1
|
Ayano T, Yokosawa T, Oki M. GTP-dependent regulation of heterochromatin fluctuations at subtelomeric regions in Saccharomyces cerevisiae. Genes Cells 2024; 29:217-230. [PMID: 38229233 PMCID: PMC11447825 DOI: 10.1111/gtc.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
In eukaryotes, single cells in a population display different transcriptional profiles. One of the factors regulating this heterogeneity is the chromatin state in each cell. However, the mechanisms of epigenetic chromatin regulation of specific chromosomal regions remain unclear. Therefore, we used single-cell tracking system to analyze IMD2. IMD2 is located at the subtelomeric region of budding yeast, and its expression is epigenetically regulated by heterochromatin fluctuations. Treatment with mycophenolic acid, an inhibitor of de novo GTP biosynthesis, triggered a decrease in GTP, which caused heterochromatin fluctuations at the IMD2 locus. Interestingly, within individually tracked cells, IMD2 expression state underwent repeated switches even though IMD2 is positioned within the heterochromatin region. We also found that 30% of the cells in a population always expressed IMD2. Furthermore, the addition of nicotinamide, a histone deacetylase inhibitor, or guanine, the GTP biosynthesis factor in salvage pathway of GTP biosynthesis, regulated heterogeneity, resulting in IMD2 expression being uniformly induced or suppressed in the population. These results suggest that gene expression heterogeneity in the IMD2 region is regulated by changes in chromatin structure triggered by slight decreases in GTP.
Collapse
Affiliation(s)
- Takahito Ayano
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Research Fellowships of Japan Society for the Promotion of Science for Young Scientists (JSPS), Tokyo, Japan
| | - Takuma Yokosawa
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|
2
|
Kamata K, Ayano T, Oki M. Spt3 and Spt8 Are Involved in the Formation of a Silencing Boundary by Interacting with TATA-Binding Protein. Biomolecules 2023; 13:biom13040619. [PMID: 37189367 DOI: 10.3390/biom13040619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
In Saccharomyces cerevisiae, a heterochromatin-like chromatin structure called the silencing region is present at the telomere as a complex of Sir2, Sir3, and Sir4. Although spreading of the silencing region is blocked by histone acetylase-mediated boundary formation, the details of the factors and mechanisms involved in the spread and formation of the boundary at each telomere are unknown. Here, we show that Spt3 and Spt8 block the spread of the silencing regions. Spt3 and Spt8 are members of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, which has histone acetyltransferase activity. We performed microarray analysis of the transcriptome of spt3Δ and spt8Δ strains and RT-qPCR analysis of the transcript levels of genes from the subtelomeric region in mutants in which the interaction of Spt3 with TATA-binding protein (TBP) is altered. The results not only indicated that both Spt3 and Spt8 are involved in TBP-mediated boundary formation on the right arm of chromosome III, but also that boundary formation in this region is DNA sequence independent. Although both Spt3 and Spt8 interact with TBP, Spt3 had a greater effect on genome-wide transcription. Mutant analysis showed that the interaction between Spt3 and TBP plays an important role in the boundary formation.
Collapse
|
3
|
Sizer RE, Chahid N, Butterfield SP, Donze D, Bryant NJ, White RJ. TFIIIC-based chromatin insulators through eukaryotic evolution. Gene X 2022; 835:146533. [PMID: 35623477 DOI: 10.1016/j.gene.2022.146533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/04/2022] Open
Abstract
Eukaryotic chromosomes are divided into domains with distinct structural and functional properties, such as differing levels of chromatin compaction and gene transcription. Domains of relatively compact chromatin and minimal transcription are termed heterochromatic, whereas euchromatin is more open and actively transcribed. Insulators separate these domains and maintain their distinct features. Disruption of insulators can cause diseases such as cancer. Many insulators contain tRNA genes (tDNAs), examples of which have been shown to block the spread of activating or silencing activities. This characteristic of specific tDNAs is conserved through evolution, such that human tDNAs can serve as barriers to the spread of silencing in fission yeast. Here we demonstrate that tDNAs from the methylotrophic fungus Pichia pastoris can function effectively as insulators in distantly-related budding yeast. Key to the function of tDNAs as insulators is TFIIIC, a transcription factor that is also required for their expression. TFIIIC binds additional loci besides tDNAs, some of which have insulator activity. Although the mechanistic basis of TFIIIC-based insulation has been studied extensively in yeast, it is largely uncharacterized in metazoa. Utilising publicly-available genome-wide ChIP-seq data, we consider the extent to which mechanisms conserved from yeast to man may suffice to allow efficient insulation by TFIIIC in the more challenging chromatin environments of metazoa and suggest features that may have been acquired during evolution to cope with new challenges. We demonstrate the widespread presence at human tDNAs of USF1, a transcription factor with well-established barrier activity in vertebrates. We predict that tDNA-based insulators in higher organisms have evolved through incorporation of modules, such as binding sites for factors like USF1 and CTCF that are absent from yeasts, thereby strengthening function and providing opportunities for regulation between cell types.
Collapse
Affiliation(s)
- Rebecca E Sizer
- Department of Biology, The University of York, York YO10 5DD, UK
| | - Nisreen Chahid
- Department of Biology, The University of York, York YO10 5DD, UK
| | | | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nia J Bryant
- Department of Biology, The University of York, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, The University of York, York YO10 5DD, UK.
| |
Collapse
|
4
|
Measuring the buffering capacity of gene silencing in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2021; 118:2111841118. [PMID: 34857629 PMCID: PMC8670432 DOI: 10.1073/pnas.2111841118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
Gene silencing, once established, is stably maintained for several generations. Despite the high fidelity of the inheritance of the silent state, individual components of silenced chromatin are in constant flux. Models suggest that silent loci can tolerate fluctuations in Sir proteins and histone acetylation levels, but the level of tolerance is unknown. To understand the quantitative relationships between H4K16 acetylation, Sir proteins, and silencing, we developed assays to quantitatively alter a H4K16 acetylation mimic allele and Sir protein levels and measure the effects of these changes on silencing. Our data suggest that a two- to threefold change in levels of histone marks and specific Sir proteins affects the stability of the silent state of a large chromatin domain. Gene silencing in budding yeast is mediated by Sir protein binding to unacetylated nucleosomes to form a chromatin structure that inhibits transcription. Transcriptional silencing is characterized by the high-fidelity transmission of the silent state. Despite its relative stability, the constituent parts of the silent state are in constant flux, giving rise to a model that silent loci can tolerate such fluctuations without functional consequences. However, the level of tolerance is unknown, and we developed methods to measure the threshold of histone acetylation that causes the silent chromatin state to switch to the active state as well as to measure the levels of the enzymes and structural proteins necessary for silencing. We show that loss of silencing required 50 to 75% acetyl-mimic histones, though the precise levels were influenced by silencer strength and upstream activating sequence (UAS) enhancer/promoter strength. Measurements of repressor protein levels necessary for silencing showed that reducing SIR4 gene dosage two- to threefold significantly weakened silencing, though reducing the gene copy numbers for Sir2 or Sir3 to the same extent did not significantly affect silencing suggesting that Sir4 was a limiting component in gene silencing. Calculations suggest that a mere twofold reduction in the ability of acetyltransferases to acetylate nucleosomes across a large array of nucleosomes may be sufficient to generate a transcriptionally silent domain.
Collapse
|
5
|
Greenstein RA, Barrales RR, Sanchez NA, Bisanz JE, Braun S, Al-Sady B. Set1/COMPASS repels heterochromatin invasion at euchromatic sites by disrupting Suv39/Clr4 activity and nucleosome stability. Genes Dev 2020; 34:99-117. [PMID: 31805521 PMCID: PMC6938669 DOI: 10.1101/gad.328468.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022]
Abstract
Protection of euchromatin from invasion by gene-repressive heterochromatin is critical for cellular health and viability. In addition to constitutive loci such as pericentromeres and subtelomeres, heterochromatin can be found interspersed in gene-rich euchromatin, where it regulates gene expression pertinent to cell fate. While heterochromatin and euchromatin are globally poised for mutual antagonism, the mechanisms underlying precise spatial encoding of heterochromatin containment within euchromatic sites remain opaque. We investigated ectopic heterochromatin invasion by manipulating the fission yeast mating type locus boundary using a single-cell spreading reporter system. We found that heterochromatin repulsion is locally encoded by Set1/COMPASS on certain actively transcribed genes and that this protective role is most prominent at heterochromatin islands, small domains interspersed in euchromatin that regulate cell fate specifiers. Sensitivity to invasion by heterochromatin, surprisingly, is not dependent on Set1 altering overall gene expression levels. Rather, the gene-protective effect is strictly dependent on Set1's catalytic activity. H3K4 methylation, the Set1 product, antagonizes spreading in two ways: directly inhibiting catalysis by Suv39/Clr4 and locally disrupting nucleosome stability. Taken together, these results describe a mechanism for spatial encoding of euchromatic signals that repel heterochromatin invasion.
Collapse
Affiliation(s)
- R A Greenstein
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143, USA
- TETRAD Graduate Program, University of California at San Francisco, San Francisco, California 94143, USA
| | - Ramon R Barrales
- Department of Physiological Chemistry, Biomedical Center (BMC), Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
| | - Nicholas A Sanchez
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143, USA
- TETRAD Graduate Program, University of California at San Francisco, San Francisco, California 94143, USA
| | - Jordan E Bisanz
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143, USA
| | - Sigurd Braun
- Department of Physiological Chemistry, Biomedical Center (BMC), Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
6
|
tRNA Genes Affect Chromosome Structure and Function via Local Effects. Mol Cell Biol 2019; 39:MCB.00432-18. [PMID: 30718362 DOI: 10.1128/mcb.00432-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/18/2019] [Indexed: 11/20/2022] Open
Abstract
The genome is packaged and organized in an ordered, nonrandom manner, and specific chromatin segments contact nuclear substructures to mediate this organization. tRNA genes (tDNAs) are binding sites for transcription factors and architectural proteins and are thought to play an important role in the organization of the genome. In this study, we investigate the roles of tDNAs in genomic organization and chromosome function by editing a chromosome so that it lacked any tDNAs. Surprisingly our analyses of this tDNA-less chromosome show that loss of tDNAs does not grossly affect chromatin architecture or chromosome tethering and mobility. However, loss of tDNAs affects local nucleosome positioning and the binding of SMC proteins at these loci. The absence of tDNAs also leads to changes in centromere clustering and a reduction in the frequency of long-range HML-HMR heterochromatin clustering with concomitant effects on gene silencing. We propose that the tDNAs primarily affect local chromatin structure, which results in effects on long-range chromosome architecture.
Collapse
|
7
|
Mezquita-Pla J. Gordon H. Dixon's trace in my personal career and the quantic jump experienced in regulatory information. Syst Biol Reprod Med 2018; 64:448-468. [PMID: 30136864 DOI: 10.1080/19396368.2018.1503752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Even before Rosalin Franklin had discovered the DNA double helix, in her impressive X-ray diffraction image pattern, Erwin Schröedinger, described, in his excellent book, What is Life, how the finding of aperiodic crystals in biological systems surprised him (an aperiodic crystal, which, in my opinion is the material carrier of life). In the 21st century and still far from being able to define life, we are attending to a quick acceleration of knowledge on regulatory information. With the discovery of new codes and punctuation marks, we will greatly increase our understanding in front of an impressive avalanche of genomic sequences. Trifonov et al. defined a genetic code as a widespread DNA sequence pattern that carries a message with an impact on biology. These patterns are largely captured in transcribed messages that give meaning and identity to the particular cells. In this review, I will go through my personal career in and after my years of work in the laboratory of Gordon H. Dixon, extending toward the impressive acquisition of new knowledge on regulatory information and genetic codes provided by remarkable scientists in the field. Abbreviations: CA II: carbonic anhydridase II (chicken); Car2: carbonic anhydridase 2 (mouse); CpG islands: short (>0.5 kb) stretches of DNA with a G+C content ≥55%; DNMT1: DNA methyltransferases 1; DNMT3b: DNA methyltransferases 3B; DSB: double-strand DNA breaks; ERT: endogenous retrotransposon; ERV: endogenous retroviruses; ES cells: embryonic stem cells; GAPDH: glyceraldehide phosphate dehydrogenase; H1: histone H1; HATs: histone acetyltransferases; HDACs: histone deacetylases; H3K4me3: histone 3 trimethylated at lys 4; H3K79me2: histone 3 dimethylated at lys 79; HMG: high mobility group proteins; HMT: histone methyltransferase; HP1: heterochromatin protein 1; HR: homologous recombination; HSE: heat-shock element; ICRs: imprinted control regions; IRF: interferon regulatory factor; LDH-A/-B: lactate dehydrogenase A/B; LTR: long terminal repeats; MeCP2: methyl CpG binding protein 2; OCT4: octamer-binding transcription factor 4; PAF1: RNA Polymerase II associated factor 1; piRNA: PIWI-interacting RNA; poly(A) tails: poly-adenine tails; PRC2: polycomb repressive complex 2; PTMs: post-translational modifications; SIRT 1: sirtuin 1, silent information regulator; STAT3: signal transducer and activator of transcription; tRNAs: transfer RNA; tRFs: tRNA-derived fragments; TSS: transcription start site; TE: transposable elements; UB I: polyubiquitin I; UB II: polyubiquitin II; UBE 2N: ubiquitin conjugating enzyme E2N; 5'-UTR: 5'-untranslated sequences; 3'-UTR: 3'-untranslated sequences.
Collapse
Affiliation(s)
- Jovita Mezquita-Pla
- a Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, IDIBAPS, Faculty of Medicine , University of Barcelona , Catalonia , Spain
| |
Collapse
|
8
|
Shukla A, Bhargava P. Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:295-309. [PMID: 29313808 DOI: 10.1016/j.bbagrm.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
The short, non-coding genes transcribed by the RNA polymerase (pol) III, necessary for survival of a cell, need to be repressed under the stress conditions in vivo. The pol III-transcribed genes have adopted several novel chromatin-based regulatory mechanisms to their advantage. In the budding yeast, the sub-nucleosomal size tRNA genes are found in the nucleosome-free regions, flanked by positioned nucleosomes at both the ends. With their chromosomes-wide distribution, all tRNA genes have a different chromatin context. A single nucleosome dynamics controls the accessibility of the genes for transcription. This dynamics operates under the influence of several chromatin modifiers in a gene-specific manner, giving the scope for differential regulation of even the isogenes within a tRNA gene family. The chromatin structure around the pol III-transcribed genes provides a context conducive for steady-state transcription as well as gene-specific transcriptional regulation upon signaling from the environmental cues. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Ashutosh Shukla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
9
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
10
|
Mitsumori R, Shinmyozu K, Nakayama JI, Uchida H, Oki M. Gic1 is a novel heterochromatin boundary protein in vivo. Genes Genet Syst 2016; 91:151-159. [PMID: 27301280 DOI: 10.1266/ggs.15-00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Saccharomyces cerevisiae, HMR/HML, telomeres and ribosomal DNA are heterochromatin-like regions in which gene transcription is prevented by the silent information regulator (Sir) complex. The Sir complex (Sir2, Sir3 and Sir4) can spread through chromatin from the silencer. Boundaries prevent Sir complex spreading, and we previously identified 55 boundary genes among all ~6,000 yeast genes. These boundary proteins can be distinguished into two types: those that activate transcription to prevent spreading of silencing, and those that prevent gene silencing by forming a boundary. We selected 44 transcription-independent boundary proteins from the 55 boundary genes by performing a one-hybrid assay and focused on GIC1 (GTPase interaction component 1). Gic1 is an effector of Cdc42, which belongs to the Rho family of small GTPases, and has not been reported to function in heterochromatin boundaries in vivo. We detected a novel boundary-forming activity of Gic1 at HMR-left and telomeric regions by conducting a chromatin immunoprecipitation assay with an anti-Sir3 antibody. We also found that Gic1 bound weakly to histones in two-hybrid analysis. Moreover, we performed domain analysis to identify domain(s) of Gic1 that are important for its boundary activity, and identified two minimum domains, which are located outside its Cdc42-binding domain.
Collapse
Affiliation(s)
- Risa Mitsumori
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui
| | | | | | | | | |
Collapse
|
11
|
Methods to Study the Atypical Roles of DNA Repair and SMC Proteins in Gene Silencing. Methods Mol Biol 2016. [PMID: 27797079 DOI: 10.1007/978-1-4939-6545-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Silenced heterochromatin influences all nuclear processes including chromosome structure, nuclear organization, transcription, replication, and repair. Proteins that mediate silencing affect all of these nuclear processes. Similarly proteins involved in replication, repair, and chromosome structure play a role in the formation and maintenance of silenced heterochromatin. In this chapter we describe a handful of simple tools and methods that can be used to study the atypical role of proteins in gene silencing.
Collapse
|
12
|
Kamata K, Shinmyozu K, Nakayama JI, Hatashita M, Uchida H, Oki M. Four domains of Ada1 form a heterochromatin boundary through different mechanisms. Genes Cells 2016; 21:1125-1136. [PMID: 27647735 DOI: 10.1111/gtc.12421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/14/2016] [Indexed: 01/21/2023]
Abstract
In eukaryotic cells, there are two chromatin states, silenced and active, and the formation of a so-called boundary plays a critical role in demarcating these regions; however, the mechanisms underlying boundary formation are not well understood. In this study, we focused on S. cerevisiae ADA1, a gene previously shown to encode a protein with a robust boundary function. Ada1 is a component of the histone modification complex Spt-Ada-Gcn5-acetyltransferase (SAGA) and the SAGA-like (SLIK) complex, and it helps to maintain the integrity of these complexes. Domain analysis showed that four relatively small regions of Ada1 (Region I; 66-75 aa, II; 232-282 aa, III; 416-436 aa and IV; 476-488 aa) have a boundary function. Among these, Region II could form an intact SAGA complex, whereas the other regions could not. Investigation of cellular factors that interact with these small regions identified a number of proteasome-associated proteins. Interestingly, the boundary functions of Region II and Region III were affected by depletion of Ump1, a maturation and assembly factor of the 20S proteasome. These results suggest that the boundary function of Ada1 is functionally linked to proteasome processes and that the four relatively small regions in ADA1 form a boundary via different mechanisms.
Collapse
Affiliation(s)
- Kazuma Kamata
- Department of Applied Chemistry Biotechnology, Graduate School of Engineering, University of Fukui, Bunkyo, Fukui, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kaori Shinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Jun-Ichi Nakayama
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Masanori Hatashita
- Research and Development Department, Wakasa Wan Energy Research Center, Tsuruga, Japan
| | - Hiroyuki Uchida
- Department of Applied Chemistry Biotechnology, Graduate School of Engineering, University of Fukui, Bunkyo, Fukui, Japan
| | - Masaya Oki
- Department of Applied Chemistry Biotechnology, Graduate School of Engineering, University of Fukui, Bunkyo, Fukui, Japan. .,Life Science Innovation Center, University of Fukui, Bunkyo, Fukui, Japan. .,PRESTO, Japan Science and Technology Agency (JST), Honcho Kawaguchi, Saitama, Japan.
| |
Collapse
|
13
|
Mitsumori R, Ohashi T, Kugou K, Ichino A, Taniguchi K, Ohta K, Uchida H, Oki M. Analysis of novel Sir3 binding regions in Saccharomyces cerevisiae. J Biochem 2016; 160:11-7. [PMID: 26957548 DOI: 10.1093/jb/mvw021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/27/2015] [Indexed: 01/25/2023] Open
Abstract
In Saccharomyces cerevisiae, the HMR, HML, telomere and rDNA regions are silenced. Silencing at the rDNA region requires Sir2, and silencing at the HMR, HML and telomere regions requires binding of a protein complex, consisting of Sir2, Sir3 and Sir4, that mediates repression of gene expression. Here, several novel Sir3 binding domains, termed CN domains (Chromosomal Novel Sir3 binding region), were identified using chromatin immunoprecipitation (ChIP) on chip analysis of S. cerevisiae chromosomes. Furthermore, analysis of G1-arrested cells demonstrated that Sir3 binding was elevated in G1-arrested cells compared with logarithmically growing asynchronous cells, and that Sir3 binding varied with the cell cycle. In addition to 14 CN regions identified from analysis of logarithmically growing asynchronous cells (CN1-14), 11 CN regions were identified from G1-arrested cells (CN15-25). Gene expression at some CN regions did not differ between WT and sir3Δ strains. Sir3 at conventional heterochromatic regions is thought to be recruited to chromosomes by Sir2 and Sir4; however, in this study, Sir3 binding occurred at some CN regions even in sir2Δ and sir4Δ backgrounds. Taken together, our results suggest that Sir3 exhibits novel binding parameters and gene regulatory functions at the CN binding domains.
Collapse
Affiliation(s)
- Risa Mitsumori
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Tomoe Ohashi
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Kazuto Kugou
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ayako Ichino
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Kei Taniguchi
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hiroyuki Uchida
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Masaya Oki
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; Research and Education Program for Life Science, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
14
|
Abstract
Insulators are regulatory elements that help to organize eukaryotic chromatin via enhancer-blocking and chromatin barrier activity. Although there are several examples of transposable element (TE)-derived insulators, the contribution of TEs to human insulators has not been systematically explored. Mammalian-wide interspersed repeats (MIRs) are a conserved family of TEs that have substantial regulatory capacity and share sequence characteristics with tRNA-related insulators. We sought to evaluate whether MIRs can serve as insulators in the human genome. We applied a bioinformatic screen using genome sequence and functional genomic data from CD4(+) T cells to identify a set of 1,178 predicted MIR insulators genome-wide. These predicted MIR insulators were computationally tested to serve as chromatin barriers and regulators of gene expression in CD4(+) T cells. The activity of predicted MIR insulators was experimentally validated using in vitro and in vivo enhancer-blocking assays. MIR insulators are enriched around genes of the T-cell receptor pathway and reside at T-cell-specific boundaries of repressive and active chromatin. A total of 58% of the MIR insulators predicted here show evidence of T-cell-specific chromatin barrier and gene regulatory activity. MIR insulators appear to be CCCTC-binding factor (CTCF) independent and show a distinct local chromatin environment with marked peaks for RNA Pol III and a number of histone modifications, suggesting that MIR insulators recruit transcriptional complexes and chromatin modifying enzymes in situ to help establish chromatin and regulatory domains in the human genome. The provisioning of insulators by MIRs across the human genome suggests a specific mechanism by which TE sequences can be used to modulate gene regulatory networks.
Collapse
|
15
|
Kirkland JG, Peterson MR, Still CD, Brueggeman L, Dhillon N, Kamakaka RT. Heterochromatin formation via recruitment of DNA repair proteins. Mol Biol Cell 2015; 26:1395-410. [PMID: 25631822 PMCID: PMC4454184 DOI: 10.1091/mbc.e14-09-1413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Double-strand-break repair proteins interact with and recruit Sir proteins to ectopic sites in the genome. Recruitment results in gene silencing, which depends on Sir proteins, as well as on histone H2A modification. Silencing also results in the localization of the locus to the nuclear periphery. Heterochromatin formation and nuclear organization are important in gene regulation and genome fidelity. Proteins involved in gene silencing localize to sites of damage and some DNA repair proteins localize to heterochromatin, but the biological importance of these correlations remains unclear. In this study, we examined the role of double-strand-break repair proteins in gene silencing and nuclear organization. We find that the ATM kinase Tel1 and the proteins Mre11 and Esc2 can silence a reporter gene dependent on the Sir, as well as on other repair proteins. Furthermore, these proteins aid in the localization of silenced domains to specific compartments in the nucleus. We identify two distinct mechanisms for repair protein–mediated silencing—via direct and indirect interactions with Sir proteins, as well as by tethering loci to the nuclear periphery. This study reveals previously unknown interactions between repair proteins and silencing proteins and suggests insights into the mechanism underlying genome integrity.
Collapse
Affiliation(s)
- Jacob G Kirkland
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Misty R Peterson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Christopher D Still
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Leo Brueggeman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Namrita Dhillon
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Rohinton T Kamakaka
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
16
|
Wang J, Lawry ST, Cohen AL, Jia S. Chromosome boundary elements and regulation of heterochromatin spreading. Cell Mol Life Sci 2014; 71:4841-52. [PMID: 25192661 PMCID: PMC4234687 DOI: 10.1007/s00018-014-1725-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/29/2022]
Abstract
Chromatin is generally classified as euchromatin or heterochromatin, each with distinct histone modifications, compaction levels, and gene expression patterns. Although the proper formation of heterochromatin is essential for maintaining genome integrity and regulating gene expression, heterochromatin can also spread into neighboring regions in a sequence-independent manner, leading to the inactivation of genes. Because the distance of heterochromatin spreading is stochastic, the formation of boundaries, which block the spreading of heterochromatin, is critical for maintaining stable gene expression patterns. Here we review the current understanding of the mechanisms underlying heterochromatin spreading and boundary formation.
Collapse
Affiliation(s)
- Jiyong Wang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Heterochromatin imparts regional, promoter-independent repression of genes and is epigenetically heritable. Understanding how silencing achieves this regional repression is a fundamental problem in genetics and development. Current models of yeast silencing posit that Sir proteins, recruited by transcription factors bound to the silencers, spread throughout the silenced region. To test this model directly at high resolution, we probed the silenced chromatin architecture by chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq) of Sir proteins, histones, and a key histone modification, H4K16-acetyl. These analyses revealed that Sir proteins are strikingly concentrated at and immediately adjacent to the silencers, with lower levels of enrichment over the promoters at HML and HMR, the critical targets for transcriptional repression. The telomeres also showed discrete peaks of Sir enrichment yet a continuous domain of hypoacetylated histone H4K16. Surprisingly, ChIP-seq of cross-linked chromatin revealed a distribution of nucleosomes at silenced loci that was similar to Sir proteins, whereas native nucleosome maps showed a regular distribution throughout silenced loci, indicating that cross-linking captured a specialized chromatin organization imposed by Sir proteins. This specialized chromatin architecture observed in yeast informs the importance of a steric contribution to regional repression in other organisms.
Collapse
Affiliation(s)
- Deborah M Thurtle
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
18
|
Ong CT, Corces VG. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 2014; 15:234-46. [PMID: 24614316 DOI: 10.1038/nrg3663] [Citation(s) in RCA: 715] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The eukaryotic genome is organized in the three-dimensional nuclear space in a specific manner that is both a cause and a consequence of its function. This organization is partly established by a special class of architectural proteins, of which CCCTC-binding factor (CTCF) is the best characterized. Although CTCF has been assigned various roles that are often contradictory, new results now help to draw a unifying model to explain the many functions of this protein. CTCF creates boundaries between topologically associating domains in chromosomes and, within these domains, facilitates interactions between transcription regulatory sequences. Thus, CTCF links the architecture of the genome to its function.
Collapse
Affiliation(s)
- Chin-Tong Ong
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, Georgia 30322, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, Georgia 30322, USA
| |
Collapse
|
19
|
Cuartero S, Fresán U, Reina O, Planet E, Espinàs ML. Ibf1 and Ibf2 are novel CP190-interacting proteins required for insulator function. EMBO J 2014; 33:637-47. [PMID: 24502977 DOI: 10.1002/embj.201386001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Insulators are DNA-protein complexes that play a central role in chromatin organization and regulation of gene expression. In Drosophila different proteins, dCTCF, Su(Hw), and BEAF bind to specific subsets of insulators most of them having in common CP190. It has been shown that there are a number of CP190-binding sites that are not shared with any other known insulator protein, suggesting that other proteins could cooperate with CP190 to regulate insulator activity. Here we report on the identification of two previously uncharacterized proteins as CP190-interacting proteins, that we have named Ibf1 and Ibf2. These proteins localize at insulator bodies and associate with chromatin at CP190-binding sites throughout the genome. We also show that Ibf1 and Ibf2 are DNA-binding proteins that form hetero-oligomers that mediate CP190 binding to chromatin. Moreover, Ibf1 and Ibf2 are necessary for insulator activity in enhancer-blocking assays and Ibf2 null mutation cause a homeotic phenotype. Taken together our data reveal a novel pathway of CP190 recruitment to chromatin that is required for insulator activity.
Collapse
Affiliation(s)
- Sergi Cuartero
- Institute of Molecular Biology of Barcelona IBMB-CSIC, and Institute for Research in Biomedicine IRB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
20
|
Kamata K, Goswami G, Kashio S, Urano T, Nakagawa R, Uchida H, Oki M. The N-terminus and Tudor domains of Sgf29 are important for its heterochromatin boundary formation function. ACTA ACUST UNITED AC 2013; 155:159-71. [DOI: 10.1093/jb/mvt108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Matzat LH, Lei EP. Surviving an identity crisis: a revised view of chromatin insulators in the genomics era. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:203-14. [PMID: 24189492 DOI: 10.1016/j.bbagrm.2013.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
The control of complex, developmentally regulated loci and partitioning of the genome into active and silent domains is in part accomplished through the activity of DNA-protein complexes termed chromatin insulators. Together, the multiple, well-studied classes of insulators in Drosophila melanogaster appear to be generally functionally conserved. In this review, we discuss recent genomic-scale experiments and attempt to reconcile these newer findings in the context of previously defined insulator characteristics based on classical genetic analyses and transgenic approaches. Finally, we discuss the emerging understanding of mechanisms of chromatin insulator regulation. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Leah H Matzat
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissa P Lei
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Mano Y, Kobayashi TJ, Nakayama JI, Uchida H, Oki M. Single cell visualization of yeast gene expression shows correlation of epigenetic switching between multiple heterochromatic regions through multiple generations. PLoS Biol 2013; 11:e1001601. [PMID: 23843746 PMCID: PMC3699475 DOI: 10.1371/journal.pbio.1001601] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/23/2013] [Indexed: 11/25/2022] Open
Abstract
A single-cell method allows the assessment of relationships between the dynamic epigenetic behavior of yeast heterochromatin boundaries over multiple generations. Differences in gene expression between individual cells can be mediated by epigenetic regulation; thus, methods that enable detailed analyses of single cells are crucial to understanding this phenomenon. In this study, genomic silencing regions of Saccharomyces cerevisiae that are subject to epigenetic regulation, including the HMR, HML, and telomere regions, were investigated using a newly developed single cell analysis method. This method uses fluorescently labeled proteins to track changes in gene expression over multiple generations of a single cell. Epigenetic control of gene expression differed depending on the specific silencing region at which the reporter gene was inserted. Correlations between gene expression at the HMR-left and HMR-right regions, as well as the HMR-right and HML-right regions, were observed in the single-cell level; however, no such correlations involving the telomere region were observed. Deletion of the histone acetyltransferase GCN5 gene from a yeast strain carrying a fluorescent reporter gene at the HMR-left region reduced the frequency of changes in gene expression over a generation. The results presented here suggest that epigenetic control within an individual cell is reversible and can be achieved via regulation of histone acetyltransferase activity. Although eukaryotic gene repression usually acts on individual genes, cells can also repress larger chromosomal regions via the establishment of a high order chromatin structure called heterochromatin. Once initiated, heterochromatin spreads until halted by a boundary, and in this study we focus on how this boundary is formed. Because the mechanism is epigenetic and can differ from cell to cell, we wanted to assess the dynamics of the process by tracking individual cells over multiple generations. Here we develop a novel method employing protein fluorescence to monitor gene expression at the boundaries of several yeast heterochromatic regions simultaneously. This allows us to assess whether different boundaries within a single cell fluctuate in concert or independently of each other. In addition, we use histone modification mutants to probe the specific types of epigenetic regulation responsible for fluctuations in heterochromatin boundary positioning. Using this method, we show that epigenetic gene expression within individual cells is reversible and that this process is regulated by histone acetylation state. Future work will identify connections between variation in boundary positioning and novel transcription control systems.
Collapse
Affiliation(s)
- Yasunobu Mano
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tetsuya J. Kobayashi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama, Japan
| | - Jun-ichi Nakayama
- Laboratory for Chromatin Dynamics, Center for Developmental Biology, RIKEN, Kobe, Japan
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroyuki Uchida
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama, Japan
- Research and Education Program for Life Science, University of Fukui, Fukui, Japan
- * E-mail:
| |
Collapse
|
23
|
Kamata K, Hatanaka A, Goswami G, Shinmyozu K, Nakayama JI, Urano T, Hatashita M, Uchida H, Oki M. C-terminus of the Sgf73 subunit of SAGA and SLIK is important for retention in the larger complex and for heterochromatin boundary function. Genes Cells 2013; 18:823-37. [DOI: 10.1111/gtc.12075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/22/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Kazuma Kamata
- Department of Applied Chemistry & Biotechnology; Graduate School of Engineering; University of Fukui; Fukui 910-8507; Japan
| | - Akira Hatanaka
- Department of Applied Chemistry & Biotechnology; Graduate School of Engineering; University of Fukui; Fukui 910-8507; Japan
| | - Gayatri Goswami
- Department of Applied Chemistry & Biotechnology; Graduate School of Engineering; University of Fukui; Fukui 910-8507; Japan
| | - Kaori Shinmyozu
- Center for Developmental Biology; Laboratory for Chromatin Dynamics; RIKEN; Kobe 650-0047; Japan
| | | | - Takeshi Urano
- Department of Biochemistry; Shimane University Faculty of Medicine; Izumo 693-8501; Japan
| | - Masanori Hatashita
- Research and Development Department; Wakasa Wan Energy Research Center; Tsuruga 914-0192; Japan
| | - Hiroyuki Uchida
- Department of Applied Chemistry & Biotechnology; Graduate School of Engineering; University of Fukui; Fukui 910-8507; Japan
| | | |
Collapse
|
24
|
Kirkland JG, Kamakaka RT. Long-range heterochromatin association is mediated by silencing and double-strand DNA break repair proteins. ACTA ACUST UNITED AC 2013; 201:809-26. [PMID: 23733345 PMCID: PMC3678155 DOI: 10.1083/jcb.201211105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In yeast, the localization of homologous recombination–associated proteins to heterochromatic regions of the genome is necessary for proper nuclear organization. The eukaryotic genome is highly organized in the nucleus, and this organization affects various nuclear processes. However, the molecular details of higher-order organization of chromatin remain obscure. In the present study, we show that the Saccharomyces cerevisiae silenced loci HML and HMR cluster in three-dimensional space throughout the cell cycle and independently of the telomeres. Long-range HML–HMR interactions require the homologous recombination (HR) repair pathway and phosphorylated H2A (γ-H2A). γ-H2A is constitutively present at silenced loci in unperturbed cells, its localization requires heterochromatin, and it is restricted to the silenced domain by the transfer DNA boundary element. SMC proteins and Scc2 localize to the silenced domain, and Scc2 binding requires the presence of γ-H2A. These findings illustrate a novel pathway for heterochromatin organization and suggest a role for HR repair proteins in genomic organization.
Collapse
Affiliation(s)
- Jacob G Kirkland
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
25
|
Pascali C, Teichmann M. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization. Subcell Biochem 2013; 61:261-287. [PMID: 23150255 DOI: 10.1007/978-94-007-4525-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.
Collapse
Affiliation(s)
- Chiara Pascali
- Institut Européen de Chimie et Biologie (IECB), Université Bordeaux Segalen / INSERM U869, 2, rue Robert Escarpit, 33607, Pessac, France
| | | |
Collapse
|
26
|
TFIIIC bound DNA elements in nuclear organization and insulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:418-24. [PMID: 23000638 DOI: 10.1016/j.bbagrm.2012.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 11/23/2022]
Abstract
tRNA genes (tDNAs) have been known to have barrier insulator function in budding yeast, Saccharomyces cerevisiae, for over a decade. tDNAs also play a role in genome organization by clustering at sites in the nucleus and both of these functions are dependent on the transcription factor TFIIIC. More recently TFIIIC bound sites devoid of pol III, termed Extra-TFIIIC sites (ETC) have been identified in budding yeast and these sites also function as insulators and affect genome organization. Subsequent studies in Schizosaccharomyces pombe showed that TFIIIC bound sites were insulators and also functioned as Chromosome Organization Clamps (COC); tethering the sites to the nuclear periphery. Very recently studies have moved to mammalian systems where pol III genes and their associated factors have been investigated in both mouse and human cells. Short interspersed nuclear elements (SINEs) that bind TFIIIC, function as insulator elements and tDNAs can also function as both enhancer - blocking and barrier insulators in these organisms. It was also recently shown that tDNAs cluster with other tDNAs and with ETCs but not with pol II transcribed genes. Intriguingly, TFIIIC is often found near pol II transcription start sites and it remains unclear what the consequences of TFIIIC based genomic organization are and what influence pol III factors have on pol II transcribed genes and vice versa. In this review we provide a comprehensive overview of the known data on pol III factors in insulation and genome organization and identify the many open questions that require further investigation. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
27
|
Hatanaka A, Chen B, Sun JQ, Mano Y, Funakoshi M, Kobayashi H, Ju Y, Mizutani T, Shinmyozu K, Nakayama JI, Miyamoto K, Uchida H, Oki M. Fub1p, a novel protein isolated by boundary screening, binds the proteasome complex. Genes Genet Syst 2012; 86:305-14. [PMID: 22362029 DOI: 10.1266/ggs.86.305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Silenced chromatin domains are restricted to specific regions. Eukaryotic chromosomes are organized into discrete domains delimited by domain boundaries. From approximately 6,000 genes in Saccharomyces cerevisiae, we previously isolated 55 boundary genes. In this study, we focus on the molecular function of one of boundary genes, YCR076C/FUB1 (function of boundary), whose function has not been clearly defined in vivo. Biochemical analysis of Fub1p revealed that it interacted with multiple subunits of the 20S proteasome core particle (20S CP). To further clarify the functional link between Fub1p and proteasome, several proteasome mutants were analyzed. Although only 20S CP subunits were isolated as Fub1p interactors, a genetic interaction was also observed for component of 19S regulatory particle (19S RP) suggesting involvement of Fub1p with the whole proteasome. We also analyzed the mechanism of boundary establishment by using proteasome composition factor-deficient strains. Deletion of pre9 and ump1, whose products have effects on the 20S CP, resulted in a decrease in boundary function. Domain analyses of Fub1p identified a minimum functional domain in the C terminus that was essential for boundary establishment and showed a limited sequence homology to the human PSMF1, which is known to inhibit proteasome activity. Finally, boundary assay showed that human PSMF1 also exhibited boundary establishment activity in yeast. Our results defined the functional correlation between Fub1p and PSMF1.
Collapse
Affiliation(s)
- Akira Hatanaka
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Functions of chromatin remodeling factors in heterochromatin formation and maintenance. SCIENCE CHINA-LIFE SCIENCES 2012; 55:89-96. [DOI: 10.1007/s11427-012-4267-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022]
|
29
|
Raab JR, Chiu J, Zhu J, Katzman S, Kurukuti S, Wade PA, Haussler D, Kamakaka RT. Human tRNA genes function as chromatin insulators. EMBO J 2011; 31:330-50. [PMID: 22085927 DOI: 10.1038/emboj.2011.406] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 10/07/2011] [Indexed: 11/09/2022] Open
Abstract
Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes.
Collapse
Affiliation(s)
- Jesse R Raab
- Department of MCD Biology, University of California, Santa Cruz, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun JQ, Hatanaka A, Oki M. Boundaries of transcriptionally silent chromatin in Saccharomyces cerevisiae. Genes Genet Syst 2011; 86:73-81. [PMID: 21670546 DOI: 10.1266/ggs.86.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, heterochromatic gene silencing has been found within HMR and HML silent mating type loci, the telomeres, and the rRNA-encoding DNA. There may be boundary elements that regulate the spread of silencing to protect genes adjacent to silenced domains from this epigenetic repressive effect. Many assays show that specific DNA regulatory elements separate a euchromatic locus from a neighboring heterochromatic domain and thereby function as a boundary. Alternatively, DNA-independent mechanisms such as competition between acetylated and deacetylated histones are also reported to contribute to gene insulation. However, the mechanism by which boundaries are formed is not clear. Here, the characteristics and functions of boundaries at silenced domains in S. cerevisiae are discussed.
Collapse
Affiliation(s)
- Jing-Qian Sun
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1, Fukui 910-8507, Japan
| | | | | |
Collapse
|
31
|
Wang J, Lunyak VV, Jordan IK. Genome-wide prediction and analysis of human chromatin boundary elements. Nucleic Acids Res 2011; 40:511-29. [PMID: 21930510 PMCID: PMC3258141 DOI: 10.1093/nar/gkr750] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Boundary elements partition eukaryotic chromatin into active and repressive domains, and can also block regulatory interactions between domains. Boundary elements act via diverse mechanisms making accurate feature-based computational predictions difficult. Therefore, we developed an unbiased algorithm that predicts the locations of human boundary elements based on the genomic distributions of chromatin and transcriptional states, as opposed to any intrinsic characteristics that they may possess. Application of our algorithm to ChIP-seq data for histone modifications and RNA Pol II-binding data in human CD4(+) T cells resulted in the prediction of 2542 putative chromatin boundary elements genome wide. Predicted boundary elements display two distinct features: first, position-specific open chromatin and histone acetylation that is coincident with the recruitment of sequence-specific DNA-binding factors such as CTCF, EVI1 and YYI, and second, a directional and gradual increase in histone lysine methylation across predicted boundaries coincident with a gain of expression of non-coding RNAs, including examples of boundaries encoded by tRNA and other non-coding RNA genes. Accordingly, a number of the predicted human boundaries may function via the synergistic action of sequence-specific recruitment of transcription factors leading to non-coding RNA transcriptional interference and the blocking of facultative heterochromatin propagation by transcription-associated chromatin remodeling complexes.
Collapse
Affiliation(s)
- Jianrong Wang
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA and PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
| | - Victoria V. Lunyak
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA and PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
| | - I. King Jordan
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA and PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
- *To whom correspondence should be addressed. Tel: +1 404 385 2224; Fax: +404 894 0519;
| |
Collapse
|
32
|
Lunyak VV, Atallah M. Genomic relationship between SINE retrotransposons, Pol III-Pol II transcription, and chromatin organization: the journey from junk to jewel. Biochem Cell Biol 2011; 89:495-504. [PMID: 21916613 DOI: 10.1139/o11-046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A typical eukaryotic genome harbors a rich variety of repetitive elements. The most abundant are retrotransposons, mobile retroelements that utilize reverse transcriptase and an RNA intermediate to relocate to a new location within the cellular genomes. A vast majority of the repetitive mammalian genome content has originated from the retrotransposition of SINE (100-300 bp short interspersed nuclear elements that are derived from the structural 7SL RNA or tRNA), LINE (7kb long interspersed nuclear element), and LTR (2-3 kb long terminal repeats) transposable element superfamilies. Broadly labeled as "evolutionary junkyard" or "fossils", this enigmatic "dark matter" of the genome possesses many yet to be discovered properties.
Collapse
|
33
|
Wang J, Geesman GJ, Hostikka SL, Atallah M, Blackwell B, Lee E, Cook PJ, Pasaniuc B, Shariat G, Halperin E, Dobke M, Rosenfeld MG, Jordan IK, Lunyak VV. Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 2011; 10:3016-30. [PMID: 21862875 PMCID: PMC3218602 DOI: 10.4161/cc.10.17.17543] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/01/2023] Open
Abstract
Cellular aging is linked to deficiencies in efficient repair of DNA double strand breaks and authentic genome maintenance at the chromatin level. Aging poses a significant threat to adult stem cell function by triggering persistent DNA damage and ultimately cellular senescence. Senescence is often considered to be an irreversible process. Moreover, critical genomic regions engaged in persistent DNA damage accumulation are unknown. Here we report that 65% of naturally occurring repairable DNA damage in self-renewing adult stem cells occurs within transposable elements. Upregulation of Alu retrotransposon transcription upon ex vivo aging causes nuclear cytotoxicity associated with the formation of persistent DNA damage foci and loss of efficient DNA repair in pericentric chromatin. This occurs due to a failure to recruit of condensin I and cohesin complexes. Our results demonstrate that the cytotoxicity of induced Alu repeats is functionally relevant for the human adult stem cell aging. Stable suppression of Alu transcription can reverse the senescent phenotype, reinstating the cells' self-renewing properties and increasing their plasticity by altering so-called "master" pluripotency regulators.
Collapse
Affiliation(s)
- Jianrong Wang
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
A boundary element between Tsix and Xist binds the chromatin insulator Ctcf and contributes to initiation of X-chromosome inactivation. Genetics 2011; 189:441-54. [PMID: 21840866 DOI: 10.1534/genetics.111.132662] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, X-chromosome inactivation (XCI) equalizes X-linked gene expression between XY males and XX females and is controlled by a specialized region known as the X-inactivation center (Xic). The Xic harbors two chromatin interaction domains, one centered around the noncoding Xist gene and the other around the antisense Tsix counterpart. Previous work demonstrated the existence of a chromatin transitional zone between the two domains. Here, we investigate the region and discover a conserved element, RS14, that presents a strong binding site for Ctcf protein. RS14 possesses an insulatory function suggestive of a boundary element and is crucial for cell differentiation and growth. Knocking out RS14 results in compromised Xist induction and aberrant XCI in female cells. These data demonstrate that a junction element between Tsix and Xist contributes to the initiation of XCI.
Collapse
|
35
|
Ma MKW, Heath C, Hair A, West AG. Histone crosstalk directed by H2B ubiquitination is required for chromatin boundary integrity. PLoS Genet 2011; 7:e1002175. [PMID: 21811414 PMCID: PMC3140996 DOI: 10.1371/journal.pgen.1002175] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/23/2011] [Indexed: 12/21/2022] Open
Abstract
Genomic maps of chromatin modifications have provided evidence for the partitioning of genomes into domains of distinct chromatin states, which assist coordinated gene regulation. The maintenance of chromatin domain integrity can require the setting of boundaries. The HS4 insulator element marks the 3′ boundary of a heterochromatin region located upstream of the chicken β-globin gene cluster. Here we show that HS4 recruits the E3 ligase RNF20/BRE1A to mediate H2B mono-ubiquitination (H2Bub1) at this insulator. Knockdown experiments show that RNF20 is required for H2Bub1 and processive H3K4 methylation. Depletion of RNF20 results in a collapse of the active histone modification signature at the HS4 chromatin boundary, where H2Bub1, H3K4 methylation, and hyperacetylation of H3, H4, and H2A.Z are rapidly lost. A remarkably similar set of events occurs at the HSA/HSB regulatory elements of the FOLR1 gene, which mark the 5′ boundary of the same heterochromatin region. We find that persistent H2Bub1 at the HSA/HSB and HS4 elements is required for chromatin boundary integrity. The loss of boundary function leads to the sequential spreading of H3K9me2, H3K9me3, and H4K20me3 over the entire 50 kb FOLR1 and β-globin region and silencing of FOLR1 expression. These findings show that the HSA/HSB and HS4 boundary elements direct a cascade of active histone modifications that defend the FOLR1 and β-globin gene loci from the pervasive encroachment of an adjacent heterochromatin domain. We propose that many gene loci employ H2Bub1-dependent boundaries to prevent heterochromatin spreading. The transcription of genes in eukaryotes occurs within the context of chromatin, a complex of DNA, histone proteins, and regulatory factors. Whole-genome profiling of chromatin proteins and histones that are post-translationally modified has revealed that genomes are organized into domains of distinct chromatin states that coordinate gene regulation. The integrity of chromatin domains can require the setting of their boundaries. DNA sequences known as chromatin insulator or boundary elements can establish boundaries between transcriptionally permissive and repressive chromatin domains. We have studied two chromatin boundary elements that flank a condensed chromatin region located between the chicken FOLR1 and β-globin genes, respectively. These elements recruit enzymes that mediate the ubiquitination of histone H2B. Histone H2B ubiquitination directs a cascade of so-called “active” histone modification events that favor chromatin accessibility. We observe a striking collapse of the active histone modification signature at both chromatin boundaries following the depletion of ubiquitinated H2B. This loss of boundary function leads to the comprehensive spreading of repressive chromatin over the entire FOLR1 and β-globin gene region, resulting in gene silencing. We propose that chromatin boundaries at many gene loci employ H2B ubiquitination to restrict the encroachment of repressive chromatin.
Collapse
Affiliation(s)
- Meiji Kit-Wan Ma
- Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
36
|
Ruben GJ, Kirkland JG, MacDonough T, Chen M, Dubey RN, Gartenberg MR, Kamakaka RT. Nucleoporin mediated nuclear positioning and silencing of HMR. PLoS One 2011; 6:e21923. [PMID: 21818277 PMCID: PMC3139579 DOI: 10.1371/journal.pone.0021923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/09/2011] [Indexed: 02/06/2023] Open
Abstract
The organization of chromatin domains in the nucleus is an important factor in gene regulation. In eukaryotic nuclei, transcriptionally silenced chromatin clusters at the nuclear periphery while transcriptionally poised chromatin resides in the nuclear interior. Recent studies suggest that nuclear pore proteins (NUPs) recruit loci to nuclear pores to aid in insulation of genes from silencing and during gene activation. We investigated the role of NUPs at a native yeast insulator and show that while NUPs localize to the native tDNA insulator adjacent to the silenced HMR domain, loss of pore proteins does not compromise insulation. Surprisingly we find that NUPs contribute to silencing at HMR and are able to restore silencing to a silencing-defective HMR allele when tethered to the locus. We show that the perinuclear positioning of heterochromatin is important for the NUP-mediated silencing effect and find that loss of NUPs result in decreased localization of HMR to the nuclear periphery. We also show that loss of telomeric tethering pathways does not eliminate NUP localization to HMR, suggesting that NUPs may mediate an independent pathway for HMR association with the nuclear periphery. We propose that localization of NUPs to the tDNA insulator at HMR helps maintain the intranuclear position of the silent locus, which in turn contributes to the fidelity of silencing at HMR.
Collapse
Affiliation(s)
- Giulia J. Ruben
- Department of Molecular Cell Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jacob G. Kirkland
- Department of Molecular Cell Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Tracy MacDonough
- Department of Molecular Cell Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Miao Chen
- Department of Pharmacology, University of Medicine Dentistry New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Rudra N. Dubey
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Marc R. Gartenberg
- Department of Pharmacology, University of Medicine Dentistry New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Rohinton T. Kamakaka
- Department of Molecular Cell Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
RNA polymerase (Pol) III is highly specialized for the production of short non-coding RNAs. Once considered to be under relatively simple controls, recent studies using chromatin immunoprecipitation followed by sequencing (ChIP-seq) have revealed unexpected levels of complexity for Pol III regulation, including substantial cell-type selectivity and intriguing overlap with Pol II transcription. Here I describe these novel insights and consider their implications and the questions that remain.
Collapse
|
38
|
Strålfors A, Walfridsson J, Bhuiyan H, Ekwall K. The FUN30 chromatin remodeler, Fft3, protects centromeric and subtelomeric domains from euchromatin formation. PLoS Genet 2011; 7:e1001334. [PMID: 21437270 PMCID: PMC3060074 DOI: 10.1371/journal.pgen.1001334] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 02/11/2011] [Indexed: 11/18/2022] Open
Abstract
The chromosomes of eukaryotes are organized into structurally and functionally discrete domains. This implies the presence of insulator elements that separate adjacent domains, allowing them to maintain different chromatin structures. We show that the Fun30 chromatin remodeler, Fft3, is essential for maintaining a proper chromatin structure at centromeres and subtelomeres. Fft3 is localized to insulator elements and inhibits euchromatin assembly in silent chromatin domains. In its absence, euchromatic histone modifications and histone variants invade centromeres and subtelomeres, causing a mis-regulation of gene expression and severe chromosome segregation defects. Our data strongly suggest that Fft3 controls the identity of chromatin domains by protecting these regions from euchromatin assembly.
Collapse
Affiliation(s)
- Annelie Strålfors
- Department of Biosciences and Medical Nutrition, Center for Biosciences, Karolinska Institutet, Huddinge, Sweden
| | - Julian Walfridsson
- Department of Biosciences and Medical Nutrition, Center for Biosciences, Karolinska Institutet, Huddinge, Sweden
- University College Södertörn, Department of Life Sciences, Huddinge, Sweden
| | | | - Karl Ekwall
- Department of Biosciences and Medical Nutrition, Center for Biosciences, Karolinska Institutet, Huddinge, Sweden
- University College Södertörn, Department of Life Sciences, Huddinge, Sweden
- * E-mail:
| |
Collapse
|
39
|
Global genome organization mediated by RNA polymerase III-transcribed genes in fission yeast. Gene 2010; 493:195-200. [PMID: 21195141 DOI: 10.1016/j.gene.2010.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/22/2010] [Indexed: 12/27/2022]
Abstract
Eukaryotic genomes exist as an elaborate three-dimensional structure in the nucleus. Recent studies have shown that this higher-order organization of the chromatin fiber is coupled to various nuclear processes including transcription. In fission yeast, we demonstrated that RNA polymerase III (Pol III)-transcribed genes such as tRNA and 5S rRNA genes, dispersed throughout chromosomal arm regions, localize to centromeres in interphase. This centromeric association of Pol III genes, mediated by the condensin complex, becomes prominent during mitosis. Here, we discuss potential roles of the Pol III gene-mediated genome organization during interphase and mitosis, and hypothesize that the interphase genome structure serves as a scaffold for the efficient assembly of condensed mitotic chromosomes and that tethering of chromosomal arm regions to centromeres allows chromosomes to properly segregate along the spindle microtubules during anaphase.
Collapse
|
40
|
Gallagher PG, Steiner LA, Liem RI, Owen AN, Cline AP, Seidel NE, Garrett LJ, Bodine DM. Mutation of a barrier insulator in the human ankyrin-1 gene is associated with hereditary spherocytosis. J Clin Invest 2010; 120:4453-65. [PMID: 21099109 DOI: 10.1172/jci42240] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 09/22/2010] [Indexed: 11/17/2022] Open
Abstract
Defects of the ankyrin-1 gene are the most common cause in humans of hereditary spherocytosis, an inherited anemia that affects patients of all ethnic groups. In some kindreds, linked -108/-153 nucleotide substitutions have been found in the upstream region of the ankyrin gene promoter that is active in erythroid cells. In vivo, the ankyrin erythroid promoter and its upstream region direct position-independent, uniform expression, a property of barrier insulators. Using human erythroid cell lines and primary cells and transgenic mice, here we have demonstrated that a region upstream of the erythroid promoter is a barrier insulator in vivo in erythroid cells. The region exhibited both functional and structural characteristics of a barrier, including prevention of gene silencing in an in vivo functional assay, appropriate chromatin configuration, and occupancy by barrier-associated proteins. Fragments with the -108/-153 spherocytosis-associated mutations failed to function as barrier insulators in vivo and demonstrated perturbations in barrier-associated chromatin configuration. In transgenic mice, flanking a mutant -108/-153 ankyrin gene promoter with the well-characterized chicken HS4 barrier insulator restored position-independent, uniform expression at levels comparable to wild-type. These data indicate that an upstream region of the ankyrin-1 erythroid promoter acts as a barrier insulator and identify disruption of the barrier element as a potential pathogenetic mechanism of human disease.
Collapse
Affiliation(s)
- Patrick G Gallagher
- Departments of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Raab JR, Kamakaka RT. Insulators and promoters: closer than we think. Nat Rev Genet 2010; 11:439-46. [PMID: 20442713 DOI: 10.1038/nrg2765] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulators prevent promiscuous gene regulation by restricting the action of enhancers and silencers. Recent studies have revealed a number of similarities between insulators and promoters, including binding of specific transcription factors, chromatin-modification signatures and localization to specific subnuclear positions. We propose that enhancer-blockers and silencing barrier-insulators might have evolved as specialized derivatives of promoters and that the two types of element use related mechanisms to mediate their distinct functions. These insights can help to reconcile different models of insulator action.
Collapse
Affiliation(s)
- Jesse R Raab
- Department of Molecular Cell and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
42
|
Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nat Struct Mol Biol 2010; 17:629-34. [PMID: 20418881 PMCID: PMC2917008 DOI: 10.1038/nsmb.1806] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/15/2010] [Indexed: 12/16/2022]
Abstract
Epigenetic control is an important aspect of gene regulation. Despite detailed understanding of protein-coding gene expression, the transcription of non-coding RNA genes by RNA polymerase (pol) III is less well characterized. Here we profile the epigenetic features of pol III target genes throughout the human genome. This reveals that the chromatin landscape of pol III-transcribed genes resembles that of pol II templates in many ways, although there are also clear differences. Our analysis also discovered an entirely unexpected phenomenon, namely that pol II is present at the majority of genomic loci that are bound by pol III.
Collapse
|
43
|
An auxiliary silencer and a boundary element maintain high levels of silencing proteins at HMR in Saccharomyces cerevisiae. Genetics 2010; 185:113-27. [PMID: 20176978 DOI: 10.1534/genetics.109.113100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterochromatin is notable for its capacity to propagate along a chromosome. The prevailing model for this spreading process postulates that silencing proteins are first recruited to silencer sequences and then spread from these sites independently of the silencers. However, we found that in Saccharomyces cerevisiae silencers also influence the extent of silenced chromatin domains. We compared the abilities of two different silencers, HMR-E and a telomeric repeat, to promote silencing and found that the HMR-E silencer contributed to an increased steady-state association of Sir proteins over a region of several kilobase pairs compared to the telomeric repeat, even though both silencers recruited similar levels of Sir proteins. We also discovered that, although the HMR-E silencer alone was sufficient to block transcription of the HMR locus, a secondary silencer, HMR-I, boosted the level of Sir proteins at HMR, apparently beyond the level necessary to repress transcription. Finally, we discovered that a tRNA(Thr) gene near HMR-I helped maintain silenced chromatin and transcriptional repression under conditions of reduced deacetylase activity. This study highlights the importance of auxiliary elements, such as HMR-I and the tRNA(Thr) gene, in enhancing the association of Sir silencing proteins with appropriate genomic locations, thereby buffering the capacity of silenced chromatin to assemble under suboptimal conditions.
Collapse
|
44
|
Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate. Proc Natl Acad Sci U S A 2010; 107:5522-7. [PMID: 20133733 DOI: 10.1073/pnas.0909169107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Boundaries between euchromatic and heterochromatic regions until now have been associated with chromatin-opening activities. Here, we identified an unexpected role for histone deacetylation in this process. Significantly, the histone deacetylase (HDAC) Rpd3 was necessary for boundary formation in Saccharomyces cerevisiae. rpd3Delta led to silent information regulator (SIR) spreading and repression of subtelomeric genes. In the absence of a known boundary factor, the histone acetyltransferase complex SAS-I, rpd3Delta caused inappropriate SIR spreading that was lethal to yeast cells. Notably, Rpd3 was capable of creating a boundary when targeted to heterochromatin. Our data suggest a mechanism for boundary formation whereby histone deacetylation by Rpd3 removes the substrate for the HDAC Sir2, so that Sir2 no longer can produce O-acetyl-ADP ribose (OAADPR) by consumption of NAD(+) in the deacetylation reaction. In essence, OAADPR therefore is unavailable for binding to Sir3, preventing SIR propagation.
Collapse
|
45
|
Iwasaki O, Tanaka A, Tanizawa H, Grewal SI, Noma KI. Centromeric localization of dispersed Pol III genes in fission yeast. Mol Biol Cell 2010; 21:254-65. [PMID: 19910488 PMCID: PMC2808234 DOI: 10.1091/mbc.e09-09-0790] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/30/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic genome is a complex three-dimensional entity residing in the nucleus. We present evidence that Pol III-transcribed genes such as tRNA and 5S rRNA genes can localize to centromeres and contribute to a global genome organization. Furthermore, we find that ectopic insertion of Pol III genes into a non-Pol III gene locus results in the centromeric localization of the locus. We show that the centromeric localization of Pol III genes is mediated by condensin, which interacts with the Pol III transcription machinery, and that transcription levels of the Pol III genes are negatively correlated with the centromeric localization of Pol III genes. This centromeric localization of Pol III genes initially observed in interphase becomes prominent during mitosis, when chromosomes are condensed. Remarkably, defective mitotic chromosome condensation by a condensin mutation, cut3-477, which reduces the centromeric localization of Pol III genes, is suppressed by a mutation in the sfc3 gene encoding the Pol III transcription factor TFIIIC subunit, sfc3-1. The sfc3-1 mutation promotes the centromeric localization of Pol III genes. Our study suggests there are functional links between the process of the centromeric localization of dispersed Pol III genes, their transcription, and the assembly of condensed mitotic chromosomes.
Collapse
Affiliation(s)
| | | | | | - Shiv I.S. Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
46
|
Abstract
The cellular role of the Ada2 coactivator is currently understood in the context of the SAGA histone acetyltransferase (HAT) complex, where Ada2 increases the HAT activity of Gcn5 and interacts with transcriptional activators. Here we report a new function for Ada2 in promoting transcriptional silencing at telomeres and ribosomal DNA. This silencing function is the first characterized role for Ada2 distinct from its involvement with Gcn5. Ada2 binds telomeric chromatin and the silencing protein Sir2 in vivo. Loss of ADA2 causes the spreading of Sir2 and Sir3 into subtelomeric regions and decreased histone H4 K16 acetylation. This previously uncharacterized boundary activity of Ada2 is functionally similar to, but mechanistically distinct from, that of the MYST family HAT Sas2. Mounting evidence in the literature indicates that boundary activities create chromosomal domains important for regulating gene expression in response to environmental changes. Consistent with this, we show that upon nutritional changes, Ada2 occupancy increases at a subtelomeric region proximal to a SAGA-inducible gene and causes derepression of a silenced telomeric reporter gene. Thus, Ada2, likely in the context of SAGA, is positioned at chromosomal termini to participate in both transcriptional repression and activation in response to nutrient signaling.
Collapse
|
47
|
Cohen H, Parekh P, Sercan Z, Kotekar A, Weissman JD, Singer DS. In vivo expression of MHC class I genes depends on the presence of a downstream barrier element. PLoS One 2009; 4:e6748. [PMID: 19707598 PMCID: PMC2727697 DOI: 10.1371/journal.pone.0006748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 06/25/2009] [Indexed: 11/18/2022] Open
Abstract
Regulation of MHC class I gene expression is critical to achieve proper immune surveillance. In this work, we identify elements downstream of the MHC class I promoter that are necessary for appropriate in vivo regulation: a novel barrier element that protects the MHC class I gene from silencing and elements within the first two introns that contribute to tissue specific transcription. The barrier element is located in intergenic sequences 3' to the polyA addition site. It is necessary for stable expression in vivo, but has no effect in transient transfection assays. Accordingly, in both transgenic mice and stably transfected cell lines, truncation of the barrier resulted in transcriptional gene silencing, increased nucleosomal density and decreased histone H3K9/K14 acetylation and H3K4 di-methylation across the gene. Significantly, distinct sequences within the barrier element govern anti-silencing and chromatin modifications. Thus, this novel barrier element functions to maintain transcriptionally permissive chromatin organization and prevent transcriptional silencing of the MHC class I gene, ensuring it is poised to respond to immune signaling.
Collapse
Affiliation(s)
- Helit Cohen
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Palak Parekh
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Zeynep Sercan
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Aparna Kotekar
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jocelyn D. Weissman
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Dinah S. Singer
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| |
Collapse
|
48
|
DNA polymerase epsilon, acetylases and remodellers cooperate to form a specialized chromatin structure at a tRNA insulator. EMBO J 2009; 28:2583-600. [PMID: 19629037 DOI: 10.1038/emboj.2009.198] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 06/22/2009] [Indexed: 11/08/2022] Open
Abstract
Insulators bind transcription factors and use chromatin remodellers and modifiers to mediate insulation. In this report, we identified proteins required for the efficient formation and maintenance of a specialized chromatin structure at the yeast tRNA insulator. The histone acetylases, SAS-I and NuA4, functioned in insulation, independently of tRNA and did not participate in the formation of the hypersensitive site at the tRNA. In contrast, DNA polymerase epsilon, functioned with the chromatin remodeller, Rsc, and the histone acetylase, Rtt109, to generate a histone-depleted region at the tRNA insulator. Rsc and Rtt109 were required for efficient binding of TFIIIB to the tRNA insulator, and the bound transcription factor and Rtt109 in turn were required for the binding of Rsc to tRNA. Robust insulation during growth and cell division involves the formation of a hypersensitive site at the insulator during chromatin maturation together with competition between acetylases and deacetylases.
Collapse
|
49
|
Abstract
Chromatin insulators separate active from repressed chromatin domains. In yeast the RNA pol III transcription machinery bound to tRNA genes function with histone acetylases and chromatin remodelers to restrict the spread of heterochromatin. Our results collectively demonstrate that binding of TFIIIC is necessary for insulation but binding of TFIIIB along with TFIIIC likely improves the probability of complex formation at an insulator. Insulation by this transcription factor occurs in the absence of RNA polymerase III or polymerase II but requires specific histone acetylases and chromatin remodelers. This analysis identifies a minimal set of factors required for insulation.
Collapse
|
50
|
Biswas M, Maqani N, Rai R, Kumaran SP, Iyer KR, Sendinc E, Smith JS, Laloraya S. Limiting the extent of the RDN1 heterochromatin domain by a silencing barrier and Sir2 protein levels in Saccharomyces cerevisiae. Mol Cell Biol 2009; 29:2889-98. [PMID: 19289503 PMCID: PMC2682026 DOI: 10.1128/mcb.00728-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 05/30/2008] [Accepted: 02/18/2009] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, transcriptional silencing occurs at the cryptic mating-type loci (HML and HMR), telomeres, and ribosomal DNA (rDNA; RDN1). Silencing in the rDNA is unusual in that polymerase II (Pol II) promoters within RDN1 are repressed by Sir2 but not Sir3 or Sir4. rDNA silencing unidirectionally spreads leftward, but the mechanism of limiting its spreading is unclear. We searched for silencing barriers flanking the left end of RDN1 by using an established assay for detecting barriers to HMR silencing. Unexpectedly, the unique sequence immediately adjacent to RDN1, which overlaps a prominent cohesin binding site (CARL2), did not have appreciable barrier activity. Instead, a fragment located 2.4 kb to the left, containing a tRNA(Gln) gene and the Ty1 long terminal repeat, had robust barrier activity. The barrier activity was dependent on Pol III transcription of tRNA(Gln), the cohesin protein Smc1, and the SAS1 and Gcn5 histone acetyltransferases. The location of the barrier correlates with the detectable limit of rDNA silencing when SIR2 is overexpressed, where it blocks the spreading of rDNA heterochromatin. We propose a model in which normal Sir2 activity results in termination of silencing near the physical rDNA boundary, while tRNA(Gln) blocks silencing from spreading too far when nucleolar Sir2 pools become elevated.
Collapse
MESH Headings
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Gene Expression Regulation, Fungal
- Gene Silencing
- Genome, Fungal
- Heterochromatin/metabolism
- Histone Acetyltransferases/metabolism
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Microarray Analysis
- RNA Polymerase III/metabolism
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism
- Sirtuin 2
- Sirtuins/genetics
- Sirtuins/metabolism
- Cohesins
Collapse
Affiliation(s)
- Moumita Biswas
- Department of Biochemistry, Indian Institute of Science, C. V. Raman Ave., Bangalore KA 560012, India
| | | | | | | | | | | | | | | |
Collapse
|