1
|
Ravichandran N, Iyer M, Uvarajan D, Kirola L, Kumra SM, Babu HWS, HariKrishnaReddy D, Vellingiri B, Narayanasamy A. New insights on the regulators and inhibitors of RhoA-ROCK signalling in Parkinson's disease. Metab Brain Dis 2025; 40:90. [PMID: 39775342 DOI: 10.1007/s11011-024-01500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
A multifaceted and widely prevalent neurodegenerative disease, Parkinson's disease (PD) is typified by the loss of dopaminergic neurons in the midbrain. The discovery of novel treatment(s) that can reverse or halt the course of the disease progression along with identifying the most reliable biomarker(s) in PD remains the crucial concern. RhoA in its active state has been demonstrated to interact with three distinct domains located in the central coiled-coil region of ROCK. RhoA appears to activate effectors most frequently by breaking the intramolecular autoinhibitory connections, which releases functional domains from the effector protein. Additionally, RhoA is highly expressed in the nervous system and it acts as a central molecule for its several downstream effector proteins in multiple signalling pathways both in neurons and glial cells. Mitochondrial dysfunction, vesicle transport malfunction and aggregation of α-Synuclein, a presynaptic neuronal protein genetically and neuropathologically associated with PD. While the RhoA-ROCK signalling pathway appears to have a significant role in PD symptoms, suggesting it could be a promising target for therapeutic interventions. Thus, this review article addresses the potential involvement of the RhoA-ROCK signalling system in the pathophysiology of neurodegenerative illnesses, with an emphasis on its biology and function. We also provide an overview of the state of research on RhoA regulation and its downstream biological activities, focusing on the role of RhoA signalling in neurodegenerative illnesses and the potential benefits of RhoA inhibition as a treatment for neurodegeneration.
Collapse
Affiliation(s)
- Nandita Ravichandran
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Deenathayalan Uvarajan
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Laxmi Kirola
- Department of Biotechnology, School of Health Sciences & Technology (SoHST), UPES Dehradun, Dehradun, India
| | - Sindduja Muthu Kumra
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
2
|
Hu X, Wang Y, Wang R, Pu Y, Jin R, Nie Y, Shuai X. The hybrid lipoplex induces cytoskeletal rearrangement via autophagy/RhoA signaling pathway for enhanced anticancer gene therapy. Nat Commun 2025; 16:339. [PMID: 39747218 PMCID: PMC11696071 DOI: 10.1038/s41467-024-55727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025] Open
Abstract
Delivering plasmid DNA (pDNA) to solid tumors remains a significant challenge due to the requirement for multiple transport steps and the need to promote delivery efficiency. Herein, we present a virus-mimicking hybrid lipoplex, composed of an arginine-rich cationic lipid, hyaluronic acid derivatives coated gold nanoparticles, and pDNA. This system induces cytoskeletal rearrangements through "outside-in" mechanical and "inside-out" biochemical signaling, overcoming intra- and intercellular barriers to enhance pDNA delivery. By modulating autophagy, RhoA signaling, and cytoskeletal dynamics, we achieve a 20-fold increase in gene expression with high tissue specificity in solid tumors. Furthermore, the system is applied to co-deliver a p53 plasmid and an MDM2 inhibitor, demonstrating significant synergistic antitumor effects in hepatocellular and lung carcinomas.
Collapse
Affiliation(s)
- Xueyi Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Yichun Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Ruohan Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, P. R. China
| |
Collapse
|
3
|
Nussinov R, Jang H, Cheng F. Ras, RhoA, and vascular pharmacology in neurodevelopment and aging. Neurochem Int 2024; 181:105883. [PMID: 39427854 PMCID: PMC11614691 DOI: 10.1016/j.neuint.2024.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Small GTPases Ras, Rac, and RhoA are crucial regulators of cellular functions. They also act in dysregulated cell proliferation and transformation. Multiple publications have focused on illuminating their roles and mechanisms, including in immune system pathologies. Their functions in neurology-related diseases, neurodegeneration and neurodevelopment, are also emerging, as well as their potential as pharmacological targets in both pathologies. Observations increasingly suggest that these pathologies may relate to activation (or suppression) of signaling by members of the Ras superfamily, especially Ras, Rho, and Rac isoforms, and components of their signaling pathways. Germline (or embryonic) mutations that they harbor are responsible for neurodevelopmental disorders, such as RASopathies, autism spectrum disorder, and dilated cardiomyopathy. In aging, they promote neurodegenerative diseases, with Rho GTPase featuring in their pharmacology, as in the case of Alzheimer's disease (AD). Significantly, drugs with observed anti-AD activity, particularly those involved in cardiovascular systems, are associated with the RhoA signaling, as well as cerebral vasculature in brain development and aging. This leads us to suggest that anti-AD drugs could inform neurodevelopmental disorders, including pediatric low-grade gliomas pharmacology. Neurodevelopmental disorders associated with RhoA, like autism, are also connected with vascular systems, thus could be targets of vascular system-connected drugs.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA; Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
4
|
Ramagoma RB, Makgoo L, Mbita Z. KLHL20 and its role in cell homeostasis: A new perspective and therapeutic potential. Life Sci 2024; 357:123041. [PMID: 39233199 DOI: 10.1016/j.lfs.2024.123041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Ubiquitin ligases are proteins with the ability to trigger non-degradative signaling or proteasomal destruction by attracting substrates and facilitating ubiquitin transfer onto target proteins. Over the years, there has been a continuous discovery of new ubiquitin ligases, and Kelch-like protein 20 (KLHL20) is one of the most recent discoveries that have several biological roles which include its role in ubiquitin ligase activities. KLHL20 binds as a substrate component of ubiquitin ligase Cullin3 (Cul3). Several substrates for ubiquitin ligases (KLHL20 based) have been reported, these include Unc-51 Like Autophagy Activating Kinase 1 (ULK1), promyelocytic leukemia (PML), and Death Associated Protein Kinase 1 (DAPK1). KLHL20 shows multiple cell functions linked to several human diseases through ubiquitination of these substrates. Current literature shows that KLHL20 ubiquitin ligase regulates malignancies in humans and also suggests how important it is to develop regulating agents for tumour-suppressive KLHL20 to prevent tumourigenesis, Recent research has highlighted its potential therapeutic implications in several areas. In oncology, KLHL20's regulatory role in protein degradation pathways suggests that its targeting could offer novel strategies for cancer treatment by modulating the stability of proteins involved in tumour growth and survival. In neurodegenerative diseases, KLHL20's function in maintaining protein homeostasis positions it as a potential target for therapies aimed at managing protein aggregation and cellular stress. Here, we review the functions of KLHL20 during the carcinogenesis process, looking at its role in cancer progression, and regulation of ubiquitination events mediated by KLHL20 in human cancers, as well as its potential therapeutic interventions.
Collapse
Affiliation(s)
- Rolivhuwa Bishop Ramagoma
- The University of Limpopo, Department of Biochemistry, Microbiology, and Biotechnology, Private Bag x1106, Sovenga 0727, South Africa
| | - Lilian Makgoo
- The University of Limpopo, Department of Biochemistry, Microbiology, and Biotechnology, Private Bag x1106, Sovenga 0727, South Africa
| | - Zukile Mbita
- The University of Limpopo, Department of Biochemistry, Microbiology, and Biotechnology, Private Bag x1106, Sovenga 0727, South Africa.
| |
Collapse
|
5
|
Zenge C, Ordureau A. Ubiquitin system mutations in neurological diseases. Trends Biochem Sci 2024; 49:875-887. [PMID: 38972780 PMCID: PMC11455613 DOI: 10.1016/j.tibs.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Neuronal ubiquitin balance impacts the fate of countless cellular proteins, and its disruption is associated with various neurological disorders. The ubiquitin system is critical for proper neuronal cell state transitions and the clearance of misfolded or aggregated proteins that threaten cellular integrity. This article reviews the state of and recent advancements in our understanding of the disruptions to components of the ubiquitin system, in particular E3 ligases and deubiquitylases, in neurodevelopmental and neurodegenerative diseases. Specific focus is on enzymes with recent progress in their characterization, including identifying enzyme-substrate pairs, the use of stem cell and animal models, and the development of therapeutics for ubiquitin-related diseases.
Collapse
Affiliation(s)
- Colin Zenge
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
6
|
Bou Malhab LJ, Schmidt S, Fagotto-Kaufmann C, Pion E, Gadea G, Roux P, Fagotto F, Debant A, Xirodimas DP. An Anti-Invasive Role for Mdmx through the RhoA GTPase under the Control of the NEDD8 Pathway. Cells 2024; 13:1625. [PMID: 39404389 PMCID: PMC11475522 DOI: 10.3390/cells13191625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Mdmx (Mdm4) is established as an oncogene mainly through repression of the p53 tumour suppressor. On the other hand, anti-oncogenic functions for Mdmx have also been proposed, but the underlying regulatory pathways remain unknown. Investigations into the effect of inhibitors for the NEDD8 pathway in p53 activation, human cell morphology, and in cell motility during gastrulation in Xenopus embryos revealed an anti-invasive function of Mdmx. Through stabilisation and activation of the RhoA GTPase, Mdmx is required for the anti-invasive effects of NEDDylation inhibitors. Mechanistically, through its Zn finger domain, Mdmx preferentially interacts with the inactive GDP-form of RhoA. This protects RhoA from degradation and allows for RhoA targeting to the plasma membrane for its subsequent activation. The effect is transient, as prolonged NEDDylation inhibition targets Mdmx for degradation, which subsequently leads to RhoA destabilisation. Surprisingly, Mdmx degradation requires non-NEDDylated (inactive) Culin4A and the Mdm2 E3-ligase. This study reveals that Mdmx can control cell invasion through RhoA stabilisation/activation, which is potentially linked to the reported anti-oncogenic functions of Mdmx. As inhibitors of the NEDD8 pathway are in clinical trials, the status of Mdmx may be a critical determinant for the anti-tumour effects of these inhibitors.
Collapse
Affiliation(s)
- Lara J. Bou Malhab
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Susanne Schmidt
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Christine Fagotto-Kaufmann
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Emmanuelle Pion
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Gilles Gadea
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Pierre Roux
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Francois Fagotto
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Anne Debant
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Dimitris P. Xirodimas
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| |
Collapse
|
7
|
Chen Y, Zhou L, Chen F, Chen Z, Huang Y, Lv Y, Wu M, Lin X, Xie H. Novel evidence of CNV deletion in KCTD13 related to the severity of isolated hypospadias in Chinese population. Front Pediatr 2024; 12:1409264. [PMID: 39318621 PMCID: PMC11420791 DOI: 10.3389/fped.2024.1409264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 09/26/2024] Open
Abstract
Background CNV in KCTD13 has been identified to influence androgen receptor function via its changes in gene dosage, which might contribute to hypospadias. However, there is lack of population-level evidence to assess the contribution of KCTD13 CNV to hypospadias. Methods 349 isolated hypospadias patients were recruited and their genotyping was performed using real-time qPCR. We use Database of Genomic Variants (DGV) and CNV calls from SNP-array intensity data in 1,008 Chinese healthy men as reference. Results 11.17% of patients were identified to have KCTD13 CNV deletion, significantly higher than 0.05% in DGV (P < 0.001), but no cases found to have CNV duplication. Meanwhile, no CNV calls encompassing KCTD13 region were detected in Chinese healthy men. Incidence of KCTD13 CNV deletion was significantly increased with the severity of hypospadias, P _trend = 9.00 × 10-6. Compared to distal hypospadias, ORs for the proximal and midshaft were 10.07 (2.91-34.84) and 6.08 (1.69-21.84) respectively. In addition, the association between genital characteristics (stretched penile length and glans width) and KCTD13 CNV showed no significance in hypospadias children (P > 0.05). Conclusions We demonstrate KCTD13 CNV deletion is strongly associated with hypospadias and its severity, but duplication is not, characterizing KCTD13 genetic variation in more detail than previously described.
Collapse
Affiliation(s)
- Yijing Chen
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijun Zhou
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Chen
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Clinical Research Center for Hypospadias, Pediatric College, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Zhongzhong Chen
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yichen Huang
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqing Lv
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Wu
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Lin
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xie
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Murali SK, McCormick JA, Fenton RA. Regulation of the water channel aquaporin-2 by cullin E3 ubiquitin ligases. Am J Physiol Renal Physiol 2024; 326:F814-F826. [PMID: 38545647 PMCID: PMC11381000 DOI: 10.1152/ajprenal.00049.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 05/04/2024] Open
Abstract
Aquaporin 2 (AQP2) is a vasopressin (VP)-regulated water channel in the renal collecting duct. Phosphorylation and ubiquitylation of AQP2 play an essential role in controlling the cellular abundance of AQP2 and its accumulation on the plasma membrane in response to VP. Cullin-RING ubiquitin ligases (CRLs) are multisubunit E3 ligases involved in ubiquitylation and degradation of their target proteins, eight of which are expressed in the collecting duct. Here, we used an established cell model of the collecting duct (mpkCCD14 cells) to study the role of cullins in modulating AQP2. Western blotting identified Cul-1 to Cul-5 in mpkCCD14 cells. Treatment of cells for 4 h with a pan-cullin inhibitor (MLN4924) decreased AQP2 abundance, prevented a VP-induced reduction in AQP2 Ser261 phosphorylation, and attenuated VP-induced plasma membrane accumulation of AQP2 relative to the vehicle. AQP2 ubiquitylation levels were significantly higher after MLN4924 treatment compared with controls, and they remained higher despite VP treatment. Cullin inhibition increased ERK1/2 activity, a kinase that regulates AQP2 Ser261 phosphorylation, and VP-induced reductions in ERK1/2 phosphorylation were absent during MLN4924 treatment. Furthermore, the greater Ser261 phosphorylation and reduction in AQP2 abundance during MLN4924 treatment were attenuated during ERK1/2 inhibition. MLN4924 increased intracellular calcium levels via calcium release-activated calcium channels, inhibition of which abolished MLN4924 effects on Ser261 phosphorylation and AQP2 abundance. In conclusion, CRLs play a vital role in mediating some of the effects of VP to increase AQP2 plasma membrane accumulation and AQP2 abundance. Whether modulation of cullin activity can contribute to body water homeostasis requires further studies.NEW & NOTEWORTHY Aquaporin 2 (AQP2) is essential for body water homeostasis and is regulated by the antidiuretic hormone vasopressin. The posttranslational modification ubiquitylation is a key regulator of AQP2 abundance and plasma membrane localization. Here we demonstrate that cullin-RING E3 ligases play a vital role in mediating some of the effects of vasopressin to increase AQP2 abundance and plasma membrane accumulation. The results suggest that manipulating cullin activity could be a novel strategy to alter kidney water handling.
Collapse
Affiliation(s)
- Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - James A McCormick
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
10
|
Balasco N, Esposito L, Smaldone G, Salvatore M, Vitagliano L. A Comprehensive Analysis of the Structural Recognition between KCTD Proteins and Cullin 3. Int J Mol Sci 2024; 25:1881. [PMID: 38339159 PMCID: PMC10856315 DOI: 10.3390/ijms25031881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
KCTD ((K)potassium Channel Tetramerization Domain-containing) proteins constitute an emerging class of proteins involved in fundamental physio-pathological processes. In these proteins, the BTB domain, which represents the defining element of the family, may have the dual role of promoting oligomerization and favoring functionally important partnerships with different interactors. Here, by exploiting the potential of recently developed methodologies for protein structure prediction, we report a comprehensive analysis of the interactions of all KCTD proteins with their most common partner Cullin 3 (Cul3). The data here presented demonstrate the impressive ability of this approach to discriminate between KCTDs that interact with Cul3 and those that do not. Indeed, reliable and stable models of the complexes were only obtained for the 15 members of the family that are known to interact with Cul3. The generation of three-dimensional models for all KCTD-Cul3 complexes provides interesting clues on the determinants of the structural basis of this partnership as clear structural differences emerged between KCTDs that bind or do not bind Cul3. Finally, the availability of accurate three-dimensional models for KCTD-Cul3 interactions may be valuable for the ad hoc design and development of compounds targeting specific KCTDs that are involved in several common diseases.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | | | | | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| |
Collapse
|
11
|
Sigmund CD. The 2023 Walter B. Cannon Award Lecture: Mechanisms Regulating Vascular Function and Blood Pressure by the PPARγ-RhoBTB1-CUL3 Pathway. FUNCTION 2024; 5:zqad071. [PMID: 38196837 PMCID: PMC10775765 DOI: 10.1093/function/zqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Human genetic and clinical trial data suggest that peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor transcription factor plays an important role in the regulation of arterial blood pressure. The examination of a series of novel animal models, coupled with transcriptomic and proteomic analysis, has revealed that PPARγ and its target genes employ diverse pathways to regulate vascular function and blood pressure. In endothelium, PPARγ target genes promote an antioxidant state, stimulating both nitric oxide (NO) synthesis and bioavailability, essential components of endothelial-smooth muscle communication. In vascular smooth muscle, PPARγ induces the expression of a number of genes that promote an antiinflammatory state and tightly control the level of cGMP, thus promoting responsiveness to endothelial-derived NO. One of the PPARγ targets in smooth muscle, Rho related BTB domain containing 1 (RhoBTB1) acts as a substrate adaptor for proteins to be ubiquitinated by the E3 ubiquitin ligase Cullin-3 and targeted for proteasomal degradation. One of these proteins, phosphodiesterase 5 (PDE5) is a target of the Cullin-3/RhoBTB1 pathway. Phosphodiesterase 5 degrades cGMP to GMP and thus regulates the smooth muscle response to NO. Moreover, expression of RhoBTB1 under condition of RhoBTB1 deficiency reverses established arterial stiffness. In conclusion, the coordinated action of PPARγ in endothelium and smooth muscle is needed to maintain NO bioavailability and activity, is an essential regulator of vasodilator/vasoconstrictor balance, and regulates blood vessel structure and stiffness.
Collapse
Affiliation(s)
- Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Wang W, Gao W, Gong P, Song W, Bu X, Hou J, Zhang L, Zhao B. Neuronal-specific TNFAIP1 ablation attenuates postoperative cognitive dysfunction via targeting SNAP25 for K48-linked ubiquitination. Cell Commun Signal 2023; 21:356. [PMID: 38102610 PMCID: PMC10722859 DOI: 10.1186/s12964-023-01390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Synaptosomal-associated protein 25 (SNAP25) exerts protective effects against postoperative cognitive dysfunction (POCD) by promoting PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy and repressing caspase-3/gasdermin E (GSDME)-mediated pyroptosis. However, the regulatory mechanisms of SNAP25 protein remain unclear. METHODS We employed recombinant adeno-associated virus 9 (AAV9)-hSyn to knockdown tumor necrosis factor α-induced protein 1 (TNFAIP1) or SNAP25 and investigate the role of TNFAIP1 in POCD. Cognitive performance, hippocampal injury, mitophagy, and pyroptosis were assessed. Co-immunoprecipitation (co-IP) and ubiquitination assays were conducted to elucidate the mechanisms by which TNFAIP1 stabilizes SNAP25. RESULTS Our results demonstrated that the ubiquitin ligase TNFAIP1 was upregulated in the hippocampus of mice following isoflurane (Iso) anesthesia and laparotomy. The N-terminal region (residues 1-96) of TNFAIP1 formed a conjugate with SNAP25, leading to lysine (K) 48-linked polyubiquitination of SNAP25 at K69. Silencing TNFAIP1 enhanced SH-SY5Y cell viability and conferred antioxidant, pro-mitophagy, and anti-pyroptosis properties in response to Iso and lipopolysaccharide (LPS) challenges. Conversely, TNFAIP1 overexpression reduced HT22 cell viability, increased reactive oxygen species (ROS) accumulation, impaired PINK1/Parkin-dependent mitophagy, and induced caspase-3/GSDME-dependent pyroptosis by suppressing SNAP25 expression. Neuron-specific knockdown of TNFAIP1 ameliorated POCD, restored mitophagy, and reduced pyroptosis, which was reversed by SNAP25 depletion. CONCLUSIONS In summary, our findings demonstrated that inhibiting TNFAIP1-mediated degradation of SNAP25 might be a promising therapeutic approach for mitigating postoperative cognitive decline. Video Abstract.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ping Gong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Anesthesiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wenqin Song
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Xueshan Bu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China.
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
13
|
González YR, Kamkar F, Jafar-Nejad P, Wang S, Qu D, Alvarez LS, Hawari D, Sonnenfeld M, Slack RS, Albert PR, Park DS, Joselin A. PFTK1 kinase regulates axogenesis during development via RhoA activation. BMC Biol 2023; 21:240. [PMID: 37907898 PMCID: PMC10617079 DOI: 10.1186/s12915-023-01732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND PFTK1/Eip63E is a member of the cyclin-dependent kinases (CDKs) family and plays an important role in normal cell cycle progression. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand the function of Eip63E in the CNS by studying the fly ventral nerve cord during development. RESULTS Our results demonstrate that Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. Functional interaction studies performed using the same system identify an interaction between Eip63E and the small GTPase Rho1. Furthermore, deficiency of Eip63E homolog in mice, PFTK1, in a newly generated PFTK1 knockout mice results in increased axonal outgrowth confirming that the developmental defects observed in the fly model are due to defects in axogenesis. Importantly, RhoA phosphorylation and activity are affected by PFTK1 in primary neuronal cultures. We report that GDP-bound inactive RhoA is a substrate of PFTK1 and PFTK1 phosphorylation is required for RhoA activity. CONCLUSIONS In conclusion, our work establishes an unreported neuronal role of PFTK1 in axon development mediated by phosphorylation and activation of GDP-bound RhoA. The results presented add to our understanding of the role of Cdks in the maintenance of RhoA-mediated axon growth and its impact on CNS development and axonal regeneration.
Collapse
Affiliation(s)
| | - Fatemeh Kamkar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Paymaan Jafar-Nejad
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Present Address: Ionis Pharmaceuticals Inc., Carlsbad, CA, 92010, USA
| | - Suzi Wang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Dianbo Qu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Leticia Sanchez Alvarez
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Dina Hawari
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Margaret Sonnenfeld
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute and Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - David S Park
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Alvin Joselin
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
14
|
Tanaka R, Yamada K. Genomic and Reverse Translational Analysis Discloses a Role for Small GTPase RhoA Signaling in the Pathogenesis of Schizophrenia: Rho-Kinase as a Novel Drug Target. Int J Mol Sci 2023; 24:15623. [PMID: 37958606 PMCID: PMC10648424 DOI: 10.3390/ijms242115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Schizophrenia is one of the most serious psychiatric disorders and is characterized by reductions in both brain volume and spine density in the frontal cortex. RhoA belongs to the RAS homolog (Rho) family and plays critical roles in neuronal development and structural plasticity via Rho-kinase. RhoA activity is regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Several variants in GAPs and GEFs associated with RhoA have been reported to be significantly associated with schizophrenia. Moreover, several mouse models carrying schizophrenia-associated gene variants involved in RhoA/Rho-kinase signaling have been developed. In this review, we summarize clinical evidence showing that variants in genes regulating RhoA activity are associated with schizophrenia. In the last half of the review, we discuss preclinical evidence indicating that RhoA/Rho-kinase is a potential therapeutic target of schizophrenia. In particular, Rho-kinase inhibitors exhibit anti-psychotic-like effects not only in Arhgap10 S490P/NHEJ mice, but also in pharmacologic models of schizophrenia (methamphetamine- and MK-801-treated mice). Accordingly, we propose that Rho-kinase inhibitors may have antipsychotic effects and reduce cognitive deficits in schizophrenia despite the presence or absence of genetic variants in small GTPase signaling pathways.
Collapse
Affiliation(s)
- Rinako Tanaka
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
- International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
15
|
Dedigama-Arachchige PM, Acharige NPN, Zhang X, Bremer HJ, Yi Z, Pflum MKH. Identification of PP1c-PPP1R12A Substrates Using Kinase-Catalyzed Biotinylation to Identify Phosphatase Substrates. ACS OMEGA 2023; 8:35628-35637. [PMID: 37810667 PMCID: PMC10552495 DOI: 10.1021/acsomega.3c01944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/21/2023] [Indexed: 10/10/2023]
Abstract
Protein phosphatase 1 regulatory subunit 12A (PPP1R12A) interacts with the catalytic subunit of protein phosphatase 1 (PP1c) to form the myosin phosphatase complex. In addition to a well-documented role in muscle contraction, the PP1c-PPP1R12A complex is associated with cytoskeleton organization, cell migration and adhesion, and insulin signaling. Despite the variety of biological functions, only a few substrates of the PP1c-PPP1R12A complex are characterized, which limit a full understanding of PP1c-PPP1R12A activities in muscle contraction and cytoskeleton regulation. Here, the chemoproteomics method Kinase-catalyzed Biotinylation to Identify Phosphatase Substrates (K-BIPS) was used to identify substrates of the PP1c-PPP1R12A complex in L6 skeletal muscle cells. K-BIPS enriched 136 candidate substrates with 14 high confidence hits. One high confidence hit, AKT1 kinase, was validated as a novel PP1c-PPP1R12A substrate. Given the previously documented role of AKT1 in PPP1R12A phosphorylation and cytoskeleton organization, the data suggest that PP1c-PPP1R12A regulates its own phosphatase activity through an AKT1-dependent feedback mechanism to influence cytoskeletal arrangement in muscle cells.
Collapse
Affiliation(s)
| | - Nuwan P N Acharige
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit 48202-3489, Michigan, United States
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit 48201, Michigan, United States
| | - Hannah J Bremer
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit 48202-3489, Michigan, United States
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit 48201, Michigan, United States
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit 48202-3489, Michigan, United States
| |
Collapse
|
16
|
Lin P, Yang J, Wu S, Ye T, Zhuang W, Wang W, Tan T. Current trends of high-risk gene Cul3 in neurodevelopmental disorders. Front Psychiatry 2023; 14:1215110. [PMID: 37575562 PMCID: PMC10416632 DOI: 10.3389/fpsyt.2023.1215110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Cul3 encodes Cullin-3, a core component of the ubiquitin E3 ligase that is involved in protein ubiquitination. Recent studies have identified Cul3 as a high-confidence risk gene in neurodevelopmental disorders (NDDs), especially autism spectrum disorder (ASD). Different strategies have been used to generate animal models with Cul3 deficiency in the central nervous system, including whole-brain knockout (KO), cell-type specific conditional KO (cKO), and brain region-specific knockdown. In this review, we revisited the basic properties of CUL3 and its function under physiological and pathological conditions. Recent clinical studies including case reports and large cohort sequencing studies related to CUl3 in NDDs have been summarized. Moreover, we characterized the behavioral, electrophysiological, and molecular changes in newly developed Cul3 deficiency models. This would guide further studies related to Cul3 in CNS and provide potential therapeutic targets for Cul3-deficiency-induced NDDs, including ASD.
Collapse
Affiliation(s)
- Ping Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shumin Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tong Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenting Zhuang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Petillo S, Sproviero E, Loconte L, Cuollo L, Zingoni A, Molfetta R, Fionda C, Soriani A, Cerboni C, Petrucci MT, Fazio F, Paolini R, Santoni A, Cippitelli M. NEDD8-activating enzyme inhibition potentiates the anti-myeloma activity of natural killer cells. Cell Death Dis 2023; 14:438. [PMID: 37460534 DOI: 10.1038/s41419-023-05949-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023]
Abstract
Natural Killer (NK) cells act as important regulators in the development and progression of hematological malignancies and their suppressor activity against Multiple Myeloma (MM) cells has been confirmed in many studies. Significant changes in the distribution of NK cell subsets and dysfunctions of NK cell effector activities were described in MM patients and correlated with disease staging. Thus, restoring or enhancing the functionality of these effectors for the treatment of MM represents a critical need. Neddylation is a post-translational modification that adds a ubiquitin-like molecule, NEDD8, to the substrate protein. One of the outcomes is the activation of the Cullin Ring Ligases (CRLs), a class of ubiquitin-ligases that controls the degradation of about 20% of proteasome-regulated proteins. Overactivation of CRLs has been described in cancer and can lead to tumor growth and progression. Thus, targeting neddylation represents an attractive approach for cancer treatment. Our group has recently described how pharmacologic inhibition of neddylation increases the expression of the NKG2D activating receptor ligands, MICA and MICB, in MM cells, making these cells more susceptible to NK cell degranulation and killing. Here, we extended our investigation to the direct role of neddylation on NK cell effector functions exerted against MM. We observed that inhibition of neddylation enhanced NK cell-mediated degranulation and killing against MM cells and improved Daratumumab/Elotuzumab-mediated response. Mechanistically, inhibition of neddylation increased the expression of Rac1 and RhoA GTPases in NK cells, critical mediators for an efficient degranulation at the immunological synapse of cytotoxic lymphocytes, and augmented the levels of F-actin and perforin polarization in NK cells contacting target cells. Moreover, inhibition of neddylation partially abrogated TGFβ-mediated repression of NK cell effector activity. This study describes the role of neddylation on NK cell effector functions and highlights the positive immunomodulatory effects achieved by the inhibition of this pathway in MM.
Collapse
Affiliation(s)
- Sara Petillo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Sproviero
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luisa Loconte
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Cuollo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Petrucci
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Fazio
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- IRCCS, Neuromed, Pozzilli, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
18
|
Jiang W, Wang W, Kong Y, Zheng S. Structural basis for the ubiquitination of G protein βγ subunits by KCTD5/Cullin3 E3 ligase. SCIENCE ADVANCES 2023; 9:eadg8369. [PMID: 37450587 PMCID: PMC10348674 DOI: 10.1126/sciadv.adg8369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
G protein-coupled receptor (GPCR) signaling is precisely controlled to avoid overstimulation that results in detrimental consequences. Gβγ signaling is negatively regulated by a Cullin3 (Cul3)-dependent E3 ligase, KCTD5, which triggers ubiquitination and degradation of free Gβγ. Here, we report the cryo-electron microscopy structures of the KCTD5-Gβγ fusion complex and the KCTD7-Cul3 complex. KCTD5 in pentameric form engages symmetrically with five copies of Gβγ through its C-terminal domain. The unique pentameric assembly of the KCTD5/Cul3 E3 ligase places the ubiquitin-conjugating enzyme (E2) and the modification sites of Gβγ in close proximity and allows simultaneous transfer of ubiquitin from E2 to five Gβγ subunits. Moreover, we show that ubiquitination of Gβγ by KCTD5 is important for fine-tuning cyclic adenosine 3´,5´-monophosphate signaling of GPCRs. Our studies provide unprecedented insights into mechanisms of substrate recognition by unusual pentameric E3 ligases and highlight the KCTD family as emerging regulators of GPCR signaling.
Collapse
Affiliation(s)
- Wentong Jiang
- Graduate School of Peking Union Medical College, Beijing 100730, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yinfei Kong
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Sanduo Zheng
- Graduate School of Peking Union Medical College, Beijing 100730, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Xia QQ, Walker AK, Song C, Wang J, Singh A, Mobley JA, Xuan ZX, Singer JD, Powell CM. Effects of heterozygous deletion of autism-related gene Cullin-3 in mice. PLoS One 2023; 18:e0283299. [PMID: 37428799 PMCID: PMC10332626 DOI: 10.1371/journal.pone.0283299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/05/2023] [Indexed: 07/12/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental disorder in which children display repetitive behavior, restricted range of interests, and atypical social interaction and communication. CUL3, coding for a Cullin family scaffold protein mediating assembly of ubiquitin ligase complexes through BTB domain substrate-recruiting adaptors, has been identified as a high-risk gene for autism. Although complete knockout of Cul3 results in embryonic lethality, Cul3 heterozygous mice have reduced CUL3 protein, demonstrate comparable body weight, and display minimal behavioral differences including decreased spatial object recognition memory. In measures of reciprocal social interaction, Cul3 heterozygous mice behaved similarly to their wild-type littermates. In area CA1 of hippocampus, reduction of Cul3 significantly increased mEPSC frequency but not amplitude nor baseline evoked synaptic transmission or paired-pulse ratio. Sholl and spine analysis data suggest there is a small yet significant difference in CA1 pyramidal neuron dendritic branching and stubby spine density. Unbiased proteomic analysis of Cul3 heterozygous brain tissue revealed dysregulation of various cytoskeletal organization proteins, among others. Overall, our results suggest that Cul3 heterozygous deletion impairs spatial object recognition memory, alters cytoskeletal organization proteins, but does not cause major hippocampal neuronal morphology, functional, or behavioral abnormalities in adult global Cul3 heterozygous mice.
Collapse
Affiliation(s)
- Qiang-qiang Xia
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Angela K. Walker
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Chenghui Song
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Jing Wang
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Anju Singh
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham Mass Spectrometry & Proteomics Shared Facility, Birmingham, AL, United States of America
| | - Zhong X. Xuan
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Jeffrey D. Singer
- Department of Biology, Portland State University, Portland, OR, United States of America
| | - Craig M. Powell
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| |
Collapse
|
20
|
Chen J, Zhao M, Fang W, Du C. Knocking down TNFAIP1 alleviates inflammation and oxidative stress in pediatric pneumonia through PI3K/Akt/Nrf2 pathway. Allergol Immunopathol (Madr) 2023; 51:94-100. [PMID: 37422785 DOI: 10.15586/aei.v51i4.884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Pneumonia is an acute respiratory infection with increasing global incidences. Children are more susceptible to pneumonia than adults, and its incidences grow extremely high during peak seasons. Thus, it is necessary to investigate the pathogenesis and molecular mechanism of childhood pneumonia. METHODS This study examined the role of tumor necrosis factor alpha-inducible protein 1 (TNFAIP1) in lipopolysaccharide (LPS)-induced pneumonia mice. After LPS exposure, lung function, TNFAIP1 activation, infarction volume, oxidative stress, lung tissue apoptosis ratio, and inflammatory response were assessed by immunohistochemistry staining, hematoxylin and eosin staning, Western blot analysis, terminal deoxynucleotidyl transferase dUTP nick end labelling assay, and enzyme-linked-immunosorbent serologic assay, respectively. The mechanism of TNFAIP1 regulating phosphoinositide 3-kinases (PI3K)-protein kinase B (Akt)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway was analyzed by Western blot analysis. RESULTS TNFAIP1 expression was enhanced in the LPS-induced pneumonia mice but was negatively correlated with the LPS-induced lung injury. Silencing TNFAIP1 alleviated inflammatory response, production of reactive oxygen species (ROS), and cellular apoptosis in LPS-induced pneumonia. Moreover, PI3K/Akt/Nrf2 signaling pathways were predominantly involved in the TNFAIP1-mediated lung injury, which also played a role in the process of LPS-induced pneumonia. CONCLUSION This study suggested that TNFAIP1 acted as a negative regulator of acute pneumonia by attenuating inflammatory response, production of ROS, and cellular apoptosis via PI3K/Akt/Nrf2 pathway. The findings suggested that TNFAIP1 is a potential candidate for pneumonia therapy.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatric Cardiovascular Surgery, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Mengtian Zhao
- Department of Neonatal Surgery, Anhui Provincial Children's Hospital, Hefei, Anhui, China;
| | - Wei Fang
- Department of Pediatric Cardiovascular Surgery, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Chaojun Du
- Department of Pediatric Cardiovascular Surgery, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| |
Collapse
|
21
|
Gu J, Ke P, Guo H, Liu J, Liu Y, Tian X, Huang Z, Xu X, Xu D, Ma Y, Wang X, Xiao F. KCTD13-mediated ubiquitination and degradation of GluN1 regulates excitatory synaptic transmission and seizure susceptibility. Cell Death Differ 2023; 30:1726-1741. [PMID: 37142655 PMCID: PMC10307852 DOI: 10.1038/s41418-023-01174-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common and severe form of epilepsy in adults; however, its underlying pathomechanisms remain elusive. Dysregulation of ubiquitination is increasingly recognized to contribute to the development and maintenance of epilepsy. Herein, we observed for the first time that potassium channel tetramerization domain containing 13 (KCTD13) protein, a substrate-specific adapter for cullin3-based E3 ubiquitin ligase, was markedly down-regulated in the brain tissue of patients with TLE. In a TLE mouse model, the protein expression of KCTD13 dynamically changed during epileptogenesis. Knockdown of KCTD13 in the mouse hippocampus significantly enhanced seizure susceptibility and severity, whereas overexpression of KCTD13 showed the opposite effect. Mechanistically, GluN1, an obligatory subunit of N-methyl-D-aspartic acid receptors (NMDARs), was identified as a potential substrate protein of KCTD13. Further investigation revealed that KCTD13 facilitates lysine-48-linked polyubiquitination of GluN1 and its degradation through the ubiquitin-proteasome pathway. Besides, the lysine residue 860 of GluN1 is the main ubiquitin site. Importantly, dysregulation of KCTD13 affected membrane expression of glutamate receptors and impaired glutamate synaptic transmission. Systemic administration of the NMDAR inhibitor memantine significantly rescued the epileptic phenotype aggravated by KCTD13 knockdown. In conclusion, our results demonstrated an unrecognized pathway of KCTD13-GluN1 in epilepsy, suggesting KCTD13 as a potential neuroprotective therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Juan Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Pingyang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Haokun Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Jing Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Demei Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
- Institute for Brain Science and Disease of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
22
|
Qiu F, He S, Zhang Z, Dai S, Wang J, Liu N, Li Z, Hu X, Xiang S, Wei C. MiR-93 alleviates DEHP plasticizer-induced neurotoxicity by negatively regulating TNFAIP1 and inhibiting ubiquitin-mediated degradation of CK2β. Food Chem Toxicol 2023:113888. [PMID: 37302538 DOI: 10.1016/j.fct.2023.113888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is widely used in various products, such as plastic packaging in food industries. As an environmental endocrine disruptor, it induces adverse effects on brain development and function. However, the molecular mechanisms by which DEHP induces learning and memory impairment remain poorly understood. Herein, we found that DEHP impaired learning and memory in pubertal C57BL/6 mice, decreased the number of neurons, downregulated miR-93 and the β subunit of casein kinase 2 (CK2β), upregulated tumor necrosis factor-induced protein 1 (TNFAIP1), and inhibited Akt/CREB pathway in mouse hippocampi. Coimmunoprecipitation and western blotting assays revealed that TNFAIP1 interacted with CK2β and promoted its degradation by ubiquitination. Bioinformatics analysis showed a miR-93 binding site in the 3'-untranslated region of Tnfaip1. A dual-luciferase reporter assay revealed that miR-93 targeted TNFAIP1 and negatively regulated its expression. MiR-93 overexpression prevented DEHP-induced neurotoxicity by downregulating TNFAIP1 and then activating CK2/Akt/CREB pathway. These data indicate that DEHP upregulates TNFAIP1 expression by downregulating miR-93, thus promoting ubiquitin-mediated degradation of CK2β, subsequently inhibiting Akt/CREB pathway, and finally inducing learning and memory impairment. Therefore, miR-93 can relieve DEHP-induced neurotoxicity and may be used as a potential molecular target for prevention and treatment of related neurological disorders.
Collapse
Affiliation(s)
- Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Simei He
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zilong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Siyu Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jin Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ning Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhiwei Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
23
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
24
|
Miyauchi M, Matsumura R, Kawahara H. BAG6 supports stress fiber formation by preventing the ubiquitin-mediated degradation of RhoA. Mol Biol Cell 2023; 34:ar34. [PMID: 36884293 PMCID: PMC10092643 DOI: 10.1091/mbc.e22-08-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
The Rho family of small GTPases is a key regulator of cytoskeletal actin polymerization. Although the ubiquitination of Rho proteins is reported to control their activity, the mechanisms by which the ubiquitination of Rho family proteins is controlled by ubiquitin ligases have yet to be elucidated. In this study, we identified BAG6 as the first factor needed to prevent the ubiquitination of RhoA, a critical Rho family protein in F-actin polymerization. We found that BAG6 is necessary for stress fiber formation by stabilizing endogenous RhoA. BAG6 deficiency enhanced the association between RhoA and Cullin-3-based ubiquitin ligases, thus promoting its polyubiquitination and subsequent degradation, leading to the abrogation of actin polymerization. In contrast, the restoration of RhoA expression through transient overexpression rescued the stress fiber formation defects induced by BAG6 depletion. BAG6 was also necessary for the appropriate assembly of focal adhesions as well as cell migration events. These findings reveal a novel role for BAG6 in maintaining the integrity of actin fiber polymerization and establish BAG6 as a RhoA-stabilizing holdase, which binds to and supports the function of RhoA.
Collapse
Affiliation(s)
- Maho Miyauchi
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Reina Matsumura
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Hiroyuki Kawahara
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
25
|
Plazen L, Rahbani JA, Brown CM, Khadra A. Polarity and mixed-mode oscillations may underlie different patterns of cellular migration. Sci Rep 2023; 13:4223. [PMID: 36918704 PMCID: PMC10014943 DOI: 10.1038/s41598-023-31042-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
In mesenchymal cell motility, several migration patterns have been observed, including directional, exploratory and stationary. Two key members of the Rho-family of GTPases, Rac and Rho, along with an adaptor protein called paxillin, have been particularly implicated in the formation of such migration patterns and in regulating adhesion dynamics. Together, they form a key regulatory network that involves the mutual inhibition exerted by Rac and Rho on each other and the promotion of Rac activation by phosphorylated paxillin. Although this interaction is sufficient in generating wave-pinning that underscores cellular polarization comprised of cellular front (high active Rac) and back (high active Rho), it remains unclear how they interact collectively to induce other modes of migration detected in Chinese hamster Ovary (CHO-K1) cells. We previously developed a six-variable (6V) reaction-diffusion model describing the interactions of these three proteins (in their active/phosphorylated and inactive/unphosphorylated forms) along with other auxiliary proteins, to decipher their role in generating wave-pinning. In this study, we explored, through computational modeling and image analysis, how differences in timescales within this molecular network can potentially produce the migration patterns in CHO-K1 cells and how switching between migration modes could occur. To do so, the 6V model was reduced to an excitable 4V spatiotemporal model possessing three different timescales. The model produced not only wave-pinning in the presence of diffusion, but also mixed-mode oscillations (MMOs) and relaxation oscillations (ROs). Implementing the model using the Cellular Potts Model (CPM) produced outcomes in which protrusions in the cell membrane changed Rac-Rho localization, resulting in membrane oscillations and fast directionality variations similar to those observed experimentally in CHO-K1 cells. The latter was assessed by comparing the migration patterns of experimental with CPM cells using four metrics: instantaneous cell speed, exponent of mean-square displacement ([Formula: see text]-value), directionality ratio and protrusion rate. Variations in migration patterns induced by mutating paxillin's serine 273 residue were also captured by the model and detected by a machine classifier, revealing that this mutation alters the dynamics of the system from MMOs to ROs or nonoscillatory behaviour through variation in the scaled concentration of an active form of an adhesion protein called p21-Activated Kinase 1 (PAK). These results thus suggest that MMOs and adhesion dynamics are the key mechanisms regulating CHO-K1 cell motility.
Collapse
Affiliation(s)
- Lucie Plazen
- Department of Mathematics and Statistics, McGill University, Montreal, Canada
| | | | - Claire M Brown
- Department of Physiology, McGill University, Montreal, Canada
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, QC, Canada
- Cell Information Systems, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Canada.
| |
Collapse
|
26
|
Podieh F, Wensveen R, Overboom M, Abbas L, Majolée J, Hordijk P. Differential role for rapid proteostasis in Rho GTPase-mediated control of quiescent endothelial integrity. J Biol Chem 2023; 299:104593. [PMID: 36894017 PMCID: PMC10124901 DOI: 10.1016/j.jbc.2023.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Endothelial monolayer permeability is regulated by actin dynamics and vesicular traffic. Recently, ubiquitination was also implicated in the integrity of quiescent endothelium, as it differentially controls the localization and stability of adhesion- and signaling proteins. However, the more general effect of fast protein turnover on endothelial integrity is not clear. Here, we found that inhibition of E1 ubiquitin ligases induces a rapid, reversible loss of integrity in quiescent, primary human endothelial monolayers, accompanied by increased F-actin stress fibers and the formation of intercellular gaps. Concomitantly, total protein and activity of the actin-regulating GTPase RhoB, but not its close homologue RhoA, increase ∼10-fold in 5-8 h. We determined that, the depletion of RhoB, but not of RhoA, the inhibition of actin contractility and the inhibition of protein synthesis all significantly rescue the loss of cell-cell contact induced by E1 ligase inhibition. Collectively, our data suggest that in quiescent human endothelial cells, the continuous and fast turnover of short-lived proteins that negatively regulate cell-cell contact, is essential to preserve monolayer integrity.
Collapse
Affiliation(s)
- Fabienne Podieh
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Roos Wensveen
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - MaxC Overboom
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Lotte Abbas
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Jisca Majolée
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands; Developmental Biology and Stem Cell Research, Hubrecht Institute, 3584 CT, Utrecht, The Netherlands
| | - PeterL Hordijk
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Karamanavi E, McVey DG, van der Laan SW, Stanczyk PJ, Morris GE, Wang Y, Yang W, Chan K, Poston RN, Luo J, Zhou X, Gong P, Jones PD, Cao J, Kostogrys RB, Webb TR, Pasterkamp G, Yu H, Xiao Q, Greer PA, Stringer EJ, Samani NJ, Ye S. The FES Gene at the 15q26 Coronary-Artery-Disease Locus Inhibits Atherosclerosis. Circ Res 2022; 131:1004-1017. [PMID: 36321446 PMCID: PMC9770135 DOI: 10.1161/circresaha.122.321146] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Genome-wide association studies have discovered a link between genetic variants on human chromosome 15q26.1 and increased coronary artery disease (CAD) susceptibility; however, the underlying pathobiological mechanism is unclear. This genetic locus contains the FES (FES proto-oncogene, tyrosine kinase) gene encoding a cytoplasmic protein-tyrosine kinase involved in the regulation of cell behavior. We investigated the effect of the 15q26.1 variants on FES expression and whether FES plays a role in atherosclerosis. METHODS AND RESULTS Analyses of isogenic monocytic cell lines generated by CRISPR (clustered regularly interspaced short palindromic repeats)-mediated genome editing showed that monocytes with an engineered 15q26.1 CAD risk genotype had reduced FES expression. Small-interfering-RNA-mediated knockdown of FES promoted migration of monocytes and vascular smooth muscle cells. A phosphoproteomics analysis showed that FES knockdown altered phosphorylation of a number of proteins known to regulate cell migration. Single-cell RNA-sequencing revealed that in human atherosclerotic plaques, cells that expressed FES were predominately monocytes/macrophages, although several other cell types including smooth muscle cells also expressed FES. There was an association between the 15q26.1 CAD risk genotype and greater numbers of monocytes/macrophage in human atherosclerotic plaques. An animal model study demonstrated that Fes knockout increased atherosclerotic plaque size and within-plaque content of monocytes/macrophages and smooth muscle cells, in apolipoprotein E-deficient mice fed a high fat diet. CONCLUSIONS We provide substantial evidence that the CAD risk variants at the 15q26.1 locus reduce FES expression in monocytes and that FES depletion results in larger atherosclerotic plaques with more monocytes/macrophages and smooth muscle cells. This study is the first demonstration that FES plays a protective role against atherosclerosis and suggests that enhancing FES activity could be a potentially novel therapeutic approach for CAD intervention.
Collapse
Affiliation(s)
- Elisavet Karamanavi
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - David G. McVey
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Sander W. van der Laan
- Central Diagnostic Laboratory, University of Utrecht, The Netherlands (S.W.v.d.L., G.P.)
| | - Paulina J. Stanczyk
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Gavin E. Morris
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Yifan Wang
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Y.W., H.Y., S.Y.)
| | - Wei Yang
- Shantou University Medical College, China (W.Y., J.C., S.Y.)
| | - Kenneth Chan
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.C., R.N.P., J.L., X.Z., Q.X.)
| | - Robin N. Poston
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.C., R.N.P., J.L., X.Z., Q.X.)
| | - Jun Luo
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.C., R.N.P., J.L., X.Z., Q.X.)
| | - Xinmiao Zhou
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.C., R.N.P., J.L., X.Z., Q.X.)
| | - Peng Gong
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Peter D. Jones
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Junjun Cao
- Shantou University Medical College, China (W.Y., J.C., S.Y.)
| | - Renata B. Kostogrys
- Department of Human Nutrition, University of Agriculture in Kraków, Poland (R.B.K.)
| | - Tom R. Webb
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University of Utrecht, The Netherlands (S.W.v.d.L., G.P.)
| | - Haojie Yu
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Y.W., H.Y., S.Y.)
| | - Qingzhong Xiao
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (K.C., R.N.P., J.L., X.Z., Q.X.)
| | - Peter A. Greer
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Canada (P.A.G.)
| | - Emma J. Stringer
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, United Kingdom (E.K., D.G.M., P.J.S., G.E.M., P.G., P.D.J., T.R.W., E.J.S., N.J.S., S.Y.)
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Y.W., H.Y., S.Y.)
- Shantou University Medical College, China (W.Y., J.C., S.Y.)
| |
Collapse
|
28
|
Huang P, Wu L, Zhu N, Zhao H, Du J. The polymerase δ-interacting protein family and their emerging roles in diseases. Front Med (Lausanne) 2022; 9:1026931. [PMID: 36425112 PMCID: PMC9679015 DOI: 10.3389/fmed.2022.1026931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 10/08/2023] Open
Abstract
The polymerase δ-interacting protein (POLDIP) family is a new family that can interact with DNA polymerase δ (delta). The members of the POLDIP family include POLDIP1, POLDIP2, and POLDIP3. Screened by the two-hybrid method, POLDIP1, POLDIP2, and POLDIP3 were initially discovered and named for their ability to bind to the p50 subunit of DNA polymerase δ. Recent studies have confirmed that POLDIPs are involved in the regulation of signal transduction pathways in neurodevelopment, neuropsychiatric diseases, cardiovascular diseases, tumors, and other diseases. However, each protein participates in different signaling pathways. In this review, we elucidate upon the family in terms of their genes and protein structures, their biological functions, in addition to the pathways that they are involved in during the development of diverse diseases. Finally, to provide new insights to the scientific community, we used the TCGA database to analyze and summarize the gene expressions of POLDIP family members in various tumors, as well as the correlations between their expressions and the overall survival times of tumor patients. Our data summary will give researchers working on cancer new concepts.
Collapse
Affiliation(s)
- Peiluo Huang
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Lei Wu
- College of Continuing Education, Guilin Medical University, Guilin, China
| | - Ningxia Zhu
- Department of Pathophysiology, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Hongtao Zhao
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Juan Du
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
29
|
Seth A, Rivera A, Choi IS, Medina-Martinez O, Lewis S, O’Neill M, Ridgeway A, Moore J, Jorgez C, Lamb DJ. Gene dosage changes in KCTD13 result in penile and testicular anomalies via diminished androgen receptor function. FASEB J 2022; 36:e22567. [PMID: 36196997 PMCID: PMC10538574 DOI: 10.1096/fj.202200558r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023]
Abstract
Despite the high prevalence of hypospadias and cryptorchidism, the genetic basis for these conditions is only beginning to be understood. Using array-comparative-genomic-hybridization (aCGH), potassium-channel-tetramerization-domain-containing-13 (KCTD13) encoded at 16p11.2 was identified as a candidate gene involved in hypospadias, cryptorchidism and other genitourinary (GU) tract anomalies. Copy number variants (CNVs) at 16p11.2 are among the most common syndromic genomic variants identified to date. Many patients with CNVs at this locus exhibit GU and/or neurodevelopmental phenotypes. KCTD13 encodes a substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3-ubiquitin-protein-ligase complex (BCR (BTB-CUL3-RBX1) E3-ubiquitin-protein-ligase complex (B-cell receptor (BCR) [BTB (the BTB domain is a conserved motif involved in protein-protein interactions) Cullin3 complex RING protein Rbx1] E3-ubiqutin-protein-ligase complex), which has essential roles in the regulation of cellular cytoskeleton, migration, proliferation, and neurodevelopment; yet its role in GU development is unknown. The prevalence of KCTD13 CNVs in patients with GU anomalies (2.58%) is significantly elevated when compared with patients without GU anomalies or in the general population (0.10%). KCTD13 is robustly expressed in the developing GU tract. Loss of KCTD13 in cell lines results in significantly decreased levels of nuclear androgen receptor (AR), suggesting that loss of KCTD13 affects AR sub-cellular localization. Kctd13 haploinsufficiency and homozygous deletion in mice cause a significant increase in the incidence of cryptorchidism and micropenis. KCTD13-deficient mice exhibit testicular and penile abnormalities together with significantly reduced levels of nuclear AR and SOX9. In conclusion, gene-dosage changes of murine Kctd13 diminish nuclear AR sub-cellular localization, as well as decrease SOX9 expression levels which likely contribute in part to the abnormal GU tract development in Kctd13 mouse models and in patients with CNVs in KCTD13.
Collapse
Affiliation(s)
- Abhishek Seth
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Surgery, Nemours Children’s Hospital, Orlando, Florida 32827
| | - Armando Rivera
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - In-Seon Choi
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Olga Medina-Martinez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Shaye Lewis
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Marisol O’Neill
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Alex Ridgeway
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Joshua Moore
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Carolina Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Dolores J. Lamb
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
- The James Buchanan Brady Foundation Department of Urology, Center for Reproductive Genomics and Englander Institute for Personalized Medicine, Weill Cornell Medical College
| |
Collapse
|
30
|
Bispo IMC, Granger HP, Almeida PP, Nishiyama PB, de Freitas LM. Systems biology and OMIC data integration to understand gastrointestinal cancers. World J Clin Oncol 2022; 13:762-778. [PMID: 36337313 PMCID: PMC9630993 DOI: 10.5306/wjco.v13.i10.762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/22/2021] [Accepted: 10/02/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers are a set of diverse diseases affecting many parts/ organs. The five most frequent GI cancer types are esophageal, gastric cancer (GC), liver cancer, pancreatic cancer, and colorectal cancer (CRC); together, they give rise to 5 million new cases and cause the death of 3.5 million people annually. We provide information about molecular changes crucial to tumorigenesis and the behavior and prognosis. During the formation of cancer cells, the genomic changes are microsatellite instability with multiple chromosomal arrangements in GC and CRC. The genomically stable subtype is observed in GC and pancreatic cancer. Besides these genomic subtypes, CRC has epigenetic modification (hypermethylation) associated with a poor prognosis. The pathway information highlights the functions shared by GI cancers such as apoptosis; focal adhesion; and the p21-activated kinase, phosphoinositide 3-kinase/Akt, transforming growth factor beta, and Toll-like receptor signaling pathways. These pathways show survival, cell proliferation, and cell motility. In addition, the immune response and inflammation are also essential elements in the shared functions. We also retrieved information on protein-protein interaction from the STRING database, and found that proteins Akt1, catenin beta 1 (CTNNB1), E1A binding protein P300, tumor protein p53 (TP53), and TP53 binding protein 1 (TP53BP1) are central nodes in the network. The protein expression of these genes is associated with overall survival in some GI cancers. The low TP53BP1 expression in CRC, high EP300 expression in esophageal cancer, and increased expression of Akt1/TP53 or low CTNNB1 expression in GC are associated with a poor prognosis. The Kaplan Meier plotter database also confirmed the association between expression of the five central genes and GC survival rates. In conclusion, GI cancers are very diverse at the molecular level. However, the shared mutations and protein pathways might be used to understand better and reveal diagnostic/prognostic or drug targets.
Collapse
Affiliation(s)
- Iasmin Moreira Costa Bispo
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Henry Paul Granger
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Palloma Porto Almeida
- Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - Patricia Belini Nishiyama
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Leandro Martins de Freitas
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| |
Collapse
|
31
|
Gao X, Li X, Chen C, Wang C, Fu Y, Zheng Z, Shi M, Hao X, Zhao L, Qiu M, Kai G, Zhou W. Mining of the CULLIN E3 ubiquitin ligase genes in the whole genome of Salvia miltiorrhiza. Curr Res Food Sci 2022; 5:1760-1768. [PMID: 36268136 PMCID: PMC9576582 DOI: 10.1016/j.crfs.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/01/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
CULLIN (CUL) proteins are E3 ubiquitin ligases that are involved in a wide variety of biological processes as well as in response to stress in plants. In Salvia miltiorrhiza, CUL genes have not been characterized and its role in plant development, stress response and secondary metabolite synthesis have not been studied. In this study, genome-wide analyses were performed to identify and to predict the structure and function of CUL of S. miltiorrhiza. Eight CUL genes were identified from the genome of S. miltiorrhiza. The CUL genes were clustered into four subgroups according to phylogenetic relationships. The CUL domain was highly conserved across the family of CUL genes. Analysis of cis-acting elements suggested that CUL genes might play important roles in a variety of biological processes, including abscission reaction acid (ABA) processing. To investigate this hypothesis, we treated hairy roots of S. miltiorrhiza with ABA. The expression of CUL genes varied obviously after ABA treatment. Co-expression network results indicated that three CUL genes might be involved in the biosynthesis of phenolic acid or tanshinone. In summary, the mining of the CUL genes in the whole genome of S. miltiorrhiza contribute novel information to the understanding of the CUL genes and its functional roles in plant secondary metabolites, growth and development.
Collapse
Affiliation(s)
- Xiankui Gao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Xiujuan Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Chengan Chen
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Can Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Yuqi Fu
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - ZiZhen Zheng
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Min Shi
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Xiaolong Hao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Limei Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Wei Zhou
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| |
Collapse
|
32
|
Liu Y, Li S, Chen R, Chen J, Xiao B, Lu Y, Liu J. BTBD10 inhibits glioma tumorigenesis by downregulating cyclin D1 and p-Akt. Open Life Sci 2022; 17:907-916. [PMID: 36045715 PMCID: PMC9372705 DOI: 10.1515/biol-2022-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate the role of BTBD10 in glioma tumorigenesis. The mRNA and protein levels of BTBD10 in 52 glioma tissues and eight normal brain tissues were determined using reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis, respectively. U251 human glioblastoma cells were infected with BTBD10-expressing or control lentiviruses. Cell growth was evaluated using the methyl thiazolyl tetrazolium (MTT) assay. Cell apoptosis and cell cycle distribution were analyzed using flow cytometry. Cyclin D1 and p-Akt levels were determined using western blot analysis. The results showed that BTBD10 mRNA and protein levels were significantly lower in glioma tissues than in normal brain tissues. Additionally, BTBD10 levels were significantly lower in high-grade gliomas than in low-grade tumors. Compared with control cells, U251 cells overexpressing BTBD10 exhibited decreased cell proliferation, increased cell accumulation at the G0/G1 phase, increased cell apoptosis, and decreased levels of cyclin D1 and p-Akt. These findings show that BTBD10 is downregulated in human glioma tissue and that BTBD10 expression negatively correlates with the pathological grade of the tumor. Furthermore, BTBD10 overexpression inhibits proliferation, induces G0/G1 arrest, and promotes apoptosis in human glioblastoma cells by downregulating cyclin D1- and Akt-dependent signaling pathways.
Collapse
Affiliation(s)
- Yu Liu
- Department of Neurosurgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Sen Li
- Department of Neurosurgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Ruoping Chen
- Department of Neurosurgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Shanghai, 200000, China
| | - Bo Xiao
- Department of Neurosurgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Yicheng Lu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Shanghai, 200000, China
| | - Jiangang Liu
- Department of Neurosurgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China
| |
Collapse
|
33
|
Rapanelli M, Williams JB, Ma K, Yang F, Zhong P, Patel R, Kumar M, Qin L, Rein B, Wang ZJ, Kassim B, Javidfar B, Couto L, Akbarian S, Yan Z. Targeting histone demethylase LSD1 for treatment of deficits in autism mouse models. Mol Psychiatry 2022; 27:3355-3366. [PMID: 35296809 PMCID: PMC9477974 DOI: 10.1038/s41380-022-01508-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 11/09/2022]
Abstract
Large-scale genetic studies have revealed that the most prominent genes disrupted in autism are chromatin regulators mediating histone methylation/demethylation, suggesting the central role of epigenetic dysfunction in this disorder. Here, we show that histone lysine 4 dimethylation (H3K4me2), a histone mark linked to gene activation, is significantly decreased in the prefrontal cortex (PFC) of autistic human patients and mutant mice with the deficiency of top-ranking autism risk factor Shank3 or Cul3. A brief treatment of the autism models with highly potent and selective inhibitors of the H3K4me2 demethylase LSD1 (KDM1A) leads to the robust rescue of core symptoms of autism, including social deficits and repetitive behaviors. Concomitantly, LSD1 inhibition restores NMDA receptor function in PFC and AMPA receptor-mediated currents in striatum of Shank3-deficient mice. Genome-wide RNAseq and ChIPseq reveal that treatment of Shank3-deficient mice with the LSD1 inhibitor restores the expression and H3K4me2 occupancy of downregulated genes enriched in synaptic signaling and developmental processes. The immediate early gene tightly linked to neuronal plasticity, Egr1, is on the top list of rescued genes. The diminished transcription of Egr1 is recapitulated in PFC of autistic human patients. Overexpression of Egr1 in PFC of Shank3-deficient mice ameliorates social preference deficits. These results have for the first time revealed an important role of H3K4me2 abnormality in ASD pathophysiology, and the therapeutic potential of targeting H3K4me2 demethylase LSD1 or the downstream molecule Egr1 for ASD.
Collapse
Affiliation(s)
- Maximiliano Rapanelli
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jamal B Williams
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaijie Ma
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Fengwei Yang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Rajvi Patel
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Manasa Kumar
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luye Qin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Benjamin Rein
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zi-Jun Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Bibi Kassim
- Department of Psychiatry; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Behnam Javidfar
- Department of Psychiatry; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lizette Couto
- Department of Psychiatry; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Department of Psychiatry; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
34
|
Cullin 3 Exon 9 Deletion in Familial Hyperkalemic Hypertension Impairs Cullin3-Ring-E3 Ligase (CRL3) Dynamic Regulation and Cycling. Int J Mol Sci 2022; 23:ijms23095151. [PMID: 35563538 PMCID: PMC9105235 DOI: 10.3390/ijms23095151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Cullin 3 (CUL3) is the scaffold of Cullin3 Ring E3-ligases (CRL3s), which use various BTB-adaptor proteins to ubiquitinate numerous substrates targeting their proteasomal degradation. CUL3 mutations, responsible for a severe form of familial hyperkalemia and hypertension (FHHt), all result in a deletion of exon 9 (amino-acids 403-459) (CUL3-∆9). Surprisingly, while CUL3-∆9 is hyperneddylated, a post-translational modification that typically activates CRL complexes, it is unable to ubiquitinate its substrates. In order to understand the mechanisms behind this loss-of function, we performed comparative label-free quantitative analyses of CUL3 and CUL3-∆9 interactome by mass spectrometry. It was observed that CUL3-∆9 interactions with COP9 and CAND1, both involved in CRL3 complexes’ dynamic assembly, were disrupted. These defects result in a reduction in the dynamic cycling of the CRL3 complexes, making the CRL3-∆9 complex an inactive BTB-adaptor trap, as demonstrated by SILAC experiments. Collectively, the data indicated that the hyperneddylated CUL3-∆9 protein is inactive as a consequence of several structural changes disrupting its dynamic interactions with key regulatory partners.
Collapse
|
35
|
RhoA Signaling in Neurodegenerative Diseases. Cells 2022; 11:cells11091520. [PMID: 35563826 PMCID: PMC9103838 DOI: 10.3390/cells11091520] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ras homolog gene family member A (RhoA) is a small GTPase of the Rho family involved in regulating multiple signal transduction pathways that influence a diverse range of cellular functions. RhoA and many of its downstream effector proteins are highly expressed in the nervous system, implying an important role for RhoA signaling in neurons and glial cells. Indeed, emerging evidence points toward a role of aberrant RhoA signaling in neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. In this review, we summarize the current knowledge of RhoA regulation and downstream cellular functions with an emphasis on the role of RhoA signaling in neurodegenerative diseases and the therapeutic potential of RhoA inhibition in neurodegeneration.
Collapse
|
36
|
Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases. Biomolecules 2022; 12:biom12030416. [PMID: 35327608 PMCID: PMC8946067 DOI: 10.3390/biom12030416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Abstract
Maintenance of protein homeostasis is crucial for virtually every aspect of eukaryotic biology. The ubiquitin-proteasome system (UPS) represents a highly regulated quality control machinery that protects cells from a variety of stress conditions as well as toxic proteins. A large body of evidence has shown that UPS dysfunction contributes to the pathogenesis of cardiovascular diseases. This review highlights the latest findings regarding the physiological and pathological roles of cullin-RING ubiquitin ligases (CRLs), an essential player in the UPS, in the cardiovascular system. To inspire potential therapeutic invention, factors regulating CRL activities are also discussed.
Collapse
|
37
|
Tomasello DL, Kim JL, Khodour Y, McCammon JM, Mitalipova M, Jaenisch R, Futerman AH, Sive H. 16pdel lipid changes in iPSC-derived neurons and function of FAM57B in lipid metabolism and synaptogenesis. iScience 2022; 25:103551. [PMID: 34984324 PMCID: PMC8693007 DOI: 10.1016/j.isci.2021.103551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/23/2021] [Accepted: 11/26/2021] [Indexed: 01/01/2023] Open
Abstract
The complex 16p11.2 deletion syndrome (16pdel) is accompanied by neurological disorders, including epilepsy, autism spectrum disorder, and intellectual disability. We demonstrated that 16pdel iPSC differentiated neurons from affected people show augmented local field potential activity and altered ceramide-related lipid species relative to unaffected. FAM57B, a poorly characterized gene in the 16p11.2 interval, has emerged as a candidate tied to symptomatology. We found that FAM57B modulates ceramide synthase (CerS) activity, but is not a CerS per se. In FAM57B mutant human neuronal cells and zebrafish brain, composition and levels of sphingolipids and glycerolipids associated with cellular membranes are disrupted. Consistently, we observed aberrant plasma membrane architecture and synaptic protein mislocalization, which were accompanied by depressed brain and behavioral activity. Together, these results suggest that haploinsufficiency of FAM57B contributes to changes in neuronal activity and function in 16pdel syndrome through a crucial role for the gene in lipid metabolism.
Collapse
Affiliation(s)
| | - Jiyoon L. Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yara Khodour
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Maya Mitalipova
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony H. Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Moehle EA, Higuchi-Sanabria R, Tsui CK, Homentcovschi S, Tharp KM, Zhang H, Chi H, Joe L, de los Rios Rogers M, Sahay A, Kelet N, Benitez C, Bar-Ziv R, Garcia G, Shen K, Frankino PA, Schinzel RT, Shalem O, Dillin A. Cross-species screening platforms identify EPS-8 as a critical link for mitochondrial stress and actin stabilization. SCIENCE ADVANCES 2021; 7:eabj6818. [PMID: 34714674 PMCID: PMC8555897 DOI: 10.1126/sciadv.abj6818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The dysfunction of mitochondria is associated with the physiological consequences of aging and many age-related diseases. Therefore, critical quality control mechanisms exist to protect mitochondrial functions, including the unfolded protein response of the mitochondria (UPRMT). However, it is still unclear how UPRMT is regulated in mammals with mechanistic discrepancies between previous studies. Here, we reasoned that a study of conserved mechanisms could provide a uniquely powerful way to reveal previously uncharacterized components of the mammalian UPRMT. We performed cross-species comparison of genetic requirements for survival under—and in response to—mitochondrial stress between karyotypically normal human stem cells and the nematode Caenorhabditis elegans. We identified a role for EPS-8/EPS8 (epidermal growth factor receptor pathway substrate 8), a signaling protein adaptor, in general mitochondrial homeostasis and UPRMT regulation through integrin-mediated remodeling of the actin cytoskeleton. This study also highlights the use of cross-species comparisons in genetic screens to interrogate cellular pathways.
Collapse
Affiliation(s)
- Erica A. Moehle
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - C. Kimberly Tsui
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stefan Homentcovschi
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin M. Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hanlin Zhang
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hannah Chi
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry Joe
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mattias de los Rios Rogers
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Arushi Sahay
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Naame Kelet
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Camila Benitez
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raz Bar-Ziv
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gilberto Garcia
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Koning Shen
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip A. Frankino
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert T. Schinzel
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ophir Shalem
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadephia, PA 191004, USA
| | - Andrew Dillin
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
STK25 and MST3 Have Overlapping Roles to Regulate Rho GTPases during Cortical Development. J Neurosci 2021; 41:8887-8903. [PMID: 34518307 DOI: 10.1523/jneurosci.0523-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Precise control of neuronal migration is required for the laminar organization of the neocortex and critical for brain function. We previously reported that the acute disruption of the Stk25 gene (Stk25 conditional knock-out; cKO) during mouse embryogenesis causes anomalous neuronal migration in the neocortex, but paradoxically the Stk25 cKO did not have a cortical phenotype, suggesting some forms of compensation exist. In this study, we report that MST3, another member of the GCKIII subgroup of the Ste20-like kinase family, compensates for loss of Stk25 and vice versa with sex independent manner. MST3 overexpression rescued neuronal migration deficit and abnormal axonogenesis in Stk25 cKO brains. Mechanistically, STK25 leads to Rac1 activation and reduced RhoA levels in the developing brain, both of which are required to fully restore neuronal migration in the Stk25 cKO brain. Abnormal migration phenotypes are also rescued by overexpression of Bacurd1and Cul3, which target RhoA for degradation, and activate Rac1. This study reveals that MST3 upregulation is capable of rescuing acute Stk25 deficiency and resolves details of signaling downstream STK25 required for corticogenesis both common to and distinct from MST3 signaling.SIGNIFICANCE STATEMENT Proper neuronal migration during cortical development is required for normal neuronal function. Here, we show that STK25 and MST3 kinases regulate neuronal migration and polarization in a mutually compensatory manner. Furthermore, STK25 balances Rac1 activity and RhoA level through forming complexes with α-PIX and β-PIX, GTPase regulatory enzymes, and Cullin3-Bacurd1/Kctd13, a pair of RhoA ubiquitination molecules in a kinase activity-independent manner. Our findings demonstrate the importance of overlapping and unique roles of STK25 and MST3 to regulate Rho GTPase activities in cortical development.
Collapse
|
40
|
Wright JR, Mahaut-Smith MP. Why do platelets express K + channels? Platelets 2021; 32:872-879. [PMID: 33872124 PMCID: PMC8437091 DOI: 10.1080/09537104.2021.1904135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/02/2022]
Abstract
Potassium ions have widespread roles in cellular homeostasis and activation as a consequence of their large outward concentration gradient across the surface membrane and ability to rapidly move through K+-selective ion channels. In platelets, the predominant K+ channels include the voltage-gated K+ channel Kv1.3, and the intermediate conductance Ca2+-activated K+ channel KCa3.1, also known as the Gardos channel. Inwardly rectifying potassium GIRK channels and KCa1.1 large conductance Ca2+-activated K+ channels have also been reported in the platelet, although they remain to be demonstrated using electrophysiological techniques. Whole-cell patch clamp and fluorescent indicator measurements in the platelet or their precursor cell reveal that Kv1.3 sets the resting membrane potential and KCa3.1 can further hyperpolarize the cell during activation, thereby controlling Ca2+ influx. Kv1.3-/- mice exhibit an increased platelet count, which may result from an increased splenic megakaryocyte development and longer platelet lifespan. This review discusses the evidence in the literature that Kv1.3, KCa3.1. GIRK and KCa1.1 channels contribute to a number of platelet functional responses, particularly collagen-evoked adhesion, procoagulant activity and GPCR function. Putative roles for other K+ channels and known accessory proteins which to date have only been detected in transcriptomic or proteomic studies, are also discussed.
Collapse
Affiliation(s)
- Joy R Wright
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, UK
| | | |
Collapse
|
41
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
42
|
Wen L, Yang QH, Ma XL, Li T, Xiao S, Sun CF. Inhibition of TNFAIP1 ameliorates the oxidative stress and inflammatory injury in myocardial ischemia/reperfusion injury through modulation of Akt/GSK-3β/Nrf2 pathway. Int Immunopharmacol 2021; 99:107993. [PMID: 34330059 DOI: 10.1016/j.intimp.2021.107993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023]
Abstract
Tumor necrosis factor α-induced protein 1 (TNFAIP1) has been documented as a vital regulator of apoptosis and oxidative stress under various pathological conditions. However, whether TNFAIP1 plays a role in myocardial ischemia/reperfusion (I/R) injury has not been well investigated. This work aimed to evaluate the possible role of TNFAIP1 in mediating myocardial I/R injury. Firstly, we demonstrated that TNFAIP1 expression was dramatically increased in rat cardiomyocytes following hypoxia/reoxygenation (H/R) in vitro, and in rat myocardial tissues following I/R treatment in vivo. Silencing of TNFAIP1 alleviated H/R-induced apoptosis, oxidative stress and inflammatory response in rat cardiomyocytes in vitro. Moreover, knockdown of TNFAIP1 ameliorated I/R-induced myocardial injury, infarction size, cardiac apoptosis, oxidative stress and inflammatory response in vivo. Further investigation elucidated that knockdown of TNFAIP1 enhanced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling associated with modulation of the Akt/glycogen synthase kinase-3β (GSK-3β) pathway in vitro and in vivo. Inhibition of Akt markedly abrogated TNFAIP1-knockdown-mediated Nrf2 activation in cardiomyocytes following H/R injury. In addition, suppression of Nrf2 significantly diminished TNFAIP1-knockdown-induced cardioprotective effects in H/R-exposed cardiomyocytes. In summary, this work elucidates that inhibition of TNFAIP1 ameliorates myocardial I/R injury by potentiating Nrf2 signaling via the modulation of the Akt/GSK-3β pathway. Our study highlights a vital role of the TNFAIP1/Akt/GSK-3β/Nrf2 pathway in mediating myocardial I/R injury and suggests TNFAIP1 as an attractive target for treatment of this disease.
Collapse
Affiliation(s)
- Liang Wen
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Cardiology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, China
| | - Qing-Hui Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Xiao-Lei Ma
- Department of Cardiology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, China
| | - Ting Li
- Department of Cardiology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, China
| | - Sa Xiao
- Department of Cardiology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, China
| | - Chao-Feng Sun
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
43
|
Lei Z, Wang J, Zhang L, Liu CH. Ubiquitination-Dependent Regulation of Small GTPases in Membrane Trafficking: From Cell Biology to Human Diseases. Front Cell Dev Biol 2021; 9:688352. [PMID: 34277632 PMCID: PMC8281112 DOI: 10.3389/fcell.2021.688352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 01/04/2023] Open
Abstract
Membrane trafficking is critical for cellular homeostasis, which is mainly carried out by small GTPases, a class of proteins functioning in vesicle budding, transport, tethering and fusion processes. The accurate and organized membrane trafficking relies on the proper regulation of small GTPases, which involves the conversion between GTP- and GDP-bound small GTPases mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Emerging evidence indicates that post-translational modifications (PTMs) of small GTPases, especially ubiquitination, play an important role in the spatio-temporal regulation of small GTPases, and the dysregulation of small GTPase ubiquitination can result in multiple human diseases. In this review, we introduce small GTPases-mediated membrane trafficking pathways and the biological processes of ubiquitination-dependent regulation of small GTPases, including the regulation of small GTPase stability, activity and localization. We then discuss the dysregulation of small GTPase ubiquitination and the associated human membrane trafficking-related diseases, focusing on the neurological diseases and infections. An in-depth understanding of the molecular mechanisms by which ubiquitination regulates small GTPases can provide novel insights into the membrane trafficking process, which knowledge is valuable for the development of more effective and specific therapeutics for membrane trafficking-related human diseases.
Collapse
Affiliation(s)
- Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Cummings CM, Singer JD. Cul3 is required for normal development of the mammary gland. Cell Tissue Res 2021; 385:49-63. [PMID: 33825963 DOI: 10.1007/s00441-021-03456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Cullin 3 (Cul3) has recently been implicated in a multitude of different processes, including the oxidative stress response, autophagy, tumorigenesis, and differentiation. To investigate the role of Cul3 in mammary gland development, we created a mouse model system using Cre-lox targeting where Cul3 is specifically deleted from the mammary gland. Such MMTV-Cre Cul3Flx/Flx mice examined at 2 and 3 months of age show delays and defects in mammary gland development. Mammary ductal trees from Cul3-deficient mammary glands exhibit delayed forward growth through the mammary fat pad, dilation of the ducts, and abnormal morphology of some of the epithelial structures within the gland. Additionally, terminal end buds are larger and less plentiful in MMTV-Cre Cul3Flx/Flx mammary glands, and there is significantly less primary and secondary branching compared to control animals. In contrast, by 6 months of age, the mammary ductal tree has grown to fill the entire mammary fat pad in glands lacking Cul3. However, distorted epithelial structures and dilated ducts persist. MMTV-Cre Cul3Flx/Flx mothers are able to nourish their litters, but the process of involution is slightly delayed in mammary glands lacking Cul3. Therefore, we conclude that while Cul3 is not essential for mammary gland function, Cul3 is required for the mammary gland to proceed normally through development.
Collapse
Affiliation(s)
- Cristina M Cummings
- School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ, USA
| | - Jeffrey D Singer
- Department of Biology, Portland State University, Portland, OR, USA.
| |
Collapse
|
45
|
Amar M, Pramod AB, Yu NK, Herrera VM, Qiu LR, Moran-Losada P, Zhang P, Trujillo CA, Ellegood J, Urresti J, Chau K, Diedrich J, Chen J, Gutierrez J, Sebat J, Ramanathan D, Lerch JP, Yates JR, Muotri AR, Iakoucheva LM. Autism-linked Cullin3 germline haploinsufficiency impacts cytoskeletal dynamics and cortical neurogenesis through RhoA signaling. Mol Psychiatry 2021; 26:3586-3613. [PMID: 33727673 PMCID: PMC8443683 DOI: 10.1038/s41380-021-01052-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 01/01/2023]
Abstract
E3-ubiquitin ligase Cullin3 (Cul3) is a high confidence risk gene for autism spectrum disorder (ASD) and developmental delay (DD). To investigate how Cul3 mutations impact brain development, we generated a haploinsufficient Cul3 mouse model using CRISPR/Cas9 genome engineering. Cul3 mutant mice exhibited social and cognitive deficits and hyperactive behavior. Brain MRI found decreased volume of cortical regions and changes in many other brain regions of Cul3 mutant mice starting from early postnatal development. Spatiotemporal transcriptomic and proteomic profiling of embryonic, early postnatal and adult brain implicated neurogenesis and cytoskeletal defects as key drivers of Cul3 functional impact. Specifically, dendritic growth, filamentous actin puncta, and spontaneous network activity were reduced in Cul3 mutant mice. Inhibition of small GTPase RhoA, a molecular substrate of Cul3 ligase, rescued dendrite length and network activity phenotypes. Our study identified defects in neuronal cytoskeleton and Rho signaling as the primary targets of Cul3 mutation during brain development.
Collapse
Affiliation(s)
- Megha Amar
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Akula Bala Pramod
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Nam-Kyung Yu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Lily R Qiu
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| | | | - Pan Zhang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Cleber A Trujillo
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
| | - Jorge Urresti
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kevin Chau
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jolene Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jiaye Chen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jessica Gutierrez
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Beyster Center for Psychiatric Genomics, University of California San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Alysson R Muotri
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA, USA.
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA.
- Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA, USA.
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
46
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
47
|
Podieh F, Hordijk PL. Regulation of Rho GTPases in the Vasculature by Cullin3-Based E3 Ligase Complexes. Front Cell Dev Biol 2021; 9:680901. [PMID: 34136490 PMCID: PMC8201781 DOI: 10.3389/fcell.2021.680901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 02/02/2023] Open
Abstract
Cullin3-based ubiquitin E3 ligases induce ubiquitination of substrates leading to their proteasomal or lysosomal degradation. BTB proteins serve as adaptors by binding to Cullin3 and recruiting substrate proteins, which enables specific recognition of a broad spectrum of targets. Hence, Cullin3 and its adaptors are involved in myriad cellular processes and organ functions. Cullin3-based ubiquitin E3 ligase complexes target small GTPases of the Rho subfamily, which are key regulators of cytoskeletal dynamics and cell adhesion. In this mini review, we discuss recent insights in Cullin3-mediated regulation of Rho GTPases and their impact on cellular function and disease. Intriguingly, upstream regulators of Rho GTPases are targeted by Cullin3 complexes as well. Thus, Rho GTPase signaling is regulated by Cullin3 on multiple levels. In addition, we address current knowledge of Cullin3 in regulating vascular function, focusing on its prominent role in endothelial barrier function, angiogenesis and the regulation of blood pressure.
Collapse
Affiliation(s)
- Fabienne Podieh
- Department of Physiology, Amsterdam UMC, Amsterdam, Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
48
|
Linklater ES, Duncan ED, Han KJ, Kaupinis A, Valius M, Lyons TR, Prekeris R. Rab40-Cullin5 complex regulates EPLIN and actin cytoskeleton dynamics during cell migration. J Cell Biol 2021; 220:212111. [PMID: 33999101 PMCID: PMC8129794 DOI: 10.1083/jcb.202008060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/09/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Rab40b is a SOCS box–containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here, we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b–Cullin5 binding decreases cell motility and invasive potential and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b–Cullin5-dependent localized ubiquitylation and degradation. Thus, we propose a model where Rab40b–Cullin5-dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Erik S Linklater
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Emily D Duncan
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Cancer Center, Young Women's Breast Cancer Translational Program, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
49
|
Rapanelli M, Tan T, Wang W, Wang X, Wang ZJ, Zhong P, Frick L, Qin L, Ma K, Qu J, Yan Z. Behavioral, circuitry, and molecular aberrations by region-specific deficiency of the high-risk autism gene Cul3. Mol Psychiatry 2021; 26:1491-1504. [PMID: 31455858 DOI: 10.1038/s41380-019-0498-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/10/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
Cullin 3 (Cul3) gene, which encodes a core component of the E3 ubiquitin ligase complex that mediates proteasomal degradation, has been identified as a true high-risk factor for autism. Here, by combining behavioral, electrophysiological, and proteomic approaches, we have examined how Cul3 deficiency contributes to the etiology of different aspects of autism. Heterozygous mice with forebrain Cul3 deletion displayed autism-like social interaction impairment and sensory-gating deficiency. Region-specific deletion of Cul3 leads to distinct phenotypes, with social deficits linked to the loss of Cul3 in prefrontal cortex (PFC), and stereotypic behaviors linked to the loss of Cul3 in striatum. Correlated with these behavioral alterations, Cul3 deficiency in forebrain or PFC induces NMDA receptor hypofunction, while Cul3 loss in striatum causes a cell type-specific alteration of neuronal excitability in striatal circuits. Large-scale profiling has identified sets of misregulated proteins resulting from Cul3 deficiency in different regions, including Smyd3, a histone methyltransferase involved in gene transcription. Inhibition or knockdown of Smyd3 in forebrain Cul3-deficient mice ameliorates social deficits and restores NMDAR function in PFC. These results have revealed for the first time a potential molecular mechanism underlying the manifestation of different autism-like behavioral deficits by Cul3 deletion in cortico-striatal circuits.
Collapse
Affiliation(s)
- Maximiliano Rapanelli
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Tao Tan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wei Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Xue Wang
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Zi-Jun Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luciana Frick
- Hunter James Kelly Research Institute, Department of Neurology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luye Qin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaijie Ma
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jun Qu
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
50
|
Drainas AP, Lambuta RA, Ivanova I, Serçin Ö, Sarropoulos I, Smith ML, Efthymiopoulos T, Raeder B, Stütz AM, Waszak SM, Mardin BR, Korbel JO. Genome-wide Screens Implicate Loss of Cullin Ring Ligase 3 in Persistent Proliferation and Genome Instability in TP53-Deficient Cells. Cell Rep 2021; 31:107465. [PMID: 32268084 PMCID: PMC7166082 DOI: 10.1016/j.celrep.2020.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 11/07/2019] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
TP53 deficiency is the most common alteration in cancer; however, this alone is typically insufficient to drive tumorigenesis. To identify genes promoting tumorigenesis in combination with TP53 deficiency, we perform genome-wide CRISPR-Cas9 knockout screens coupled with proliferation and transformation assays in isogenic cell lines. Loss of several known tumor suppressors enhances cellular proliferation and transformation. Loss of neddylation pathway genes promotes uncontrolled proliferation exclusively in TP53-deficient cells. Combined loss of CUL3 and TP53 activates an oncogenic transcriptional program governed by the nuclear factor κB (NF-κB), AP-1, and transforming growth factor β (TGF-β) pathways. This program maintains persistent cellular proliferation, induces partial epithelial to mesenchymal transition, and increases DNA damage, genomic instability, and chromosomal rearrangements. Our findings reveal CUL3 loss as a key event stimulating persistent proliferation in TP53-deficient cells. These findings may be clinically relevant, since TP53-CUL3-deficient cells are highly sensitive to ataxia telangiectasia mutated (ATM) inhibition, exposing a vulnerability that could be exploited for cancer treatment. Mixed-effect models with MEMcrispR applied to CRISPR screen analyses Knockout of neddylation genes increases persistent proliferation in TP53−/− cells TP53−/−,CUL3−/− cells exhibit persistent proliferation and partial EMT phenotype TP53−/−,CUL3−/− cells show increased DNA damage and display sensitivity to ATM inhibition
Collapse
Affiliation(s)
- Alexandros P Drainas
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Ruxandra A Lambuta
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Irina Ivanova
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | - Ioannis Sarropoulos
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Mike L Smith
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Theocharis Efthymiopoulos
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Adrian M Stütz
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Sebastian M Waszak
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | | | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany.
| |
Collapse
|