1
|
Teyssier V, Williamson CR, Shata E, Rosen SP, Jones N, Bisson N. Adapting to change: resolving the dynamic and dual roles of NCK1 and NCK2. Biochem J 2024; 481:1411-1435. [PMID: 39392452 DOI: 10.1042/bcj20230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.
Collapse
Affiliation(s)
- Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie P Rosen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Jiang Z, van Vlimmeren AE, Karandur D, Semmelman A, Shah NH. Revealing the principles of inter- and intra-domain regulation in a signaling enzyme via scanning mutagenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593907. [PMID: 39091798 PMCID: PMC11291063 DOI: 10.1101/2024.05.13.593907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Multi-domain enzymes can be regulated by both inter-domain interactions and structural features intrinsic to the catalytic domain. The tyrosine phosphatase SHP2 is a quintessential example of a multi-domain protein that is regulated by inter-domain interactions. This enzyme has a protein tyrosine phosphatase (PTP) domain and two phosphotyrosine-recognition domains (N-SH2 and C-SH2) that regulate phosphatase activity through autoinhibitory interactions. SHP2 is canonically activated by phosphoprotein binding to the SH2 domains, which causes large inter-domain rearrangements, but autoinhibition can also be disrupted by disease-associated mutations. Many details of the SHP2 activation mechanism are still unclear, the physiologically-relevant active conformations remain elusive, and hundreds of human variants of SHP2 have not been functionally characterized. Here, we perform deep mutational scanning on both full-length SHP2 and its isolated PTP domain to examine mutational effects on inter-domain regulation and catalytic activity. Our experiments provide a comprehensive map of SHP2 mutational sensitivity, both in the presence and absence of inter-domain regulation. Coupled with molecular dynamics simulations, our investigation reveals novel structural features that govern the stability of the autoinhibited and active states of SHP2. Our analysis also identifies key residues beyond the SHP2 active site that control PTP domain dynamics and intrinsic catalytic activity. This work expands our understanding of SHP2 regulation and provides new insights into SHP2 pathogenicity.
Collapse
Affiliation(s)
- Ziyuan Jiang
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Anne E. van Vlimmeren
- Department of Chemistry, Columbia University, New York, NY 10027
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Deepti Karandur
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| | - Alyssa Semmelman
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
3
|
Gross F, Mancini A, Breton B, Kobayashi H, Pereira PHS, Le Gouill C, Bouvier M, Schann S, Leroy X, Sabbagh L. EGFR signaling and pharmacology in oncology revealed with innovative BRET-based biosensors. Commun Biol 2024; 7:250. [PMID: 38429428 PMCID: PMC10907714 DOI: 10.1038/s42003-024-05965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
Mutations of receptor tyrosine kinases (RTKs) are associated with the development of many cancers by modifying receptor signaling and contributing to drug resistance in clinical settings. We present enhanced bystander bioluminescence resonance energy transfer-based biosensors providing new insights into RTK biology and pharmacology critical for the development of more effective RTK-targeting drugs. Distinct SH2-specific effector biosensors allow for real-time and spatiotemporal monitoring of signal transduction pathways engaged upon RTK activation. Using EGFR as a model, we demonstrate the capacity of these biosensors to differentiate unique signaling signatures, with EGF and Epiregulin ligands displaying differences in efficacy, potency, and responses within different cellular compartments. We further demonstrate that EGFR single point mutations found in Glioblastoma or non-small cell lung cancer, impact the constitutive activity of EGFR and response to tyrosine kinase inhibitor. The BRET-based biosensors are compatible with microscopy, and more importantly characterize the next generation of therapeutics directed against RTKs.
Collapse
Affiliation(s)
- Florence Gross
- Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada
| | - Arturo Mancini
- Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada
| | - Billy Breton
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Hiroyuki Kobayashi
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Pedro Henrique Scarpelli Pereira
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Stephan Schann
- Domain Therapeutics SA, 220 Boulevard Gonthier D'Andernach, 67400, Strasbourg-Illkirch, France
| | - Xavier Leroy
- Domain Therapeutics SA, 220 Boulevard Gonthier D'Andernach, 67400, Strasbourg-Illkirch, France
| | - Laurent Sabbagh
- Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada.
| |
Collapse
|
4
|
Stergas HR, Dillon-Martin M, Dumas CM, Hansen NA, Carasi-Schwartz FJ, D'Amico AR, Finnegan KM, Juch U, Kane KR, Kaplan IE, Masengarb ML, Melero ME, Meyer LE, Sacher CR, Scriven EA, Ebert AM, Ballif BA. CRK and NCK adaptors may functionally overlap in zebrafish neurodevelopment, as indicated by common binding partners and overlapping expression patterns. FEBS Lett 2024; 598:302-320. [PMID: 38058169 DOI: 10.1002/1873-3468.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 12/08/2023]
Abstract
CRK adaptor proteins are important for signal transduction mechanisms driving cell proliferation and positioning during vertebrate central nervous system development. Zebrafish lacking both CRK family members exhibit small, disorganized retinas with 50% penetrance. The goal of this study was to determine whether another adaptor protein might functionally compensate for the loss of CRK adaptors. Expression patterns in developing zebrafish, and bioinformatic analyses of the motifs recognized by their SH2 and SH3 domains, suggest NCK adaptors are well-positioned to compensate for loss of CRK adaptors. In support of this hypothesis, proteomic analyses found CRK and NCK adaptors share overlapping interacting partners including known regulators of cell adhesion and migration, suggesting their functional intersection in neurodevelopment.
Collapse
Affiliation(s)
| | | | - Caroline M Dumas
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Nicole A Hansen
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | - Alex R D'Amico
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Kylie M Finnegan
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Uatchet Juch
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Keeley R Kane
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Isabel E Kaplan
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | - Marina E Melero
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Lauren E Meyer
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Conrad R Sacher
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Evan A Scriven
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
5
|
Umene K, Nagamune T, Kawahara M. Phenotypic screening of signaling motifs that efficiently induce cell proliferation. Sci Rep 2023; 13:15639. [PMID: 37730760 PMCID: PMC10511696 DOI: 10.1038/s41598-023-42378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023] Open
Abstract
Since cell proliferation is one of the fundamental cell fates, artificial control of cell proliferation based on a receptor-engineering approach is increasingly important in therapeutic and industrial applications. Since the signal transduction properties of cytokine receptors are greatly influenced by the amino acid sequence of tyrosine motifs, here we develop a phenotypic screening approach that can directly select cell proliferation-inducing tyrosine motifs from a synthetic library. In the tyrosine motif library, amino acid sequences around the tyrosine are randomized to attain diverse binding patterns of signaling molecules. Theoretically, engineered receptors with distinct tyrosine motifs would activate signaling molecules in diverse patterns. Thus, we investigated whether tyrosine motif sequences capable of inducing cell proliferation could be selected from the cellular library expressing the motif-engineered receptors. Consequently, the selected motifs induced similar levels of cell proliferation compared to the cytoplasmic signaling domain of a native receptor. The motif-screening system was applicable to cells that may differentiate or proliferate depending on cytokine signals. To our best knowledge, this is the first report demonstrating phenotypic screening of tyrosine motifs in living cells. Our approach would open up new possibilities in the field of artificial control of cell fate based on signal transduction engineering.
Collapse
Affiliation(s)
- Kirato Umene
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Laboratory of Cell Vaccine, Microbial Research Center for Health and Medicine (MRCHM), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki-shi, Osaka, 567-0085, Japan.
| |
Collapse
|
6
|
Vish KJ, Stiegler AL, Boggon TJ. Diverse p120RasGAP interactions with doubly phosphorylated partners EphB4, p190RhoGAP, and Dok1. J Biol Chem 2023; 299:105098. [PMID: 37507023 PMCID: PMC10470053 DOI: 10.1016/j.jbc.2023.105098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023] Open
Abstract
RasGAP (p120RasGAP), the founding member of the GTPase-activating protein (GAP) family, is one of only nine human proteins to contain two SH2 domains and is essential for proper vascular development. Despite its importance, its interactions with key binding partners remains unclear. In this study we provide a detailed viewpoint of RasGAP recruitment to various binding partners and assess their impact on RasGAP activity. We reveal the RasGAP SH2 domains generate distinct binding interactions with three well-known doubly phosphorylated binding partners: p190RhoGAP, Dok1, and EphB4. Affinity measurements demonstrate a 100-fold weakened affinity for RasGAP-EphB4 binding compared to RasGAP-p190RhoGAP or RasGAP-Dok1 binding, possibly driven by single versus dual SH2 domain engagement with a dominant N-terminal SH2 interaction. Small-angle X-ray scattering reveals conformational differences between RasGAP-EphB4 binding and RasGAP-p190RhoGAP binding. Importantly, these interactions do not impact catalytic activity, implying RasGAP utilizes its SH2 domains to achieve diverse spatial-temporal regulation of Ras signaling in a previously unrecognized fashion.
Collapse
Affiliation(s)
- Kimberly J Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Pharmacology, Yale University, New Haven, Connecticut, USA; Department of Yale Cancer Center, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
7
|
Taylor J, Bulek A, Gannon I, Robson M, Kokalaki E, Grothier T, McKenzie C, El-Kholy M, Stavrou M, Traynor-White C, Lim WC, Panagiotou P, Srivastava S, Baldan V, Sillibourne J, Ferrari M, Pule M, Thomas S. Exploration of T cell immune responses by expression of a dominant-negative SHP1 and SHP2. Front Immunol 2023; 14:1119350. [PMID: 37334382 PMCID: PMC10272835 DOI: 10.3389/fimmu.2023.1119350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
SHP1 and SHP2 are SH2 domain-containing proteins which have inhibitory phosphatase activity when recruited to phosphorylated ITIMs and ITSMs on inhibitory immune receptors. Consequently, SHP1 and SHP2 are key proteins in the transmission of inhibitory signals within T cells, constituting an important point of convergence for diverse inhibitory receptors. Therefore, SHP1 and SHP2 inhibition may represent a strategy for preventing immunosuppression of T cells mediated by cancers hence improving immunotherapies directed against these malignancies. Both SHP1 and SHP2 contain dual SH2 domains responsible for localization to the endodomain of inhibitory receptors and a protein tyrosine phosphatase domain which dephosphorylates and thus inhibits key mediators of T cell activation. We explored the interaction of the isolated SH2 domains of SHP1 and SHP2 to inhibitory motifs from PD1 and identified strong binding of both SH2 domains from SHP2 and more moderate binding in the case of SHP1. We next explored whether a truncated form of SHP1/2 comprising only of SH2 domains (dSHP1/2) could act in a dominant negative fashion by preventing docking of the wild type proteins. When co-expressed with CARs we found that dSHP2 but not dSHP1 could alleviate immunosuppression mediated by PD1. We next explored the capacity of dSHP2 to bind with other inhibitory receptors and observed several potential interactions. In vivo we observed that the expression of PDL1 on tumor cells impaired the ability of CAR T cells to mediate tumor rejection and this effect was partially reversed by the co-expression of dSHP2 albeit at the cost of reduced CAR T cell proliferation. Modulation of SHP1 and SHP2 activity in engineered T cells through the expression of these truncated variants may enhance T cell activity and hence efficacy in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Julia Taylor
- Research and Development, Autolus Ltd, London, United Kingdom
| | - Anna Bulek
- Research and Development, Autolus Ltd, London, United Kingdom
| | - Isaac Gannon
- Research and Development, Autolus Ltd, London, United Kingdom
| | - Mathew Robson
- Research and Development, Autolus Ltd, London, United Kingdom
| | | | - Thomas Grothier
- Research and Development, Autolus Ltd, London, United Kingdom
| | - Callum McKenzie
- Research and Development, Autolus Ltd, London, United Kingdom
| | | | - Maria Stavrou
- Research and Development, Autolus Ltd, London, United Kingdom
| | | | - Wen Chean Lim
- Research and Development, Autolus Ltd, London, United Kingdom
| | | | | | - Vania Baldan
- Research and Development, Autolus Ltd, London, United Kingdom
| | | | - Mathieu Ferrari
- Research and Development, Autolus Ltd, London, United Kingdom
| | - Martin Pule
- Research and Development, Autolus Ltd, London, United Kingdom
- Department of Haematology, University College London, London, United Kingdom
| | - Simon Thomas
- Research and Development, Autolus Ltd, London, United Kingdom
| |
Collapse
|
8
|
Bajusz D, Pándy-Szekeres G, Takács Á, de Araujo ED, Keserű GM. SH2db, an information system for the SH2 domain. Nucleic Acids Res 2023:7173719. [PMID: 37207333 DOI: 10.1093/nar/gkad420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023] Open
Abstract
SH2 domains are key mediators of phosphotyrosine-based signalling, and therapeutic targets for diverse, mostly oncological, disease indications. They have a highly conserved structure with a central beta sheet that divides the binding surface of the protein into two main pockets, responsible for phosphotyrosine binding (pY pocket) and substrate specificity (pY + 3 pocket). In recent years, structural databases have proven to be invaluable resources for the drug discovery community, as they contain highly relevant and up-to-date information on important protein classes. Here, we present SH2db, a comprehensive structural database and webserver for SH2 domain structures. To organize these protein structures efficiently, we introduce (i) a generic residue numbering scheme to enhance the comparability of different SH2 domains, (ii) a structure-based multiple sequence alignment of all 120 human wild-type SH2 domain sequences and their PDB and AlphaFold structures. The aligned sequences and structures can be searched, browsed and downloaded from the online interface of SH2db (http://sh2db.ttk.hu), with functions to conveniently prepare multiple structures into a Pymol session, and to export simple charts on the contents of the database. Our hope is that SH2db can assist researchers in their day-to-day work by becoming a one-stop shop for SH2 domain related research.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group and National Laboratory for Drug Researchand Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Gáspár Pándy-Szekeres
- Medicinal Chemistry Research Group and National Laboratory for Drug Researchand Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ágnes Takács
- Medicinal Chemistry Research Group and National Laboratory for Drug Researchand Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Elvin D de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - György M Keserű
- Medicinal Chemistry Research Group and National Laboratory for Drug Researchand Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| |
Collapse
|
9
|
Sámano-Sánchez H, Gibson TJ, Chemes LB. Using Linear Motif Database Resources to Identify SH2 Domain Binders. Methods Mol Biol 2023; 2705:153-197. [PMID: 37668974 DOI: 10.1007/978-1-0716-3393-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The SH2-binding phosphotyrosine class of short linear motifs (SLiMs) are key conditional regulatory elements, particularly in signaling protein complexes beneath the cell's plasma membrane. In addition to transmitting cellular signaling information, they can also play roles in cellular hijack by invasive pathogens. Researchers can take advantage of bioinformatics tools and resources to predict the motifs at conserved phosphotyrosine residues in regions of intrinsically disordered protein. A candidate SH2-binding motif can be established and assigned to one or more of the SH2 domain subgroups. It is, however, not so straightforward to predict which SH2 domains are capable of binding the given candidate. This is largely due to the cooperative nature of the binding amino acids which enables poorer binding residues to be tolerated when the other residues are optimal. High-throughput peptide arrays are powerful tools used to derive SH2 domain-binding specificity, but they are unable to capture these cooperative effects and also suffer from other shortcomings. Tissue and cell type expression can help to restrict the list of available interactors: for example, some well-studied SH2 domain proteins are only present in the immune cell lineages. In this article, we provide a table of motif patterns and four bioinformatics strategies that introduce a range of tools that can be used in motif hunting in cellular and pathogen proteins. Experimental followup is essential to determine which SH2 domain/motif-containing proteins are the actual functional partners.
Collapse
Affiliation(s)
- Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
- Biomedical Sciences, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lucía B Chemes
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Argentina.
| |
Collapse
|
10
|
Calligari P, Stella L, Bocchinfuso G. Computational Evaluation of Peptide-Protein Binding Affinities: Application of Potential of Mean Force Calculations to SH2 Domains. Methods Mol Biol 2023; 2705:113-133. [PMID: 37668972 DOI: 10.1007/978-1-0716-3393-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Many biological functions are mediated by protein-protein interactions (PPIs), often involving specific structural modules, such as SH2 domains. Inhibition of PPIs is a pharmaceutical strategy of growing importance. However, a major challenge in the design of PPI inhibitors is the large interface involved in these interactions, which, in many cases, makes inhibition by small organic molecules ineffective. Peptides, which cover a wide range of dimensions and can be opportunely designed to mimic protein sequences at PPI interfaces, represent a valuable alternative to small molecules. Computational techniques able to predict the binding affinity of peptides for the target domain or protein represent a crucial stage in the workflow for the design of peptide-based drugs. This chapter describes a protocol to obtain the potential of mean force (PMF) for peptide-SH2 domain binding, starting from umbrella sampling (US) molecular dynamics (MD) simulations. The PMF profiles can be effectively used to predict the relative standard binding free energies of different peptide sequences.
Collapse
Affiliation(s)
- Paolo Calligari
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
11
|
Nanna V, Marasco M, Kirkpatrick JP, Carlomagno T. Methods for Structure Determination of SH2 Domain-Phosphopeptide Complexes by NMR. Methods Mol Biol 2023; 2705:3-23. [PMID: 37668966 DOI: 10.1007/978-1-0716-3393-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique to solve the structure of biomolecular complexes at atomic resolution in solution. Small proteins such as Src-homology 2 (SH2) domains have fast tumbling rates and long-lived NMR signals, making them particularly suited to be studied by standard NMR methods. SH2 domains are modular proteins whose function is the recognition of sequences containing phosphotyrosines. In this chapter, we describe the application of NMR to assess the interaction between SH2 domains and phosphopeptides and determine the structure of the resulting complexes.
Collapse
Affiliation(s)
- Vittoria Nanna
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Michelangelo Marasco
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Teresa Carlomagno
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
12
|
Stiegler AL, Boggon TJ. Structure Determination of SH2-Phosphopeptide Complexes by X-Ray Crystallography: The Example of p120RasGAP. Methods Mol Biol 2023; 2705:77-89. [PMID: 37668970 PMCID: PMC11059313 DOI: 10.1007/978-1-0716-3393-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The p120RasGAP protein contains two Src homology 2 (SH2) domains, each with phosphotyrosine-binding activity. We describe the crystallization of the isolated and purified p120RasGAP SH2 domains with phosphopeptides derived from a binding partner protein, p190RhoGAP. Purified recombinant SH2 domain protein is mixed with synthetic phosphopeptide at a stoichiometric ratio to form the complex in vitro. Crystallization is then achieved by the hanging drop vapor diffusion method over specific reservoir solutions that yield single macromolecular co-crystals containing SH2 domain protein and phosphopeptide. This protocol yields suitable crystals for X-ray diffraction studies, and our recent X-ray crystallography studies of the two SH2 domains of p120RasGAP demonstrate that the N-terminal SH2 domain binds phosphopeptide in a canonical interaction. In contrast, the C-terminal SH2 domain binds phosphopeptide via a unique atypical binding mode. The crystallographic studies for p120RasGAP illustrate that although the three-dimensional structure of SH2 domains and the molecular details of their binding to phosphotyrosine peptides are well defined, careful structural analysis can continue to yield new molecular-level insights.
Collapse
Affiliation(s)
- Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University, New Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
SH2 Domains: Folding, Binding and Therapeutical Approaches. Int J Mol Sci 2022; 23:ijms232415944. [PMID: 36555586 PMCID: PMC9783222 DOI: 10.3390/ijms232415944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
SH2 (Src Homology 2) domains are among the best characterized and most studied protein-protein interaction (PPIs) modules able to bind and recognize sequences presenting a phosphorylated tyrosine. This post-translational modification is a key regulator of a plethora of physiological and molecular pathways in the eukaryotic cell, so SH2 domains possess a fundamental role in cell signaling. Consequently, several pathologies arise from the dysregulation of such SH2-domains mediated PPIs. In this review, we recapitulate the current knowledge about the structural, folding stability, and binding properties of SH2 domains and their roles in molecular pathways and pathogenesis. Moreover, we focus attention on the different strategies employed to modulate/inhibit SH2 domains binding. Altogether, the information gathered points to evidence that pharmacological interest in SH2 domains is highly strategic to developing new therapeutics. Moreover, a deeper understanding of the molecular determinants of the thermodynamic stability as well as of the binding properties of SH2 domains appears to be fundamental in order to improve the possibility of preventing their dysregulated interactions.
Collapse
|
14
|
Stiegler AL, Vish KJ, Boggon TJ. Tandem engagement of phosphotyrosines by the dual SH2 domains of p120RasGAP. Structure 2022; 30:1603-1614.e5. [PMID: 36417908 PMCID: PMC9722645 DOI: 10.1016/j.str.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
p120RasGAP is a multidomain GTPase-activating protein for Ras. The presence of two Src homology 2 domains in an SH2-SH3-SH2 module raises the possibility that p120RasGAP simultaneously binds dual phosphotyrosine residues in target proteins. One known binding partner with two proximal phosphotyrosines is p190RhoGAP, a GTPase-activating protein for Rho GTPases. Here, we present the crystal structure of the p120RasGAP SH2-SH3-SH2 module bound to a doubly tyrosine-phosphorylated p190RhoGAP peptide, revealing simultaneous phosphotyrosine recognition by the SH2 domains. The compact arrangement places the SH2 domains in close proximity resembling an SH2 domain tandem and exposed SH3 domain. Affinity measurements support synergistic binding, while solution scattering reveals that dual phosphotyrosine binding induces compaction of this region. Our studies reflect a binding mode that limits conformational flexibility within the SH2-SH3-SH2 cassette and relies on the spacing and sequence surrounding the two phosphotyrosines, potentially representing a selectivity mechanism for downstream signaling events.
Collapse
Affiliation(s)
- Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Kimberly J Vish
- Department of Pharmacology, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Nardella C, Toto A, Santorelli D, Pagano L, Diop A, Pennacchietti V, Pietrangeli P, Marcocci L, Malagrinò F, Gianni S. Folding and Binding Mechanisms of the SH2 Domain from Crkl. Biomolecules 2022; 12:biom12081014. [PMID: 35892324 PMCID: PMC9332313 DOI: 10.3390/biom12081014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
SH2 domains are structural modules specialized in the recognition and binding of target sequences containing a phosphorylated tyrosine residue. They are mostly incorporated in the 3D structure of scaffolding proteins that represent fundamental regulators of several signaling pathways. Among those, Crkl plays key roles in cell physiology by mediating signals from a wide range of stimuli, and its overexpression is associated with several types of cancers. In myeloid cells expressing the oncogene BCR/ABL, one interactor of Crkl-SH2 is the focal adhesion protein Paxillin, and this interaction is crucial in leukemic transformation. In this work, we analyze both the folding pathway of Crkl-SH2 and its binding reaction with a peptide mimicking Paxillin, under different ionic strength and pH conditions, by using means of fluorescence spectroscopy. From a folding perspective, we demonstrate the presence of an intermediate along the reaction. Moreover, we underline the importance of the electrostatic interactions in the early event of recognition, occurring between the phosphorylated tyrosine of the Paxillin peptide and the charge residues of Crkl-SH2. Finally, we highlight a pivotal role of a highly conserved histidine residue in the stabilization of the binding complex. The experimental results are discussed in light of previous works on other SH2 domains.
Collapse
|
16
|
Rácz A, Mihalovits LM, Bajusz D, Héberger K, Miranda-Quintana RA. Molecular Dynamics Simulations and Diversity Selection by Extended Continuous Similarity Indices. J Chem Inf Model 2022; 62:3415-3425. [PMID: 35834424 PMCID: PMC9326969 DOI: 10.1021/acs.jcim.2c00433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Molecular dynamics (MD) is a core methodology of molecular
modeling
and computational design for the study of the dynamics and temporal
evolution of molecular systems. MD simulations have particularly benefited
from the rapid increase of computational power that has characterized
the past decades of computational chemical research, being the first
method to be successfully migrated to the GPU infrastructure. While
new-generation MD software is capable of delivering simulations on
an ever-increasing scale, relatively less effort is invested in developing
postprocessing methods that can keep up with the quickly expanding
volumes of data that are being generated. Here, we introduce a new
idea for sampling frames from large MD trajectories, based on the
recently introduced framework of extended similarity indices. Our
approach presents a new, linearly scaling alternative to the traditional
approach of applying a clustering algorithm that usually scales as
a quadratic function of the number of frames. When showcasing its
usage on case studies with different system sizes and simulation lengths,
we have registered speedups of up to 2 orders of magnitude, as compared
to traditional clustering algorithms. The conformational diversity
of the selected frames is also noticeably higher, which is a further
advantage for certain applications, such as the selection of structural
ensembles for ligand docking. The method is available open-source
at https://github.com/ramirandaq/MultipleComparisons.
Collapse
Affiliation(s)
- Anita Rácz
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Levente M Mihalovits
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Károly Héberger
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Ramón Alain Miranda-Quintana
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
17
|
Liu Y, Jang H, Zhang M, Tsai CJ, Maloney R, Nussinov R. The structural basis of BCR-ABL recruitment of GRB2 in chronic myelogenous leukemia. Biophys J 2022; 121:2251-2265. [PMID: 35651316 PMCID: PMC9279350 DOI: 10.1016/j.bpj.2022.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
BCR-ABL drives chronic myeloid leukemia (CML). BCR binding to GRB2 transduces signaling via the Ras/MAPK pathway. Despite considerable data confirming the binding, molecular-level understanding of exactly how the two proteins interact, and, especially, what are the determinants of the specificity of the SH2GRB2 domain-phosphorylated BCR (pBCR) recognition are still open questions. Yet, this is vastly important for understanding binding selectivity, and for predicting the phosphorylated receptors, or peptides, that are likely to bind. Here, we uncover these determinants and ascertain to what extent they relate to the affinity of the interaction. Toward this end, we modeled the complexes of the pBCR and SH2GRB2 and other pY/Y-peptide-SH2 complexes and compared their specificity and affinity. We observed that pBCR's 176FpYVNV180 motif is favorable and specific to SH2GRB2, similar to pEGFR, but not other complexes. SH2GRB2 contains two binding pockets: pY-binding recognition pocket triggers binding, and the specificity pocket whose interaction is governed by N179 in pBCR and W121 in SH2GRB2. Our proposed motif with optimal affinity to SH2GRB2 is E/D-pY-E/V-N-I/L. Collectively, we provide the structural basis of BCR-ABL recruitment of GRB2, outline its specificity hallmarks, and delineate a blueprint for prediction of BCR-binding scaffolds and for therapeutic peptide design.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ryan Maloney
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Zhao D, Li C, Jiang H, Yin Y, Zhou C, Huang H, Qi Y, Li L. Engineering of Src Homology 2 Domain Leading to Sulfotyrosine Recognition With a High Affinity by Integrating a Distinctive Selection Theme and Next-Generation Sequencing. Front Microbiol 2022; 13:901558. [PMID: 35722314 PMCID: PMC9204161 DOI: 10.3389/fmicb.2022.901558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Tyrosine sulfation plays a vital role in various biochemical reactions. Although sulfated tyrosine (sTyr) has a similar structure to phosphotyrosine (pTyr), the number of available sTyr sites is significantly less than that of pTyr sites, mainly because of the lack of effective sTyr probes. A few sTyr binders were identified on the basis of structural similarity by engineering the pTyr-binding pocket of an Src Homology 2 (SH2) domain through phage selections against sTyr peptides. Nevertheless, they still interact with pTyr peptides with comparable affinity. This study aims to identify sTyr superbinders using the SH2 domain as a template. We created a distinctive phage selection scheme that separately covered selections against sTyr and pTyr peptides, followed by next-generation sequencing (NGS). After selections, phage pools showed strong enzyme-linked immunosorbent assay (ELISA) signal intensities for both modified peptides, indicating that the variants evolved with a high affinity for these peptides, which causes difficulty in identifying sTyr-specific binders. In contrast, NGS data from selected pools showed significant differences, suggesting the enrichment of sTyr-specific variants during selections. Accordingly, we obtained the sTyr features based on NGS data analysis and prioritized a few potential sTyr binders. The variant SH2-4 showed a stronger affinity for sTyr than pTyr and was superior to previous sTyr binders as measured by the Biolayer Interferometry assay. In summary, we described the strategy of integrating NGS data mining with a novel selection scheme to identify sTyr superbinders.
Collapse
Affiliation(s)
- Dongping Zhao
- School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Drug Discovery, Noventi Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Chan Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haoqiang Jiang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuqing Yin
- Department of Drug Discovery, Noventi Biopharmaceuticals Co., Ltd., Shanghai, China
| | | | - Haiming Huang
- Department of Drug Discovery, Noventi Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Yunkun Qi
- School of Pharmacy, Qingdao University, Qingdao, China
- *Correspondence: Yunkun Qi,
| | - Lei Li
- School of Basic Medicine, Qingdao University, Qingdao, China
- Lei Li,
| |
Collapse
|
19
|
Bao Z, Liu J, Fu J. Comprehensive binary interaction mapping of τ phosphotyrosine sites with SH2 domains in the human genome: Implications for the rational design of self-inhibitory phosphopeptides to target τ hyperphosphorylation signaling in Alzheimer's Disease. Amino Acids 2022; 54:859-875. [PMID: 35622130 DOI: 10.1007/s00726-022-03171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/08/2022] [Indexed: 11/01/2022]
Abstract
Human microtubule-associated protein Tau (τ) is abundant in the axons of neurons where it stabilizes microtubule bundles; abnormally hyperphosphorylated τ is a hallmark of Alzheimer's disease (AD) and related tauopathies. The hyperphosphorylation events can be recognized by phosphotyrosine-recognition domain SH2 (Src homology 2) to elicit downstream τ signaling in AD pathology. In this study, a comprehensive binary interaction map (CBIM) of all the 6 τ phosphotyrosine sites with 120 SH2 domains in the human genome was systematically created at structural level using computational analyses and binding assays, from which we were able to identify those of strong and moderate binding pairs of sites to domains. It is found that the SH2-recognition specificity of different τ phosphotyrosine sites has been evolutionally optimized to become roughly orthogonal to each other, and thus these site phosphorylations would regulate different but probably partially overlapped biological functions in τ signaling. Some SH2 groups such as SRC, RIN, PLCG, SOCS and SH2D were revealed to have effective binding potency as compared to others; they could be regarded as potential τ-associated proteins to transduce the downstream signaling. We further determined the systematic binding affinities of 6 τ-phosphopeptides to the 11 SH2 domains in SRC group, from which the FYN-τ18 and YES-τ29 pairs were identified as strong binders. Subsequently, rational molecular design was performed on τ18 and τ29 to derive a number of τ-phosphopeptide mutants with increased affinity; they are self-inhibitory candidates to competitively target τ hyperphosphorylation events in AD. In addition, it is revealed that the primary anchor pY0 and secondary anchor X+3 of τ-phosphopeptides play an important role in SRC-group SH2 recognition, which confer stability and specificity to the SH2-phosphopeptide binding, respectively.
Collapse
Affiliation(s)
- Zhonglei Bao
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Jianghua Liu
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, 163001, China
| | - Jin Fu
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
20
|
Martyn GD, Veggiani G, Kusebauch U, Morrone SR, Yates BP, Singer AU, Tong J, Manczyk N, Gish G, Sun Z, Kurinov I, Sicheri F, Moran MF, Moritz RL, Sidhu SS. Engineered SH2 Domains for Targeted Phosphoproteomics. ACS Chem Biol 2022; 17:1472-1484. [PMID: 35613471 DOI: 10.1021/acschembio.2c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A comprehensive analysis of the phosphoproteome is essential for understanding molecular mechanisms of human diseases. However, current tools used to enrich phosphotyrosine (pTyr) are limited in their applicability and scope. Here, we engineered new superbinder Src-Homology 2 (SH2) domains that enrich diverse sets of pTyr-peptides. We used phage display to select a Fes-SH2 domain variant (superFes; sFes1) with high affinity for pTyr and solved its structure bound to a pTyr-peptide. We performed systematic structure-function analyses of the superbinding mechanisms of sFes1 and superSrc-SH2 (sSrc1), another SH2 superbinder. We grafted the superbinder motifs from sFes1 and sSrc1 into 17 additional SH2 domains and confirmed increased binding affinity for specific pTyr-peptides. Using mass spectrometry (MS), we demonstrated that SH2 superbinders have distinct specificity profiles and superior capabilities to enrich pTyr-peptides. Finally, using combinations of SH2 superbinders as affinity purification (AP) tools we showed that unique subsets of pTyr-peptides can be enriched with unparalleled depth and coverage.
Collapse
Affiliation(s)
- Gregory D. Martyn
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Gianluca Veggiani
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Ulrike Kusebauch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Seamus R. Morrone
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Bradley P. Yates
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Alex U. Singer
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Jiefei Tong
- Program in Cell biology, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Noah Manczyk
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Gerald Gish
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, Illinois 60439, United States
| | - Frank Sicheri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Michael F. Moran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Program in Cell biology, Hospital for Sick Children, Toronto M5G 0A4, Canada
- The Hospital for Sick Children, SPARC Biocentre, Toronto, Ontario M5G 0A4, Canada
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
21
|
Tiberti M, Terkelsen T, Degn K, Beltrame L, Cremers TC, da Piedade I, Di Marco M, Maiani E, Papaleo E. MutateX: an automated pipeline for in silico saturation mutagenesis of protein structures and structural ensembles. Brief Bioinform 2022; 23:6552273. [PMID: 35323860 DOI: 10.1093/bib/bbac074] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Mutations, which result in amino acid substitutions, influence the stability of proteins and their binding to biomolecules. A molecular understanding of the effects of protein mutations is both of biotechnological and medical relevance. Empirical free energy functions that quickly estimate the free energy change upon mutation (ΔΔG) can be exploited for systematic screenings of proteins and protein complexes. In silico saturation mutagenesis can guide the design of new experiments or rationalize the consequences of known mutations. Often software such as FoldX, while fast and reliable, lack the necessary automation features to apply them in a high-throughput manner. We introduce MutateX, a software to automate the prediction of ΔΔGs associated with the systematic mutation of each residue within a protein, or protein complex to all other possible residue types, using the FoldX energy function. MutateX also supports ΔΔG calculations over protein ensembles, upon post-translational modifications and in multimeric assemblies. At the heart of MutateX lies an automated pipeline engine that handles input preparation, parallelization and outputs publication-ready figures. We illustrate the MutateX protocol applied to different case studies. The results of the high-throughput scan provided by our tools can help in different applications, such as the analysis of disease-associated mutations, to complement experimental deep mutational scans, or assist the design of variants for industrial applications. MutateX is a collection of Python tools that relies on open-source libraries. It is available free of charge under the GNU General Public License from https://github.com/ELELAB/mutatex.
Collapse
Affiliation(s)
- Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Thilde Terkelsen
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Kristine Degn
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ludovica Beltrame
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Tycho Canter Cremers
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Isabelle da Piedade
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Miriam Di Marco
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Emiliano Maiani
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Schmidt N, Abendroth F, Vázquez O, Hantschel O. Synthesis of the l- and d-SH2 domain of the leukaemia oncogene Bcr-Abl. RSC Chem Biol 2022; 3:1008-1012. [PMID: 35975004 PMCID: PMC9347351 DOI: 10.1039/d2cb00108j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
The d- and l-versions of the Bcr-Abl SH2 domain (12.7 kDa) were synthesized. Key optimizations included pseudoproline incorporation, N-terminal hydrophilic tail addition and mild N-acetoxy succinimide acetylation. Their folding and activity are as for the recombinant protein. Our results will enable engineering of mirror-image monobody antagonists of the central oncoprotein Bcr-Abl. The d- and l-versions of the Bcr-Abl SH2 domain (12.7 kDa) were synthesized successfully and show similar folding as compared to a recombinantly expressed version.![]()
Collapse
Affiliation(s)
- Nina Schmidt
- Institute of Physiological Chemistry, University of Marburg, 35032, Marburg, Germany
| | - Frank Abendroth
- Faculty of Chemistry, University of Marburg, 35032, Marburg, Germany
| | - Olalla Vázquez
- Faculty of Chemistry, University of Marburg, 35032, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, 35032, Marburg, Germany
| | - Oliver Hantschel
- Institute of Physiological Chemistry, University of Marburg, 35032, Marburg, Germany
| |
Collapse
|
23
|
Linossi EM, Li K, Veggiani G, Tan C, Dehkhoda F, Hockings C, Calleja DJ, Keating N, Feltham R, Brooks AJ, Li SS, Sidhu SS, Babon JJ, Kershaw NJ, Nicholson SE. Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands. Nat Commun 2021; 12:7032. [PMID: 34857742 PMCID: PMC8640019 DOI: 10.1038/s41467-021-26983-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS)2 protein is a key negative regulator of the growth hormone (GH) and Janus kinase (JAK)-Signal Transducers and Activators of Transcription (STAT) signaling cascade. The central SOCS2-Src homology 2 (SH2) domain is characteristic of the SOCS family proteins and is an important module that facilitates recognition of targets bearing phosphorylated tyrosine (pTyr) residues. Here we identify an exosite on the SOCS2-SH2 domain which, when bound to a non-phosphorylated peptide (F3), enhances SH2 affinity for canonical phosphorylated ligands. Solution of the SOCS2/F3 crystal structure reveals F3 as an α-helix which binds on the opposite side of the SH2 domain to the phosphopeptide binding site. F3:exosite binding appears to stabilise the SOCS2-SH2 domain, resulting in slower dissociation of phosphorylated ligands and consequently, enhances binding affinity. This biophysical enhancement of SH2:pTyr binding affinity translates to increase SOCS2 inhibition of GH signaling.
Collapse
Affiliation(s)
- Edmond M Linossi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kunlun Li
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Veggiani
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Cyrus Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Farhad Dehkhoda
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Colin Hockings
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Dale J Calleja
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, Woolloongabba, QLD, 4102, Australia
| | - Shawn S Li
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Sachdev S Sidhu
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Aboualizadeh F, Yao Z, Guan J, Drecun L, Pathmanathan S, Snider J, Umapathy G, Kotlyar M, Jurisica I, Palmer R, Stagljar I. Mapping the Phospho-dependent ALK Interactome to Identify Novel Components in ALK Signaling. J Mol Biol 2021; 433:167283. [PMID: 34606829 DOI: 10.1016/j.jmb.2021.167283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 10/25/2022]
Abstract
Protein-protein interactions (PPIs) play essential roles in Anaplastic Lymphoma Kinase (ALK) signaling. Systematic characterization of ALK interactors helps elucidate novel ALK signaling mechanisms and may aid in the identification of novel therapeutics targeting related diseases. In this study, we used the Mammalian Membrane Two-Hybrid (MaMTH) system to map the phospho-dependent ALK interactome. By screening a library of 86 SH2 domain-containing full length proteins, 30 novel ALK interactors were identified. Many of their interactions are correlated to ALK phosphorylation activity: oncogenic ALK mutations potentiate the interactions and ALK inhibitors attenuate the interactions. Among the novel interactors, NCK2 was further verified in neuroblastoma cells using co-immunoprecipitation. Modulation of ALK activity by addition of inhibitors lead to concomitant changes in the tyrosine phosphorylation status of NCK2 in neuroblastoma cells, strongly supporting the functionality of the ALK/NCK2 interaction. Our study provides a resource list of potential novel ALK signaling components for further study.
Collapse
Affiliation(s)
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Ontario, Canada
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-40530, Sweden
| | - Luka Drecun
- Donnelly Centre, University of Toronto, Ontario, Canada
| | | | - Jamie Snider
- Donnelly Centre, University of Toronto, Ontario, Canada
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-40530, Sweden
| | - Max Kotlyar
- Krembil Research Institute, University Health Network, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Department of Computer Science, University of Toronto, Ontario, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ruth Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-40530, Sweden
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada; Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, Split, Croatia; School of Medicine, University of Split, Split, Croatia. https://twitter.com/stagljar
| |
Collapse
|
25
|
Bobone S, Pannone L, Biondi B, Solman M, Flex E, Canale VC, Calligari P, De Faveri C, Gandini T, Quercioli A, Torini G, Venditti M, Lauri A, Fasano G, Hoeksma J, Santucci V, Cattani G, Bocedi A, Carpentieri G, Tirelli V, Sanchez M, Peggion C, Formaggio F, den Hertog J, Martinelli S, Bocchinfuso G, Tartaglia M, Stella L. Targeting Oncogenic Src Homology 2 Domain-Containing Phosphatase 2 (SHP2) by Inhibiting Its Protein-Protein Interactions. J Med Chem 2021; 64:15973-15990. [PMID: 34714648 PMCID: PMC8591604 DOI: 10.1021/acs.jmedchem.1c01371] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein. The best peptide reverted the effects of a pathogenic variant (D61G) in zebrafish embryos. Our results provide a novel route for SHP2-targeted therapies and a tool for investigating the role of protein-protein interactions in the function of SHP2.
Collapse
Affiliation(s)
- Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Luca Pannone
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.,Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy
| | - Maja Solman
- Hubrecht institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Elisabetta Flex
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Viviana Claudia Canale
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Paolo Calligari
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Chiara De Faveri
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Tommaso Gandini
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Andrea Quercioli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giuseppe Torini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Jelmer Hoeksma
- Hubrecht institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Valerio Santucci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giada Cattani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Alessio Bocedi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giovanna Carpentieri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.,Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Valentina Tirelli
- Centre of Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Massimo Sanchez
- Centre of Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Cristina Peggion
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy.,Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Jeroen den Hertog
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova 35131, Italy.,Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Simone Martinelli
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Gianfranco Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome 00133, Italy
| |
Collapse
|
26
|
Song XJ, Zhou HY, Sun YY, Huang HC. Phosphorylation and Glycosylation of Amyloid-β Protein Precursor: The Relationship to Trafficking and Cleavage in Alzheimer's Disease. J Alzheimers Dis 2021; 84:937-957. [PMID: 34602469 DOI: 10.3233/jad-210337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in the central nervous system, and this disease is characterized by extracellular senile plaques and intracellular neurofibrillary tangles. Amyloid-β (Aβ) peptide is the main constituent of senile plaques, and this peptide is derived from the amyloid-β protein precursor (AβPP) through the successive cleaving by β-site AβPP-cleavage enzyme 1 (BACE1) and γ-secretase. AβPP undergoes the progress of post-translational modifications, such as phosphorylation and glycosylation, which might affect the trafficking and the cleavage of AβPP. In the recent years, about 10 phosphorylation sites of AβPP were identified, and they play complex roles in glycosylation modification and cleavage of AβPP. In this article, we introduced the transport and the cleavage pathways of AβPP, then summarized the phosphorylation and glycosylation sites of AβPP, and further discussed the links and relationship between phosphorylation and glycosylation on the pathways of AβPP trafficking and cleavage in order to provide theoretical basis for AD research.
Collapse
Affiliation(s)
- Xi-Jun Song
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - He-Yan Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| |
Collapse
|
27
|
Abstract
The non-catalytic region of tyrosine kinase (Nck) family of adaptors, consisting of Nck1 and Nck2, contributes to selectivity and specificity in the flow of cellular information by recruiting components of signaling networks. Known to play key roles in cytoskeletal remodeling, Nck adaptors modulate host cell-pathogen interactions, immune cell receptor activation, cell adhesion and motility, and intercellular junctions in kidney podocytes. Genetic inactivation of both members of the Nck family results in embryonic lethality; however, viability of mice lacking either one of these adaptors suggests partial functional redundancy. In this Cell Science at a Glance and the accompanying poster, we highlight the molecular organization and functions of the Nck family, focusing on key interactions and pathways, regulation of cellular processes, development, homeostasis and pathogenesis, as well as emerging and non-redundant functions of Nck1 compared to those of Nck2. This article thus aims to provide a timely perspective on the biology of Nck adaptors and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Briana C. Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| | - Gonzalo M. Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| |
Collapse
|
28
|
Bajusz D, Miranda-Quintana RA, Rácz A, Héberger K. Extended many-item similarity indices for sets of nucleotide and protein sequences. Comput Struct Biotechnol J 2021; 19:3628-3639. [PMID: 34257841 PMCID: PMC8253954 DOI: 10.1016/j.csbj.2021.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Quantification of similarities between protein sequences or DNA/RNA strands is a (sub-)task that is ubiquitously present in bioinformatics workflows, and is usually accomplished by pairwise comparisons of sequences, utilizing simple (e.g. percent identity) or more intricate concepts (e.g. substitution scoring matrices). Complex tasks (such as clustering) rely on a large number of pairwise comparisons under the hood, instead of a direct quantification of set similarities. Based on our recently introduced framework that enables multiple comparisons of binary molecular fingerprints (i.e., direct calculation of the similarity of fingerprint sets), here we introduce novel symmetric similarity indices for analogous calculations on sets of character sequences with more than two (t) possible items (e.g. DNA/RNA sequences with t = 4, or protein sequences with t = 20). The features of these new indices are studied in detail with analysis of variance (ANOVA), and demonstrated with three case studies of protein/DNA sequences with varying degrees of similarity (or evolutionary proximity). The Python code for the extended many-item similarity indices is publicly available at: https://github.com/ramirandaq/tn_Comparisons.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | | | - Anita Rácz
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Károly Héberger
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| |
Collapse
|
29
|
Alfaidi M, Scott ML, Orr AW. Sinner or Saint?: Nck Adaptor Proteins in Vascular Biology. Front Cell Dev Biol 2021; 9:688388. [PMID: 34124074 PMCID: PMC8187788 DOI: 10.3389/fcell.2021.688388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
The Nck family of modular adaptor proteins, including Nck1 and Nck2, link phosphotyrosine signaling to changes in cytoskeletal dynamics and gene expression that critically modulate cellular phenotype. The Nck SH2 domain interacts with phosphotyrosine at dynamic signaling hubs, such as activated growth factor receptors and sites of cell adhesion. The Nck SH3 domains interact with signaling effectors containing proline-rich regions that mediate their activation by upstream kinases. In vascular biology, Nck1 and Nck2 play redundant roles in vascular development and postnatal angiogenesis. However, recent studies suggest that Nck1 and Nck2 differentially regulate cell phenotype in the adult vasculature. Domain-specific interactions likely mediate these isoform-selective effects, and these isolated domains may serve as therapeutic targets to limit specific protein-protein interactions. In this review, we highlight the function of the Nck adaptor proteins, the known differences in domain-selective interactions, and discuss the role of individual Nck isoforms in vascular remodeling and function.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Matthew L Scott
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States.,Department of Cell Biology and Anatomy, LSU Health - Shreveport, Shreveport, LA, United States.,Department of Molecular & Cellular Physiology, LSU Health - Shreveport, Shreveport, LA, United States
| |
Collapse
|
30
|
Marasco M, Kirkpatrick J, Nanna V, Sikorska J, Carlomagno T. Phosphotyrosine couples peptide binding and SHP2 activation via a dynamic allosteric network. Comput Struct Biotechnol J 2021; 19:2398-2415. [PMID: 34025932 PMCID: PMC8113834 DOI: 10.1016/j.csbj.2021.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
SHP2 is a ubiquitous protein tyrosine phosphatase, whose activity is regulated by phosphotyrosine (pY)-containing peptides generated in response to extracellular stimuli. Its crystal structure reveals a closed, auto-inhibited conformation in which the N-terminal Src homology 2 (N-SH2) domain occludes the catalytic site of the phosphatase (PTP) domain. High-affinity mono-phosphorylated peptides promote catalytic activity by binding to N-SH2 and disrupting the interaction with the PTP. The mechanism behind this process is not entirely clear, especially because N-SH2 is incapable of accommodating complete peptide binding when SHP2 is in the auto-inhibited state. Here, we show that pY performs an essential role in this process; in addition to its contribution to overall peptide-binding energy, pY-recognition leads to enhanced dynamics of the N-SH2 EF and BG loops via an allosteric communication network, which destabilizes the N-SH2-PTP interaction surface and simultaneously generates a fully accessible binding pocket for the C-terminal half of the phosphopeptide. Subsequently, full binding of the phosphopeptide is associated with the stabilization of activated SHP2. We demonstrate that this allosteric network exists only in N-SH2, which is directly involved in the regulation of SHP2 activity, while the C-terminal SH2 domain (C-SH2) functions primarily to recruit high-affinity bidentate phosphopeptides.
Collapse
Affiliation(s)
- Michelangelo Marasco
- Leibniz University Hannover, Center of Biomolecular Drug Research and Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
| | - John Kirkpatrick
- Leibniz University Hannover, Center of Biomolecular Drug Research and Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
- Helmholtz Center for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Vittoria Nanna
- Leibniz University Hannover, Center of Biomolecular Drug Research and Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
| | - Justyna Sikorska
- Helmholtz Center for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Teresa Carlomagno
- Leibniz University Hannover, Center of Biomolecular Drug Research and Institute of Organic Chemistry, Schneiderberg 38, 30167 Hannover, Germany
- Helmholtz Center for Infection Research, Group of NMR-based Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
31
|
A centric view of JAK/STAT5 in intestinal homeostasis, infection, and inflammation. Cytokine 2021; 139:155392. [PMID: 33482575 PMCID: PMC8276772 DOI: 10.1016/j.cyto.2020.155392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Cytokines, growth factors or hormones take action through the JAK/STAT5 signaling pathway, which plays a critical role in regulating the intestinal response to infection and inflammation. However, the way in which STAT5 regulates intestinal epithelial compartment is largely ignored due to the lack of genetic tools for proper exploration and because the two STAT5 transcription factors (STAT5A and STAT5B) have some redundant but also distinct functions. In this review article, by focusing on STAT5 functions in the intestinal undifferentiated and differentiated epithelia, we discuss major advances of the growth factor/cytokine-JAK/STAT5 research in view of intestinal mucosal inflammation and immunity. We highlight the gap in the research of the intestinal STAT5 signaling to anticipate the gastrointestinal explorative insights. Furthermore, we address the critical questions to illuminate how STAT5 signaling influences intestinal epithelial cell differentiation and stem cell regeneration during homeostasis and injury. Overall, our article provides a centric view of the relevance of the relationship between chronic inflammatory diseases and JAK/STAT5 pathway and it also gives an example of how chronic infection and inflammation pirate STAT5 signaling to worsen intestinal injuries. Importantly, our review suggests how to protect a wound healing from gastrointestinal diseases by modulating intestinal STAT5.
Collapse
|
32
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
33
|
Huang S, Liu K, Cheng A, Wang M, Cui M, Huang J, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Zhang S, Ou X, Mao S, Gao Q, Yu Y, Tian B, Liu Y, Zhang L, Yin Z, Jing B, Chen X, Jia R. SOCS Proteins Participate in the Regulation of Innate Immune Response Caused by Viruses. Front Immunol 2020; 11:558341. [PMID: 33072096 PMCID: PMC7544739 DOI: 10.3389/fimmu.2020.558341] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
The host immune system has multiple innate immune receptors that can identify, distinguish and react to viral infections. In innate immune response, the host recognizes pathogen-associated molecular patterns (PAMP) in nucleic acids or viral proteins through pathogen recognition receptors (PRRs), especially toll-like receptors (TLRs) and induces immune cells or infected cells to produce type I Interferons (IFN-I) and pro-inflammatory cytokines, thus when the virus invades the host, innate immunity is the earliest immune mechanism. Besides, cytokine-mediated cell communication is necessary for the proper regulation of immune responses. Therefore, the appropriate activation of innate immunity is necessary for the normal life activities of cells. The suppressor of the cytokine signaling proteins (SOCS) family is one of the main regulators of the innate immune response induced by microbial pathogens. They mainly participate in the negative feedback regulation of cytokine signal transduction through Janus kinase signal transducer and transcriptional activator (JAK/STAT) and other signal pathways. Taken together, this paper reviews the SOCS proteins structures and the function of each domain, as well as the latest knowledge of the role of SOCS proteins in innate immune caused by viral infections and the mechanisms by which SOCS proteins assist viruses to escape host innate immunity. Finally, we discuss potential values of these proteins in future targeted therapies.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ke Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
34
|
The role of competing mechanisms on Lck regulation. Immunol Res 2020; 68:289-295. [PMID: 32794043 DOI: 10.1007/s12026-020-09148-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Lck is a Src-related protein tyrosine kinase that associates with CD4 and CD8 molecules and is essential to T cell development and T cell activation. Regulatory mechanisms of Lck are diverse and controversy exists regarding the importance of each mechanism. The balance of phosphorylation at the inhibitory and activating Tyr residues is maintained by a balance between CD45 and Csk and is dependent upon intact intracellular trafficking machinery. Current evidence shows that lipid-binding changes depending on Lck conformation and that phosphorylation-induced conformational changes in Lck modulate its kinase activity potentially through regulation of Lck clustering at the plasma membrane. Downstream regulators such as ZAP-70 mediate negative feedback that is dependent on Tyr192 phosphorylation. This review examines the diverse regulation of Lck in detail, highlighting the role of each mechanism on maintaining an appropriate amount of Lck in each conformational state, thus allowing for an efficient, appropriate, and controlled amount of T cell activation following TCR stimulation.
Collapse
|
35
|
Jaber Chehayeb R, Wang J, Stiegler AL, Boggon TJ. The GTPase-activating protein p120RasGAP has an evolutionarily conserved "FLVR-unique" SH2 domain. J Biol Chem 2020; 295:10511-10521. [PMID: 32540970 PMCID: PMC7397115 DOI: 10.1074/jbc.ra120.013976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/09/2020] [Indexed: 01/07/2023] Open
Abstract
The Src homology 2 (SH2) domain has a highly conserved architecture that recognizes linear phosphotyrosine motifs and is present in a wide range of signaling pathways across different evolutionary taxa. A hallmark of SH2 domains is the arginine residue in the conserved FLVR motif that forms a direct salt bridge with bound phosphotyrosine. Here, we solve the X-ray crystal structures of the C-terminal SH2 domain of p120RasGAP (RASA1) in its apo and peptide-bound form. We find that the arginine residue in the FLVR motif does not directly contact pTyr1087 of a bound phosphopeptide derived from p190RhoGAP; rather, it makes an intramolecular salt bridge to an aspartic acid. Unexpectedly, coordination of phosphotyrosine is achieved by a modified binding pocket that appears early in evolution. Using isothermal titration calorimetry, we find that substitution of the FLVR arginine R377A does not cause a significant loss of phosphopeptide binding, but rather a tandem substitution of R398A (SH2 position βD4) and K400A (SH2 position βD6) is required to disrupt the binding. These results indicate a hitherto unrecognized diversity in SH2 domain interactions with phosphotyrosine and classify the C-terminal SH2 domain of p120RasGAP as "FLVR-unique."
Collapse
Affiliation(s)
- Rachel Jaber Chehayeb
- Yale College, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jessica Wang
- Yale College, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
- Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
36
|
Anselmi M, Calligari P, Hub JS, Tartaglia M, Bocchinfuso G, Stella L. Structural Determinants of Phosphopeptide Binding to the N-Terminal Src Homology 2 Domain of the SHP2 Phosphatase. J Chem Inf Model 2020; 60:3157-3171. [PMID: 32395997 PMCID: PMC8007070 DOI: 10.1021/acs.jcim.0c00307] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 11/28/2022]
Abstract
SH2 domain-containing tyrosine phosphatase 2 (SHP2), encoded by PTPN11, plays a fundamental role in the modulation of several signaling pathways. Germline and somatic mutations in PTPN11 are associated with different rare diseases and hematologic malignancies, and recent studies have individuated SHP2 as a central node in oncogenesis and cancer drug resistance. The SHP2 structure includes two Src homology 2 domains (N-SH2 and C-SH2) followed by a catalytic protein tyrosine phosphatase (PTP) domain. Under basal conditions, the N-SH2 domain blocks the active site, inhibiting phosphatase activity. Association of the N-SH2 domain with binding partners containing short amino acid motifs comprising a phosphotyrosine residue (pY) leads to N-SH2/PTP dissociation and SHP2 activation. Considering the relevance of SHP2 in signaling and disease and the central role of the N-SH2 domain in its allosteric regulation mechanism, we performed microsecond-long molecular dynamics (MD) simulations of the N-SH2 domain complexed to 12 different peptides to define the structural and dynamical features determining the binding affinity and specificity of the domain. Phosphopeptide residues at position -2 to +5, with respect to pY, have significant interactions with the SH2 domain. In addition to the strong interaction of the pY residue with its conserved binding pocket, the complex is stabilized hydrophobically by insertion of residues +1, +3, and +5 in an apolar groove of the domain and interaction of residue -2 with both the pY and a protein surface residue. Additional interactions are provided by hydrogen bonds formed by the backbone of residues -1, +1, +2, and +4. Finally, negatively charged residues at positions +2 and +4 are involved in electrostatic interactions with two lysines (Lys89 and Lys91) specific for the SHP2 N-SH2 domain. Interestingly, the MD simulations illustrated a previously undescribed conformational flexibility of the domain, involving the core β sheet and the loop that closes the pY binding pocket.
Collapse
Affiliation(s)
- Massimiliano Anselmi
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| | - Paolo Calligari
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| | - Jochen S. Hub
- Theoretical
Physics and Center for Biophysics, Saarland
University, Campus E2 6, 66123 Saarbrücken, Germany
| | - Marco Tartaglia
- Genetics
and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Gianfranco Bocchinfuso
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| | - Lorenzo Stella
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
37
|
Marasco M, Carlomagno T. Specificity and regulation of phosphotyrosine signaling through SH2 domains. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100026. [PMID: 32647828 PMCID: PMC7337045 DOI: 10.1016/j.yjsbx.2020.100026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 10/26/2022]
Abstract
Phosphotyrosine (pY) signaling is instrumental to numerous cellular processes. pY recognition occurs through specialized protein modules, among which the Src-homology 2 (SH2) domain is the most common. SH2 domains are small protein modules with an invariant fold, and are present in more than a hundred proteins with different function. Here we ask the question of how such a structurally conserved, small protein domain can recognize distinct phosphopeptides with the breath of binding affinity, specificity and kinetic parameters necessary for proper control of pY-dependent signaling and rapid cellular response. We review the current knowledge on structure, thermodynamics and kinetics of SH2-phosphopeptide complexes and conclude that selective phosphopeptide recognition is governed by both structure and dynamics of the SH2 domain, as well as by the kinetics of the binding events. Further studies on the thermodynamic and kinetic properties of SH2-phosphopeptide complexes, beyond their structure, are required to understand signaling regulation.
Collapse
Affiliation(s)
- Michelangelo Marasco
- Leibniz University Hannover, Institute of Organic Chemistry and Centre for Biomolecular Drug Research, Schneiderberg 38, 30167 Hannover, Germany
| | - Teresa Carlomagno
- Leibniz University Hannover, Institute of Organic Chemistry and Centre for Biomolecular Drug Research, Schneiderberg 38, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, Group of Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
38
|
Hantschel O, Biancalana M, Koide S. Monobodies as enabling tools for structural and mechanistic biology. Curr Opin Struct Biol 2020; 60:167-174. [PMID: 32145686 DOI: 10.1016/j.sbi.2020.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Monobodies, built with the scaffold of the fibronectin type III domain, are among the most well-established synthetic binding proteins. They promote crystallization of challenging molecular systems. They have strong tendency to bind to functional sites and thus serve as drug-like molecules that perturb the biological functions of their targets. Monobodies lack disulfide bonds and thus they are particularly suited as genetically encoded reagents to be used intracellularly. This article reviews recent monobody-enabled studies that reveal new structures, molecular mechanisms and potential therapeutic opportunities. A systematic analysis of the crystal structures of monobody-target complexes suggests important attributes that make monobodies effective crystallization chaperones.
Collapse
Affiliation(s)
- Oliver Hantschel
- Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University of Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany; Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland.
| | - Matthew Biancalana
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, 522 1st Avenue, New York, NY 10016, USA
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, 522 1st Avenue, New York, NY 10016, USA; Department of Medicine and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
39
|
Robichon A. Protein Phosphorylation Dynamics: Unexplored Because of Current Methodological Limitations: Dynamics of Processive Phosphorylation. Bioessays 2020; 42:e1900149. [PMID: 32103519 DOI: 10.1002/bies.201900149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/21/2020] [Indexed: 12/30/2022]
Abstract
The study of intrinsic phosphorylation dynamics and kinetics in the context of complex protein architecture in vivo has been challenging: Method limitations have prevented significant advances in the understanding of the highly variable turnover of phosphate groups, synergy, and cooperativity between P-sites. However, over the last decade, powerful analytical technologies have been developed to determine the full catalog of the phosphoproteome for many species. The curated databases of phospho sites found by mass spectrometry analysis and the computationally predicted sites based on the linear sequence of kinase motifs are valuable tools. They allow investigation of the complexity of phosphorylation in vivo, albeit with strong discrepancies between different methods. A series of hypothetical scenarios on combinatorial processive phosphorylation is proposed that are likely unverifiable with current methodologies. These proposed a priori postulates could be considered as possible extensions of the known schemes of the activation/inhibition signaling process in vivo.
Collapse
Affiliation(s)
- Alain Robichon
- Université Côte d'Azur (UCA), Agrobiotech Institute, INRA, CNRS, ISA, 06270, France
| |
Collapse
|
40
|
Jaber Chehayeb R, Boggon TJ. SH2 Domain Binding: Diverse FLVRs of Partnership. Front Endocrinol (Lausanne) 2020; 11:575220. [PMID: 33042028 PMCID: PMC7530234 DOI: 10.3389/fendo.2020.575220] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/12/2020] [Indexed: 11/27/2022] Open
Abstract
The Src homology 2 (SH2) domain has a special role as one of the cornerstone examples of a "modular" domain. The interactions of this domain are very well-conserved, and have long been described as a bidentate, or "two-pronged plug" interaction between the domain and a phosphotyrosine (pTyr) peptide. Recent work has, however, highlighted unusual features of the SH2 domain that illustrate a greater diversity than was previously appreciated. In this review we discuss some of the novel and unusual characteristics across the SH2 family, including unusual peptide binding pockets, multiple pTyr recognition sites, recognition sites for unphosphorylated peptides, and recently identified variability in the conserved FLVR motif.
Collapse
Affiliation(s)
- Rachel Jaber Chehayeb
- Yale College, New Haven, CT, United States
- Department of Molecular Biophysics and Biochemistry, New Haven, CT, United States
| | - Titus J. Boggon
- Department of Molecular Biophysics and Biochemistry, New Haven, CT, United States
- Department of Pharmacology, New Haven, CT, United States
- Yale Cancer Center, Yale University, New Haven, CT, United States
- *Correspondence: Titus J. Boggon
| |
Collapse
|
41
|
Sloutsky R, Naegle KM. ASPEN, a methodology for reconstructing protein evolution with improved accuracy using ensemble models. eLife 2019; 8:e47676. [PMID: 31621582 PMCID: PMC6797483 DOI: 10.7554/elife.47676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022] Open
Abstract
Evolutionary reconstruction algorithms produce models of the evolutionary history of proteins or species. Such algorithms are highly sensitive to their inputs: the sequences used and their alignments. Here, we asked whether the variance introduced by selecting different input sequences could be used to better identify accurate evolutionary models. We subsampled from available ortholog sequences and measured the distribution of observed relationships between paralogs produced across hundreds of models inferred from the subsamples. We observed two important phenomena. First, the reproducibility of an all-sequence, single-alignment reconstruction, measured by comparing topologies inferred from 90% subsamples, directly correlates with the accuracy of that single-alignment reconstruction, producing a measurable value for something that has been traditionally unknowable. Second, topologies that are most consistent with the observations made in the ensemble are more accurate and we present a meta algorithm that exploits this property to improve model accuracy.
Collapse
Affiliation(s)
- Roman Sloutsky
- Program in Computational and Systems BiologyWashington UniversitySt. LouisUnited States
- Department for Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstUnited States
- Center for Biological Systems EngineeringWashington UniversitySt. LouisUnited States
| | - Kristen M Naegle
- Department for Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for Biological Systems EngineeringWashington UniversitySt. LouisUnited States
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleUnited States
- Center for Public Health GenomicsUniversity of VirginiaCharlottesvilleUnited States
| |
Collapse
|
42
|
Matsuura Y. High-resolution structural analysis shows how different crystallographic environments can induce alternative modes of binding of a phosphotyrosine peptide to the SH2 domain of Fer tyrosine kinase. Protein Sci 2019; 28:2011-2019. [PMID: 31441171 DOI: 10.1002/pro.3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 11/08/2022]
Abstract
Fes and Fes-related (Fer) protein tyrosine kinases (PTKs) comprise a subfamily of nonreceptor tyrosine kinases characterized by a unique multidomain structure composed of an N-terminal Fer/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain, a central Src homology 2 (SH2) domain, and a C-terminal PTK domain. Fer is ubiquitously expressed, and upregulation of Fer has been implicated in various human cancers. The PTK activity of Fes has been shown to be positively regulated by the binding of phosphotyrosine-containing ligands to the SH2 domain. Here, the X-ray crystal structure of human Fer SH2 domain bound to a phosphopeptide that has D-E-pY-E-N-V-D sequence is reported at 1.37 å resolution. The asymmetric unit (ASU) contains six Fer-phosphopeptide complexes, and the structure reveals three distinct binding modes for the same phosphopeptide. At four out of the six binding sites in the ASU, the phosphopeptide binds to Fer SH2 domain in a type I β-turn conformation, and this could be the optimal binding mode of this phosphopeptide. At the other two binding sites in the ASU, it appears that spatial proximity of neighboring SH2 domains in the crystal induces alternative modes of binding of this phosphopeptide.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
43
|
Alston CI, Dix RD. SOCS and Herpesviruses, With Emphasis on Cytomegalovirus Retinitis. Front Immunol 2019; 10:732. [PMID: 31031749 PMCID: PMC6470272 DOI: 10.3389/fimmu.2019.00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Suppressor of cytokine signaling (SOCS) proteins provide selective negative feedback to prevent pathogeneses caused by overstimulation of the immune system. Of the eight known SOCS proteins, SOCS1 and SOCS3 are the best studied, and systemic deletion of either gene causes early lethality in mice. Many viruses, including herpesviruses such as herpes simplex virus and cytomegalovirus, can manipulate expression of these host proteins, with overstimulation of SOCS1 and/or SOCS3 putatively facilitating viral evasion of immune surveillance, and SOCS suppression generally exacerbating immunopathogenesis. This is particularly poignant within the eye, which contains a diverse assortment of specialized cell types working together in a tightly controlled microenvironment of immune privilege. When the immune privilege of the ocular compartment fails, inflammation causing severe immunopathogenesis and permanent, sight-threatening damage may occur, as in the case of AIDS-related human cytomegalovirus (HCMV) retinitis. Herein we review how SOCS1 and SOCS3 impact the virologic, immunologic, and/or pathologic outcomes of herpesvirus infection with particular emphasis on retinitis caused by HCMV or its mouse model experimental counterpart, murine cytomegalovirus (MCMV). The accumulated data suggests that SOCS1 and/or SOCS3 can differentially affect the severity of viral diseases in a highly cell-type-specific manner, reflecting the diversity and complexity of herpesvirus infection and the ocular compartment.
Collapse
Affiliation(s)
- Christine I Alston
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Richard D Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
44
|
An J, Zhai G, Guo Z, Bai X, Chen P, Dong H, Tian S, Ai D, Zhang Y, Zhang K. Combinatorial Peptide Ligand Library-Based Photoaffinity Probe for the Identification of Phosphotyrosine-Binding Domain Proteins. Anal Chem 2019; 91:3221-3226. [PMID: 30721620 DOI: 10.1021/acs.analchem.8b04781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phosphotyrosine (pY) serves as a docking site for the recognition proteins containing pY-binding (pYB) modules, such as the SH2 domain, to mediate cell signal transduction. Thus, it is vital to profile these binding proteins for understanding of signal regulation. However, identification of pYB proteins remains a significant challenge due to their low abundance and typically weak and transient interactions with pY sites. Herein, we designed and prepared a pY-peptide photoaffinity probe for the robust and specific enrichment and identification of its binding proteins. Using SHC1-pY317 as a paradigm, we showed that the developed probe enables to capture target protein with high selectivity and remarkable specificity even in a complex context. Notably, we expanded the strategy to a combinatorial pY-peptide-based photoaffinity probe by using combinatorial peptide ligand library (CPLL) technique and identified 24 SH2 domain proteins, which presents a deeper profiling of pYB proteins than previous reports using affinity probes. Moreover, the method can be used to mine putative pYB proteins and confirmed PKN2 as a selective binder to pY, expanding the repertoire of known domain proteins. Our approach provides a general strategy for rapid and robust interrogating pYB proteins and will promote the understanding of the signal transduction mechanism.
Collapse
Affiliation(s)
- Jinying An
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Guijin Zhai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Zhenchang Guo
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Xue Bai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Pu Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Hanyang Dong
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Shanshan Tian
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology , Tianjin Medical University , Tianjin 300070 , China
| | - Yukui Zhang
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| |
Collapse
|
45
|
Liu H, Huang H, Voss C, Kaneko T, Qin WT, Sidhu S, Li SSC. Surface Loops in a Single SH2 Domain Are Capable of Encoding the Spectrum of Specificity of the SH2 Family. Mol Cell Proteomics 2019; 18:372-382. [PMID: 30482845 PMCID: PMC6356082 DOI: 10.1074/mcp.ra118.001123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Src homology 2 (SH2) domains play an essential role in cellular signal transduction by binding to proteins phosphorylated on Tyr residue. Although Tyr phosphorylation (pY) is a prerequisite for binding for essentially all SH2 domains characterized to date, different SH2 domains prefer specific sequence motifs C-terminal to the pY residue. Because all SH2 domains adopt the same structural fold, it is not well understood how different SH2 domains have acquired the ability to recognize distinct sequence motifs. We have shown previously that the EF and BG loops that connect the secondary structure elements on an SH2 domain dictate its specificity. In this study, we investigated if these surface loops could be engineered to encode diverse specificities. By characterizing a group of SH2 variants selected by different pY peptides from phage-displayed libraries, we show that the EF and BG loops of the Fyn SH2 domain can encode a wide spectrum of specificities, including all three major specificity classes (p + 2, p + 3 and p + 4) of the SH2 domain family. Furthermore, we found that the specificity of a given variant correlates with the sequence feature of the bait peptide used for its isolation, suggesting that an SH2 domain may acquire specificity by co-evolving with its ligand. Intriguingly, we found that the SH2 variants can employ a variety of different mechanisms to confer the same specificity, suggesting the EF and BG loops are highly flexible and adaptable. Our work provides a plausible mechanism for the SH2 domain to acquire the wide spectrum of specificity observed in nature through loop variation with minimal disturbance to the SH2 fold. It is likely that similar mechanisms may have been employed by other modular interaction domains to generate diversity in specificity.
Collapse
Affiliation(s)
- Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China;; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1
| | - Haiming Huang
- Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto ON M5S 3E1, Canada
| | - Courtney Voss
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1
| | - Tomonori Kaneko
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1
| | - Wen Tao Qin
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1
| | - Sachdev Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto ON M5S 3E1, Canada.
| | - Shawn S-C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1;.
| |
Collapse
|
46
|
Monitoring activities of receptor tyrosine kinases using a universal adapter in genetically encoded split TEV assays. Cell Mol Life Sci 2019; 76:1185-1199. [PMID: 30623207 PMCID: PMC6675780 DOI: 10.1007/s00018-018-03003-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/28/2018] [Indexed: 01/10/2023]
Abstract
Receptor tyrosine kinases (RTKs) play key roles in various aspects of
cell biology, including cell-to-cell communication, proliferation and
differentiation, survival, and tissue homeostasis, and have been implicated in
various diseases including cancer and neurodevelopmental disorders. Ligand-activated
RTKs recruit adapter proteins through a phosphotyrosine (p-Tyr) motif that is
present on the RTK and a p-Tyr-binding domain, like the Src homology 2 (SH2) domain
found in adapter proteins. Notably, numerous combinations of RTK/adapter
combinations exist, making it challenging to compare receptor activities in
standardised assays. In cell-based assays, a regulated adapter recruitment can be
investigated using genetically encoded protein–protein interaction detection
methods, such as the split TEV biosensor assay. Here, we applied the split TEV
technique to robustly monitor the dynamic recruitment of both naturally occurring
full-length adapters and artificial adapters, which are formed of clustered SH2
domains. The applicability of this approach was tested for RTKs from various
subfamilies including the epidermal growth factor (ERBB) family, the insulin
receptor (INSR) family, and the hepatocyte growth factor receptor (HGFR) family.
Best signal-to-noise ratios of ligand-activated RTK receptor activation was obtained
when clustered SH2 domains derived from GRB2 were used as adapters. The sensitivity
and robustness of the RTK recruitment assays were validated in dose-dependent
inhibition assays using the ERBB family-selective antagonists lapatinib and WZ4002.
The RTK split TEV recruitment assays also qualify for high-throughput screening
approaches, suggesting that the artificial adapter may be used as universal adapter
in cell-based profiling assays within pharmacological intervention studies.
Collapse
|
47
|
Veggiani G, Huang H, Yates BP, Tong J, Kaneko T, Joshi R, Li SSC, Moran MF, Gish G, Sidhu SS. Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis. Protein Sci 2018; 28:403-413. [PMID: 30431205 DOI: 10.1002/pro.3551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023]
Abstract
Protein phosphorylation is the most abundant post-translational modification in cells. Src homology 2 (SH2) domains specifically recognize phosphorylated tyrosine (pTyr) residues to mediate signaling cascades. A conserved pocket in the SH2 domain binds the pTyr side chain and the EF and BG loops determine binding specificity. By using large phage-displayed libraries, we engineered the EF and BG loops of the Fyn SH2 domain to alter specificity. Engineered SH2 variants exhibited distinct specificity profiles and were able to bind pTyr sites on the epidermal growth factor receptor, which were not recognized by the wild-type Fyn SH2 domain. Furthermore, mass spectrometry showed that SH2 variants with additional mutations in the pTyr-binding pocket that enhanced affinity were highly effective for enrichment of diverse pTyr peptides within the human proteome. These results showed that engineering of the EF and BG loops could be used to tailor SH2 domain specificity, and SH2 variants with diverse specificities and high affinities for pTyr residues enabled more comprehensive analysis of the human phosphoproteome. STATEMENT: Src Homology 2 (SH2) domains are modular domains that recognize phosphorylated tyrosine embedded in proteins, transducing these post-translational modifications into cellular responses. Here we used phage display to engineer hundreds of SH2 domain variants with altered binding specificities and enhanced affinities, which enabled efficient and differential enrichment of the human phosphoproteome for analysis by mass spectrometry. These engineered SH2 domain variants will be useful tools for elucidating the molecular determinants governing SH2 domains binding specificity and for enhancing analysis and understanding of the human phosphoproteome.
Collapse
Affiliation(s)
- Gianluca Veggiani
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Haiming Huang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Bradley P Yates
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Jiefei Tong
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 0A4, Canada
| | - Tomonori Kaneko
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Rakesh Joshi
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Shawn S C Li
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Michael F Moran
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.,The Hospital for Sick Children, SPARC Biocentre, Toronto, Ontario, M5G 0A4, Canada
| | - Gerald Gish
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Sachdev S Sidhu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| |
Collapse
|
48
|
Kessal K, Liang H, Rabut G, Daull P, Garrigue JS, Docquier M, Melik Parsadaniantz S, Baudouin C, Brignole-Baudouin F. Conjunctival Inflammatory Gene Expression Profiling in Dry Eye Disease: Correlations With HLA-DRA and HLA-DRB1. Front Immunol 2018; 9:2271. [PMID: 30374345 PMCID: PMC6196257 DOI: 10.3389/fimmu.2018.02271] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/12/2018] [Indexed: 01/24/2023] Open
Abstract
Purpose: In several multicenter clinical trials, HLA-DR was found to be a potential biomarker of dry eye disease (DED)'s severity and prognosis. Given the fact that HLA-DR receptor is a heterodimer consisting in an alpha and a beta chain, we intended to investigate the correlation of inflammatory targets with the corresponding transcripts, HLA-DRA and HLA-DRB1, to characterize specific targets closely related to HLA-DR expressed in conjunctival cells from patients suffering from DED of various etiologies. Methods: A prospective study was conducted in 88 patients with different forms of DED. Ocular symptom scores, ocular-staining grades, tear breakup time (TBUT) and Schirmer test were evaluated. Superficial conjunctival cells were collected by impression cytology and total RNAs were extracted for analyses using the new NanoString® nCounter technology based on an inflammatory human code set containing 249 inflammatory genes. Results: Two hundred transcripts were reliably detected in conjunctival specimens at various levels ranging from 1 to 222,546 RNA copies. Overall, from the 88 samples, 21 target genes showed a highly significant correlation (R > 0.8) with HLA-DRA and HLA-DRB1, HLA-DRA and B1 presenting the highest correlation (R = 0.9). These selected targets belonged to eight family groups, namely interferon and interferon-stimulated genes, tumor necrosis factor superfamily and related factors, Toll-like receptors and related factors, complement system factors, chemokines/cytokines, the RIPK enzyme family, and transduction signals such as the STAT and MAPK families. Conclusions: We have identified a profile of 21 transcripts correlated with HLA-DR expression, suggesting closely regulated signaling pathways and possible direct or indirect interactions between them. The NanoString® nCounter technology in conjunctival imprints could constitute a reliable tool in the future for wider screening of inflammatory biomarkers in DED, usable in very small samples. Broader combinations of biomarkers associated with HLA-DR could be analyzed to develop new diagnostic approaches, identify tighter pathophysiological gene signatures and personalize DED therapies more efficiently.
Collapse
Affiliation(s)
- Karima Kessal
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Hong Liang
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Ghislaine Rabut
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Mylene Docquier
- iGE3 Genomics Platform University of Geneva, Geneva, Switzerland
| | | | - Christophe Baudouin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Department of Ophthalmology, Ambroise Paré Hospital, APHP, University of Versailles Saint-Quentin en Yvelines, Boulogne-Billancourt, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Sorbonne Paris Cité Université Paris Descartes, Faculté de Pharmacie de Paris, Paris, France
| |
Collapse
|
49
|
Abstract
The development and activity of our immune system are largely controlled by the action of pleiotropic cytokines and growth factors, small secreted proteins, which bind to receptors on the surface of immune cells to initiate an appropriate physiological response. Cytokine signalling is predominantly executed by intracellular proteins known as the Janus kinases (JAKs) and the signal transducers and activators of transcriptions (STATs). Although the 'nuts and bolts' of cytokine-activated pathways have been well established, the nuanced way in which distinct cellular outcomes are achieved and the precise molecular details of the proteins that regulate these pathways are still being elucidated. This is highlighted by the intricate role of the suppressor of cytokine signalling (SOCS) proteins. The SOCS proteins act as negative feedback inhibitors, dampening specific cytokine signals to prevent excessive cellular responses and returning the cell to a homeostatic state. A great deal of study has demonstrated their ability to inhibit these pathways at the receptor complex, either through direct inhibition of JAK activity or by targeting the receptor complex for proteasomal degradation. Detailed analysis of individual SOCS proteins is slowly revealing the complex and highly controlled manner by which they can achieve specificity for distinct substrates. However, for many of the SOCS, a level of detail is still lacking, including confident identification of the full suite of tyrosine phosphorylated targets of their SH2 domain. This review will highlight the general mechanisms which govern SOCS specificity of action and discuss the similarities and differences between selected SOCS proteins, focusing on CIS, SOCS1 and SOCS3. Because of the functional and sequence similarities within the SOCS family, we will also discuss the evidence for functional redundancy.
Collapse
Affiliation(s)
- Edmond M Linossi
- a Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
- b Department of Medical Biology , University of Melbourne , Parkville , Australia
| | - Dale J Calleja
- a Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
| | - Sandra E Nicholson
- a Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
- b Department of Medical Biology , University of Melbourne , Parkville , Australia
| |
Collapse
|
50
|
Xu YZ, Thuraisingam T, Kanagaratham C, Tao S, Radzioch D. c-Src kinase is involved in the tyrosine phosphorylation and activity of SLC11A1 in differentiating macrophages. PLoS One 2018; 13:e0196230. [PMID: 29723216 PMCID: PMC5933793 DOI: 10.1371/journal.pone.0196230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/09/2018] [Indexed: 11/18/2022] Open
Abstract
Studies have demonstrated that the solute carrier family 11 member 1 (SLC11A1) is heavily glycosylated and phosphorylated in macrophages. However, the mechanisms of SLC11A1 phosphorylation, and the effects of phosphorylation on SLC11A1 activity remain largely unknown. Here, the tyrosine phosphorylation of SLC11A1 is observed in SLC11A1-expressing U937 cells when differentiated into macrophages by phorbol myristate acetate (PMA). The phosphorylation of SLC11A1 is almost completely blocked by treatment with PP2, a selective inhibitor of Src family kinases. Furthermore, we found that SLC11A1 is a direct substrate for active c-Src kinase and siRNA-mediated knockdown of cellular Src (c-Src) expression results in a significant decrease in tyrosine phosphorylation. We found that PMA induces the interaction of SLC11A1 with c-Src kinase. We demonstrated that SLC11A1 is phosphorylated by Src family kinases at tyrosine 15 and this type of phosphorylation is required for SLC11A1-mediated modulation of NF-κB activation and nitric oxide (NO) production induced by LPS. Our results demonstrate important roles for c-Src tyrosine kinase in phosphorylation and activation of SLC11A1 in macrophages.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Thusanth Thuraisingam
- Division of Dermatology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Cynthia Kanagaratham
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Shao Tao
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|