1
|
Matsuda K, Nakahara Y, Choirunnisa AR, Arima K, Wakimoto T. Phylogeny-guided Characterization of Bacterial Hydrazine Biosynthesis Mediated by Cupin/methionyl tRNA Synthetase-like Enzymes. Chembiochem 2024; 25:e202300838. [PMID: 38403952 DOI: 10.1002/cbic.202300838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Accepted: 02/25/2024] [Indexed: 02/27/2024]
Abstract
Cupin/methionyl-tRNA synthetase (MetRS)-like didomain enzymes catalyze nitrogen-nitrogen (N-N) bond formation between Nω-hydroxylamines and amino acids to generate hydrazines, key biosynthetic intermediates of various natural products containing N-N bonds. While the combination of these two building blocks leads to the creation of diverse hydrazine products, the full extent of their structural diversity remains largely unknown. To explore this, we herein conducted phylogeny-guided genome-mining of related hydrazine biosynthetic pathways consisting of two enzymes: flavin-dependent Nω-hydroxylating monooxygenases (NMOs) that produce Nω-hydroxylamine precursors and cupin/MetRS-like enzymes that couple the Nω-hydroxylamines with amino acids via N-N bonds. A phylogenetic analysis identified the largely unexplored sequence spaces of these enzyme families. The biochemical characterization of NMOs demonstrated their capabilities to produce various Nω-hydroxylamines, including those previously not known as precursors of N-N bonds. Furthermore, the characterization of cupin/MetRS-like enzymes identified five new hydrazine products with novel combinations of building blocks, including one containing non-amino acid building blocks: 1,3-diaminopropane and putrescine. This study substantially expanded the variety of N-N bond forming pathways mediated by cupin/MetRS-like enzymes.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuto Nakahara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Atina Rizkiya Choirunnisa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Kuga Arima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
2
|
Adedayo AA, Babalola OO. Genomic mechanisms of plant growth-promoting bacteria in the production of leguminous crops. Front Genet 2023; 14:1276003. [PMID: 38028595 PMCID: PMC10654986 DOI: 10.3389/fgene.2023.1276003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Legumes are highly nutritious in proteins and are good food for humans and animals because of their nutritional values. Plant growth-promoting bacteria (PGPR) are microbes dwelling in the rhizosphere soil of a plant contributing to the healthy status, growth promotion of crops, and preventing the invasion of diseases. Root exudates produced from the leguminous plants' roots can lure microbes to migrate to the rhizosphere region in other to carry out their potential activities which reveals the symbiotic association of the leguminous plant and the PGPR (rhizobia). To have a better cognition of the PGPR in the rhizosphere of leguminous plants, genomic analyses would be conducted employing various genomic sequences to observe the microbial community and their functions in the soil. Comparative genomic mechanism of plant growth-promoting rhizobacteria (PGPR) was discussed in this review which reveals the activities including plant growth promotion, phosphate solubilization, production of hormones, and plant growth-promoting genes required for plant development. Progress in genomics to improve the collection of genotyping data was revealed in this review. Furthermore, the review also revealed the significance of plant breeding and other analyses involving transcriptomics in bioeconomy promotion. This technological innovation improves abundant yield and nutritional requirements of the crops in unfavorable environmental conditions.
Collapse
|
3
|
Frantsuzova E, Bogun A, Solomentsev V, Vetrova A, Streletskii R, Solyanikova I, Delegan Y. Whole Genome Analysis and Assessment of the Metabolic Potential of Gordonia rubripertincta Strain 112, a Degrader of Aromatic and Aliphatic Compounds. BIOLOGY 2023; 12:biology12050721. [PMID: 37237534 DOI: 10.3390/biology12050721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
The application of Gordonia strains in biotechnologies of environmental purification as degraders of pollutants of different chemical structures is an interesting research topic. The strain Gordonia rubripertincta 112 (IEGM112) is capable of utilizing diesel fuel, alkanes, and aromatic compounds. The aim of this work was to study the potential of G. rubripertincta 112 as a degrader of aromatic and aliphatic compounds and analyze its complete genome in comparison with other known G. rubripertincta strains. The genome had a total length of 5.28 Mb and contained 4861 genes in total, of which 4799 were coding sequences (CDS). The genome contained 62 RNA genes in total, of which 50 were tRNAs, three were ncRNAs, and nine were rRNAs. The strain bears plasmid elements with a total length of 189,570 nucleotides (plasmid p1517). The strain can utilize 10.79 ± 1.17% of hexadecane and 16.14 ± 0.16% of decane over 3 days of cultivation. In the genome of the strain, we have found metabolic pathways of alkane (cytochrome P450 hydroxylases) and catechol (ortho- and meta-pathways) degradation. These results will help us to further approach the fundamental study of the processes occurring in the strain cells and to enrich our knowledge of the catabolic capabilities of G. rubripertincta.
Collapse
Affiliation(s)
- Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences" (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences" (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia
| | - Viktor Solomentsev
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences" (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia
| | - Anna Vetrova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences" (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
| | - Rostislav Streletskii
- Laboratory of Ecological Soil Science, Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Inna Solyanikova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences" (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
- Regional Microbiological Center, Belgorod State University, 308015 Belgorod, Russia
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences" (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
4
|
Ernst S, Mährlein A, Ritzmann NH, Drees SL, Fetzner S. A comparative study of
N
‐hydroxylating flavoprotein monooxygenases reveals differences in kinetics and cofactor binding. FEBS J 2022; 289:5637-5655. [DOI: 10.1111/febs.16444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Simon Ernst
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| | - Almuth Mährlein
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| | - Niklas H. Ritzmann
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| | - Steffen L. Drees
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| | - Susanne Fetzner
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| |
Collapse
|
5
|
Ahmad HM, Fiaz S, Hafeez S, Zahra S, Shah AN, Gul B, Aziz O, Mahmood-Ur-Rahman, Fakhar A, Rafique M, Chen Y, Yang SH, Wang X. Plant Growth-Promoting Rhizobacteria Eliminate the Effect of Drought Stress in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:875774. [PMID: 36035658 PMCID: PMC9406510 DOI: 10.3389/fpls.2022.875774] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 07/21/2023]
Abstract
Plants evolve diverse mechanisms to eliminate the drastic effect of biotic and abiotic stresses. Drought is the most hazardous abiotic stress causing huge losses to crop yield worldwide. Osmotic stress decreases relative water and chlorophyll content and increases the accumulation of osmolytes, epicuticular wax content, antioxidant enzymatic activities, reactive oxygen species, secondary metabolites, membrane lipid peroxidation, and abscisic acid. Plant growth-promoting rhizobacteria (PGPR) eliminate the effect of drought stress by altering root morphology, regulating the stress-responsive genes, producing phytohormones, osmolytes, siderophores, volatile organic compounds, and exopolysaccharides, and improving the 1-aminocyclopropane-1-carboxylate deaminase activities. The use of PGPR is an alternative approach to traditional breeding and biotechnology for enhancing crop productivity. Hence, that can promote drought tolerance in important agricultural crops and could be used to minimize crop losses under limited water conditions. This review deals with recent progress on the use of PGPR to eliminate the harmful effects of drought stress in traditional agriculture crops.
Collapse
Affiliation(s)
- Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Sumaira Hafeez
- Department of Plant Breeding and Molecular Genetics, University of Poonch, Rawalakot, Pakistan
| | - Sadaf Zahra
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Bushra Gul
- Department of Biosciences, University of Wah, Wah, Pakistan
| | - Omar Aziz
- Department of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Mahmood-Ur-Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ali Fakhar
- Department of Soil and Climate Change, The University of Haripur, Haripur, Pakistan
| | - Mazhar Rafique
- Department of Soil and Climate Change, The University of Haripur, Haripur, Pakistan
| | - Yinglong Chen
- School of Agriculture and Environment, UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| |
Collapse
|
6
|
Seenivasagan R, Babalola OO. Utilization of Microbial Consortia as Biofertilizers and Biopesticides for the Production of Feasible Agricultural Product. BIOLOGY 2021; 10:1111. [PMID: 34827104 PMCID: PMC8614680 DOI: 10.3390/biology10111111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023]
Abstract
Farmers are now facing a reduction in agricultural crop yield, due to the infertility of soils and poor farming. The application of chemical fertilizers distresses soil fertility and also human health. Inappropriate use of chemical fertilizer leads to the rapid decline in production levels in most parts of the world, and hence requires the necessary standards of good cultivation practice. Biofertilizers and biopesticides have been used in recent years by farmers worldwide to preserve natural soil conditions. Biofertilizer, a replacement for chemical fertilizer, is cost-effective and prevents environmental contamination to the atmosphere, and is a source of renewable energy. In contrast to chemical fertilizers, biofertilizers are cost-effective and a source of renewable energy that preserves long-term soil fertility. The use of biofertilizers is, therefore, inevitable to increase the earth's productivity. A low-input scheme is feasible to achieve farm sustainability through the use of biological and organic fertilizers. This study investigates the use of microbial inoculants as biofertilizers to increase crop production.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa;
| |
Collapse
|
7
|
Metagenomics Assessment of Soil Fertilization on the Chemotaxis and Disease Suppressive Genes Abundance in the Maize Rhizosphere. Genes (Basel) 2021; 12:genes12040535. [PMID: 33917127 PMCID: PMC8067831 DOI: 10.3390/genes12040535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/19/2022] Open
Abstract
Soil fertility is a function of the level of organic and inorganic substances present in the soil, and it influences the activities of soil-borne microbes, plant growth performance and a host of other beneficial ecological functions. In this metagenomics study, we evaluated the response of maize microbial functional gene diversity involved in chemotaxis, antibiotics, siderophores, and antifungals producing genes within the rhizosphere of maize plants under compost, inorganic fertilizer, and unfertilized conditions. The results show that fertilization treatments at higher compost manure and lower inorganic fertilizer doses as well as maize plants itself in the unfertilized soil through rhizosphere effects share similar influences on the abundance of chemotaxis, siderophores, antifungal, and antibiotics synthesizing genes present in the samples, while higher doses of inorganic fertilizer and lower compost manure treatments significantly repress these genes. The implication is for a disease suppressive soil to be achieved, soil fertilization with high doses of compost manure fertilizer treatments as well as lower inorganic fertilizer should be used to enrich soil fertility and boost the abundance of chemotaxis and disease suppressive genes. Maize crops also should be planted sole or intercropped with other crops to enhance the rhizosphere effect of these plants in promoting the expression and abundance of these beneficial genes in the soil.
Collapse
|
8
|
Giddings LA, Lountos GT, Kim KW, Brockley M, Needle D, Cherry S, Tropea JE, Waugh DS. Characterization of a broadly specific cadaverine N-hydroxylase involved in desferrioxamine B biosynthesis in Streptomyces sviceus. PLoS One 2021; 16:e0248385. [PMID: 33784308 PMCID: PMC8009421 DOI: 10.1371/journal.pone.0248385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
N-hydroxylating flavin-dependent monooxygenases (FMOs) are involved in the biosynthesis of hydroxamate siderophores, playing a key role in microbial virulence. Herein, we report the first structural and kinetic characterization of a novel alkyl diamine N-hydroxylase DesB from Streptomyces sviceus (SsDesB). This enzyme catalyzes the first committed step in the biosynthesis of desferrioxamine B, a clinical drug used to treat iron overload disorders. X-ray crystal structures of the SsDesB holoenzyme with FAD and the ternary complex with bound NADP+ were solved at 2.86 Å and 2.37 Å resolution, respectively, providing a structural view of the active site environment. SsDesB crystallized as a tetramer and the structure of the individual protomers closely resembles the structures of homologous N-hydroxylating FMOs from Erwinia amylovora (DfoA), Pseudomonas aeruginosa (PvdA), and Aspergillus fumigatus (SidA). Using NADPH oxidation, oxygen consumption, and product formation assays, kinetic parameters were determined for various substrates with SsDesB. SsDesB exhibited typical saturation kinetics with substrate inhibition at high concentrations of NAD(P)H as well as cadaverine. The apparent kcat values for NADPH in steady-state NADPH oxidation and oxygen consumption assays were 0.28 ± 0.01 s-1 and 0.24 ± 0.01 s-1, respectively. However, in product formation assays used to measure the rate of N-hydroxylation, the apparent kcat for NADPH (0.034 ± 0.008 s-1) was almost 10-fold lower under saturating FAD and cadaverine concentrations, reflecting an uncoupled reaction, and the apparent NADPH KM was 33 ± 24 μM. Under saturating FAD and NADPH concentrations, the apparent kcat and KM for cadaverine in Csaky assays were 0.048 ± 0.004 s-1 and 19 ± 9 μM, respectively. SsDesB also N-hydroxylated putrescine, spermidine, and L-lysine substrates but not alkyl (di)amines that were branched or had fewer than four methylene units in an alkyl chain. These data demonstrate that SsDesB has wider substrate scope compared to other well-studied ornithine and lysine N-hydroxylases, making it an amenable biocatalyst for the production of desferrioxamine B, derivatives, and other N-substituted products.
Collapse
Affiliation(s)
- Lesley-Ann Giddings
- Department of Chemistry, Smith College, Northampton, MA, United States of America
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, VT, United States of America
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Kang Woo Kim
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, VT, United States of America
| | - Matthew Brockley
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, VT, United States of America
| | - Danielle Needle
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Scott Cherry
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Joseph E. Tropea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - David S. Waugh
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| |
Collapse
|
9
|
Cultivation dependent formation of siderophores by Gordonia rubripertincta CWB2. Microbiol Res 2020; 238:126481. [DOI: 10.1016/j.micres.2020.126481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022]
|
10
|
Hofmann M, Martin del Campo JS, Sobrado P, Tischler D. Biosynthesis of desferrioxamine siderophores initiated by decarboxylases: A functional investigation of two lysine/ornithine-decarboxylases from Gordonia rubripertincta CWB2 and Pimelobacter simplex 3E. Arch Biochem Biophys 2020; 689:108429. [DOI: 10.1016/j.abb.2020.108429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
|
11
|
Mügge C, Heine T, Baraibar AG, van Berkel WJH, Paul CE, Tischler D. Flavin-dependent N-hydroxylating enzymes: distribution and application. Appl Microbiol Biotechnol 2020; 104:6481-6499. [PMID: 32504128 PMCID: PMC7347517 DOI: 10.1007/s00253-020-10705-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Amino groups derived from naturally abundant amino acids or (di)amines can be used as "shuttles" in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C-, S-, or N-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and (semi)synthetic products are highlighted. • Flavin-based NMOs with respect to mechanism, structure, and phylogeny are reviewed. • Applications in natural product formation and synthetic approaches are provided. Graphical abstract .
Collapse
Affiliation(s)
- Carolin Mügge
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Alvaro Gomez Baraibar
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Rottendorf Pharma GmbH, Ostenfelder Str. 51-61, 59320, Ennigerloh, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, HZ 2629, Delft, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
12
|
Mindt M, Walter T, Kugler P, Wendisch VF. Microbial Engineering for Production of N-Functionalized Amino Acids and Amines. Biotechnol J 2020; 15:e1900451. [PMID: 32170807 DOI: 10.1002/biot.201900451] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/04/2020] [Indexed: 01/04/2023]
Abstract
N-functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine-chemical industries N-functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N-alkylated, N-hydroxylated, N-acylated, or other N-functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N-functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N-hydroxylases, N-acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany.,BU Bioscience, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Tatjana Walter
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Pierre Kugler
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
13
|
Proença DN, Heine T, Senges CHR, Bandow JE, Morais PV, Tischler D. Bacterial Metabolites Produced Under Iron Limitation Kill Pinewood Nematode and Attract Caenorhabditis elegans. Front Microbiol 2019; 10:2166. [PMID: 31608025 PMCID: PMC6761702 DOI: 10.3389/fmicb.2019.02166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022] Open
Abstract
Pine Wilt Disease (PWD) is caused by Bursaphelenchus xylophilus, the pinewood nematode, and affects several species of pine trees worldwide. The ecosystem of the Pinus pinaster trees was investigated as a source of bacteria producing metabolites affecting this ecosystem: P. pinaster trees as target-plant, nematode as disease effector and its insect-vector as shuttle. For example, metals and metal-carrying compounds contribute to the complex tree-ecosystems. This work aimed to detect novel secondary metabolites like metallophores and related molecules produced under iron limitation by PWD-associated bacteria and to test their activity on nematodes. After screening 357 bacterial strains from Portugal and United States, two promising metallophore-producing strains Erwinia sp. A41C3 and Rouxiella sp. Arv20#4.1 were chosen and investigated in more detail. The genomes of these strains were sequenced, analyzed, and used to detect genetic potential for secondary metabolite production. A combinatorial approach of liquid chromatography-coupled tandem mass spectrometry (LC-MS) linked to molecular networking was used to describe these compounds. Two major metabolites were detected by HPLC analyses and described. One HPLC fraction of strain Arv20#4.1 showed to be a hydroxamate-type siderophore with higher affinity for chelation of Cu. The HPLC fraction of strain A41C3 with highest metal affinity showed to be a catecholate-type siderophore with higher affinity for chelation of Fe. LC-MS allowed the identification of several desferrioxamines from strain Arv20#4.1, in special desferrioxamine E, but no hit was obtained in case of strain A41C3 which might indicate that it is something new. Bacteria and their culture supernatants showed ability to attract C. elegans. HPLC fractions of those supernatant-extracts of Erwinia strain A41C3, enriched with secondary metabolites such as siderophores, were able to kill pinewood nematode. These results suggest that metabolites secreted under iron limitation have potential to biocontrol B. xylophilus and for management of Pine Wilt Disease.
Collapse
Affiliation(s)
- Diogo Neves Proença
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Thomas Heine
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | - Christoph H. R. Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Paula V. Morais
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Dirk Tischler
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Saroja NR, Mohan AHS, Srividya D, Supreetha K. Chaperone-assisted expression and purification of putrescine monooxygenase from Shewanella putrefaciens-95. Protein Expr Purif 2019; 157:9-16. [PMID: 30654014 DOI: 10.1016/j.pep.2019.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/22/2023]
Abstract
A putrescine monooxygenase from Shewanella putrefaciens 95 (SpPMO) is the initial enzyme catalyzing the hydroxylation of putrescine to N-hydroxyl putrescine, the precursor for the synthesis of a siderophore putrebactin was identified. This PMO clustered together with known characterized NMOs from Shewanella baltica, Bordetella pertussis, Erwinia amylovora, Streptomyces sp. Gordonia rubripertincta, Pseudomonas aeruginosa and outgrouped from Escherichia coli, Nocardia farcinica, and Rhodococcus erythropolis. The deduced SpPMO protein showed 53% and 36% sequence identity with other characterized bacterial NMOs from Erwinia amylovora and Gordonia rubripertincta respectively. In this investigation, we have cloned the complete 1518bp coding sequence of pubA from Shewanella putrefaciens 95 encoding the corresponding protein SpPMO. It comprises 505 amino acid residues in length and has approximately a molecular weight of 54 kDa. Chaperone-assisted heterologous expression of SpPMO in pET151Topo expression vector under the control of bacteriophage T7 promoter permitted a stringent IPTG dependent expression. It has been successfully cloned, overexpressed and purified as a soluble His6 -tagged enzyme using E. coli as a cloning and expression host. The expression of recombinant SpPMO was confirmed by Western blotting using anti-His6 antibody. The purified protein showed FAD and NADPH dependent N-hydroxylation activity. This study has paved a way to understand the hydroxylation step of putrebactin synthesis which can be further investigated by studying its kinetic mechanism and physiological role.
Collapse
Affiliation(s)
- Narsing Rao Saroja
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, 584104, Karnataka, India.
| | - Anil H Shyam Mohan
- Department of Biotechnology, Dayananda Sagar College of Engineering, Kumaraswamy Layout, Shavige Malleswara Hills, Bengaluru, 78, Karnataka, India
| | - D Srividya
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, 584104, Karnataka, India
| | - K Supreetha
- Department of Biotechnology, Dayananda Sagar College of Engineering, Kumaraswamy Layout, Shavige Malleswara Hills, Bengaluru, 78, Karnataka, India
| |
Collapse
|
15
|
Biodegradation of High Concentrations of Aliphatic Hydrocarbons in Soil from a Petroleum Refinery: Implications for Applicability of New Actinobacterial Strains. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At present, there is great demand for new resistant and metabolically active strains of biodegrading bacteria capable of degrading high concentrations of petroleum pollutants. In this study, we undertook a series of pot-based biodegradation experiments on soil from a petroleum refinery lagoon heavily polluted with aliphatic hydrocarbons (81.6 ± 2.5 g·kg−1 dry weight) and metals. Periodical bioaugmentation with either a mixture of isolated degraders identified as Bacillus sp. and Ochrobactrum sp. or biostimulation with nutrient medium, singly or in combination, did not produce any significant decrease in hydrocarbons, even after 455 days. Inoculation with Gordonia rubripertincta CWB2 and Rhodococcus erythropolis S43 in iron-limited media, however, resulted in a significant decrease in hydrocarbons 45 days after bioaugmentation. These actinobacterial strains, therefore, show significant potential for bioremediation of such highly polluted soils.
Collapse
|
16
|
Robinson RM, Klancher CA, Rodriguez PJ, Sobrado P. Flavin oxidation in flavin-dependent N-monooxygenases. Protein Sci 2018; 28:90-99. [PMID: 30098072 DOI: 10.1002/pro.3487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Siderophore A (SidA) from Aspergillus fumigatus is a flavin-containing monooxygenase that hydroxylates ornithine (Orn) at the amino group of the side chain. Lysine (Lys) also binds to the active site of SidA; however, hydroxylation is not efficient and H2 O2 is the main product. The effect of pH on steady-state kinetic parameters was measured and the results were consistent with Orn binding with the side chain amino group in the neutral form. From the pH dependence on flavin oxidation in the absence of Orn, a pKa value >9 was determined and assigned to the FAD-N5 atom. In the presence of Orn, the pH dependence displayed a pKa value of 6.7 ±0.1 and of 7.70 ±0.10 in the presence of Lys. Q102 interacts with NADPH and, upon mutation to alanine, leads to destabilization of the C4a-hydroperoxyflavin (FADOOH ). Flavin oxidation with Q102A showed a pKa value of ~8.0. The data are consistent with the pKa of the FAD N5-atom being modulated to a value >9 in the absence of Orn, which aids in the stabilization of FADOOH . Changes in the FAD-N5 environment lead to a decrease in the pKa value, which facilitates elimination of H2 O2 or H2 O. These findings are supported by solvent kinetic isotope effect experiments, which show that proton transfer from the FAD N5-atom is rate limiting in the absence of a substrate, however, is significantly less rate limiting in the presence of Orn and or Lys.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061
| | - Catherine A Klancher
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061
| | - Pedro J Rodriguez
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061
| |
Collapse
|
17
|
Schwabe R, Anke MK, Szymańska K, Wiche O, Tischler D. Analysis of desferrioxamine-like siderophores and their capability to selectively bind metals and metalloids: development of a robust analytical RP-HPLC method. Res Microbiol 2018; 169:598-607. [PMID: 30138722 DOI: 10.1016/j.resmic.2018.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
The Actinobacterium Gordonia rubripertincta CWB2 (DSM 46758) produces hydroxamate-type siderophores (188 mg L-1) under iron limitation. Analytical reversed-phase HPLC allowed determining a single peak of ferric iron chelating compounds from culture broth which was confirmed by the Fe-CAS assay. Elution profile and its absorbance spectrum were similar to those of commercial (des)ferrioxamine B which was used as reference compound. This confirms previously made assumptions and shows for the first time that the genus Gordonia produces desferrioxamine-like siderophores. The reversed-phase HPLC protocol was optimized to separate metal-free and -loaded oxamines. This allowed to determine siderophore concentrations in solutions as well as metal affinity. The metal loading of oxamines was confirmed by ICP-MS. As a result, it was demonstrated that desferrioxamine prefers trivalent metal ions (Fe3+ > Ga3+ > V3+ > Al3+) over divalent ones. In addition, we aimed to show the applicability of the newly established reversed-phase HPLC protocol and to increase the re-usability of desferrioxamines as metal chelators by immobilization on mesocellular silica foam carriers. The siderophores obtained from strain CWB2 and commercial desferrioxamine B were successfully linked to the carrier with a high yield (up to 95%) which was verified by the HPLC method. Metal binding studies demonstrated that metals can be bound to non-immobilized and to the covalently linked desferrioxamines, but also to the carrier material itself. The latter was found to be unspecific and, therefore, the effect of the carrier material remains a field of future research. By means of a reversed CAS assay for various elements (Nd, Gd, La, Er, Al, Ga, V, Au, Fe, As) it was possible to demonstrate improved Ga3+- and Nd3+-binding to desferrioxamine loaded mesoporous silica carriers. The combination of the robust reversed-phase HPLC method and various CAS assays provides new avenues to screen for siderophore producing strains, and to control purification and immobilization of siderophores.
Collapse
Affiliation(s)
- Ringo Schwabe
- Institute of Biological Sciences, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany.
| | - Marlene Kirstin Anke
- Institute of Biological Sciences, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany.
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Ks. M. Strzody 7, 44-100, Gliwice, Poland.
| | - Oliver Wiche
- Institute of Biological Sciences, Biology and Ecology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany.
| | - Dirk Tischler
- Institute of Biological Sciences, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany; Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
18
|
The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 2018; 102:7821-7835. [PMID: 30030564 PMCID: PMC6132541 DOI: 10.1007/s00253-018-9214-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022]
Abstract
Action is needed to face the global threat arising from inconsistent rainfall, rise in temperature, and salinization of farm lands which may be the product of climate change. As crops are adversely affected, man and animals may face famine. Plants are severely affected by abiotic stress (drought, salinity, alkalinity, and temperature), which impairs yield and results in loss to farmers and to the nation at large. However, microbes have been shown to be of great help in the fight against abiotic stress, via their biological activities at the rhizosphere of plants. The external application of chemical substances such as glycine betaine, proline, and nutrients has helped in sustaining plant growth and productive ability. In this review, we tried to understand the part played by bioinoculants in aiding plants to resist the negative consequences arising from abiotic stress and to suggest better practices that will be of help in today’s farming systems. The fact that absolute protection and sustainability of plant yield under stress challenges has not been achieved by microbes, nutrients, nor the addition of chemicals (osmo-protectants) alone suggests that studies should focus on the integration of these units (microbes, nutrients, chemical stimulants, and osmo-protectants) into a strategy for achieving a complete tolerance to abiotic stress. Also, other species of microbes capable of shielding plant from stress, boosting yield and growth, providing nutrients, and protecting the plants from harmful invading pathogens should be sought.
Collapse
|
19
|
Heine T, Zimmerling J, Ballmann A, Kleeberg SB, Rückert C, Busche T, Winkler A, Kalinowski J, Poetsch A, Scholtissek A, Oelschlägel M, Schmidt G, Tischler D. On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2. Appl Environ Microbiol 2018; 84:e00154-18. [PMID: 29475871 PMCID: PMC5930330 DOI: 10.1128/aem.00154-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 02/05/2023] Open
Abstract
Among bacteria, only a single styrene-specific degradation pathway has been reported so far. It comprises the activity of styrene monooxygenase, styrene oxide isomerase, and phenylacetaldehyde dehydrogenase, yielding phenylacetic acid as the central metabolite. The alternative route comprises ring-hydroxylating enzymes and yields vinyl catechol as central metabolite, which undergoes meta-cleavage. This was reported to be unspecific and also allows the degradation of benzene derivatives. However, some bacteria had been described to degrade styrene but do not employ one of those routes or only parts of them. Here, we describe a novel "hybrid" degradation pathway for styrene located on a plasmid of foreign origin. As putatively also unspecific, it allows metabolizing chemically analogous compounds (e.g., halogenated and/or alkylated styrene derivatives). Gordonia rubripertincta CWB2 was isolated with styrene as the sole source of carbon and energy. It employs an assembled route of the styrene side-chain degradation and isoprene degradation pathways that also funnels into phenylacetic acid as the central metabolite. Metabolites, enzyme activity, genome, transcriptome, and proteome data reinforce this observation and allow us to understand this biotechnologically relevant pathway, which can be used for the production of ibuprofen.IMPORTANCE The degradation of xenobiotics by bacteria is not only important for bioremediation but also because the involved enzymes are potential catalysts in biotechnological applications. This study reveals a novel degradation pathway for the hazardous organic compound styrene in Gordonia rubripertincta CWB2. This study provides an impressive illustration of horizontal gene transfer, which enables novel metabolic capabilities. This study presents glutathione-dependent styrene metabolization in an (actino-)bacterium. Further, the genomic background of the ability of strain CWB2 to produce ibuprofen is demonstrated.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Anne Ballmann
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Christian Rückert
- Technologieplattform Genomik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Tobias Busche
- Technologieplattform Genomik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Anika Winkler
- Technologieplattform Genomik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Technologieplattform Genomik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, United Kingdom
| | - Anika Scholtissek
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Gert Schmidt
- Institut für Keramik, Glas- und Baustofftechnik, TU Bergakademie Freiberg, Freiberg, Germany
| | - Dirk Tischler
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|