität BerlinInstitut für Chemie Strasse des 17. Juni 135 10623 Berlin Deutschland
| | - Marie‐Christine Petrich
- Technische Universität BerlinInstitut für Chemie Strasse des 17. Juni 135 10623 Berlin Deutschland
| | - Kai junge Puring
- Ruhr-Universität BochumAnorganische Chemie Universitaetsstrasse 150 44780 Bochum Deutschland
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Deutschland
| | - Ulf‐Peter Apfel
- Ruhr-Universität BochumAnorganische Chemie Universitaetsstrasse 150 44780 Bochum Deutschland
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Deutschland
| | - Bettina M. Nestl
- Universität StuttgartInstitut für Biochemie und Technische BiochemieAbteilung für Technische Biochemie Allmandring 31 70569 Stuttgart Deutschland
| | - Lars Lauterbach
- Technische Universität BerlinInstitut für Chemie Strasse des 17. Juni 135 10623 Berlin Deutschland
| |
Collapse
|
10
|
Al-Shameri A, Petrich MC, Junge Puring K, Apfel UP, Nestl BM, Lauterbach L. Powering Artificial Enzymatic Cascades with Electrical Energy. Angew Chem Int Ed Engl 2020; 59:10929-10933. [PMID: 32202370 PMCID: PMC7318245 DOI: 10.1002/anie.202001302] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Indexed: 11/08/2022]
Abstract
We have developed a scalable platform that employs electrolysis for an in vitro synthetic enzymatic cascade in a continuous flow reactor. Both H2 and O2 were produced by electrolysis and transferred through a gas-permeable membrane into the flow system. The membrane enabled the separation of the electrolyte from the biocatalysts in the flow system, where H2 and O2 served as electron mediators for the biocatalysts. We demonstrate the production of methylated N-heterocycles from diamines with up to 99 % product formation as well as excellent regioselective labeling with stable isotopes. Our platform can be applied for a broad panel of oxidoreductases to exploit electrical energy for the synthesis of fine chemicals.
Collapse
Affiliation(s)
- Ammar Al-Shameri
- Technical University of Berlin, Institute of Chemistry, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Marie-Christine Petrich
- Technical University of Berlin, Institute of Chemistry, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Kai Junge Puring
- Ruhr-University Bochum, Inorganic Chemistry, Universitaetsstrasse 150, 44780, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Ulf-Peter Apfel
- Ruhr-University Bochum, Inorganic Chemistry, Universitaetsstrasse 150, 44780, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Bettina M Nestl
- Universitaet Stuttgart, Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, Allmandring 31, 70569, Stuttgart, Germany
| | - Lars Lauterbach
- Technical University of Berlin, Institute of Chemistry, Strasse des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
11
|
Rueda N, dos Santos JCS, Ortiz C, Torres R, Barbosa O, Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. CHEM REC 2016; 16:1436-55. [DOI: 10.1002/tcr.201600007] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Nazzoly Rueda
- Departamento de Biocatálisis; ICP-CSIC C/Marie Curie 2, Campus UAM-CSIC; Cantoblanco 28049 Madrid Spain
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM) Edificio Camilo Torres 210, Universidad Industrial de Santander; CEP 680001 Bucaramanga Colombia
| | - Jose C. S. dos Santos
- Departamento de Biocatálisis; ICP-CSIC C/Marie Curie 2, Campus UAM-CSIC; Cantoblanco 28049 Madrid Spain
- Instituto de Engenharias e Desenvolvimento Sustentável Universidade da Integração Internacional da Lusofonia Afro-Brasileira; CEP 62785-000 Acarape CE Brazil
| | - Claudia Ortiz
- Escuela de Microbiología, Universidad Industrial de Santander; Bucaramanga Colombia
| | - Rodrigo Torres
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM) Edificio Camilo Torres 210, Universidad Industrial de Santander; CEP 680001 Bucaramanga Colombia
| | - Oveimar Barbosa
- Departamento de Química; Facultad de Ciencias Universidad del Tolima; Ibagué Colombia
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Laboratory; Institute of Food Science and Technology Federal University of Rio Grande do Sul; Av. Bento Gonçalves 9500 P.O. Box 15090 Porto Alegre RS Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales Departamento de Química Inorgánica Universidad de Alicante Campus de San Vicente del Raspeig; Ap. 99 - 03080 Alicante Spain
| | | |
Collapse
|
12
|
Kwan P, McIntosh CL, Jennings DP, Hopkins RC, Chandrayan SK, Wu CH, Adams MWW, Jones AK. The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance. J Am Chem Soc 2015; 137:13556-65. [PMID: 26436715 DOI: 10.1021/jacs.5b07680] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the first direct electrochemical characterization of the impact of oxygen on the hydrogen oxidation activity of an oxygen-tolerant, group 3, soluble [NiFe]-hydrogenase: hydrogenase I from Pyrococcus furiosus (PfSHI), which grows optimally near 100 °C. Chronoamperometric experiments were used to probe the sensitivity of PfSHI hydrogen oxidation activity to both brief and prolonged exposure to oxygen. For experiments between 15 and 80 °C, following short (<200 s) exposure to 14 μM O2 under oxidizing conditions, PfSHI always maintains some fraction of its initial hydrogen oxidation activity; i.e., it is oxygen-tolerant. Reactivation experiments show that two inactive states are formed by interaction with oxygen and both can be quickly (<150 s) reactivated. Analogous experiments, in which the interval of oxygen exposure is extended to 900 s, reveal that the response is highly temperature-dependent. At 25 °C, under sustained 1% O2/ 99% H2 exposure, the H2oxidation activity drops nearly to zero. However, at 80 °C, up to 32% of the enzyme's oxidation activity is retained. Reactivation of PfSHI following sustained exposure to oxygen occurs on a much longer time scale (tens of minutes), suggesting that a third inactive species predominates under these conditions. These results stand in contrast to the properties of oxygen-tolerant, group 1 [NiFe]-hydrogenases, which form a single state upon reaction with oxygen, and we propose that this new type of hydrogenase should be referred to as oxygen-resilient. Furthermore, PfSHI, like other group 3 [NiFe]-hydrogenases, does not possess the proximal [4Fe3S] cluster associated with the oxygen tolerance of some group 1 enzymes. Thus, a new mechanism is necessary to explain the observed oxygen tolerance in soluble, group 3 [NiFe]-hydrogenases, and we present a model integrating both electrochemical and spectroscopic results to define the relationships of these inactive states.
Collapse
Affiliation(s)
- Patrick Kwan
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Chelsea L McIntosh
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - David P Jennings
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - R Chris Hopkins
- Department of Biochemistry and Molecular Biology, The University of Georgia , Athens, Georgia 30602, United States
| | - Sanjeev K Chandrayan
- Department of Biochemistry and Molecular Biology, The University of Georgia , Athens, Georgia 30602, United States
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology, The University of Georgia , Athens, Georgia 30602, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, The University of Georgia , Athens, Georgia 30602, United States
| | - Anne K Jones
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
13
|
Veesar IA, Solangi IB, Memon S. Immobilization of α-amylase onto a calix[4]arene derivative: Evaluation of its enzymatic activity. Bioorg Chem 2015; 60:58-63. [DOI: 10.1016/j.bioorg.2015.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 11/28/2022]
|
14
|
Hummel W, Gröger H. Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems. J Biotechnol 2014; 191:22-31. [PMID: 25102236 DOI: 10.1016/j.jbiotec.2014.07.449] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/15/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022]
Abstract
Biocatalytic reduction reactions depending on nicotinamide coenzymes require an additional reaction to regenerate the consumed cofactor. For preparative application the preferred method is the simultaneous coupling of an in situ regeneration reaction. There are different strategically advantageous routes to achieve this goal. The standard method uses a second enzyme and a second co-substrate, for example formate and formate dehydrogenase or glucose and glucose dehydrogenase. Alternatively, a second substrate is employed which is converted by the same enzyme used for the primary reaction. For example, alcohol dehydrogenase catalyzed reactions are often coupled with excess 2-propanol which is oxidized to acetone during the regeneration of NAD(P)H. A third method utilizes a reaction-internal sequence by the direct coupling of an oxidizing and a reducing enzyme reaction. Neither an additional substrate nor a further regenerating enzyme are required for the recycling reaction. This kind of "closed-loop" or "self-sufficient" redox process for cofactor regeneration has been used rarely so far. Its most intriguing advantage is that even redox reactions with unstable precursors can be realized provided that this compound is produced in situ by an opposite redox reaction. This elegant method is applicable in special cases only but increasing numbers of examples have been published during the last years.
Collapse
Affiliation(s)
- Werner Hummel
- Institute of Molecular Enzyme Technology at the Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426 Jülich, Germany.
| | - Harald Gröger
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany.
| |
Collapse
|
15
|
Recent trends and novel concepts in cofactor-dependent biotransformations. Appl Microbiol Biotechnol 2013; 98:1517-29. [PMID: 24362856 DOI: 10.1007/s00253-013-5441-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Cofactor-dependent enzymes catalyze a broad range of synthetically useful transformations. However, the cofactor requirement also poses economic and practical challenges for the application of these biocatalysts. For three decades, considerable research effort has been devoted to the development of reliable in situ regeneration methods for the most commonly employed cofactors, particularly NADH and NADPH. Today, researchers can choose from a plethora of options, and oxidoreductases are routinely employed even on industrial scale. Nevertheless, more efficient cofactor regeneration methods are still being developed, with the aim of achieving better atom economy, simpler reaction setups, and higher productivities. Besides, cofactor dependence has been recognized as an opportunity to confer novel reactivity upon enzymes by engineering their cofactors, and to couple (redox) biotransformations in multi-enzyme cascade systems. These novel concepts will help to further establish cofactor-dependent biotransformations as an attractive option for the synthesis of biologically active compounds, chiral building blocks, and bio-based platform molecules.
Collapse
|