1
|
Zhou S, Miao Y, Qiu H, Yao Y, Wang W, Chen C. Deep learning based local feature classification to automatically identify single molecule fluorescence events. Commun Biol 2024; 7:1404. [PMID: 39468368 PMCID: PMC11519536 DOI: 10.1038/s42003-024-07122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Long-term single-molecule fluorescence measurements are widely used powerful tools to study the conformational dynamics of biomolecules in real time to further elucidate their conformational dynamics. Typically, thousands or even more single-molecule traces are analyzed to provide statistically meaningful information, which is labor-intensive and can introduce user bias. Recently, several deep-learning models have been developed to automatically classify single-molecule traces. In this study, we introduce DEBRIS (Deep lEarning Based fRagmentatIon approach for Single-molecule fluorescence event identification), a deep-learning model focusing on classifying local features and capable of automatically identifying steady fluorescence signals and dynamically emerging signals of different patterns. DEBRIS efficiently and accurately identifies both one-color and two-color single-molecule events, including their start and end points. By adjusting user-defined criteria, DEBRIS becomes the pioneer in using a deep learning model to accurately classify four different types of single-molecule fluorescence events using the same trained model, demonstrating its universality and ability to enrich the current toolbox.
Collapse
Affiliation(s)
- Shuqi Zhou
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yu Miao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Haoren Qiu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yuan Yao
- Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Wenjuan Wang
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
2
|
Verma AR, Ray KK, Bodick M, Kinz-Thompson CD, Gonzalez RL. Increasing the accuracy of single-molecule data analysis using tMAVEN. Biophys J 2024; 123:2765-2780. [PMID: 38268189 PMCID: PMC11393709 DOI: 10.1016/j.bpj.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/28/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Time-dependent single-molecule experiments contain rich kinetic information about the functional dynamics of biomolecules. A key step in extracting this information is the application of kinetic models, such as hidden Markov models (HMMs), which characterize the molecular mechanism governing the experimental system. Unfortunately, researchers rarely know the physicochemical details of this molecular mechanism a priori, which raises questions about how to select the most appropriate kinetic model for a given single-molecule data set and what consequences arise if the wrong model is chosen. To address these questions, we have developed and used time-series modeling, analysis, and visualization environment (tMAVEN), a comprehensive, open-source, and extensible software platform. tMAVEN can perform each step of the single-molecule analysis pipeline, from preprocessing to kinetic modeling to plotting, and has been designed to enable the analysis of a single-molecule data set with multiple types of kinetic models. Using tMAVEN, we have systematically investigated mismatches between kinetic models and molecular mechanisms by analyzing simulated examples of prototypical single-molecule data sets exhibiting common experimental complications, such as molecular heterogeneity, with a series of different types of HMMs. Our results show that no single kinetic modeling strategy is mathematically appropriate for all experimental contexts. Indeed, HMMs only correctly capture the underlying molecular mechanism in the simplest of cases. As such, researchers must modify HMMs using physicochemical principles to avoid the risk of missing the significant biological and biophysical insights into molecular heterogeneity that their experiments provide. By enabling the facile, side-by-side application of multiple types of kinetic models to individual single-molecule data sets, tMAVEN allows researchers to carefully tailor their modeling approach to match the complexity of the underlying biomolecular dynamics and increase the accuracy of their single-molecule data analyses.
Collapse
Affiliation(s)
- Anjali R Verma
- Department of Chemistry, Columbia University, New York, New York
| | - Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, New York
| | - Maya Bodick
- Department of Chemistry, Columbia University, New York, New York
| | | | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, New York.
| |
Collapse
|
3
|
Lin R, Wang Y. Developing Multichannel smFRET Approach to Dissecting Ribosomal Mechanisms. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:501-509. [PMID: 39056063 PMCID: PMC11267599 DOI: 10.1021/cbmi.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 07/28/2024]
Abstract
The ribosome, a 2.6 megadalton biomolecule measuring approximately 20 nm in diameter, coordinates numerous ligands, factors, and regulators to translate proteins with high fidelity and speed. Understanding its complex functions necessitates multiperspective observations. We developed a dual-FRET single-molecule Förste Resonance Energy Transfer method (dual-smFRET), allowing simultaneous observation and correlation of tRNA dynamics and Elongation Factor G (EF-G) conformations in the same complex, in a 10 s time window. By synchronizing laser shutters and motorized filter sets, two FRET signals are captured in consecutive 5 s intervals with a time gap of 50-100 ms. We observed distinct fluorescent emissions from single-, double-, and quadruple-labeled ribosome complexes. Through comprehensive spectrum analysis and correction, we distinguish and correlate conformational changes in two parts of the ribosome, offering additional perspectives on its coordination and timing during translocation. Our setup's versatility, accommodating up to six FRET pairs, suggests broader applications in studying large biomolecules and various biological systems.
Collapse
Affiliation(s)
| | - Yuhong Wang
- Department
of Biology and Biochemistry, University
of Houston, Houston, Texas 77204, United States
| |
Collapse
|
4
|
Verma AR, Ray KK, Bodick M, Kinz-Thompson CD, Gonzalez RL. Increasing the accuracy of single-molecule data analysis using tMAVEN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553409. [PMID: 37645812 PMCID: PMC10462008 DOI: 10.1101/2023.08.15.553409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Time-dependent single-molecule experiments contain rich kinetic information about the functional dynamics of biomolecules. A key step in extracting this information is the application of kinetic models, such as hidden Markov models (HMMs), which characterize the molecular mechanism governing the experimental system. Unfortunately, researchers rarely know the physico-chemical details of this molecular mechanism a priori, which raises questions about how to select the most appropriate kinetic model for a given single-molecule dataset and what consequences arise if the wrong model is chosen. To address these questions, we have developed and used time-series Modeling, Analysis, and Visualization ENvironment (tMAVEN), a comprehensive, open-source, and extensible software platform. tMAVEN can perform each step of the single-molecule analysis pipeline, from pre-processing to kinetic modeling to plotting, and has been designed to enable the analysis of a single-molecule dataset with multiple types of kinetic models. Using tMAVEN, we have systematically investigated mismatches between kinetic models and molecular mechanisms by analyzing simulated examples of prototypical single-molecule datasets exhibiting common experimental complications, such as molecular heterogeneity, with a series of different types of HMMs. Our results show that no single kinetic modeling strategy is mathematically appropriate for all experimental contexts. Indeed, HMMs only correctly capture the underlying molecular mechanism in the simplest of cases. As such, researchers must modify HMMs using physico-chemical principles to avoid the risk of missing the significant biological and biophysical insights into molecular heterogeneity that their experiments provide. By enabling the facile, side-by-side application of multiple types of kinetic models to individual single-molecule datasets, tMAVEN allows researchers to carefully tailor their modeling approach to match the complexity of the underlying biomolecular dynamics and increase the accuracy of their single-molecule data analyses.
Collapse
Affiliation(s)
- Anjali R. Verma
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| | - Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| | - Maya Bodick
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| | | | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| |
Collapse
|
5
|
Colson L, Kwon Y, Nam S, Bhandari A, Maya NM, Lu Y, Cho Y. Trends in Single-Molecule Total Internal Reflection Fluorescence Imaging and Their Biological Applications with Lab-on-a-Chip Technology. SENSORS (BASEL, SWITZERLAND) 2023; 23:7691. [PMID: 37765748 PMCID: PMC10537725 DOI: 10.3390/s23187691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Single-molecule imaging technologies, especially those based on fluorescence, have been developed to probe both the equilibrium and dynamic properties of biomolecules at the single-molecular and quantitative levels. In this review, we provide an overview of the state-of-the-art advancements in single-molecule fluorescence imaging techniques. We systematically explore the advanced implementations of in vitro single-molecule imaging techniques using total internal reflection fluorescence (TIRF) microscopy, which is widely accessible. This includes discussions on sample preparation, passivation techniques, data collection and analysis, and biological applications. Furthermore, we delve into the compatibility of microfluidic technology for single-molecule fluorescence imaging, highlighting its potential benefits and challenges. Finally, we summarize the current challenges and prospects of fluorescence-based single-molecule imaging techniques, paving the way for further advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Louis Colson
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Youngeun Kwon
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (S.N.)
| | - Soobin Nam
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (S.N.)
| | - Avinashi Bhandari
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Nolberto Martinez Maya
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Yongmin Cho
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (S.N.)
| |
Collapse
|
6
|
Jain S, Koziej L, Poulis P, Kaczmarczyk I, Gaik M, Rawski M, Ranjan N, Glatt S, Rodnina MV. Modulation of translational decoding by m 6A modification of mRNA. Nat Commun 2023; 14:4784. [PMID: 37553384 PMCID: PMC10409866 DOI: 10.1038/s41467-023-40422-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
N6-methyladenosine (m6A) is an abundant, dynamic mRNA modification that regulates key steps of cellular mRNA metabolism. m6A in the mRNA coding regions inhibits translation elongation. Here, we show how m6A modulates decoding in the bacterial translation system using a combination of rapid kinetics, smFRET and single-particle cryo-EM. We show that, while the modification does not impair the initial binding of aminoacyl-tRNA to the ribosome, in the presence of m6A fewer ribosomes complete the decoding process due to the lower stability of the complexes and enhanced tRNA drop-off. The mRNA codon adopts a π-stacked codon conformation that is remodeled upon aminoacyl-tRNA binding. m6A does not exclude canonical codon-anticodon geometry, but favors alternative more dynamic conformations that are rejected by the ribosome. These results highlight how modifications outside the Watson-Crick edge can still interfere with codon-anticodon base pairing and complex recognition by the ribosome, thereby modulating the translational efficiency of modified mRNAs.
Collapse
Affiliation(s)
- Sakshi Jain
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Panagiotis Poulis
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany
| | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-387, Poland
| | - Monika Gaik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Michal Rawski
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Krakow, 30-387, Poland
| | - Namit Ranjan
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland.
| | - Marina V Rodnina
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany.
| |
Collapse
|
7
|
Poulis P, Peske F, Rodnina MV. The many faces of ribosome translocation along the mRNA: reading frame maintenance, ribosome frameshifting and translational bypassing. Biol Chem 2023; 404:755-767. [PMID: 37077160 DOI: 10.1515/hsz-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
In each round of translation elongation, the ribosome translocates along the mRNA by precisely one codon. Translocation is promoted by elongation factor G (EF-G) in bacteria (eEF2 in eukaryotes) and entails a number of precisely-timed large-scale structural rearrangements. As a rule, the movements of the ribosome, tRNAs, mRNA and EF-G are orchestrated to maintain the exact codon-wise step size. However, signals in the mRNA, as well as environmental cues, can change the timing and dynamics of the key rearrangements leading to recoding of the mRNA into production of trans-frame peptides from the same mRNA. In this review, we discuss recent advances on the mechanics of translocation and reading frame maintenance. Furthermore, we describe the mechanisms and biological relevance of non-canonical translocation pathways, such as hungry and programmed frameshifting and translational bypassing, and their link to disease and infection.
Collapse
Affiliation(s)
- Panagiotis Poulis
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
8
|
Ray KK, Kinz-Thompson CD, Fei J, Wang B, Lin Q, Gonzalez RL. Entropic control of the free-energy landscape of an archetypal biomolecular machine. Proc Natl Acad Sci U S A 2023; 120:e2220591120. [PMID: 37186858 PMCID: PMC10214133 DOI: 10.1073/pnas.2220591120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Biomolecular machines are complex macromolecular assemblies that utilize thermal and chemical energy to perform essential, multistep, cellular processes. Despite possessing different architectures and functions, an essential feature of the mechanisms of action of all such machines is that they require dynamic rearrangements of structural components. Surprisingly, biomolecular machines generally possess only a limited set of such motions, suggesting that these dynamics must be repurposed to drive different mechanistic steps. Although ligands that interact with these machines are known to drive such repurposing, the physical and structural mechanisms through which ligands achieve this remain unknown. Using temperature-dependent, single-molecule measurements analyzed with a time-resolution-enhancing algorithm, here, we dissect the free-energy landscape of an archetypal biomolecular machine, the bacterial ribosome, to reveal how its dynamics are repurposed to drive distinct steps during ribosome-catalyzed protein synthesis. Specifically, we show that the free-energy landscape of the ribosome encompasses a network of allosterically coupled structural elements that coordinates the motions of these elements. Moreover, we reveal that ribosomal ligands which participate in disparate steps of the protein synthesis pathway repurpose this network by differentially modulating the structural flexibility of the ribosomal complex (i.e., the entropic component of the free-energy landscape). We propose that such ligand-dependent entropic control of free-energy landscapes has evolved as a general strategy through which ligands may regulate the functions of all biomolecular machines. Such entropic control is therefore an important driver in the evolution of naturally occurring biomolecular machines and a critical consideration for the design of synthetic molecular machines.
Collapse
Affiliation(s)
- Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, NY10027
| | | | - Jingyi Fei
- Department of Chemistry, Columbia University, New York, NY10027
| | - Bin Wang
- Department of Mechanical Engineering, Columbia University, New York, NY10027
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY10027
| | | |
Collapse
|
9
|
Heng J, Hu Y, Pérez-Hernández G, Inoue A, Zhao J, Ma X, Sun X, Kawakami K, Ikuta T, Ding J, Yang Y, Zhang L, Peng S, Niu X, Li H, Guixà-González R, Jin C, Hildebrand PW, Chen C, Kobilka BK. Function and dynamics of the intrinsically disordered carboxyl terminus of β2 adrenergic receptor. Nat Commun 2023; 14:2005. [PMID: 37037825 PMCID: PMC10085991 DOI: 10.1038/s41467-023-37233-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The β2 adrenergic receptor's (β2AR) 71 amino acid CT is a substrate for GPCR kinases and binds β-arrestins to regulate signaling. Here we show that the β2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking β-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged β2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.
Collapse
Affiliation(s)
- Jie Heng
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, 430071, China
| | - Guillermo Pérez-Hernández
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jiawei Zhao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiuyan Ma
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jienv Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yujie Yang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lujia Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sijia Peng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232, Villigen, PSI, Switzerland
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peter W Hildebrand
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Medical Physics and Biophysics, University Leipzig, 04107, Leipzig, Germany
- Berlin Institute of Health, 10178, Berlin, Germany
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Das A, Adiletta N, Ermolenko DN. Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases. Int J Mol Sci 2023; 24:ijms24086878. [PMID: 37108045 PMCID: PMC10138997 DOI: 10.3390/ijms24086878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Translational G proteins, whose release from the ribosome is triggered by GTP hydrolysis, regulate protein synthesis. Concomitantly with binding and dissociation of protein factors, translation is accompanied by forward and reverse rotation between ribosomal subunits. Using single-molecule measurements, we explore the ways in which the binding of translational GTPases affects inter-subunit rotation of the ribosome. We demonstrate that the highly conserved translation factor LepA, whose function remains debated, shifts the equilibrium toward the non-rotated conformation of the ribosome. By contrast, the catalyst of ribosome translocation, elongation factor G (EF-G), favors the rotated conformation of the ribosome. Nevertheless, the presence of P-site peptidyl-tRNA and antibiotics, which stabilize the non-rotated conformation of the ribosome, only moderately reduces EF-G binding. These results support the model suggesting that EF-G interacts with both the non-rotated and rotated conformations of the ribosome during mRNA translocation. Our results provide new insights into the molecular mechanisms of LepA and EF-G action and underscore the role of ribosome structural dynamics in translation.
Collapse
Affiliation(s)
- Ananya Das
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Nichole Adiletta
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Altered tRNA dynamics during translocation on slippery mRNA as determinant of spontaneous ribosome frameshifting. Nat Commun 2022; 13:4231. [PMID: 35869111 PMCID: PMC9307594 DOI: 10.1038/s41467-022-31852-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractWhen reading consecutive mRNA codons, ribosomes move by exactly one triplet at a time to synthesize a correct protein. Some mRNA tracks, called slippery sequences, are prone to ribosomal frameshifting, because the same tRNA can read both 0- and –1-frame codon. Using smFRET we show that during EF-G-catalyzed translocation on slippery sequences a fraction of ribosomes spontaneously switches from rapid, accurate translation to a slow, frameshifting-prone translocation mode where the movements of peptidyl- and deacylated tRNA become uncoupled. While deacylated tRNA translocates rapidly, pept-tRNA continues to fluctuate between chimeric and posttranslocation states, which slows down the re-locking of the small ribosomal subunit head domain. After rapid release of deacylated tRNA, pept-tRNA gains unconstrained access to the –1-frame triplet, resulting in slippage followed by recruitment of the –1-frame aa-tRNA into the A site. Our data show how altered choreography of tRNA and ribosome movements reduces the translation fidelity of ribosomes translocating in a slow mode.
Collapse
|
12
|
Mueller SH, Fitschen LJ, Shirbini A, Hamdan SM, Spenkelink L, van Oijen A. Rapid single-molecule characterisation of enzymes involved in nucleic-acid metabolism. Nucleic Acids Res 2022; 51:e5. [PMID: 36321650 PMCID: PMC9841422 DOI: 10.1093/nar/gkac949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
The activity of enzymes is traditionally characterised through bulk-phase biochemical methods that only report on population averages. Single-molecule methods are advantageous in elucidating kinetic and population heterogeneity but are often complicated, time consuming, and lack statistical power. We present a highly-generalisable and high-throughput single-molecule assay to rapidly characterise proteins involved in DNA metabolism. The assay exclusively relies on changes in total fluorescence intensity of surface-immobilised DNA templates as a result of DNA synthesis, unwinding or digestion. Combined with an automated data-analysis pipeline, our method provides enzymatic activity data of thousands of molecules in less than an hour. We demonstrate our method by characterising three fundamentally different enzyme activities: digestion by the phage λ exonuclease, synthesis by the phage Phi29 polymerase, and unwinding by the E. coli UvrD helicase. We observe the previously unknown activity of the UvrD helicase to remove neutravidin bound to 5'-, but not 3'-ends of biotinylated DNA.
Collapse
Affiliation(s)
- Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Lucy J Fitschen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia,Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Afnan Shirbini
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Samir M Hamdan
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lisanne M Spenkelink
- Correspondence may also be addressed to Lisanne M. Spenkelink. Tel: +61 2 4239 2371;
| | | |
Collapse
|
13
|
Hassan A, Whitford PC. Identifying Strategies to Experimentally Probe Multidimensional Dynamics in the Ribosome. J Phys Chem B 2022; 126:8460-8471. [PMID: 36256879 DOI: 10.1021/acs.jpcb.2c05706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ribosome is a complex biomolecular machine that utilizes large-scale conformational rearrangements to synthesize proteins. For example, during the elongation cycle, the "head" domain of the ribosomal small subunit (SSU) is known to undergo transient rotation events that allow for movement of tRNA molecules (i.e., translocation). While the head may exhibit rigid-body-like properties, the precise relationship between experimentally accessible probes and multidimensional rotations has yet to be established. To address this gap, we perform molecular dynamics simulations of the translocation step of the elongation cycle in the ribosome, where the SSU head spontaneously undergoes rotation and tilt-like motions. With this data set (1250 simulated events), we used statistical and information-theory-based measures to identify possible single-molecule probes that can isolate SSU head rotation and head tilting. This analysis provides a molecular interpretation for previous single-molecule measurements, while establishing a framework for the design of next-generation experiments that may precisely probe the mechanistic and kinetic aspects of the ribosome.
Collapse
Affiliation(s)
- Asem Hassan
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts02115, United States.,Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts02115, United States
| | - Paul C Whitford
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts02115, United States.,Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts02115, United States
| |
Collapse
|
14
|
Xue L, Lenz S, Zimmermann-Kogadeeva M, Tegunov D, Cramer P, Bork P, Rappsilber J, Mahamid J. Visualizing translation dynamics at atomic detail inside a bacterial cell. Nature 2022; 610:205-211. [PMID: 36171285 PMCID: PMC9534751 DOI: 10.1038/s41586-022-05255-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 08/19/2022] [Indexed: 12/03/2022]
Abstract
Translation is the fundamental process of protein synthesis and is catalysed by the ribosome in all living cells1. Here we use advances in cryo-electron tomography and sub-tomogram analysis2,3 to visualize the structural dynamics of translation inside the bacterium Mycoplasma pneumoniae. To interpret the functional states in detail, we first obtain a high-resolution in-cell average map of all translating ribosomes and build an atomic model for the M. pneumoniae ribosome that reveals distinct extensions of ribosomal proteins. Classification then resolves 13 ribosome states that differ in their conformation and composition. These recapitulate major states that were previously resolved in vitro, and reflect intermediates during active translation. On the basis of these states, we animate translation elongation inside native cells and show how antibiotics reshape the cellular translation landscapes. During translation elongation, ribosomes often assemble in defined three-dimensional arrangements to form polysomes4. By mapping the intracellular organization of translating ribosomes, we show that their association into polysomes involves a local coordination mechanism that is mediated by the ribosomal protein L9. We propose that an extended conformation of L9 within polysomes mitigates collisions to facilitate translation fidelity. Our work thus demonstrates the feasibility of visualizing molecular processes at atomic detail inside cells.
Collapse
Affiliation(s)
- Liang Xue
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Swantje Lenz
- Chair of Bioanalytics, Technische Universität Berlin, Berlin, Germany
| | - Maria Zimmermann-Kogadeeva
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dimitry Tegunov
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Yonsei Frontier Lab, Yonsei University, Seoul, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Juri Rappsilber
- Chair of Bioanalytics, Technische Universität Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
15
|
Huang S, Bhattacharya A, Ghelfi MD, Li H, Fritsch C, Chenoweth DM, Goldman YE, Cooperman BS. Ataluren binds to multiple protein synthesis apparatus sites and competitively inhibits release factor-dependent termination. Nat Commun 2022; 13:2413. [PMID: 35523781 PMCID: PMC9076611 DOI: 10.1038/s41467-022-30080-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic diseases are often caused by nonsense mutations, but only one TRID (translation readthrough inducing drug), ataluren, has been approved for clinical use. Ataluren inhibits release factor complex (RFC) termination activity, while not affecting productive binding of near-cognate ternary complex (TC, aa-tRNA.eEF1A.GTP). Here we use photoaffinity labeling to identify two sites of ataluren binding within rRNA, proximal to the decoding center (DC) and the peptidyl transfer center (PTC) of the ribosome, which are directly responsible for ataluren inhibition of termination activity. A third site, within the RFC, has as yet unclear functional consequences. Using single molecule and ensemble fluorescence assays we also demonstrate that termination proceeds via rapid RFC-dependent hydrolysis of peptidyl-tRNA followed by slow release of peptide and tRNA from the ribosome. Ataluren is an apparent competitive inhibitor of productive RFC binding, acting at or before the hydrolysis step. We propose that designing more potent TRIDs which retain ataluren's low toxicity should target areas of the RFC binding site proximal to the DC and PTC which do not overlap the TC binding site.
Collapse
Affiliation(s)
- Shijie Huang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- GSK, 14200 Shady Grove Rd, Rockville, MD, 20850, USA
| | - Arpan Bhattacharya
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mikel D Ghelfi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hong Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clark Fritsch
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yale E Goldman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Lin J, Shorter J, Lucius AL. AAA+ proteins: one motor, multiple ways to work. Biochem Soc Trans 2022; 50:895-906. [PMID: 35356966 PMCID: PMC9115847 DOI: 10.1042/bst20200350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Numerous ATPases associated with diverse cellular activities (AAA+) proteins form hexameric, ring-shaped complexes that function via ATPase-coupled translocation of substrates across the central channel. Cryo-electron microscopy of AAA+ proteins processing substrate has revealed non-symmetric, staircase-like hexameric structures that indicate a sequential clockwise/2-residue step translocation model for these motors. However, for many of the AAA+ proteins that share similar structural features, their translocation properties have not yet been experimentally determined. In the cases where translocation mechanisms have been determined, a two-residue translocation step-size has not been resolved. In this review, we explore Hsp104, ClpB, ClpA and ClpX as examples to review the experimental methods that have been used to examine, in solution, the translocation mechanisms employed by AAA+ motor proteins. We then ask whether AAA+ motors sharing similar structural features can have different translocation mechanisms. Finally, we discuss whether a single AAA+ motor can adopt multiple translocation mechanisms that are responsive to different challenges imposed by the substrate or the environment. We suggest that AAA+ motors adopt more than one translocation mechanism and are tuned to switch to the most energetically efficient mechanism when constraints are applied.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
17
|
Carbone CE, Loveland AB, Gamper HB, Hou YM, Demo G, Korostelev AA. Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP. Nat Commun 2021; 12:7236. [PMID: 34903725 PMCID: PMC8668904 DOI: 10.1038/s41467-021-27415-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
During translation, a conserved GTPase elongation factor-EF-G in bacteria or eEF2 in eukaryotes-translocates tRNA and mRNA through the ribosome. EF-G has been proposed to act as a flexible motor that propels tRNA and mRNA movement, as a rigid pawl that biases unidirectional translocation resulting from ribosome rearrangements, or by various combinations of motor- and pawl-like mechanisms. Using time-resolved cryo-EM, we visualized GTP-catalyzed translocation without inhibitors, capturing elusive structures of ribosome•EF-G intermediates at near-atomic resolution. Prior to translocation, EF-G binds near peptidyl-tRNA, while the rotated 30S subunit stabilizes the EF-G GTPase center. Reverse 30S rotation releases Pi and translocates peptidyl-tRNA and EF-G by ~20 Å. An additional 4-Å translocation initiates EF-G dissociation from a transient ribosome state with highly swiveled 30S head. The structures visualize how nearly rigid EF-G rectifies inherent and spontaneous ribosomal dynamics into tRNA-mRNA translocation, whereas GTP hydrolysis and Pi release drive EF-G dissociation.
Collapse
Affiliation(s)
| | - Anna B Loveland
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
| | - Howard B Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA.
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| | | |
Collapse
|
18
|
Han MJ, He QT, Yang M, Chen C, Yao Y, Liu X, Wang Y, Zhu ZL, Zhu KK, Qu C, Yang F, Hu C, Guo X, Zhang D, Chen C, Sun JP, Wang J. Single-molecule FRET and conformational analysis of beta-arrestin-1 through genetic code expansion and a Se-click reaction. Chem Sci 2021; 12:9114-9123. [PMID: 34276941 PMCID: PMC8261736 DOI: 10.1039/d1sc02653d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/02/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for investigating the dynamic properties of biomacromolecules. However, the success of protein smFRET relies on the precise and efficient labeling of two or more fluorophores on the protein of interest (POI), which has remained highly challenging, particularly for large membrane protein complexes. Here, we demonstrate the site-selective incorporation of a novel unnatural amino acid (2-amino-3-(4-hydroselenophenyl) propanoic acid, SeF) through genetic expansion followed by a Se-click reaction to conjugate the Bodipy593 fluorophore on calmodulin (CaM) and β-arrestin-1 (βarr1). Using this strategy, we monitored the subtle but functionally important conformational change of βarr1 upon activation by the G-protein coupled receptor (GPCR) through smFRET for the first time. Our new method has broad applications for the site-specific labeling and smFRET measurement of membrane protein complexes, and the elucidation of their dynamic properties such as transducer protein selection.
Collapse
Affiliation(s)
- Ming-Jie Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin Airport Economic Area Tianjin 300308 China
| | - Qing-Tao He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University 44 Wenhua Xi Road Jinan 250012 Shandong China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education Haidian District Beijing 100191 China
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
| | - Mengyi Yang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Haidian District Beijing 100084 China
| | - Chao Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin Airport Economic Area Tianjin 300308 China
- University of the Chinese Academy of Sciences (UCAS) Shijingshan District Beijing 100049 China
| | - Yirong Yao
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Haidian District Beijing 100084 China
| | - Xiaohong Liu
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
| | - Yuchuan Wang
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center Futian District Shenzhen 518052 China
| | - Zhong-Liang Zhu
- School of Life Sciences, University of Science and Technology of China Baohe District Anhui 230026 China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan Jinan Shandong 250022 China
| | - Changxiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University 44 Wenhua Xi Road Jinan 250012 Shandong China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University 44 Wenhua Xi Road Jinan 250012 Shandong China
| | - Cheng Hu
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
| | - Xuzhen Guo
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin Airport Economic Area Tianjin 300308 China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Haidian District Beijing 100084 China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University 44 Wenhua Xi Road Jinan 250012 Shandong China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education Haidian District Beijing 100191 China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
- University of the Chinese Academy of Sciences (UCAS) Shijingshan District Beijing 100049 China
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center Futian District Shenzhen 518052 China
| |
Collapse
|
19
|
Site-Specific Fluorescent Labeling of RNA Interior Positions. Molecules 2021; 26:molecules26051341. [PMID: 33802273 PMCID: PMC7959133 DOI: 10.3390/molecules26051341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023] Open
Abstract
The introduction of fluorophores into RNA for both in vitro and in cellulo studies of RNA function and cellular distribution is a subject of great current interest. Here I briefly review methods, some well-established and others newly developed, which have been successfully exploited to site-specifically fluorescently label interior positions of RNAs, as a guide to investigators seeking to apply this approach to their studies. Most of these methods can be applied directly to intact RNAs, including (1) the exploitation of natural posttranslational modifications, (2) the repurposing of enzymatic transferase reactions, and (3) the nucleic acid-assisted labeling of intact RNAs. In addition, several methods are described in which specifically labeled RNAs are prepared de novo.
Collapse
|
20
|
Abstract
Peptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2-20 per second) and with a low error rate (around 10-3 to 10-5 at each step) over thousands of cycles1. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a paradigm for movement in biological systems that must hold for diverse mRNA and tRNA substrates across domains of life. Here we use single-molecule fluorescence methods to guide the capture of structures of early translocation events on the bacterial ribosome. Our findings reveal that the bacterial GTPase elongation factor G specifically engages spontaneously achieved ribosome conformations while in an active, GTP-bound conformation to unlock and initiate peptidyl-tRNA translocation. These findings suggest that processes intrinsic to the pre-translocation ribosome complex can regulate the rate of protein synthesis, and that energy expenditure is used later in the translocation mechanism than previously proposed.
Collapse
|
21
|
Chen KY, Jamiolkowski RM, Tate AM, Fiorenza SA, Pfeil SH, Goldman YE. Fabrication of Zero Mode Waveguides for High Concentration Single Molecule Microscopy. J Vis Exp 2020:10.3791/61154. [PMID: 32478723 PMCID: PMC9020539 DOI: 10.3791/61154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In single molecule fluorescence enzymology, background fluorescence from labeled substrates in solution often limits fluorophore concentration to pico- to nanomolar ranges, several orders of magnitude less than many physiological ligand concentrations. Optical nanostructures called zero mode waveguides (ZMWs), which are 100-200 nm in diameter apertures fabricated in a thin conducting metal such as aluminum or gold, allow imaging of individual molecules at micromolar concentrations of fluorophores by confining visible light excitation to zeptoliter effective volumes. However, the need for expensive and specialized nanofabrication equipment has precluded the widespread use of ZMWs. Typically, nanostructures such as ZMWs are obtained by direct writing using electron beam lithography, which is sequential and slow. Here, colloidal, or nanosphere, lithography is used as an alternative strategy to create nanometer-scale masks for waveguide fabrication. This report describes the approach in detail, with practical considerations for each phase. The method allows thousands of aluminum or gold ZMWs to be made in parallel, with final waveguide diameters and depths of 100-200 nm. Only common lab equipment and a thermal evaporator for metal deposition are required. By making ZMWs more accessible to the biochemical community, this method can facilitate the study of molecular processes at cellular concentrations and rates.
Collapse
Affiliation(s)
- Kevin Y Chen
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania
| | - Ryan M Jamiolkowski
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania
| | - Alyssa M Tate
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania
| | | | | | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania;
| |
Collapse
|
22
|
Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLoS One 2019; 14:e0222964. [PMID: 31600217 PMCID: PMC6786550 DOI: 10.1371/journal.pone.0222964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022] Open
Abstract
In single molecule fluorescence studies, background emission from labeled substrates often restricts their concentrations to non-physiological nanomolar values. One approach to address this challenge is the use of zero-mode waveguides (ZMWs), nanoscale holes in a thin metal film that physically and optically confine the observation volume allowing much higher concentrations of fluorescent substrates. Standard fabrication of ZMWs utilizes slow and costly E-beam nano-lithography. Herein, ZMWs are made using a self-assembled mask of polystyrene microspheres, enabling fabrication of thousands of ZMWs in parallel without sophisticated equipment. Polystyrene 1 μm dia. microbeads self-assemble on a glass slide into a hexagonal array, forming a mask for the deposition of metallic posts in the inter-bead interstices. The width of those interstices (and subsequent posts) is adjusted within 100–300 nm by partially fusing the beads at the polystyrene glass transition temperature. The beads are dissolved in toluene, aluminum or gold cladding is deposited around the posts, and those are dissolved, leaving behind an array ZMWs. Parameter optimization and the performance of the ZMWs are presented. By using colloidal self-assembly, typical laboratories can make use of sub-wavelength ZMW technology avoiding the availability and expense of sophisticated clean-room environments and equipment.
Collapse
|
23
|
Combining Neutron Scattering, Deuteration Technique, and Molecular Dynamics Simulations to Study Dynamics of Protein and Its Surface Water Molecules. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2312-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Wu B, Zhang H, Sun R, Peng S, Cooperman BS, Goldman YE, Chen C. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots. Nucleic Acids Res 2019; 46:9736-9748. [PMID: 30011005 PMCID: PMC6182138 DOI: 10.1093/nar/gky636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022] Open
Abstract
Downstream stable mRNA secondary structures can stall elongating ribosomes by impeding the concerted movements of tRNAs and mRNA on the ribosome during translocation. The addition of a downstream mRNA structure, such as a stem-loop or a pseudoknot, is essential to induce -1 programmed ribosomal frameshifting (-1 PRF). Interestingly, previous studies revealed that -1 PRF efficiencies correlate with conformational plasticity of pseudoknots, defined as their propensity to form incompletely folded structures, rather than with the mechanical properties of pseudoknots. To elucidate the detailed molecular mechanisms of translocation and -1 PRF, we applied several smFRET assays to systematically examine how translocation rates and conformational dynamics of ribosomes were affected by different pseudoknots. Our results show that initial pseudoknot-unwinding significantly inhibits late-stage translocation and modulates conformational dynamics of ribosomal post-translocation complexes. The effects of pseudoknots on the structural dynamics of ribosomes strongly correlate with their abilities to induce -1 PRF. Our results lead us to propose a kinetic scheme for translocation which includes an initial power-stroke step and a following thermal-ratcheting step. This scheme provides mechanistic insights on how selective modulation of late-stage translocation by pseudoknots affects -1 PRF. Overall our findings advance current understanding of translocation and ribosome-induced mRNA structure unwinding.
Collapse
Affiliation(s)
- Bo Wu
- School of Life Sciences; Tsinghua-Peking Joint Center for Life Sciences; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Haibo Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.,Spark Therapeutics, 3737 Market Street, Philadelphia, PA, 19104, USA
| | - Ruirui Sun
- School of Life Sciences; Tsinghua-Peking Joint Center for Life Sciences; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Sijia Peng
- School of Life Sciences; Tsinghua-Peking Joint Center for Life Sciences; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yale E Goldman
- Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chunlai Chen
- School of Life Sciences; Tsinghua-Peking Joint Center for Life Sciences; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Kavaliauskas D, Chen C, Liu W, Cooperman BS, Goldman YE, Knudsen CR. Structural dynamics of translation elongation factor Tu during aa-tRNA delivery to the ribosome. Nucleic Acids Res 2019; 46:8651-8661. [PMID: 30107527 PMCID: PMC6144866 DOI: 10.1093/nar/gky651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Abstract
The GTPase elongation factor EF-Tu delivers aminoacyl-tRNAs to the mRNA-programmed ribosome during translation. Cognate codon-anticodon interaction stimulates GTP hydrolysis within EF-Tu. It has been proposed that EF-Tu undergoes a large conformational change subsequent to GTP hydrolysis, which results in the accommodation of aminoacyl-tRNA into the ribosomal A-site. However, this proposal has never been tested directly. Here, we apply single-molecule total internal reflection fluorescence microscopy to study the conformational dynamics of EF-Tu when bound to the ribosome. Our studies show that GTP hydrolysis initiates a partial, comparatively small conformational change of EF-Tu on the ribosome, not directly along the path from the solution 'GTP' to the 'GDP' structure. The final motion is completed either concomitant with or following dissociation of EF-Tu from the ribosome. The structural transition of EF-Tu on the ribosome is slower when aa-tRNA binds to a cognate versus a near-cognate codon. The resulting longer residence time of EF-Tu on the ribosome may be important for promoting accommodation of the cognate aminoacyl-tRNA into the A-site.
Collapse
Affiliation(s)
- Darius Kavaliauskas
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Chunlai Chen
- Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yale E Goldman
- Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
26
|
Studying ribosome dynamics with simplified models. Methods 2019; 162-163:128-140. [DOI: 10.1016/j.ymeth.2019.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/24/2022] Open
|
27
|
Caporizzo MA, Fishman CE, Sato O, Jamiolkowski RM, Ikebe M, Goldman YE. The Antiparallel Dimerization of Myosin X Imparts Bundle Selectivity for Processive Motility. Biophys J 2019; 114:1400-1410. [PMID: 29590597 DOI: 10.1016/j.bpj.2018.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Myosin X is an unconventional actin-based molecular motor involved in filopodial formation, microtubule-actin filament interaction, and cell migration. Myosin X is an important component of filopodia regulation, localizing to tips of growing filopodia by an unclear targeting mechanism. The native α-helical dimerization domain of myosin X is thought to associate with antiparallel polarity of the two amino acid chains, making myosin X the only myosin that is currently considered to form antiparallel dimers. This study aims to determine if antiparallel dimerization of myosin X imparts selectivity toward actin bundles by comparing the motility of parallel and antiparallel dimers of myosin X on single and fascin-bundled actin filaments. Antiparallel myosin X dimers exhibit selective processivity on fascin-bundled actin and are only weakly processive on single actin filaments below saturating [ATP]. Artificial forced parallel dimers of myosin X are robustly processive on both single and bundled actin, exhibiting no selectivity. To determine the relationship between gating of the reaction steps and observed differences in motility, a mathematical model was developed to correlate the parameters of motility with the biochemical and mechanical kinetics of the dimer. Results from the model, constrained by experimental data, suggest that the probability of binding forward, toward the barbed end of the actin filament, is lower in antiparallel myosin X on single actin filaments compared to fascin-actin bundles and compared to constructs of myosin X with parallel dimerization.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claire E Fishman
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Osamu Sato
- Department of Cellular and Molecular Biology, University of Texas Science Center, Tyler, Texas
| | - Ryan M Jamiolkowski
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Science Center, Tyler, Texas
| | - Yale E Goldman
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
28
|
Abstract
In the past 4 years, because of the advent of new cameras, many ribosome structures have been solved by cryoelectron microscopy (cryo-EM) at high, often near-atomic resolution, bringing new mechanistic insights into the processes of translation initiation, peptide elongation, termination, and recycling. Thus, cryo-EM has joined X-ray crystallography as a powerful technique in structural studies of translation. The significance of this new development is that structures of ribosomes in complex with their functional binding partners can now be determined to high resolution in multiple states as they perform their work. The aim of this article is to provide an overview of these new studies and assess the contributions they have made toward an understanding of translation and translational control.
Collapse
|
29
|
Ng M, Zhang H, Weil A, Singh V, Jamiolkowski R, Baradaran-Heravi A, Roberge M, Jacobson A, Friesen W, Welch E, Goldman YE, Cooperman BS. New in Vitro Assay Measuring Direct Interaction of Nonsense Suppressors with the Eukaryotic Protein Synthesis Machinery. ACS Med Chem Lett 2018; 9:1285-1291. [PMID: 30613341 PMCID: PMC6295867 DOI: 10.1021/acsmedchemlett.8b00472] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Nonsense suppressors (NonSups) induce "readthrough", i.e., the selection of near cognate tRNAs at premature termination codons and insertion of the corresponding amino acid into nascent polypeptide. Prior readthrough measurements utilized contexts in which NonSups can promote readthrough directly, by binding to one or more of the components of the protein synthesis machinery, or indirectly, by several other mechanisms. Here we utilize a new, highly purified in vitro assay to measure exclusively direct nonsense suppressor-induced readthrough. Of 16 NonSups tested, 12 display direct readthrough, with results suggesting that such NonSups act by at least two different mechanisms. In preliminary work we demonstrate the potential of single molecule fluorescence energy transfer measurements to elucidate mechanisms of NonSup-induced direct readthrough, which will aid efforts to identify NonSups having improved clinical efficacy.
Collapse
Affiliation(s)
- Martin
Y. Ng
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Haibo Zhang
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amy Weil
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vijay Singh
- Department
of Physiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ryan Jamiolkowski
- Department
of Physiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alireza Baradaran-Heravi
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Michel Roberge
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Allan Jacobson
- Department
of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Westley Friesen
- PTC
Therapeutics, 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Ellen Welch
- PTC
Therapeutics, 100 Corporate Court, South Plainfield, New Jersey 07080, United States
| | - Yale E. Goldman
- Department
of Physiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Barry S. Cooperman
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
30
|
Peng S, Sun R, Wang W, Chen C. Single-molecule FRET studies on interactions between elongation factor 4 (LepA) and ribosomes. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Abstract
This review summarizes our current understanding of translation in prokaryotes, focusing on the mechanistic and structural aspects of each phase of translation: initiation, elongation, termination, and ribosome recycling. The assembly of the initiation complex provides multiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon-anticodon interaction during the decoding phase of elongation results in major conformational changes of the small ribosomal subunit and shapes the reaction pathway of guanosine triphosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond formation, but requires the help of elongation factor P (EF-P) when two or more consecutive Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA) and mRNA movements during translocation helps to place the available structures of translocation intermediates onto the time axis of the reaction pathway. The nascent protein begins to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribosome. When a stop codon is reached at the end of the coding sequence, the ribosome, assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby releasing the nascent protein. Following termination, the ribosome is dissociated into subunits and recycled into another round of initiation. At each step of translation, the ribosome undergoes dynamic fluctuations between different conformation states. The aim of this article is to show the link between ribosome structure, dynamics, and function.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| |
Collapse
|
32
|
Shi XX, Chen H, Xie P. Dynamics of tRNA dissociation in early and later cycles of translation elongation by the ribosome. Biosystems 2018; 172:43-51. [PMID: 30184468 DOI: 10.1016/j.biosystems.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022]
Abstract
Deacylated tRNA dissociation from E site and aminoacyl-tRNA binding to the A site of the ribosome play a critical role in repetitive cycles of protein synthesis. Available experimental data showed that in the small range of aminoacyl-tRNA concentrations, during the first few cycles of translation elongation (initiation phase of translation) the E-site tRNA can be dissociated either before or after the A-site tRNA binding, while during the later cycles of elongation (elongation phase) the E-site tRNA is mostly dissociated before the A-site tRNA binding. Here, based on our proposed model of translation elongation we study analytically the dynamics of the E-site tRNA dissociation and A-site tRNA binding, providing quantitative explanations of the available experimental data in both the initiation and elongation phases. In our model there exist two routes of state transitions within an elongation cycle in the initiation phase, with each route having stochastic E-site tRNA dissociation but with different dissociation rates. Thus, the E-site tRNA dissociation is governed by a stochastic competition between the tRNA dissociation and A-site tRNA association reactions, although in the small range of aminoacyl-tRNA concentrations used in the experiments it seems that such stochastic competition does not exist. Moreover, the detailed comparisons between the dynamics of tRNA dissociation in the initiation phase and that in the elongation phase are made.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China; Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China
| | - Ping Xie
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China; Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
33
|
Adio S, Sharma H, Senyushkina T, Karki P, Maracci C, Wohlgemuth I, Holtkamp W, Peske F, Rodnina MV. Dynamics of ribosomes and release factors during translation termination in E. coli. eLife 2018; 7:34252. [PMID: 29889659 PMCID: PMC5995542 DOI: 10.7554/elife.34252] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/11/2018] [Indexed: 12/28/2022] Open
Abstract
Release factors RF1 and RF2 promote hydrolysis of peptidyl-tRNA during translation termination. The GTPase RF3 promotes recycling of RF1 and RF2. Using single molecule FRET and biochemical assays, we show that ribosome termination complexes that carry two factors, RF1–RF3 or RF2–RF3, are dynamic and fluctuate between non-rotated and rotated states, whereas each factor alone has its distinct signature on ribosome dynamics and conformation. Dissociation of RF1 depends on peptide release and the presence of RF3, whereas RF2 can dissociate spontaneously. RF3 binds in the GTP-bound state and can rapidly dissociate without GTP hydrolysis from termination complex carrying RF1. In the absence of RF1, RF3 is stalled on ribosomes if GTP hydrolysis is blocked. Our data suggest how the assembly of the ribosome–RF1–RF3–GTP complex, peptide release, and ribosome fluctuations promote termination of protein synthesis and recycling of the release factors. Inside cells, molecular machines called ribosomes make proteins using messenger RNA as a template. However, the template contains more than just the information needed to create the protein. A ‘stop codon’ in the mRNA marks where the ribosome should stop. When this is reached a group of proteins called release factors removes the newly made protein from the ribosome. Bacteria typically have three types of release factors. RF1 and RF2 recognize the stop codon, and RF3 helps to release RF1 or RF2 from the ribosome so that it can be recycled to produce another protein. It was not fully understood how the release factors interact with the ribosome and how this terminates protein synthesis. Adio et al. used TIRF microscopy to study individual ribosomes from the commonly studied bacteria species Escherichia coli. This technique allows researchers to monitor movements of the ribosome and record how release factors bind to it. The results of the experiments performed by Adio et al. show that although RF1 and RF2 are very similar to each other, they interact with the ribosome in different ways. In addition, only RF1 relies upon RF3 to release it from the ribosome; RF2 can release itself. RF3 releases RF1 by forcing the ribosome to change shape. RF3 then uses energy produced by the breakdown of a molecule called GTP to help release itself from the ribosome. Most importantly, the findings presented by Adio et al. highlight that the movements of ribosomes and release factors during termination are only loosely coupled rather than occur in a set order. Other molecular machines are likely to work in a similar way. The results could also help us to understand the molecular basis of several human diseases, such as Duchenne muscular dystrophy and cystic fibrosis, that result from ribosomes not recognizing stop codons in the mRNA.
Collapse
Affiliation(s)
- Sarah Adio
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Heena Sharma
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
34
|
Ray S, Widom JR, Walter NG. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Chem Rev 2018; 118:4120-4155. [PMID: 29363314 PMCID: PMC5918467 DOI: 10.1021/acs.chemrev.7b00519] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.
Collapse
Affiliation(s)
| | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Post-termination Ribosome Intermediate Acts as the Gateway to Ribosome Recycling. Cell Rep 2018; 20:161-172. [PMID: 28683310 DOI: 10.1016/j.celrep.2017.06.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/06/2017] [Accepted: 06/09/2017] [Indexed: 01/24/2023] Open
Abstract
During termination of translation, the nascent peptide is first released from the ribosome, which must be subsequently disassembled into subunits in a process known as ribosome recycling. In bacteria, termination and recycling are mediated by the translation factors RF, RRF, EF-G, and IF3, but their precise roles have remained unclear. Here, we use single-molecule fluorescence to track the conformation and composition of the ribosome in real time during termination and recycling. Our results show that peptide release by RF induces a rotated ribosomal conformation. RRF binds to this rotated intermediate to form the substrate for EF-G that, in turn, catalyzes GTP-dependent subunit disassembly. After the 50S subunit departs, IF3 releases the deacylated tRNA from the 30S subunit, thus preventing reassembly of the 70S ribosome. Our findings reveal the post-termination rotated state as the crucial intermediate in the transition from termination to recycling.
Collapse
|
36
|
Makarova TM, Bogdanov AA. The Ribosome as an Allosterically Regulated Molecular Machine. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523059 DOI: 10.1134/s0006297917130016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribosome as a complex molecular machine undergoes significant conformational rearrangements during the synthesis of polypeptide chains of proteins. In this review, information obtained using various experimental methods on the internal consistency of such rearrangements is discussed. It is demonstrated that allosteric regulation involves all the main stages of the operation of the ribosome and connects functional elements remote by tens and even hundreds of angstroms. Data obtained using Förster resonance energy transfer (FRET) show that translocation is controlled in general by internal mechanisms of the ribosome, and not by the position of the ligands. Chemical probing data revealed the relationship of such remote sites as the decoding, peptidyl transferase, and GTPase centers of the ribosome. Nevertheless, despite the large amount of experimental data accumulated to date, many details and mechanisms of these phenomena are still not understood. Analysis of these data demonstrates that the development of new approaches is necessary for deciphering the mechanisms of allosteric regulation of the operation of the ribosome.
Collapse
Affiliation(s)
- T M Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | |
Collapse
|
37
|
Susorov D, Zakharov N, Shuvalova E, Ivanov A, Egorova T, Shuvalov A, Shatsky IN, Alkalaeva E. Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome. J Biol Chem 2018; 293:5220-5229. [PMID: 29453282 DOI: 10.1074/jbc.ra117.000761] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/22/2018] [Indexed: 01/10/2023] Open
Abstract
During protein synthesis, a ribosome moves along the mRNA template and, using aminoacyl-tRNAs, decodes the template nucleotide triplets to assemble a protein amino acid sequence. This movement is accompanied by shifting of mRNA-tRNA complexes within the ribosome in a process called translocation. In living cells, this process proceeds in a unidirectional manner, bringing the ribosome to the 3' end of mRNA, and is catalyzed by the GTPase translation elongation factor 2 (EF-G in prokaryotes and eEF2 in eukaryotes). Interestingly, the possibility of spontaneous backward translocation has been shown in vitro for bacterial ribosomes, suggesting a potential reversibility of this reaction. However, this possibility has not yet been tested for eukaryotic ribosomes. Here, using a reconstituted mammalian translation system, we show that the eukaryotic elongation factor eEF2 catalyzes ribosomal reverse translocation at one mRNA triplet. We found that this process requires a cognate tRNA in the ribosomal E-site and cannot occur spontaneously without eEF2. The efficiency of this reaction depended on the concentrations of eEF2 and cognate tRNAs and increased in the presence of nonhydrolyzable GTP analogues. Of note, ADP-ribosylation of eEF2 domain IV blocked reverse translocation, suggesting a crucial role of interactions of this domain with the ribosome for the catalysis of the reaction. In summary, our findings indicate that eEF2 is able to induce ribosomal translocation in forward and backward directions, highlighting the universal mechanism of tRNA-mRNA movements within the ribosome.
Collapse
Affiliation(s)
- Denis Susorov
- From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,the Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Nikita Zakharov
- the Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia 141700
| | - Ekaterina Shuvalova
- From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander Ivanov
- From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,the Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Tatiana Egorova
- From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,the Pirogov Russian National Research Medical University, Moscow 117997, Russia, and
| | - Alexey Shuvalov
- From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ivan N Shatsky
- the Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Elena Alkalaeva
- From the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia,
| |
Collapse
|
38
|
Jamiolkowski RM, Chen C, Cooperman BS, Goldman YE. tRNA Fluctuations Observed on Stalled Ribosomes Are Suppressed during Ongoing Protein Synthesis. Biophys J 2018; 113:2326-2335. [PMID: 29211986 DOI: 10.1016/j.bpj.2017.08.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 01/13/2023] Open
Abstract
The pretranslocation complex of the ribosome can undergo spontaneous fluctuations of messenger RNA and transfer RNAs (tRNAs) between classical and hybrid states, and occupation of the hybrid tRNA positions has been proposed to precede translocation. The classical and hybrid state tRNA positions have been extensively characterized when the ribosome is stalled along the messenger RNA by either the absence or delayed addition of elongation factor G (EF-G), or by the presence of antibiotics or GTP analogs that block translocation. However, during multiple ongoing elongation cycles when both EF-G and ternary complexes are present, EF-G can bind to the pretranslocation complex much faster than the timescale of the classic-hybrid transitions. Using single-molecule fluorescence resonance energy transfer between adjacent tRNAs and between A-site tRNA and ribosomal protein L11, we found that the tRNAs do not fluctuate between the hybrid and classical states, but instead adopt a position with fluorescence resonance energy transfer efficiencies between those of the stalled classical and hybrid states.
Collapse
Affiliation(s)
- Ryan M Jamiolkowski
- Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chunlai Chen
- Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Lai WJC, Ermolenko DN. Ensemble and single-molecule FRET studies of protein synthesis. Methods 2017; 137:37-48. [PMID: 29247758 DOI: 10.1016/j.ymeth.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022] Open
Abstract
Protein synthesis is a complex, multi-step process that involves large conformational changes of the ribosome and protein factors of translation. Over the last decade, Förster resonance energy transfer (FRET) has become instrumental for studying structural rearrangements of the translational apparatus. Here, we discuss the design of ensemble and single-molecule (sm) FRET assays of translation. We describe a number of experimental strategies that can be used to introduce fluorophores into the ribosome, tRNA, mRNA and protein factors of translation. Alternative approaches to tethering of translation components to the microscope slide in smFRET experiments are also reviewed. Finally, we discuss possible challenges in the interpretation of FRET data and ways to address these challenges.
Collapse
Affiliation(s)
- Wan-Jung C Lai
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States.
| |
Collapse
|
40
|
Ribosome structural dynamics in translocation: yet another functional role for ribosomal RNA. Q Rev Biophys 2017; 50:e12. [DOI: 10.1017/s0033583517000117] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractRibosomes are remarkable ribonucleoprotein complexes that are responsible for protein synthesis in all forms of life. They polymerize polypeptide chains programmed by nucleotide sequences in messenger RNA in a mechanism mediated by transfer RNA. One of the most challenging problems in the ribosome field is to understand the mechanism of coupled translocation of mRNA and tRNA during the elongation phase of protein synthesis. In recent years, the results of structural, biophysical and biochemical studies have provided extensive evidence that translocation is based on the structural dynamics of the ribosome itself. Detailed structural analysis has shown that ribosome dynamics, like aminoacyl-tRNA selection and catalysis of peptide bond formation, is made possible by the properties of ribosomal RNA.
Collapse
|
41
|
Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position. Molecules 2017; 22:molecules22091427. [PMID: 28850078 PMCID: PMC5753802 DOI: 10.3390/molecules22091427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023] Open
Abstract
Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5′- and 3′-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix.
Collapse
|
42
|
Substrate Oxide Layer Thickness Optimization for a Dual-Width Plasmonic Grating for Surface-Enhanced Raman Spectroscopy (SERS) Biosensor Applications. SENSORS 2017; 17:s17071530. [PMID: 28665308 PMCID: PMC5539500 DOI: 10.3390/s17071530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022]
Abstract
This work investigates a new design for a plasmonic SERS biosensor via computational electromagnetic models. It utilizes a dual-width plasmonic grating design, which has two different metallic widths per grating period. These types of plasmonic gratings have shown larger optical enhancement than standard single-width gratings. The new structures have additional increased enhancement when the spacing between the metal decreases to sub-10 nm dimensions. This work integrates an oxide layer to improve the enhancement even further by carefully studying the effects of the substrate oxide thickness on the enhancement and reports ideal substrate parameters. The combined effects of varying the substrate and the grating geometry are studied to fully optimize the device’s enhancement for SERS biosensing and other plasmonic applications. The work reports the ideal widths and substrate thickness for both a standard and a dual-width plasmonic grating SERS biosensor. The ideal geometry, comprising a dual-width grating structure atop an optimal SiO2 layer thickness, improves the enhancement by 800%, as compared to non-optimized structures with a single-width grating and a non-optimal oxide thickness.
Collapse
|
43
|
Lewis JH, Jamiolkowski RM, Woody MS, Ostap EM, Goldman YE. Deconvolution of Camera Instrument Response Functions. Biophys J 2017; 112:1214-1220. [PMID: 28355548 DOI: 10.1016/j.bpj.2017.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 02/03/2023] Open
Abstract
Temporal sequences of fluorescence intensities in single-molecule experiments are often obtained from stacks of camera images. The dwell times of different macromolecular structural or functional states, correlated with characteristic fluorescence intensities, are extracted from the images and combined into dwell time distributions that are fitted by kinetic functions to extract corresponding rate constants. The frame rate of the camera limits the time resolution of the experiment and thus the fastest rate processes that can be reliably detected and quantified. However, including the influence of discrete sampling (framing) on the detected time series in the fitted model enables rate processes near to the frame rate to be reliably estimated. This influence, similar to the instrument response function in other types of instruments, such as pulsed emission decay fluorometers, is easily incorporated into the fitted model. The same concept applies to any temporal data that is low-pass filtered or decimated to improve signal to noise ratio.
Collapse
Affiliation(s)
- John H Lewis
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan M Jamiolkowski
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Woody
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - E Michael Ostap
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yale E Goldman
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
44
|
Belardinelli R, Sharma H, Peske F, Wintermeyer W, Rodnina MV. Translocation as continuous movement through the ribosome. RNA Biol 2016; 13:1197-1203. [PMID: 27801619 DOI: 10.1080/15476286.2016.1240140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In each round of translation elongation, tRNAs and mRNA move within the ribosome by one codon at a time. tRNA-mRNA translocation is promoted by elongation factor G (EF-G) at the cost of GTP hydrolysis. The key questions for understanding translocation are how and when the tRNAs move and how EF-G coordinates motions of the ribosomal subunits with tRNA movement. Here we present 2 recent papers which describe the choreography of movements over the whole trajectory of translocation. We present the view that EF-G accelerates translocation by promoting the steps that lead to GTPase-dependent ribosome unlocking. EF-G facilitates the formation of the rotated state of the ribosome and uncouples the backward motions of the ribosomal subunits, forming an open conformation in which the tRNAs can rapidly move. Ribosome dynamics are important not only in translocation, but also in recoding events, such as frameshifting and bypassing, and mediate sensitivity to antibiotics.
Collapse
Affiliation(s)
- Riccardo Belardinelli
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| | - Heena Sharma
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| | - Frank Peske
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| | - Wolfgang Wintermeyer
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| | - Marina V Rodnina
- a Max Planck Institute for Biophysical Chemistry , Department of Physical Biochemistry , Göttingen , Germany
| |
Collapse
|
45
|
Sharma H, Adio S, Senyushkina T, Belardinelli R, Peske F, Rodnina MV. Kinetics of Spontaneous and EF-G-Accelerated Rotation of Ribosomal Subunits. Cell Rep 2016; 16:2187-2196. [PMID: 27524615 DOI: 10.1016/j.celrep.2016.07.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/30/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022] Open
Abstract
Ribosome dynamics play an important role in translation. The rotation of the ribosomal subunits relative to one another is essential for tRNA-mRNA translocation. An important unresolved question is whether subunit rotation limits the rate of translocation. Here, we monitor subunit rotation relative to peptide bond formation and translocation using ensemble kinetics and single-molecule FRET. We observe that spontaneous forward subunit rotation occurs at a rate of 40 s(-1), independent of the rate of preceding peptide bond formation. Elongation factor G (EF-G) accelerates forward subunit rotation to 200 s(-1). tRNA-mRNA movement is much slower (10-40 s(-1)), suggesting that forward subunit rotation does not limit the rate of translocation. The transition back to the non-rotated state of the ribosome kinetically coincides with tRNA-mRNA movement. Thus, large-scale movements of the ribosome are intrinsically rapid and gated by its ligands such as EF-G and tRNA.
Collapse
Affiliation(s)
- Heena Sharma
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sarah Adio
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
46
|
Xie P. On the pathway of ribosomal translocation. Int J Biol Macromol 2016; 92:401-415. [PMID: 27431796 DOI: 10.1016/j.ijbiomac.2016.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Abstract
The translocation of tRNAs coupled with mRNA in the ribosome is a critical process in the elongation cycle of protein synthesis. The translocation entails large-scale conformational changes of the ribosome and involves several intermediate states with tRNAs in different positions with respect to 30S and 50S ribosomal subunits. However, the detailed role of the intermediate states is unknown and the detailed mechanism and pathway of translocation is unclear. Here based on previous structural, biochemical and single-molecule data we present a translocation pathway by incorporating several intermediate states. With the pathway, we study theoretically (i) the kinetics of 30S head rotation associated with translocation catalyzed by wild-type EF-G, (ii) the dynamics of fluctuations between different tRNA states during translocation interfered with EF-G mutants and translocation-specific antibiotics, (iii) the kinetics of tRNA movement in 50S subunit and mRNA movement in 30S subunit in the presence of wild-type EF-G, EF-G mutants and translocation-specific antibiotics, (iv) the dynamics of EF-G sampling to the ribosome during translocation, etc., providing consistent and quantitative explanations of various available biochemical and single-molecule experimental data published in the literature. Moreover, we study the kinetics of 30S head rotation in the presence of EF-G mutants, providing predicted results. These have significant implications for the molecular mechanism and pathway of ribosomal translocation.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
47
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
48
|
Elongation factor G initiates translocation through a power stroke. Proc Natl Acad Sci U S A 2016; 113:7515-20. [PMID: 27313204 DOI: 10.1073/pnas.1602668113] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During the translocation step of prokaryotic protein synthesis, elongation factor G (EF-G), a guanosine triphosphatase (GTPase), binds to the ribosomal PRE-translocation (PRE) complex and facilitates movement of transfer RNAs (tRNAs) and messenger RNA (mRNA) by one codon. Energy liberated by EF-G's GTPase activity is necessary for EF-G to catalyze rapid and precise translocation. Whether this energy is used mainly to drive movements of the tRNAs and mRNA or to foster EF-G dissociation from the ribosome after translocation has been a long-lasting debate. Free EF-G, not bound to the ribosome, adopts quite different structures in its GTP and GDP forms. Structures of EF-G on the ribosome have been visualized at various intermediate steps along the translocation pathway, using antibiotics and nonhydolyzable GTP analogs to block translocation and to prolong the dwell time of EF-G on the ribosome. However, the structural dynamics of EF-G bound to the ribosome have not yet been described during normal, uninhibited translocation. Here, we report the rotational motions of EF-G domains during normal translocation detected by single-molecule polarized total internal reflection fluorescence (polTIRF) microscopy. Our study shows that EF-G has a small (∼10°) global rotational motion relative to the ribosome after GTP hydrolysis that exerts a force to unlock the ribosome. This is followed by a larger rotation within domain III of EF-G before its dissociation from the ribosome.
Collapse
|
49
|
Zhang H, Ng MY, Chen Y, Cooperman BS. Kinetics of initiating polypeptide elongation in an IRES-dependent system. eLife 2016; 5. [PMID: 27253065 PMCID: PMC4963199 DOI: 10.7554/elife.13429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
Abstract
The intergenic IRES of Cricket Paralysis Virus (CrPV-IRES) forms a tight complex with 80S ribosomes capable of initiating the cell-free synthesis of complete proteins in the absence of initiation factors. Such synthesis raises the question of what effect the necessary IRES dissociation from the tRNA binding sites, and ultimately from all of the ribosome, has on the rates of initial peptide elongation steps as nascent peptide is formed. Here we report the first results measuring rates of reaction for the initial cycles of IRES-dependent elongation. Our results demonstrate that 1) the first two cycles of elongation proceed much more slowly than subsequent cycles, 2) these reduced rates arise from slow pseudo-translocation and translocation steps, and 3) the retarding effect of ribosome-bound IRES on protein synthesis is largely overcome following translocation of tripeptidyl-tRNA. Our results also provide a straightforward approach to detailed mechanistic characterization of many aspects of eukaryotic polypeptide elongation.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Martin Y Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Yuanwei Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
50
|
Frank J. Whither Ribosome Structure and Dynamics Research? (A Perspective). J Mol Biol 2016; 428:3565-9. [PMID: 27178840 DOI: 10.1016/j.jmb.2016.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 04/29/2016] [Indexed: 12/24/2022]
Abstract
As high-resolution cryogenic electron microscopy (cryo-EM) structures of ribosomes proliferate, at resolutions that allow atomic interactions to be visualized, this article attempts to give a perspective on the way research on ribosome structure and dynamics may be headed, and particularly the new opportunities we have gained through recent advances in cryo-EM. It is pointed out that single-molecule FRET and cryo-EM form natural complements in the characterization of ribosome dynamics and transitions among equilibrating states of in vitro translational systems.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Columbia University, 116th and Broadway, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, 650 W. 168th Street, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|