1
|
Liu M, Xie XJ, Li X, Ren X, Sun JL, Lin Z, Hemba-Waduge RUS, Ji JY. Transcriptional coupling of telomeric retrotransposons with the cell cycle. SCIENCE ADVANCES 2025; 11:eadr2299. [PMID: 39752503 PMCID: PMC11698117 DOI: 10.1126/sciadv.adr2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Unlike most species that use telomerase for telomere maintenance, many dipterans, including Drosophila, rely on three telomere-specific retrotransposons (TRs)-HeT-A, TART, and TAHRE-to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription. Reducing the activity of the Mediator or Sd/dTEAD increases TR expression and telomere length, while overexpressing E2F1-Dp or depleting Rbf1 stimulates TR transcription. The Mediator and Sd/dTEAD regulate this process through E2F1-Dp. CUT&RUN (Cleavage under targets and release using nuclease) analysis shows direct binding of CDK8, Dp, and Sd/dTEAD to telomeric repeats, with motif enrichment revealing E2F- and TEAD-binding sites. These findings uncover the Mediator complex's role in controlling TR transcription and telomere length through E2F1-Dp and Sd, coupling the transcriptional regulation of the TR life cycle with host cell-cycle machinery to protect chromosome ends in Drosophila.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xingjie Ren
- Institute for Human Genetics and Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jasmine L. Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Zhen Lin
- Department of Pathology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
2
|
Melnikova L, Golovnin A. Multiple Roles of dXNP and dADD1- Drosophila Orthologs of ATRX Chromatin Remodeler. Int J Mol Sci 2023; 24:16486. [PMID: 38003676 PMCID: PMC10671109 DOI: 10.3390/ijms242216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
3
|
Jedlička P, Tokan V, Kejnovská I, Hobza R, Kejnovský E. Telomeric retrotransposons show propensity to form G-quadruplexes in various eukaryotic species. Mob DNA 2023; 14:3. [PMID: 37038191 PMCID: PMC10088271 DOI: 10.1186/s13100-023-00291-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Canonical telomeres (telomerase-synthetised) are readily forming G-quadruplexes (G4) on the G-rich strand. However, there are examples of non-canonical telomeres among eukaryotes where telomeric tandem repeats are invaded by specific retrotransposons. Drosophila melanogaster represents an extreme example with telomeres composed solely by three retrotransposons-Het-A, TAHRE and TART (HTT). Even though non-canonical telomeres often show strand biased G-distribution, the evidence for the G4-forming potential is limited. RESULTS Using circular dichroism spectroscopy and UV absorption melting assay we have verified in vitro G4-formation in the HTT elements of D. melanogaster. Namely 3 in Het-A, 8 in TART and 2 in TAHRE. All the G4s are asymmetrically distributed as in canonical telomeres. Bioinformatic analysis showed that asymmetric distribution of potential quadruplex sequences (PQS) is common in telomeric retrotransposons in other Drosophila species. Most of the PQS are located in the gag gene where PQS density correlates with higher DNA sequence conservation and codon selection favoring G4-forming potential. The importance of G4s in non-canonical telomeres is further supported by analysis of telomere-associated retrotransposons from various eukaryotic species including green algae, Diplomonadida, fungi, insects and vertebrates. Virtually all analyzed telomere-associated retrotransposons contained PQS, frequently with asymmetric strand distribution. Comparison with non-telomeric elements showed independent selection of PQS-rich elements from four distinct LINE clades. CONCLUSION Our findings of strand-biased G4-forming motifs in telomere-associated retrotransposons from various eukaryotic species support the G4-formation as one of the prerequisites for the recruitment of specific retrotransposons to chromosome ends and call for further experimental studies.
Collapse
Affiliation(s)
- Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Viktor Tokan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic.
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic.
| |
Collapse
|
4
|
Takeuchi C, Yokoshi M, Kondo S, Shibuya A, Saito K, Fukaya T, Siomi H, Iwasaki Y. Mod(mdg4) variants repress telomeric retrotransposon HeT-A by blocking subtelomeric enhancers. Nucleic Acids Res 2022; 50:11580-11599. [PMID: 36373634 PMCID: PMC9723646 DOI: 10.1093/nar/gkac1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Telomeres in Drosophila are composed of sequential non-LTR retrotransposons HeT-A, TART and TAHRE. Although they are repressed by the PIWI-piRNA pathway or heterochromatin in the germline, the regulation of these retrotransposons in somatic cells is poorly understood. In this study, we demonstrated that specific splice variants of Mod(mdg4) repress HeT-A by blocking subtelomeric enhancers in ovarian somatic cells. Among the variants, we found that the Mod(mdg4)-N variant represses HeT-A expression the most efficiently. Subtelomeric sequences bound by Mod(mdg4)-N block enhancer activity within subtelomeric TAS-R repeats. This enhancer-blocking activity is increased by the tandem association of Mod(mdg4)-N to repetitive subtelomeric sequences. In addition, the association of Mod(mdg4)-N couples with the recruitment of RNA polymerase II to the subtelomeres, which reinforces its enhancer-blocking function. Our findings provide novel insights into how telomeric retrotransposons are regulated by the specific variants of insulator proteins associated with subtelomeric sequences.
Collapse
Affiliation(s)
- Chikara Takeuchi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Moe Yokoshi
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Shu Kondo
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka 411-8540, Japan
| | - Aoi Shibuya
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka 411-8540, Japan
| | - Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | | | - Yuka W Iwasaki
- To whom correspondence should be addressed. Tel: +81 3 5363 3529; Fax: +81 3 5363 3266;
| |
Collapse
|
5
|
Identification of the Telomere elongation Mutation in Drosophila. Cells 2022; 11:cells11213484. [DOI: 10.3390/cells11213484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Telomeres in Drosophila melanogaster, which have inspired a large part of Sergio Pimpinelli work, are similar to those of other eukaryotes in terms of their function. Yet, their length maintenance relies on the transposition of the specialized retrotransposons Het-A, TART, and TAHRE, rather than on the activity of the enzyme telomerase as it occurs in most other eukaryotic organisms. The length of the telomeres in Drosophila thus depends on the number of copies of these transposable elements. Our previous work has led to the isolation of a dominant mutation, Tel1, that caused a several-fold elongation of telomeres. In this study, we molecularly identified the Tel1 mutation by a combination of transposon-induced, site-specific recombination and next-generation sequencing. Recombination located Tel1 to a 15 kb region in 92A. Comparison of the DNA sequence in this region with the Drosophila Genetic Reference Panel of wild-type genomic sequences delimited Tel1 to a 3 bp deletion inside intron 8 of Ino80. Furthermore, CRISPR/Cas9-induced deletions surrounding the same region exhibited the Tel1 telomere phenotype, confirming a strict requirement of this intron 8 gene sequence for a proper regulation of Drosophila telomere length.
Collapse
|
6
|
Colonna Romano N, Fanti L. Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns. Cells 2022; 11:cells11061048. [PMID: 35326499 PMCID: PMC8947103 DOI: 10.3390/cells11061048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous genetic elements, able to jump from one location of the genome to another, in all organisms. For this reason, on the one hand, TEs can induce deleterious mutations, causing dysfunction, disease and even lethality in individuals. On the other hand, TEs can increase genetic variability, making populations better equipped to respond adaptively to environmental change. To counteract the deleterious effects of TEs, organisms have evolved strategies to avoid their activation. However, their mobilization does occur. Usually, TEs are maintained silent through several mechanisms, but they can be reactivated during certain developmental windows. Moreover, TEs can become de-repressed because of drastic changes in the external environment. Here, we describe the ‘double life’ of TEs, being both ‘parasites’ and ‘symbionts’ of the genome. We also argue that the transposition of TEs contributes to two important evolutionary processes: the temporal dynamic of evolution and the induction of genetic variability. Finally, we discuss how the interplay between two TE-dependent phenomena, insertional mutagenesis and epigenetic plasticity, plays a role in the process of evolution.
Collapse
|
7
|
Shining Light on the Dark Side of the Genome. Cells 2022; 11:cells11030330. [PMID: 35159140 PMCID: PMC8834555 DOI: 10.3390/cells11030330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Heterochromatin has historically been considered the dark side of the genome. In part, this reputation derives from its concentration near centromeres and telomeres, regions of the genome repressive to nuclear functions such as DNA replication and transcription. The repetitive nature of heterochromatic DNA has only added to its “darkness”, as sequencing of these DNA regions has been only recently achieved. Despite such obstacles, research on heterochromatin blossomed over the past decades. Success in this area benefitted from efforts of Sergio Pimpinelli and colleagues who made landmark discoveries and promoted the growth of an international community of researchers. They discovered complexities of heterochromatin, demonstrating that a key component, Heterochromatin Protein 1a (HP1a), uses multiple mechanisms to associate with chromosomes and has positive and negative effects on gene expression, depending on the chromosome context. In addition, they updated the work of Carl Waddington using molecular tools that revealed how environmental stress promotes genome change due to transposable element movement. Collectively, their research and that of many others in the field have shined a bright light on the dark side of the genome and helped reveal many mysteries of heterochromatin.
Collapse
|
8
|
Loss of telomere silencing is accompanied by dysfunction of Polo kinase and centrosomes during Drosophila oogenesis and early development. PLoS One 2021; 16:e0258156. [PMID: 34624021 PMCID: PMC8500440 DOI: 10.1371/journal.pone.0258156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/18/2021] [Indexed: 12/03/2022] Open
Abstract
Telomeres are nucleoprotein complexes that protect the ends of eukaryotic linear chromosomes from degradation and fusions. Telomere dysfunction leads to cell growth arrest, oncogenesis, and premature aging. Telomeric RNAs have been found in all studied species; however, their functions and biogenesis are not clearly understood. We studied the mechanisms of development disorders observed upon overexpression of telomeric repeats in Drosophila. In somatic cells, overexpression of telomeric retrotransposon HeT-A is cytotoxic and leads to the accumulation of HeT-A Gag near centrosomes. We found that RNA and RNA-binding protein Gag encoded by the telomeric retrotransposon HeT-A interact with Polo and Cdk1 mitotic kinases, which are conserved regulators of centrosome biogenesis and cell cycle. The depletion of proteins Spindle E, Ccr4 or Ars2 resulting in HeT-A overexpression in the germline was accompanied by mislocalization of Polo as well as its abnormal stabilization during oogenesis and severe deregulation of centrosome biogenesis leading to maternal-effect embryonic lethality. These data suggest a mechanistic link between telomeric HeT-A ribonucleoproteins and cell cycle regulators that ensures the cell response to telomere dysfunction.
Collapse
|
9
|
Casale AM, Cappucci U, Piacentini L. Unravelling HP1 functions: post-transcriptional regulation of stem cell fate. Chromosoma 2021; 130:103-111. [PMID: 34128099 PMCID: PMC8426308 DOI: 10.1007/s00412-021-00760-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Heterochromatin protein 1 (HP1) is a non-histone chromosomal protein first identified in Drosophila as a major component of constitutive heterochromatin, required for stable epigenetic gene silencing in many species including humans. Over the years, several studies have highlighted additional roles of HP1 in different cellular processes including telomere maintenance, DNA replication and repair, chromosome segregation and, surprisingly, positive regulation of gene expression. In this review, we briefly summarize past research and recent results supporting the unexpected and emerging role of HP1 in activating gene expression. In particular, we discuss the role of HP1 in post-transcriptional regulation of mRNA processing because it has proved decisive in the control of germline stem cells homeostasis in Drosophila and has certainly added a new dimension to our understanding on HP1 targeting and functions in epigenetic regulation of stem cell behaviour.
Collapse
Affiliation(s)
- Assunta Maria Casale
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| | - Ugo Cappucci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Lucia Piacentini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Vidaurre V, Chen X. Epigenetic regulation of drosophila germline stem cell maintenance and differentiation. Dev Biol 2021; 473:105-118. [PMID: 33610541 DOI: 10.1016/j.ydbio.2021.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Gametogenesis is one of the most extreme cellular differentiation processes that takes place in Drosophila male and female germlines. This process begins at the germline stem cell, which undergoes asymmetric cell division (ACD) to produce a self-renewed daughter that preserves its stemness and a differentiating daughter cell that undergoes epigenetic and genomic changes to eventually produce haploid gametes. Research in molecular genetics and cellular biology are beginning to take advantage of the continually advancing genomic tools to understand: (1) how germ cells are able to maintain their identity throughout the adult reproductive lifetime, and (2) undergo differentiation in a balanced manner. In this review, we focus on the epigenetic mechanisms that address these two questions through their regulation of germline-soma communication to ensure germline stem cell identity and activity.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD, 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD, 21218, USA.
| |
Collapse
|
11
|
Saint-Leandre B, Christopher C, Levine MT. Adaptive evolution of an essential telomere protein restricts telomeric retrotransposons. eLife 2020; 9:e60987. [PMID: 33350936 PMCID: PMC7755394 DOI: 10.7554/elife.60987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Essential, conserved cellular processes depend not only on essential, strictly conserved proteins but also on essential proteins that evolve rapidly. To probe this poorly understood paradox, we exploited the rapidly evolving Drosophila telomere-binding protein, cav/HOAP, which protects chromosomes from lethal end-to-end fusions. We replaced the D. melanogaster HOAP with a highly diverged version from its close relative, D. yakuba. The D. yakuba HOAP ('HOAP[yak]') localizes to D. melanogaster telomeres and protects D. melanogaster chromosomes from fusions. However, HOAP[yak] fails to rescue a previously uncharacterized HOAP function: silencing of the specialized telomeric retrotransposons that, instead of telomerase, maintain chromosome length in Drosophila. Whole genome sequencing and cytogenetics of experimentally evolved populations revealed that HOAP[yak] triggers telomeric retrotransposon proliferation, resulting in aberrantly long telomeres. This evolution-generated, separation-of-function allele resolves the paradoxical observation that a fast-evolving essential gene directs an essential, strictly conserved function: telomeric retrotransposon containment, not end-protection, requires evolutionary innovation at HOAP.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Department of Biology and Epigenetics Institute, University of PennsylvaniaPhiladelphiaUnited States
| | - Courtney Christopher
- Department of Biology and Epigenetics Institute, University of PennsylvaniaPhiladelphiaUnited States
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
12
|
Castillo-González C, Shippen DE. Change and HOAP for the best. eLife 2020; 9:e64945. [PMID: 33350935 PMCID: PMC7755383 DOI: 10.7554/elife.64945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
HOAP is a telomere-binding protein that has a conserved role in Drosophila, but it also needs to evolve quickly to restrict telomeric retrotransposons.
Collapse
Affiliation(s)
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
13
|
Singh PB, Belyakin SN, Laktionov PP. Biology and Physics of Heterochromatin- Like Domains/Complexes. Cells 2020; 9:E1881. [PMID: 32796726 PMCID: PMC7465696 DOI: 10.3390/cells9081881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
The hallmarks of constitutive heterochromatin, HP1 and H3K9me2/3, assemble heterochromatin-like domains/complexes outside canonical constitutively heterochromatic territories where they regulate chromatin template-dependent processes. Domains are more than 100 kb in size; complexes less than 100 kb. They are present in the genomes of organisms ranging from fission yeast to human, with an expansion in size and number in mammals. Some of the likely functions of domains/complexes include silencing of the donor mating type region in fission yeast, preservation of DNA methylation at imprinted germline differentially methylated regions (gDMRs) and regulation of the phylotypic progression during vertebrate development. Far cis- and trans-contacts between micro-phase separated domains/complexes in mammalian nuclei contribute to the emergence of epigenetic compartmental domains (ECDs) detected in Hi-C maps. A thermodynamic description of micro-phase separation of heterochromatin-like domains/complexes may require a gestalt shift away from the monomer as the "unit of incompatibility" that determines the sign and magnitude of the Flory-Huggins parameter, χ. Instead, a more dynamic structure, the oligo-nucleosomal "clutch", consisting of between 2 and 10 nucleosomes is both the long sought-after secondary structure of chromatin and its unit of incompatibility. Based on this assumption we present a simple theoretical framework that enables an estimation of χ for domains/complexes flanked by euchromatin and thereby an indication of their tendency to phase separate. The degree of phase separation is specified by χN, where N is the number of "clutches" in a domain/complex. Our approach could provide an additional tool for understanding the biophysics of the 3D genome.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, Nur-Sultan City 010000, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Stepan N. Belyakin
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Genomics laboratory, Institute of molecular and cellular biology SD RAS, Lavrentyev ave, 8/2, 630090 Novosibirsk, Russia; (S.N.B.); (P.P.L.)
| | - Petr P. Laktionov
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Genomics laboratory, Institute of molecular and cellular biology SD RAS, Lavrentyev ave, 8/2, 630090 Novosibirsk, Russia; (S.N.B.); (P.P.L.)
| |
Collapse
|
14
|
Cacchione S, Cenci G, Raffa GD. Silence at the End: How Drosophila Regulates Expression and Transposition of Telomeric Retroelements. J Mol Biol 2020; 432:4305-4321. [PMID: 32512004 DOI: 10.1016/j.jmb.2020.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/26/2023]
Abstract
The maintenance of chromosome ends in Drosophila is an exceptional phenomenon because it relies on the transposition of specialized retrotransposons rather than on the activity of the enzyme telomerase that maintains telomeres in almost every other eukaryotic species. Sequential transpositions of Het-A, TART, and TAHRE (HTT) onto chromosome ends produce long head-to-tail arrays that are reminiscent to the long arrays of short repeats produced by telomerase in other organisms. Coordinating the activation and silencing of the HTT array with the recruitment of telomere capping proteins favors proper telomere function. However, how this coordination is achieved is not well understood. Like other Drosophila retrotransposons, telomeric elements are regulated by the piRNA pathway. Remarkably, HTT arrays are both source of piRNA and targets of gene silencing thus making the regulation of Drosophila telomeric transposons a unique event among eukaryotes. Herein we will review the genetic and molecular mechanisms underlying the regulation of HTT transcription and transposition and will discuss the possibility of a crosstalk between piRNA-mediated regulation, telomeric chromatin establishment, and telomere protection.
Collapse
Affiliation(s)
- Stefano Cacchione
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| | - Giovanni Cenci
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy; Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy.
| | - Grazia Daniela Raffa
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
15
|
Valori V, Tus K, Laukaitis C, Harris DT, LeBeau L, Maggert KA. Human rDNA copy number is unstable in metastatic breast cancers. Epigenetics 2020; 15:85-106. [PMID: 31352858 PMCID: PMC6961696 DOI: 10.1080/15592294.2019.1649930] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/07/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022] Open
Abstract
Chromatin-mediated silencing, including the formation of heterochromatin, silent chromosome territories, and repressed gene promoters, acts to stabilize patterns of gene regulation and the physical structure of the genome. Reduction of chromatin-mediated silencing can result in genome rearrangements, particularly at intrinsically unstable regions of the genome such as transposons, satellite repeats, and repetitive gene clusters including the rRNA gene clusters (rDNA). It is thus expected that mutational or environmental conditions that compromise heterochromatin function might cause genome instability, and diseases associated with decreased epigenetic stability might exhibit genome changes as part of their aetiology. We find the support of this hypothesis in invasive ductal breast carcinoma, in which reduced epigenetic silencing has been previously described, by using a facile method to quantify rDNA copy number in biopsied breast tumours and pair-matched healthy tissue. We found that rDNA and satellite DNA sequences had significant copy number variation - both losses and gains of copies - compared to healthy tissue, arguing that these genome rearrangements are common in developing breast cancer. Thus, any proposed aetiology onset or progression of breast cancer should consider alterations to the epigenome, but must also accommodate concomitant changes to genome sequence at heterochromatic loci.
Collapse
Affiliation(s)
- Virginia Valori
- Department of Applied Biosciences, University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Katalin Tus
- Department of Pathology, University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Christina Laukaitis
- Department of Medicine, University of Arizona, College of Medicine, Tucson, AZ, USA
- University of Arizona Cancer Center, University of Arizona, College of Medicine, Tucson, AZ, USA
| | - David T. Harris
- Department of Immunobiology, University of Arizona, College of Medicine, Tucson, AZ, USA
- Arizona Health Sciences Center Biorepository, University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Lauren LeBeau
- Department of Pathology, University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Keith A. Maggert
- University of Arizona Cancer Center, University of Arizona, College of Medicine, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, College of Medicine, Tucson, AZ, USA
| |
Collapse
|
16
|
Park J, Zhu Q, Mirek E, Na L, Raduwan H, Anthony TG, Belden WJ. BMAL1 associates with chromosome ends to control rhythms in TERRA and telomeric heterochromatin. PLoS One 2019; 14:e0223803. [PMID: 31634367 PMCID: PMC6802832 DOI: 10.1371/journal.pone.0223803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/27/2019] [Indexed: 01/12/2023] Open
Abstract
The circadian clock and aging are intertwined. Disruption to the normal diurnal rhythm accelerates aging and corresponds with telomere shortening. Telomere attrition also correlates with increase cellular senescence and incidence of chronic disease. In this report, we examined diurnal association of White Collar 2 (WC-2) in Neurospora and BMAL1 in zebrafish and mice and found that these circadian transcription factors associate with telomere DNA in a rhythmic fashion. We also identified a circadian rhythm in Telomeric Repeat-containing RNA (TERRA), a lncRNA transcribed from the telomere. The diurnal rhythm in TERRA was lost in the liver of Bmal1-/- mice indicating it is a circadian regulated transcript. There was also a BMAL1-dependent rhythm in H3K9me3 at the telomere in zebrafish brain and mouse liver, and this rhythm was lost with increasing age. Taken together, these results provide evidence that BMAL1 plays a direct role in telomere homeostasis by regulating rhythms in TERRA and heterochromatin. Loss of these rhythms may contribute to telomere erosion during aging.
Collapse
Affiliation(s)
- Jinhee Park
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Qiaoqiao Zhu
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Emily Mirek
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Li Na
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Hamidah Raduwan
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Tracy G. Anthony
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - William J. Belden
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| |
Collapse
|
17
|
Complex epigenetic regulation of alkaloid biosynthesis and host interaction by heterochromatin protein I in a fungal endophyte-plant symbiosis. Fungal Genet Biol 2019; 125:71-83. [DOI: 10.1016/j.fgb.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/10/2023]
|
18
|
Kordyukova MY, Kalmykova AI. Nature and Functions of Telomeric Transcripts. BIOCHEMISTRY (MOSCOW) 2019; 84:137-146. [DOI: 10.1134/s0006297919020044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Heterochromatin protein 1 (HP1) is intrinsically required for post-transcriptional regulation of Drosophila Germline Stem Cell (GSC) maintenance. Sci Rep 2019; 9:4372. [PMID: 30867469 PMCID: PMC6416348 DOI: 10.1038/s41598-019-40152-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/07/2019] [Indexed: 01/05/2023] Open
Abstract
A very important open question in stem cells regulation is how the fine balance between GSCs self-renewal and differentiation is orchestrated at the molecular level. In the past several years much progress has been made in understanding the molecular mechanisms underlying intrinsic and extrinsic controls of GSC regulation but the complex gene regulatory networks that regulate stem cell behavior are only partially understood. HP1 is a dynamic epigenetic determinant mainly involved in heterochromatin formation, epigenetic gene silencing and telomere maintenance. Furthermore, recent studies have revealed the importance of HP1 in DNA repair, sister chromatid cohesion and, surprisingly, in positive regulation of gene expression. Here, we show that HP1 plays a crucial role in the control of GSC homeostasis in Drosophila. Our findings demonstrate that HP1 is required intrinsically to promote GSC self-renewal and progeny differentiation by directly stabilizing the transcripts of key genes involved in GSCs maintenance.
Collapse
|
20
|
Genome-wide Control of Heterochromatin Replication by the Telomere Capping Protein TRF2. Mol Cell 2019; 70:449-461.e5. [PMID: 29727617 DOI: 10.1016/j.molcel.2018.03.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022]
Abstract
Hard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer. Our knowledge of the mechanisms controlling the stability of these regions is essentially limited to telomeres, where fragility is counteracted by the shelterin proteins. Here we show that the shelterin subunit TRF2 ensures progression of the replication fork through pericentromeric heterochromatin, but not centromeric chromatin. In a process involving its N-terminal basic domain, TRF2 binds to pericentromeric Satellite III sequences during S phase, allowing the recruitment of the G-quadruplex-resolving helicase RTEL1 to facilitate fork progression. We also show that TRF2 is required for the stability of other heterochromatic regions localized throughout the genome, paving the way for future research on heterochromatic replication and its relationship with aging and cancer.
Collapse
|
21
|
Abstract
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development-a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development.
Collapse
|
22
|
Radion E, Morgunova V, Ryazansky S, Akulenko N, Lavrov S, Abramov Y, Komarov PA, Glukhov SI, Olovnikov I, Kalmykova A. Key role of piRNAs in telomeric chromatin maintenance and telomere nuclear positioning in Drosophila germline. Epigenetics Chromatin 2018; 11:40. [PMID: 30001204 PMCID: PMC6043984 DOI: 10.1186/s13072-018-0210-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Telomeric small RNAs related to PIWI-interacting RNAs (piRNAs) have been described in various eukaryotes; however, their role in germline-specific telomere function remains poorly understood. Using a Drosophila model, we performed an in-depth study of the biogenesis of telomeric piRNAs and their function in telomere homeostasis in the germline. RESULTS To fully characterize telomeric piRNA clusters, we integrated the data obtained from analysis of endogenous telomeric repeats, as well as transgenes inserted into different telomeric and subtelomeric regions. The small RNA-seq data from strains carrying telomeric transgenes demonstrated that all transgenes belong to a class of dual-strand piRNA clusters; however, their capacity to produce piRNAs varies significantly. Rhino, a paralog of heterochromatic protein 1 (HP1) expressed exclusively in the germline, is associated with all telomeric transgenes, but its enrichment correlates with the abundance of transgenic piRNAs. It is likely that this heterogeneity is determined by the sequence peculiarities of telomeric retrotransposons. In contrast to the heterochromatic non-telomeric germline piRNA clusters, piRNA loss leads to a dramatic decrease in HP1, Rhino, and trimethylated histone H3 lysine 9 in telomeric regions. Therefore, the presence of piRNAs is required for the maintenance of telomere chromatin in the germline. Moreover, piRNA loss causes telomere translocation from the nuclear periphery toward the nuclear interior but does not affect telomere end capping. Analysis of the telomere-associated sequences (TASs) chromatin revealed strong tissue specificity. In the germline, TASs are enriched with HP1 and Rhino, in contrast to somatic tissues, where they are repressed by Polycomb group proteins. CONCLUSIONS piRNAs play an essential role in the assembly of telomeric chromatin, as well as in nuclear telomere positioning in the germline. Telomeric arrays and TASs belong to a unique type of Rhino-dependent piRNA clusters with transcripts that serve simultaneously as piRNA precursors and as their only targets. Telomeric chromatin is highly sensitive to piRNA loss, implying the existence of a novel developmental checkpoint that depends on telomere integrity in the germline.
Collapse
Affiliation(s)
- Elizaveta Radion
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Valeriya Morgunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Sergei Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Sergey Lavrov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Yuri Abramov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Pavel A Komarov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182.,Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Sergey I Glukhov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Ivan Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Alla Kalmykova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182.
| |
Collapse
|
23
|
Penke TJR, McKay DJ, Strahl BD, Matera AG, Duronio RJ. Functional Redundancy of Variant and Canonical Histone H3 Lysine 9 Modification in Drosophila. Genetics 2018; 208:229-244. [PMID: 29133298 PMCID: PMC5753860 DOI: 10.1534/genetics.117.300480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/10/2017] [Indexed: 01/07/2023] Open
Abstract
Histone post-translational modifications (PTMs) and differential incorporation of variant and canonical histones into chromatin are central modes of epigenetic regulation. Despite similar protein sequences, histone variants are enriched for different suites of PTMs compared to their canonical counterparts. For example, variant histone H3.3 occurs primarily in transcribed regions and is enriched for "active" histone PTMs like Lys9 acetylation (H3.3K9ac), whereas the canonical histone H3 is enriched for Lys9 methylation (H3K9me), which is found in transcriptionally silent heterochromatin. To determine the functions of K9 modification on variant vs. canonical H3, we compared the phenotypes caused by engineering H3.3K9R and H3K9R mutant genotypes in Drosophila melanogaster Whereas most H3.3K9R , and a small number of H3K9R , mutant animals are capable of completing development and do not have substantially altered protein-coding transcriptomes, all H3.3K9R H3K9R combined mutants die soon after embryogenesis and display decreased expression of genes enriched for K9ac. These data suggest that the role of K9ac in gene activation during development can be provided by either H3 or H3.3. Conversely, we found that H3.3K9 is methylated at telomeric transposons and that this mark contributes to repressive chromatin architecture, supporting a role for H3.3 in heterochromatin that is distinct from that of H3. Thus, our genetic and molecular analyses demonstrate that K9 modification of variant and canonical H3 have overlapping roles in development and transcriptional regulation, though to differing extents in euchromatin and heterochromatin.
Collapse
Affiliation(s)
- Taylor J R Penke
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, North Carolina 27599
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, North Carolina 27599
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, North Carolina 27599
- Department of Genetics, The University of North Carolina at Chapel Hill, North Carolina 27599
- Department of Biology, The University of North Carolina at Chapel Hill, North Carolina 27599
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, North Carolina 27599
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, North Carolina 27599
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, North Carolina 27599
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, North Carolina 27599
- Department of Genetics, The University of North Carolina at Chapel Hill, North Carolina 27599
- Department of Biology, The University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, North Carolina 27599
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, North Carolina 27599
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, North Carolina 27599
- Department of Genetics, The University of North Carolina at Chapel Hill, North Carolina 27599
- Department of Biology, The University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
24
|
Ravlić S, Škrobot Vidaček N, Nanić L, Laganović M, Slade N, Jelaković B, Rubelj I. Mechanisms of fetal epigenetics that determine telomere dynamics and health span in adulthood. Mech Ageing Dev 2017; 174:55-62. [PMID: 28847485 DOI: 10.1016/j.mad.2017.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/11/2023]
Abstract
Advances in epigenetics now enable us to better understand environmental influences on the genetic background of human diseases. This refers especially to fetal development where an adverse intrauterine environment impacts oxygen and nutrient supply to the fetus. Recently, differences in telomere length and telomere loss dynamics among individuals born with intrauterine growth restriction compared to normal controls have been described. In this paper we propose possible molecular mechanisms that (pre)program telomere epigenetics during pregnancy. This programming sets differences in telomere lengths and dynamics of telomere shortening in adulthood and therefore dictates the dynamics of aging and morbidity in later life.
Collapse
Affiliation(s)
- Sanda Ravlić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| | - Nikolina Škrobot Vidaček
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| | - Mario Laganović
- Department for Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Neda Slade
- Laboratory for Protein Dynamics, Division of Molecular Medicine, RBI, Zagreb, Croatia.
| | - Bojan Jelaković
- Department for Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| |
Collapse
|
25
|
Chavez J, Murillo-Maldonado JM, Bahena V, Cruz AK, Castañeda-Sortibrán A, Rodriguez-Arnaiz R, Zurita M, Valadez-Graham V. dAdd1 and dXNP prevent genome instability by maintaining HP1a localization at Drosophila telomeres. Chromosoma 2017; 126:697-712. [PMID: 28688038 DOI: 10.1007/s00412-017-0634-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022]
Abstract
Telomeres are important contributors to genome stability, as they prevent linear chromosome end degradation and contribute to the avoidance of telomeric fusions. An important component of the telomeres is the heterochromatin protein 1a (HP1a). Mutations in Su(var)205, the gene encoding HP1a in Drosophila, result in telomeric fusions, retrotransposon regulation loss and larger telomeres, leading to chromosome instability. Previously, it was found that several proteins physically interact with HP1a, including dXNP and dAdd1 (orthologues to the mammalian ATRX gene). In this study, we found that mutations in the genes encoding the dXNP and dAdd1 proteins affect chromosome stability, causing chromosomal aberrations, including telomeric defects, similar to those observed in Su(var)205 mutants. In somatic cells, we observed that dXNP and dAdd1 participate in the silencing of the telomeric HTT array of retrotransposons, preventing anomalous retrotransposon transcription and integration. Furthermore, the lack of dAdd1 results in the loss of HP1a from the telomeric regions without affecting other chromosomal HP1a binding sites; mutations in dxnp also affected HP1a localization but not at all telomeres, suggesting a specialized role for dAdd1 and dXNP proteins in locating HP1a at the tips of the chromosomes. These results place dAdd1 as an essential regulator of HP1a localization and function in the telomere heterochromatic domain.
Collapse
Affiliation(s)
- Joselyn Chavez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Juan Manuel Murillo-Maldonado
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Vanessa Bahena
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Ana Karina Cruz
- Laboratorio de Genética. Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de México, Mexico
| | - América Castañeda-Sortibrán
- Laboratorio de Genética. Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de México, Mexico
| | - Rosario Rodriguez-Arnaiz
- Laboratorio de Genética. Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de México, Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
26
|
Apte MS, Cooper JP. Life and cancer without telomerase: ALT and other strategies for making sure ends (don't) meet. Crit Rev Biochem Mol Biol 2016; 52:57-73. [PMID: 27892716 DOI: 10.1080/10409238.2016.1260090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
While most cancer cells rely on telomerase expression/re-activation for linear chromosome maintenance and sustained proliferation, a significant population of cancers (10-15%) employs telomerase-independent strategies, collectively dubbed Alternative Lengthening of Telomeres (ALT). Most ALT cells relax the usual role of telomeres as inhibitors of local homologous recombination while maintaining the ability of telomeres to prohibit local non-homologous end joining reactions. Here we review current concepts surrounding how ALT telomeres achieve this new balance via alterations in chromatin landscape, DNA damage repair processes and handling of telomeric transcription. We also discuss telomerase independent end maintenance strategies utilized by other organisms, including fruitflies and yeasts, to draw parallels and contrasts and highlight additional modes, beyond ALT, that may be available to telomerase-minus cancers. We conclude by commenting on promises and challenges in the development of effective anti-ALT cancer therapies.
Collapse
Affiliation(s)
- Manasi S Apte
- a Laboratory of Biochemistry and Molecular Biology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Julia Promisel Cooper
- a Laboratory of Biochemistry and Molecular Biology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
27
|
Vedelek B, Blastyák A, Boros IM. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins. PLoS One 2015; 10:e0142771. [PMID: 26566042 PMCID: PMC4643883 DOI: 10.1371/journal.pone.0142771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction.
Collapse
Affiliation(s)
- Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - András Blastyák
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre M. Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
28
|
Singh AK, Lakhotia SC. The hnRNP A1 homolog Hrb87F/Hrp36 is important for telomere maintenance in Drosophila melanogaster. Chromosoma 2015; 125:373-88. [PMID: 26373285 DOI: 10.1007/s00412-015-0540-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
Unlike the telomerase-dependent mammalian telomeres, HeT-A, TART, and TAHRE (HTT) retroposon arrays regulate Drosophila telomere length. Cap prevents telomeric associations (TAs) and telomeric fusions (TFs). Our results suggest important roles of Hrb87F in telomeric HTT array and cap maintenance in Drosophila. All chromosome arms, except 2L, in Df(3R)Hrb87F homozygotes (Hrb87F-null) displayed significantly elongated telomeres with amplified HTT arrays and high TAs, all of which resolved without damage. Presence of FLAG-tagged Hrb87F (FLAG-Hrb87F) on cap and subtelomeric regions following hsFLAG-Hrb87F transgene expression in Df(3R)Hrb87F homozygotes suppressed TAs without affecting telomere length. A normal X-chromosome telomere expanded within five generations in Hrb87F-null background and displayed high TAs, but not when hsFLAG-Hrb87F was co-expressed. Tel (1) /Gaiano line or HP1 loss-of-function mutant-derived expanded telomeres carry Hrb87F on cap and HTT arrays while Hrb87F-null telomeres have HP1 and HOAP on caps and expanded HTT arrays. ISWI, seen only on cap on normal telomeres, was abundant on Hrb87F-null expanded HTT arrays. Extended telomeres derived from Tel (1) (Gaiano) or HP1-null mutation background interact with those from Hrb87F-null, since while the end association frequency was negligible in Df(3R)Hrb87F/+ nuclei, it increased significantly in co-presence of Tel (1) or HP1-null-based expanded telomere/s. Together, these suggest complex interactions between members of the proteome of telomere so that absence of any key member leads to telomere expansion and/or enhanced TAs/TFs. HTT expansion in Hrb87F-null condition is not developmental but a germline event presumably because absence of Hrb87F in germline may deregulate HTT retroposition/replication leading to telomere elongation.
Collapse
Affiliation(s)
- Anand K Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
29
|
Morgunova V, Akulenko N, Radion E, Olovnikov I, Abramov Y, Olenina LV, Shpiz S, Kopytova DV, Georgieva SG, Kalmykova A. Telomeric repeat silencing in germ cells is essential for early development in Drosophila. Nucleic Acids Res 2015; 43:8762-73. [PMID: 26240377 PMCID: PMC4605298 DOI: 10.1093/nar/gkv775] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/21/2015] [Indexed: 12/03/2022] Open
Abstract
The germline-specific role of telomeres consists of chromosome end elongation and proper chromosome segregation during early developmental stages. Despite the crucial role of telomeres in germ cells, little is known about telomere biology in the germline. We analyzed telomere homeostasis in the Drosophila female germline and early embryos. A novel germline-specific function of deadenylase complex Ccr4-Not in the telomeric transcript surveillance mechanism is reported. Depletion of Ccr4-Not complex components causes strong derepression of the telomeric retroelement HeT-A in the germ cells, accompanied by elongation of the HeT-A poly(A) tail. Dysfunction of transcription factors Woc and Trf2, as well as RNA-binding protein Ars2, also results in the accumulation of excessively polyadenylated HeT-A transcripts in ovaries. Germline knockdowns of Ccr4-Not components, Woc, Trf2 and Ars2, lead to abnormal mitosis in early embryos, characterized by chromosome missegregation, centrosome dysfunction and spindle multipolarity. Moreover, the observed phenotype is accompanied by the accumulation of HeT-A transcripts around the centrosomes in early embryos, suggesting the putative relationship between overexpression of telomeric transcripts and mitotic defects. Our data demonstrate that Ccr4-Not, Woc, Trf2 and Ars2, components of different regulatory pathways, are required for telomere protection in the germline in order to guarantee normal development.
Collapse
Affiliation(s)
- Valeriya Morgunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elizaveta Radion
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ivan Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yuri Abramov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ludmila V Olenina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Sergey Shpiz
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Daria V Kopytova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Sofia G Georgieva
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alla Kalmykova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
30
|
Chadov BF, Fedorova NB, Chadova EV. Conditional mutations in Drosophila melanogaster: On the occasion of the 150th anniversary of G. Mendel's report in Brünn. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 765:40-55. [PMID: 26281767 DOI: 10.1016/j.mrrev.2015.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/19/2015] [Accepted: 06/10/2015] [Indexed: 01/01/2023]
Abstract
The basis for modern genetics was laid by Gregor Mendel. He proposed that traits belonging to the intraspecific variability class be studied. However, individuals of one species possess traits of another class. They are related to intraspecific similarity. Individuals never differ from each other in these traits. By analogy with traits varying within a species and determined by genes, it is conjectured that intraspecific similarity is determined by genes, too. If so, mutations in these genes can be obtained. This paper provides a review of works published in 2000-2014 that: (1) propose breeding methods for detection of mutations in Drosophila melanogaster genes that lead intraspecific similarity; these mutations were called conditional; (2) describe collections of conditional mutations in chromosomes X, 2, and 3 of Drosophila; (3) show unusual features of epigenetic nature in the mutants; and (4) analyze these features of the mutants. Based on the peculiarities of manifestation it is supposed that the recognized conditional mutations occur in genes responsible for intraspecific similarity. The genes presumably belong to the so-called regulatory network of the Drosophila genome. This approach expands the scope of breeding analysis introduced by G. Mendel for heredity studies 150 years ago.
Collapse
Affiliation(s)
- Boris F Chadov
- Institute of Cytology and Genetics, Siberian Department of Russian Academy of Sciences, Novosibirsk 630090, Russian Federation.
| | - Nina B Fedorova
- Institute of Cytology and Genetics, Siberian Department of Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Eugenia V Chadova
- Institute of Cytology and Genetics, Siberian Department of Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| |
Collapse
|
31
|
Cabrera JR, Olcese U, Horabin JI. A balancing act: heterochromatin protein 1a and the Polycomb group coordinate their levels to silence chromatin in Drosophila. Epigenetics Chromatin 2015; 8:17. [PMID: 25954320 PMCID: PMC4423169 DOI: 10.1186/s13072-015-0010-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The small non-histone protein Heterochromatin protein 1a (HP1a) plays a vital role in packaging chromatin, most notably in forming constitutive heterochromatin at the centromeres and telomeres. A second major chromatin regulating system is that of the Polycomb/trithorax groups of genes which, respectively, maintain the repressed/activated state of euchromatin. Recent analyses suggest they affect the expression of a multitude of genes, beyond the homeotics whose alteration in expression lead to their initial discovery. RESULTS Our data suggest that early in Drosophila development, HP1a collaborates with the Polycomb/trithorax groups of proteins to regulate gene expression and that the two chromatin systems do not act separately as convention describes. HP1a affects the levels of both the Polycomb complexes and RNA polymerase II at promoters, as assayed by chromatin immunoprecipitation analysis. Deposition of both the repressive (H3K27me3) and activating (H3K4me3) marks promoted by the Polycomb/trithorax group genes at gene promoters is affected. Additionally, depending on which parent contributes the null mutation of the HP1a gene, the levels of the H3K27me3 and H3K9me3 silencing marks at both promoters and heterochromatin are different. Changes in levels of the H3K27me3 and H3K9me3 repressive marks show a mostly reciprocal nature. The time around the mid-blastula transition, when the zygotic genome begins to be actively transcribed, appears to be a transition/decision point for setting the levels. CONCLUSIONS We find that HP1a, which is normally critical for the formation of constitutive heterochromatin, also affects the generation of the epigenetic marks of the Polycomb/trithorax groups of proteins, chromatin modifiers which are key to maintaining gene expression in euchromatin. At gene promoters, deposition of both the repressive H3K27me3 and activating H3K4me3 marks of histone modifications shows a dependence on HP1a. Around the mid-blastula transition, when the zygotic genome begins to be actively transcribed, a pivotal decision for the level of silencing appears to take place. This is also when the embryo organizes its genome into heterochromatin and euchromatin. A balance between the HP1a and Polycomb group silencing systems appears to be set for the chromatin types that each system will primarily regulate.
Collapse
Affiliation(s)
- Janel R Cabrera
- Department of Biomedical Sciences, College of Medicine, Florida State University, Rm 3300-G, 1115 W, Call St., Tallahassee, FL 32306 USA ; Current Address: Center for Life Sciences, Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Rm 917, 3 Blackfan Circle, Boston, MA 02215 USA
| | - Ursula Olcese
- Department of Biomedical Sciences, College of Medicine, Florida State University, Rm 3300-G, 1115 W, Call St., Tallahassee, FL 32306 USA
| | - Jamila I Horabin
- Department of Biomedical Sciences, College of Medicine, Florida State University, Rm 3300-G, 1115 W, Call St., Tallahassee, FL 32306 USA
| |
Collapse
|
32
|
Dubruille R, Loppin B. Protection of Drosophila chromosome ends through minimal telomere capping. J Cell Sci 2015; 128:1969-81. [PMID: 25908850 DOI: 10.1242/jcs.167825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/18/2015] [Indexed: 01/05/2023] Open
Abstract
In Drosophila, telomere-capping proteins have the remarkable capacity to recognize chromosome ends in a sequence-independent manner. This epigenetic protection is essential to prevent catastrophic ligations of chromosome extremities. Interestingly, capping proteins occupy a large telomere chromatin domain of several kilobases; however, the functional relevance of this to end protection is unknown. Here, we investigate the role of the large capping domain by manipulating HOAP (encoded by caravaggio) capping-protein expression in the male germ cells, where telomere protection can be challenged without compromising viability. We show that the exhaustion of HOAP results in a dramatic reduction of other capping proteins at telomeres, including K81 [encoded by ms(3)K81], which is essential for male fertility. Strikingly however, we demonstrate that, although capping complexes are barely detected in HOAP-depleted male germ cells, telomere protection and male fertility are not dramatically affected. Our study thus demonstrates that efficient protection of Drosophila telomeres can be achieved with surprisingly low amounts of capping complexes. We propose that these complexes prevent fusions by acting at the very extremity of chromosomes, reminiscent of the protection conferred by extremely short telomeric arrays in yeast or mammalian systems.
Collapse
Affiliation(s)
- Raphaëlle Dubruille
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| | - Benjamin Loppin
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| |
Collapse
|
33
|
Simmons MJ, Peterson MP, Thorp MW, Buschette JT, DiPrima SN, Harter CL, Skolnick MJ. piRNA-mediated transposon regulation and the germ-line mutation rate in Drosophila melanogaster males. Mutat Res 2015; 773:16-21. [PMID: 25769182 DOI: 10.1016/j.mrfmmm.2015.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/02/2015] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
Transposons, especially retrotransposons, are abundant in the genome of Drosophila melanogaster. These mobile elements are regulated by small RNAs that interact with the Piwi family of proteins-the piwi-interacting or piRNAs. The Piwi proteins are encoded by the genes argonaute3 (ago3), aubergine (aub), and piwi. Heterochromatin Protein 1 (HP1), a chromatin-organizing protein encoded by the Suppressor of variegation 205 [Su(var)205] gene, also plays a role in this regulation. To assess the mutational impact of weakening the system for transposon regulation, we measured the frequency of recessive X-linked lethal mutations occurring in the germ lines of males from stocks that were heterozygous for mutant alleles of the ago3, aub, piwi, or Su(var)205 genes. These mutant alleles are expected to deplete the wild-type proteins encoded by these genes by as much as 50%. The mutant alleles of piwi and Su(var)205 significantly increased the X-linked lethal mutation frequency, whereas the mutant alleles of ago3 did not. An increased mutation frequency was also observed in males from one of two mutant aub stocks, but this increase may not have been due to the aub mutant. The increased mutation frequency caused by depleting Piwi or HP1suggests that chromatin-organizing proteins play important roles in minimizing the germ-line mutation rate, possibly by stabilizing the structure of the heterochromatin in which many transposons are situated.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA.
| | - Mark P Peterson
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA
| | - Michael W Thorp
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA
| | - Jared T Buschette
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA
| | - Stephanie N DiPrima
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA
| | - Christine L Harter
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA
| | - Matthew J Skolnick
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA
| |
Collapse
|
34
|
Shoji K, Hara K, Kawamoto M, Kiuchi T, Kawaoka S, Sugano S, Shimada T, Suzuki Y, Katsuma S. Silkworm HP1a transcriptionally enhances highly expressed euchromatic genes via association with their transcription start sites. Nucleic Acids Res 2014; 42:11462-71. [PMID: 25237056 PMCID: PMC4191426 DOI: 10.1093/nar/gku862] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Heterochromatin protein 1 (HP1) is an evolutionarily conserved protein across different eukaryotic species and is crucial for heterochromatin establishment and maintenance. The silkworm, Bombyx mori, encodes two HP1 proteins, BmHP1a and BmHP1b. In order to investigate the role of BmHP1a in transcriptional regulation, we performed genome-wide analyses of the transcriptome, transcription start sites (TSSs), chromatin modification states and BmHP1a-binding sites of the silkworm ovary-derived BmN4 cell line. We identified a number of BmHP1a-binding loci throughout the silkworm genome and found that these loci included TSSs and frequently co-occurred with neighboring euchromatic histone modifications. In addition, we observed that genes with BmHP1a-associated TSSs were relatively highly expressed in BmN4 cells. RNA interference-mediated BmHP1a depletion resulted in the transcriptional repression of highly expressed genes with BmHP1a-associated TSSs, whereas genes not coupled with BmHP1a-binding regions were less affected by the treatment. These results demonstrate that BmHP1a binds near TSSs of highly expressed euchromatic genes and positively regulates their expression. Our study revealed a novel mode of transcriptional regulation mediated by HP1 proteins.
Collapse
Affiliation(s)
- Keisuke Shoji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kahori Hara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Munetaka Kawamoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinpei Kawaoka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
35
|
Klenov MS, Lavrov SA, Korbut AP, Stolyarenko AD, Yakushev EY, Reuter M, Pillai RS, Gvozdev VA. Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries. Nucleic Acids Res 2014; 42:6208-18. [PMID: 24782529 PMCID: PMC4041442 DOI: 10.1093/nar/gku268] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Piwi-interacting RNA (piRNA)-interacting Piwi protein is involved in transcriptional silencing of transposable elements in ovaries of Drosophila melanogaster. Here we characterized the genome-wide effect of nuclear Piwi elimination on the presence of the heterochromatic H3K9me3 mark and HP1a, as well as on the transcription-associated mark H3K4me2. Our results demonstrate that a significant increase in the H3K4me2 level upon nuclear Piwi loss is not accompanied by the alterations in H3K9me3 and HP1a levels for several germline-expressed transposons, suggesting that in this case Piwi prevents transcription by a mechanism distinct from H3K9 methylation. We found that the targets of Piwi-dependent chromatin repression are mainly related to the elements that display a higher level of H3K4me2 modification in the absence of silencing, i.e. most actively transcribed elements. We also show that Piwi-guided silencing does not significantly influence the chromatin state of dual-strand piRNA-producing clusters. In addition, host protein-coding gene expression is essentially not affected due to the nuclear Piwi elimination, but we noted an increase in small nuclear spliceosomal RNAs abundance and propose Piwi involvement in their post-transcriptional regulation. Our work reveals new aspects of transposon silencing in Drosophila, indicating that transcription of transposons can underpin their Piwi dependent silencing, while canonical heterochromatin marks are not obligatory for their repression.
Collapse
Affiliation(s)
- Mikhail S Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Sergey A Lavrov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Alina P Korbut
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | | | - Evgeny Y Yakushev
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Michael Reuter
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 France Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Ramesh S Pillai
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 France Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Vladimir A Gvozdev
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
36
|
Zhang L, Beaucher M, Cheng Y, Rong YS. Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila. EMBO J 2014; 33:1148-58. [PMID: 24733842 DOI: 10.1002/embj.201386940] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In Drosophila, a group of retrotransposons is mobilized exclusively to telomeres in a sequence-independent manner. How they target chromosome ends is not understood. Here, we focused on the telomeric element HeT-A and characterized the cell cycle expression and cytological distribution of its protein and RNA products. We determined the timing of telomere replication by creating a single lacO-marked telomere and provide evidence suggesting that transposon expression and recruitment to telomeres is linked to telomere replication. The HeT-A-encoded ORF1p protein is expressed predominantly in S phase, particularly in early S phase. Orf1p binds HeT-A transcripts and forms spherical structures at telomeres undergoing DNA replication. HeT-A sphere formation requires Verrocchio, a putative homolog of the conserved Stn1 telomeric protein. Our results suggest that coupling of telomere elongation and telomere replication is a universal feature, and raise the possibility that transposon recruitment to Drosophila telomeres is mechanistically related to telomerase recruitment in other organisms. Our study also supports a co-adaptive relationship between the Drosophila host and HeT-A mobile elements.
Collapse
Affiliation(s)
- Liang Zhang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute (NCI) NIH, Bethesda, MD, USA
| | - Michelle Beaucher
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute (NCI) NIH, Bethesda, MD, USA
| | - Yan Cheng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute (NCI) NIH, Bethesda, MD, USA
| | - Yikang S Rong
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute (NCI) NIH, Bethesda, MD, USA
| |
Collapse
|
37
|
Canzio D, Larson A, Narlikar GJ. Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol 2014; 24:377-86. [PMID: 24618358 DOI: 10.1016/j.tcb.2014.01.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/03/2023]
Abstract
Heterochromatin protein 1 (HP1) proteins were originally identified as critical components in heterochromatin-mediated gene silencing and are now recognized to play essential roles in several other processes including gene activation. Several eukaryotes possess more than one HP1 paralog. Despite high sequence conservation, the HP1 paralogs achieve diverse functions. Further, in many cases, the same HP1 paralog is implicated in multiple functions. Recent biochemical studies have revealed interesting paralog-specific biophysical differences and unanticipated conformational versatility in HP1 proteins that may account for this functional promiscuity. Here we review these findings and describe a molecular framework that aims to link the conformational flexibility of HP1 proteins observed in vitro with their functional promiscuity observed in vivo.
Collapse
Affiliation(s)
- Daniele Canzio
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Adam Larson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
38
|
Krassovsky K, Henikoff S. Distinct chromatin features characterize different classes of repeat sequences in Drosophila melanogaster. BMC Genomics 2014; 15:105. [PMID: 24498936 PMCID: PMC3922421 DOI: 10.1186/1471-2164-15-105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 01/30/2014] [Indexed: 11/15/2022] Open
Abstract
Background Repeat sequences are abundant in eukaryotic genomes but many are excluded from genome assemblies. In Drosophila melanogaster classical studies of repeat content suggested variability between individuals, but they lacked the precision of modern high throughput sequencing technologies. Genome-wide profiling of chromatin features such as histone tail modifications and DNA-binding proteins relies on alignment to the reference genome and hence excludes highly repetitive sequences. Results By analyzing repeat libraries, sequence complexity and k-mer counts we determined the abundances of different D. melanogaster repeat classes in flies in two public datasets, DGRP and modENCODE. We found that larval DNA was depleted of all repeat classes relative to adult and embryonic DNA, as expected from the known depletion of repeat-rich pericentromeric regions during polytenization of larval tissues. By applying a method that is independent of alignment to the genome assembly, we found that satellite repeats associate with distinct H3 tail modifications, such as H3K9me2 and H3K9me3 for short repeats and H3K9me1 for 359 bp repeats. Short AT-rich repeats however are depleted of nucleosomes and hence all histone modifications and associated chromatin proteins. Conclusions The total repeat content and association of repeat sequences with chromatin modifications can be determined despite repeats being excluded from genome assemblies, revealing unexpected distinctions in chromatin features based on sequence composition.
Collapse
Affiliation(s)
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.
| |
Collapse
|
39
|
Wang SH, Nan R, Accardo MC, Sentmanat M, Dimitri P, Elgin SCR. A distinct type of heterochromatin at the telomeric region of the Drosophila melanogaster Y chromosome. PLoS One 2014; 9:e86451. [PMID: 24475122 PMCID: PMC3901700 DOI: 10.1371/journal.pone.0086451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/16/2013] [Indexed: 11/24/2022] Open
Abstract
Heterochromatin assembly and its associated phenotype, position effect variegation (PEV), provide an informative system to study chromatin structure and genome packaging. In the fruit fly Drosophila melanogaster, the Y chromosome is entirely heterochromatic in all cell types except the male germline; as such, Y chromosome dosage is a potent modifier of PEV. However, neither Y heterochromatin composition, nor its assembly, has been carefully studied. Here, we report the mapping and characterization of eight reporter lines that show male-specific PEV. In all eight cases, the reporter insertion sites lie in the telomeric transposon array (HeT-A and TART-B2 homologous repeats) of the Y chromosome short arm (Ys). Investigations of the impact on the PEV phenotype of mutations in known heterochromatin proteins (i.e., modifiers of PEV) show that this Ys telomeric region is a unique heterochromatin domain: it displays sensitivity to mutations in HP1a, EGG and SU(VAR)3-9, but no sensitivity to Su(z)2 mutations. It appears that the endo-siRNA pathway plays a major targeting role for this domain. Interestingly, an ectopic copy of 1360 is sufficient to induce a piRNA targeting mechanism to further enhance silencing of a reporter cytologically localized to the Ys telomere. These results demonstrate the diversity of heterochromatin domains, and the corresponding variation in potential targeting mechanisms.
Collapse
Affiliation(s)
- Sidney H. Wang
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Ruth Nan
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Maria C. Accardo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Monica Sentmanat
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Sarah C. R. Elgin
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
40
|
Choi JD, Lee JS. Interplay between Epigenetics and Genetics in Cancer. Genomics Inform 2013; 11:164-73. [PMID: 24465226 PMCID: PMC3897842 DOI: 10.5808/gi.2013.11.4.164] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022] Open
Abstract
Genomic instability, which occurs through both genetic mechanisms (underlying inheritable phenotypic variations caused by DNA sequence-dependent alterations, such as mutation, deletion, insertion, inversion, translocation, and chromosomal aneuploidy) and epigenomic aberrations (underlying inheritable phenotypic variations caused by DNA sequence-independent alterations caused by a change of chromatin structure, such as DNA methylation and histone modifications), is known to promote tumorigenesis and tumor progression. Mechanisms involve both genomic instability and epigenomic aberrations that lose or gain the function of genes that impinge on tumor suppression/prevention or oncogenesis. Growing evidence points to an epigenome-wide disruption that involves large-scale DNA hypomethylation but specific hypermethylation of tumor suppressor genes, large blocks of aberrant histone modifications, and abnormal miRNA expression profile. Emerging molecular details regarding the modulation of these epigenetic events in cancer are used to illustrate the alterations of epigenetic molecules, and their consequent malfunctions could contribute to cancer biology. More recently, intriguing evidence supporting that genetic and epigenetic mechanisms are not separate events in cancer has been emerging; they intertwine and take advantage of each other during tumorigenesis. In addition, we discuss the collusion between epigenetics and genetics mediated by heterochromatin protein 1, a major component of heterochromatin, in order to maintain genome integrity.
Collapse
Affiliation(s)
- Jae Duk Choi
- Department of Life Science, College of Natural Sciences, Ajou University, Suwon 443-749, Korea
| | - Jong-Soo Lee
- Department of Life Science, College of Natural Sciences, Ajou University, Suwon 443-749, Korea
| |
Collapse
|
41
|
Silva-Sousa R, Casacuberta E. The JIL-1 kinase affects telomere expression in the different telomere domains of Drosophila. PLoS One 2013; 8:e81543. [PMID: 24244743 DOI: 10.1371/journal.pone.0081543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/23/2013] [Indexed: 11/17/2022] Open
Abstract
In Drosophila, the non-LTR retrotransposons HeT-A, TART and TAHRE build a head-to-tail array of repetitions that constitute the telomere domain by targeted transposition at the end of the chromosome whenever needed. As a consequence, Drosophila telomeres have the peculiarity to harbor the genes in charge of telomere elongation. Understanding telomere expression is important in Drosophila since telomere homeostasis depends in part on the expression of this genomic compartment. We have recently shown that the essential kinase JIL-1 is the first positive regulator of the telomere retrotransposons. JIL-1 mediates chromatin changes at the promoter of the HeT-A retrotransposon that are necessary to obtain wild type levels of expression of these telomere transposons. With the present study, we show how JIL-1 is also needed for the expression of a reporter gene embedded in the telomere domain. Our analysis, using different reporter lines from the telomere and subtelomere domains of different chromosomes, indicates that JIL-1 likely acts protecting the telomere domain from the spreading of repressive chromatin from the adjacent subtelomere domain. Moreover, the analysis of the 4R telomere suggests a slightly different chromatin structure at this telomere. In summary, our results strongly suggest that the action of JIL-1 depends on which telomere domain, which chromosome and which promoter is embedded in the telomere chromatin.
Collapse
Affiliation(s)
- Rute Silva-Sousa
- Institute of Evolutionary Biology, IBE (CSIC-UPF), Barcelona, Spain
| | | |
Collapse
|
42
|
Cipressa F, Cenci G. Effete, an E2 ubiquitin-conjugating enzyme with multiple roles in Drosophila development and chromatin organization. Fly (Austin) 2013; 7:256-62. [PMID: 24088712 DOI: 10.4161/fly.26567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Drosophila effete gene encodes an extremely conserved class I E2 ubiquitin-conjugating enzyme. Growing evidence indicates that Eff is involved in many cellular processes including eye development, maintenance of female germline stem cells, and regulation of apoptosis. Eff is also a major component of Drosophila chromatin and it is particularly enriched in chromatin with repressive properties. In addition, Eff is required for telomere protection and to prevent telomere fusion. Consistent with its multiple roles in chromatin maintenance, Eff is also one of the rare factors that modulate both telomere-induced and heterochromatin-induced position effect variegation.
Collapse
Affiliation(s)
- Francesca Cipressa
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; SAPIENZA Università di Roma; Roma, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; SAPIENZA Università di Roma; Roma, Italy
| |
Collapse
|
43
|
Silver-Morse L, Li WX. JAK-STAT in heterochromatin and genome stability. JAKSTAT 2013; 2:e26090. [PMID: 24069569 PMCID: PMC3772121 DOI: 10.4161/jkst.26090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 08/02/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
The canonical JAK-STAT signaling pathway transmits signals from the cell membrane to the nucleus, to regulate transcription of particular genes involved in development and many other physiological processes. It has been shown in Drosophila that JAK and STAT also function in a non-canonical mode, to regulate heterochromatin. This review discusses the non-canonical functioning of JAK and STAT, and its effects on biological processes. Decreased levels of activated JAK and increased levels of unphosphorylated STAT generate higher levels of heterochromatin. These higher heterochromatin levels result in suppression of hematopoietic tumor-like masses, increased resistance to DNA damage, and longer lifespan.
Collapse
Affiliation(s)
- Louise Silver-Morse
- Department of Medicine; University of California San Diego; La Jolla, CA USA
| | | |
Collapse
|
44
|
Raffa GD, Cenci G, Ciapponi L, Gatti M. Organization and Evolution of Drosophila Terminin: Similarities and Differences between Drosophila and Human Telomeres. Front Oncol 2013; 3:112. [PMID: 23675571 PMCID: PMC3650302 DOI: 10.3389/fonc.2013.00112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/24/2013] [Indexed: 11/16/2022] Open
Abstract
Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi, and Ver. These proteins, which are not conserved outside Drosophilidae and closely related Diptera, localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN) complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only at telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres.
Collapse
Affiliation(s)
- Grazia D Raffa
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy ; Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma Roma, Italy
| | | | | | | |
Collapse
|
45
|
Abstract
Heterochromatin is the enigmatic eukaryotic genome compartment found mostly at telomeres and centromeres. Conventional approaches to sequence assembly and genetic manipulation fail in this highly repetitive, gene-sparse, and recombinationally silent DNA. In contrast, genetic and molecular analyses of euchromatin-encoded proteins that bind, remodel, and propagate heterochromatin have revealed its vital role in numerous cellular and evolutionary processes. Utilizing the 12 sequenced Drosophila genomes, Levine et al1 took a phylogenomic approach to discover new such protein “surrogates” of heterochromatin function and evolution. This paper reported over 20 new members of what was traditionally believed to be a small and static Heterochromatin Protein 1 (HP1) gene family. The newly identified HP1 proteins are structurally diverse, lineage-restricted, and expressed primarily in the male germline. The birth and death of HP1 genes follows a “revolving door” pattern, where new HP1s appear to replace old HP1s. Here, we address alternative evolutionary models that drive this constant innovation.
Collapse
Affiliation(s)
- Mia T Levine
- Division of Basic Sciences; Howard Hughes Medical Institute; Fred Hutchinson Cancer Research Center; Seattle, WA USA
| | | |
Collapse
|
46
|
Galati A, Micheli E, Cacchione S. Chromatin structure in telomere dynamics. Front Oncol 2013; 3:46. [PMID: 23471416 PMCID: PMC3590461 DOI: 10.3389/fonc.2013.00046] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/21/2013] [Indexed: 11/13/2022] Open
Abstract
The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation, and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to deprotected state and their role in telomere functions.
Collapse
Affiliation(s)
- Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza Università di Roma Rome, Italy
| | | | | |
Collapse
|
47
|
Rozhkov NV, Hammell M, Hannon GJ. Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev 2013; 27:400-12. [PMID: 23392609 DOI: 10.1101/gad.209767.112] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Silencing of transposons in the Drosophila ovary relies on three Piwi family proteins--Piwi, Aubergine (Aub), and Ago3--acting in concert with their small RNA guides, the Piwi-interacting RNAs (piRNAs). Aub and Ago3 are found in the germ cell cytoplasm, where they function in the ping-pong cycle to consume transposon mRNAs. The nuclear Piwi protein is required for transposon silencing in both germ and somatic follicle cells, yet the precise mechanisms by which Piwi acts remain largely unclear. We investigated the role of Piwi by combining cell type-specific knockdowns with measurements of steady-state transposon mRNA levels, nascent RNA synthesis, chromatin state, and small RNA abundance. In somatic cells, Piwi loss led to concerted effects on nascent transcripts and transposon mRNAs, indicating that Piwi acts through transcriptional gene silencing (TGS). In germ cells, Piwi loss showed disproportionate impacts on steady-state RNA levels, indicating that it also exerts an effect on post-transcriptional gene silencing (PTGS). Piwi knockdown affected levels of germ cell piRNAs presumably bound to Aub and Ago3, perhaps explaining its post-transcriptional impacts. Overall, our results indicate that Piwi plays multiple roles in the piRNA pathway, in part enforcing transposon repression through effects on local chromatin states and transcription but also participating in germ cell piRNA biogenesis.
Collapse
Affiliation(s)
- Nikolay V Rozhkov
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
48
|
Silva-Sousa R, López-Panadès E, Piñeyro D, Casacuberta E. The chromosomal proteins JIL-1 and Z4/Putzig regulate the telomeric chromatin in Drosophila melanogaster. PLoS Genet 2012; 8:e1003153. [PMID: 23271984 PMCID: PMC3521665 DOI: 10.1371/journal.pgen.1003153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 10/24/2012] [Indexed: 12/28/2022] Open
Abstract
Drosophila telomere maintenance depends on the transposition of the specialized retrotransposons HeT-A, TART, and TAHRE. Controlling the activation and silencing of these elements is crucial for a precise telomere function without compromising genomic integrity. Here we describe two chromosomal proteins, JIL-1 and Z4 (also known as Putzig), which are necessary for establishing a fine-tuned regulation of the transcription of the major component of Drosophila telomeres, the HeT-A retrotransposon, thus guaranteeing genome stability. We found that mutant alleles of JIL-1 have decreased HeT-A transcription, putting forward this kinase as the first positive regulator of telomere transcription in Drosophila described to date. We describe how the decrease in HeT-A transcription in JIL-1 alleles correlates with an increase in silencing chromatin marks such as H3K9me3 and HP1a at the HeT-A promoter. Moreover, we have detected that Z4 mutant alleles show moderate telomere instability, suggesting an important role of the JIL-1-Z4 complex in establishing and maintaining an appropriate chromatin environment at Drosophila telomeres. Interestingly, we have detected a biochemical interaction between Z4 and the HeT-A Gag protein, which could explain how the Z4-JIL-1 complex is targeted to the telomeres. Accordingly, we demonstrate that a phenotype of telomere instability similar to that observed for Z4 mutant alleles is found when the gene that encodes the HeT-A Gag protein is knocked down. We propose a model to explain the observed transcriptional and stability changes in relation to other heterochromatin components characteristic of Drosophila telomeres, such as HP1a.
Collapse
Affiliation(s)
- Rute Silva-Sousa
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Elisenda López-Panadès
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - David Piñeyro
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Elena Casacuberta
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| |
Collapse
|
49
|
Deng Z, Wang Z, Stong N, Plasschaert R, Moczan A, Chen HS, Hu S, Wikramasinghe P, Davuluri RV, Bartolomei MS, Riethman H, Lieberman PM. A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection. EMBO J 2012; 31:4165-78. [PMID: 23010778 PMCID: PMC3492729 DOI: 10.1038/emboj.2012.266] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/29/2012] [Indexed: 01/04/2023] Open
Abstract
The contribution of human subtelomeric DNA and chromatin organization to telomere integrity and chromosome end protection is not yet understood in molecular detail. Here, we show by ChIP-Seq that most human subtelomeres contain a CTCF- and cohesin-binding site within ∼1-2 kb of the TTAGGG repeat tract and adjacent to a CpG-islands implicated in TERRA transcription control. ChIP-Seq also revealed that RNA polymerase II (RNAPII) was enriched at sites adjacent to the CTCF sites and extending towards the telomere repeat tracts. Mutation of CTCF-binding sites in plasmid-borne promoters reduced transcriptional activity in an orientation-dependent manner. Depletion of CTCF by shRNA led to a decrease in TERRA transcription, and a loss of cohesin and RNAPII binding to the subtelomeres. Depletion of either CTCF or cohesin subunit Rad21 caused telomere-induced DNA damage foci (TIF) formation, and destabilized TRF1 and TRF2 binding to the TTAGGG proximal subtelomere DNA. These findings indicate that CTCF and cohesin are integral components of most human subtelomeres, and important for the regulation of TERRA transcription and telomere end protection.
Collapse
Affiliation(s)
- Zhong Deng
- The Wistar Institute, Philadelphia, PA, USA
| | - Zhuo Wang
- The Wistar Institute, Philadelphia, PA, USA
| | - Nick Stong
- The Wistar Institute, Philadelphia, PA, USA
| | - Robert Plasschaert
- Cell and Developmental Biology Department, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Sufeng Hu
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | - Marisa S Bartolomei
- Cell and Developmental Biology Department, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
50
|
Arnoult N, Van Beneden A, Decottignies A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α. Nat Struct Mol Biol 2012; 19:948-56. [PMID: 22922742 DOI: 10.1038/nsmb.2364] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/19/2012] [Indexed: 01/07/2023]
Abstract
Gene silencing by the repressive telomeric chromatin environment, referred to as telomere position effect (TPE), has been well characterized in yeast and depends on telomere length. However, proof of its existence at native human chromosome ends has remained elusive, mainly owing to the paucity of genes near telomeres. The discovery of TERRAs, the telomeric noncoding RNAs transcribed from subtelomeric promoters, paved the way to probing for telomere-length impact on physiological TPE. Using cell lines of various origins, we show that telomere elongation consistently represses TERRA expression. Repression is mediated by increased trimethylated H3K9 density at telomeres and by heterochromatin protein HP1α, with no detectable spreading of the marks beyond the telomeric tract, restricting human TPE to telomere transcription. Our data further support the existence of a negative-feedback mechanism in which longer TERRA molecules repress their own transcription upon telomere elongation.
Collapse
Affiliation(s)
- Nausica Arnoult
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Faculty of Pharmacy and Biomedical Sciences, Catholic University of Louvain, Brussels, Belgium
| | | | | |
Collapse
|