1
|
Dreyer J, Ricci G, van den Berg J, Bhardwaj V, Funk J, Armstrong C, van Batenburg V, Sine C, VanInsberghe MA, Tjeerdsma RB, Marsman R, Mandemaker IK, di Sanzo S, Costantini J, Manzo SG, Biran A, Burny C, van Vugt MATM, Völker-Albert M, Groth A, Spencer SL, van Oudenaarden A, Mattiroli F. Acute multi-level response to defective de novo chromatin assembly in S-phase. Mol Cell 2024; 84:4711-4728.e10. [PMID: 39536749 DOI: 10.1016/j.molcel.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Long-term perturbation of de novo chromatin assembly during DNA replication has profound effects on epigenome maintenance and cell fate. The early mechanistic origin of these defects is unknown. Here, we combine acute degradation of chromatin assembly factor 1 (CAF-1), a key player in de novo chromatin assembly, with single-cell genomics, quantitative proteomics, and live microscopy to uncover these initiating mechanisms in human cells. CAF-1 loss immediately slows down DNA replication speed and renders nascent DNA hyper-accessible. A rapid cellular response, distinct from canonical DNA damage signaling, is triggered and lowers histone mRNAs. In turn, histone variants' usage and their modifications are altered, limiting transcriptional fidelity and delaying chromatin maturation within a single S-phase. This multi-level response induces a p53-dependent cell-cycle arrest after mitosis. Our work reveals the immediate consequences of defective de novo chromatin assembly during DNA replication, indicating how at later times the epigenome and cell fate can be altered.
Collapse
Affiliation(s)
- Jan Dreyer
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Jeroen van den Berg
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Vivek Bhardwaj
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Janina Funk
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Claire Armstrong
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Vincent van Batenburg
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Chance Sine
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Michael A VanInsberghe
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Rinskje B Tjeerdsma
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Richard Marsman
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Imke K Mandemaker
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Simone di Sanzo
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | - Juliette Costantini
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Stefano G Manzo
- Oncode Institute, Utrecht, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Claire Burny
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark; Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexander van Oudenaarden
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
2
|
Bhatt AD, Brown MG, Wackford AB, Shindo Y, Amodeo AA. Local nuclear to cytoplasmic ratio regulates H3.3 incorporation via cell cycle state during zygotic genome activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603602. [PMID: 39071352 PMCID: PMC11275841 DOI: 10.1101/2024.07.15.603602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Early embryos often have unique chromatin states prior to zygotic genome activation (ZGA). In Drosophila, ZGA occurs after 13 reductive nuclear divisions during which the nuclear to cytoplasmic (N/C) ratio grows exponentially. Previous work found that histone H3 chromatin incorporation decreases while its variant H3.3 increases leading up to ZGA. In other cell types, H3.3 is associated with sites of active transcription and heterochromatin, suggesting a link between H3.3 and ZGA. Here, we test what factors regulate H3.3 incorporation at ZGA. We find that H3 nuclear availability falls more rapidly than H3.3 leading up to ZGA. We generate H3/H3.3 chimeric proteins at the endogenous H3.3A locus and observe that chaperone binding, but not gene structure, regulates H3.3 behavior. We identify the N/C ratio as a major determinant of H3.3 incorporation. To isolate how the N/C ratio regulates H3.3 incorporation we test the roles of genomic content, zygotic transcription, and cell cycle state. We determine that cell cycle regulation, but not H3 availability or transcription, controls H3.3 incorporation. Overall, we propose that local N/C ratios control histone variant usage via cell cycle state during ZGA.
Collapse
Affiliation(s)
- Anusha D. Bhatt
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Madeleine G. Brown
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Aurora B. Wackford
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Yuki Shindo
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A. Amodeo
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
- Lead contact
| |
Collapse
|
3
|
Roubille S, Escure T, Juillard F, Corpet A, Néplaz R, Binda O, Seurre C, Gonin M, Bloor S, Cohen C, Texier P, Haigh O, Pascual O, Ganor Y, Magdinier F, Labetoulle M, Lehner PJ, Lomonte P. The HUSH epigenetic repressor complex silences PML nuclear body-associated HSV-1 quiescent genomes. Proc Natl Acad Sci U S A 2024; 121:e2412258121. [PMID: 39589886 PMCID: PMC11626126 DOI: 10.1073/pnas.2412258121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) latently infected neurons display diverse patterns in the distribution of the viral genomes within the nucleus. A key pattern involves quiescent HSV-1 genomes sequestered in promyelocytic leukemia nuclear bodies (PML NBs) forming viral DNA-containing PML-NBs (vDCP NBs). Using a cellular model that replicates vDCP NB formation, we previously demonstrated that these viral genomes are chromatinized with the H3.3 histone variant modified on its lysine 9 by trimethylation (H3.3K9me3), a mark associated with transcriptional repression. Here, we identify the HUSH complex and its effectors, SETDB1 and MORC2, as crucial for the acquisition of H3K9me3 on PML NB-associated HSV-1 and the maintenance of HSV-1 transcriptional repression. ChIP-seq analyses show H3K9me3 association with the entire viral genome. Inactivating the HUSH-SETDB1-MORC2 complex before infection significantly reduces H3K9me3 on the viral genome, with minimal impact on the cellular genome, aside from expected changes in LINE-1 retroelements. Depletion of HUSH, SETDB1, or MORC2 alleviates HSV-1 repression in infected primary human fibroblasts and human induced pluripotent stem cell-derived sensory neurons (hiPSDN). We found that the viral protein ICP0 induces MORC2 degradation via the proteasome machinery. This process is concurrent with ICP0 and MORC2 depletion capability to reactivate silenced HSV-1 in hiPSDN. Overall, our findings underscore the robust antiviral function of the HUSH-SETDB1-MORC2 repressor complex against a herpesvirus by modulating chromatin marks linked to repression, thus presenting promising avenues for anti-herpesvirus therapeutic strategies.
Collapse
Affiliation(s)
- Simon Roubille
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| | - Tristan Escure
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| | - Franceline Juillard
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
- SupBiotech Research Department - CellTechs Laboratory, SupBiotech, Lyon69003, France
| | - Armelle Corpet
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
- Institut Universitaire de France (IUF), Paris75005, France
| | - Rémi Néplaz
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| | - Olivier Binda
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
- Faculty of Medicine Department of Cellular and Molecular Medicine University of Ottawa, Ottawa, ONK1H 8M5, Canada
| | - Coline Seurre
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| | - Mathilde Gonin
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| | - Stuart Bloor
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, CambridgeCB2 OAW, United Kingdom
| | - Camille Cohen
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
- Université Montpellier, Centre national de la recherche scientifique (CNRS) UMR5294, Laboratory of Pathogen Host Interactions (LPHI), team “GATAC-Malaria”, Montpellier34095, France
| | - Pascale Texier
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| | - Oscar Haigh
- Université Paris-Saclay, Institut national de la santé et de la recherche médicale (Inserm), U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB). Commissariat à l’Énergie Atomique et aux Énergies renouvelables (CEA), Fontenay-aux-Roses92260, France
| | - Olivier Pascual
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5284, Institut national de la santé et de la recherche médicale (Inserm) U1314, Institut NeuroMyoGène-Mechanisms in Integrated Life Sciences (INMG-MeLiS), Team “Synaptopathies et Autoanticorps”, Lyon69008, France
| | - Yonatan Ganor
- Université Paris Cité, Institut Cochin, Centre national de la recherche scientifique (CNRS) UMR 8104, Institut national de la santé et de la recherche médicale (Inserm) U1016, Paris75014, France
| | - Frédérique Magdinier
- Université Aix-Marseille, Institut national de la santé et de la recherche médicale (Inserm) U1251, Marseille Medical Genetics (MMG), team “Epigenetic and nucleoskeleton dynamics in rare diseases”, Marseille13385, France
| | - Marc Labetoulle
- Université Paris-Saclay, Institut national de la santé et de la recherche médicale (Inserm), U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB). Commissariat à l’Énergie Atomique et aux Énergies renouvelables (CEA), Fontenay-aux-Roses92260, France
- Université Paris-Saclay, Service d’Ophtalmologie, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris (AP-HP), Centre de Recherche Maladies Rares (CMR), Centre de référence des maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre94270, France
- Service d’Ophtalmologie, Hôpital National de la Vision des Quinze-Vingts, Institut Hospitalo-universitaire (IHU) FOReSIGHT, Paris75012, France
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, CambridgeCB2 OAW, United Kingdom
| | - Patrick Lomonte
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| |
Collapse
|
4
|
Lynskey ML, Brown EE, Bhargava R, Wondisford AR, Ouriou JB, Freund O, Bowman RW, Smith BA, Lardo SM, Schamus-Hayes S, Hainer SJ, O'Sullivan RJ. HIRA protects telomeres against R-loop-induced instability in ALT cancer cells. Cell Rep 2024; 43:114964. [PMID: 39509271 PMCID: PMC11698518 DOI: 10.1016/j.celrep.2024.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Inactivating mutations in chromatin modifiers, like the α-thalassemia/mental retardation, X-linked (ATRX)-death domain-associated protein (DAXX) chromatin remodeling/histone H3.3 deposition complex, drive the cancer-specific alternative lengthening of telomeres (ALT) pathway. Prior studies revealed that HIRA, another histone H3.3 chaperone, compensates for ATRX-DAXX loss at telomeres to sustain ALT cancer cell survival. How HIRA rescues telomeres from the consequences of ATRX-DAXX deficiency remains unclear. Here, using an assay for transposase-accessible chromatin using sequencing (ATAC-seq) and cleavage under targets and release using nuclease (CUT&RUN), we establish that HIRA-mediated deposition of new H3.3 maintains telomeric chromatin accessibility to prevent the detrimental accumulation of nucleosome-free single-stranded DNA (ssDNA) in ATRX-DAXX-deficient ALT cells. We show that the HIRA-UBN1/UBN2 complex deposits new H3.3 to prevent TERRA R-loop buildup and transcription-replication conflicts (TRCs) at telomeres. Furthermore, HIRA-mediated H3.3 incorporation into telomeric chromatin links productive ALT to the phosphorylation of serine 31, an H3.3-specific amino acid, by Chk1. Therefore, we identify a critical role for HIRA-mediated H3.3 deposition that ensures the survival of ATRX-DAXX-deficient ALT cancer cells.
Collapse
Affiliation(s)
- Michelle Lee Lynskey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Emily E Brown
- Department of Biological Sciences, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Ragini Bhargava
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Jean-Baptiste Ouriou
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Oliver Freund
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Ray W Bowman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Baylee A Smith
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Santana M Lardo
- Department of Biological Sciences, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Sandra Schamus-Hayes
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer, Pittsburgh, PA 15232, USA.
| |
Collapse
|
5
|
Caeiro LD, Verdun RE, Morey L. Histone H3 mutations and their impact on genome stability maintenance. Biochem Soc Trans 2024; 52:2179-2191. [PMID: 39248209 PMCID: PMC11580799 DOI: 10.1042/bst20240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Histones are essential for maintaining chromatin structure and function. Histone mutations lead to changes in chromatin compaction, gene expression, and the recruitment of DNA repair proteins to the DNA lesion. These disruptions can impair critical DNA repair pathways, such as homologous recombination and non-homologous end joining, resulting in increased genomic instability, which promotes an environment favorable to tumor development and progression. Understanding these mechanisms underscores the potential of targeting DNA repair pathways in cancers harboring mutated histones, offering novel therapeutic strategies to exploit their inherent genomic instability for better treatment outcomes. Here, we examine how mutations in histone H3 disrupt normal chromatin function and DNA damage repair processes and how these mechanisms can be exploited for therapeutic interventions.
Collapse
Affiliation(s)
- Lucas D. Caeiro
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Ramiro E. Verdun
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
- Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, Miami, FL, U.S.A
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| |
Collapse
|
6
|
Yuan K, Tang Y, Ding Z, Peng L, Zeng J, Wu H, Yi Q. Mutant ATRX: pathogenesis of ATRX syndrome and cancer. Front Mol Biosci 2024; 11:1434398. [PMID: 39479502 PMCID: PMC11521912 DOI: 10.3389/fmolb.2024.1434398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
The transcriptional regulator ATRX, a genetic factor, is associated with a range of disabilities, including intellectual, hematopoietic, skeletal, facial, and urogenital disabilities. ATRX mutations substantially contribute to the pathogenesis of ATRX syndrome and are frequently detected in gliomas and many other cancers. These mutations disrupt the organization, subcellular localization, and transcriptional activity of ATRX, leading to chromosomal instability and affecting interactions with key regulatory proteins such as DAXX, EZH2, and TERRA. ATRX also functions as a transcriptional regulator involved in the pathogenesis of neuronal disorders and various diseases. In conclusion, ATRX is a central protein whose abnormalities lead to multiple diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaying Wu
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
7
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
8
|
Panichnantakul P, Aguilar LC, Daynard E, Guest M, Peters C, Vogel J, Oeffinger M. Protein UFMylation regulates early events during ribosomal DNA-damage response. Cell Rep 2024; 43:114738. [PMID: 39277864 DOI: 10.1016/j.celrep.2024.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
The highly repetitive and transcriptionally active ribosomal DNA (rDNA) genes are exceedingly susceptible to genotoxic stress. Induction of DNA double-strand breaks (DSBs) in rDNA repeats is associated with ataxia-telangiectasia-mutated (ATM)-dependent rDNA silencing and nucleolar reorganization where rDNA is segregated into nucleolar caps. However, the regulatory events underlying this response remain elusive. Here, we identify protein UFMylation as essential for rDNA-damage response in human cells. We further show the only ubiquitin-fold modifier 1 (UFM1)-E3 ligase UFL1 and its binding partner DDRGK1 localize to nucleolar caps upon rDNA damage and that UFL1 loss impairs ATM activation and rDNA transcriptional silencing, leading to reduced rDNA segregation. Moreover, analysis of nuclear and nucleolar UFMylation targets in response to DSB induction further identifies key DNA-repair factors including ATM, in addition to chromatin and actin network regulators. Taken together, our data provide evidence of an essential role for UFMylation in orchestrating rDNA DSB repair.
Collapse
Affiliation(s)
- Pudchalaluck Panichnantakul
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Lisbeth C Aguilar
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Evan Daynard
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Mackenzie Guest
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Colten Peters
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Jackie Vogel
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Département de biochimie et médicine moléculaire, Faculté de Médicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
9
|
Masuzawa R, Rosa Flete HK, Shimizu J, Kawano F. Age-related histone H3.3 accumulation associates with a repressive chromatin in mouse tibialis anterior muscle. J Physiol Sci 2024; 74:41. [PMID: 39277714 PMCID: PMC11401410 DOI: 10.1186/s12576-024-00935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/25/2024] [Indexed: 09/17/2024]
Abstract
The present study aimed to investigate age-related changes in histone variant H3.3 and its role in the aging process of mouse tibialis anterior muscle. H3.3 level significantly increased with age and correlated with H3K27me3 level. Acute exercise successfully upregulated the target gene expression in 8-wk-old mice, whereas no upregulation was noted in 53-wk-old mice. H3K27me3 level was increased at these loci in response to acute exercise in 8-wk-old mice. However, in 53-wk-old mice, H3.3 and H3K27me3 levels were increased at rest and were not affected by acute exercise. Furthermore, forced H3.3 expression in the skeletal muscle of 8-wk-old mice led to a gradual improvement in motor function. The results suggest that age-related H3.3 accumulation induces the formation of repressive chromatin in the mouse tibialis anterior muscle. However, H3.3 accumulation also appears to play a positive role in enhancing skeletal muscle function.
Collapse
Affiliation(s)
- Ryo Masuzawa
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Hemilce Karina Rosa Flete
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Junya Shimizu
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Fuminori Kawano
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan.
| |
Collapse
|
10
|
Kawaguchi T, Hashimoto M, Nakagawa R, Minami R, Ikawa M, Nakayama JI, Ueda J. Comprehensive posttranslational modifications in the testis-specific histone variant H3t protein validated in tagged knock-in mice. Sci Rep 2024; 14:21305. [PMID: 39266663 PMCID: PMC11393354 DOI: 10.1038/s41598-024-72362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
During the development of multicellular organisms and cell differentiation, the chromatin structure in the cell nucleus undergoes extensive changes, and the nucleosome structure is formed by a combination of various histone variants. Histone variants with diverse posttranslational modifications are known to play crucial roles in different regulatory functions. We have previously reported that H3t, a testis-specific histone variant, is essential for spermatogenesis. To elucidate the function of this chromatin molecule in vivo, we generated knock-in mice with a FLAG tag attached to the carboxyl terminus of H3t. In the present study, we evaluated the utility of the generated knock-in mice and comprehensively analyzed posttranslational modifications of canonical H3 and H3t using mass spectrometry. Herein, we found that H3t-FLAG was incorporated into spermatogonia and meiotic cells in the testes, as evidenced by immunostaining of testicular tissue. According to the mass spectrometry analysis, the overall pattern of H3t-FLAG posttranslational modification was comparable to that of the control H3, while the relative abundances of certain specific modifications differed between H3t-FLAG and the control bulk H3. The generated knock-in mice could be valuable for analyzing the function of histone variants in vivo.
Collapse
Affiliation(s)
- Takayuki Kawaguchi
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, 444-8585, Japan
| | - Michihiro Hashimoto
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Reiko Nakagawa
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Ryunosuke Minami
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, 444-8585, Japan.
| | - Jun Ueda
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan.
| |
Collapse
|
11
|
Lai PM, Gong X, Chan KM. Roles of Histone H2B, H3 and H4 Variants in Cancer Development and Prognosis. Int J Mol Sci 2024; 25:9699. [PMID: 39273649 PMCID: PMC11395991 DOI: 10.3390/ijms25179699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Histone variants are the paralogs of core histones (H2A, H2B, H3 and H4). They are stably expressed throughout the cell cycle in a replication-independent fashion and are capable of replacing canonical counterparts under different fundamental biological processes. Variants have been shown to take part in multiple processes, including DNA damage repair, transcriptional regulation and X chromosome inactivation, with some of them even specializing in lineage-specific roles like spermatogenesis. Several reports have recently identified some unprecedented variants from different histone families and exploited their prognostic value in distinct types of cancer. Among the four classes of canonical histones, the H2A family has the greatest number of variants known to date, followed by H2B, H3 and H4. In our prior review, we focused on summarizing all 19 mammalian histone H2A variants. Here in this review, we aim to complete the full summary of the roles of mammalian histone variants from the remaining histone H2B, H3, and H4 families, along with an overview of their roles in cancer biology and their prognostic value in a clinical context.
Collapse
Affiliation(s)
| | | | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China; (P.M.L.); (X.G.)
| |
Collapse
|
12
|
Vogt A, Szurgot M, Gardner L, Schultz DC, Marmorstein R. HIRA complex deposition of histone H3.3 is driven by histone tetramerization and histone-DNA binding. J Biol Chem 2024; 300:107604. [PMID: 39059488 PMCID: PMC11388340 DOI: 10.1016/j.jbc.2024.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The HIRA histone chaperone complex is comprised of four protein subunits: HIRA, UBN1, CABIN1, and transiently associated ASF1a. All four subunits have been demonstrated to play a role in the deposition of the histone variant H3.3 onto areas of actively transcribed euchromatin in cells. The mechanism by which these subunits function together to drive histone deposition has remained poorly understood. Here we present biochemical and biophysical data supporting a model whereby ASF1a delivers histone H3.3/H4 dimers to the HIRA complex, H3.3/H4 tetramerization drives the association of two HIRA/UBN1 complexes, and the affinity of the histones for DNA drives release of ASF1a and subsequent histone deposition. These findings have implications for understanding how other histone chaperone complexes may mediate histone deposition.
Collapse
Affiliation(s)
- Austin Vogt
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Center, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Mary Szurgot
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Center, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Lauren Gardner
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Center, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Center, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA.
| |
Collapse
|
13
|
Chan FF, Yuen VWH, Shen J, Chin DWC, Law CT, Wong BPY, Chan CYK, Cheu JWS, Ng IOL, Wong CCL, Wong CM. Inhibition of CAF-1 histone chaperone complex triggers cytosolic DNA and dsRNA sensing pathways and induces intrinsic immunity of hepatocellular carcinoma. Hepatology 2024; 80:295-311. [PMID: 38051950 DOI: 10.1097/hep.0000000000000709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AND AIMS Chromatin assembly factor 1 (CAF-1) is a replication-dependent epigenetic regulator that controls cell cycle progression and chromatin dynamics. In this study, we aim to investigate the immunomodulatory role and therapeutic potential of the CAF-1 complex in HCC. APPROACH AND RESULTS CAF-1 complex knockout cell lines were established using the CRISPR/Cas9 system. The effects of CAF-1 in HCC were studied in HCC cell lines, nude mice, and immunocompetent mice. RNA-sequencing, ChIP-Seq, and assay for transposase accessible chromatin with high-throughput sequencing (ATAC-Seq) were used to explore the changes in the epigenome and transcriptome. CAF-1 complex was significantly upregulated in human and mouse HCCs and was associated with poor prognosis in patients with HCC. Knockout of CAF-1 remarkably suppressed HCC growth in both in vitro and in vivo models. Mechanistically, depletion of CAF-1 induced replicative stress and chromatin instability, which eventually led to cytoplasmic DNA leakage as micronuclei. Also, chromatin immunoprecipitation sequencing analyses revealed a massive H3.3 histone variant replacement upon CAF-1 knockout. Enrichment of euchromatic H3.3 increased chromatin accessibility and activated the expression of endogenous retrovirus elements, a phenomenon known as viral mimicry. However, cytosolic micronuclei and endogenous retroviruses are recognized as ectopic elements by the stimulator of interferon genes and dsRNA viral sensing pathways, respectively. As a result, the knockout of CAF-1 activated inflammatory response and antitumor immune surveillance and thereby significantly enhanced the anticancer effect of immune checkpoint inhibitors in HCC. CONCLUSIONS Our findings suggest that CAF-1 is essential for HCC development; targeting CAF-1 may awaken the anticancer immune response and may work cooperatively with immune checkpoint inhibitor treatment in cancer therapy.
Collapse
Affiliation(s)
- For-Fan Chan
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Hin Yuen
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Jialing Shen
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Don Wai-Ching Chin
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk-Ting Law
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bowie Po-Yee Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Cerise Yuen-Ki Chan
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Jacinth Wing-Sum Cheu
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carmen Chak-Lui Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Karagyozova T, Almouzni G. Replicating chromatin in the nucleus: A histone variant perspective. Curr Opin Cell Biol 2024; 89:102397. [PMID: 38981199 DOI: 10.1016/j.ceb.2024.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
In eukaryotes, chromatin and DNA replication are intimately linked, whereby chromatin impacts DNA replication control while genome duplication involves recovery of chromatin organisation. Here, we review recent advances in this area using a histone variant lens. We highlight how nucleosomal features interplay with origin definition and how the order of origin firing links with chromatin states in early mammalian development. We next discuss histone recycling and de novo deposition at the fork to finally open on the post-replicative recovery of the chromatin landscape to promote maintenance of cell identity.
Collapse
Affiliation(s)
- Tina Karagyozova
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue Contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue Contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
15
|
Kim HJ, Szurgot MR, van Eeuwen T, Ricketts MD, Basnet P, Zhang AL, Vogt A, Sharmin S, Kaplan CD, Garcia BA, Marmorstein R, Murakami K. Structure of the Hir histone chaperone complex. Mol Cell 2024; 84:2601-2617.e12. [PMID: 38925115 PMCID: PMC11338637 DOI: 10.1016/j.molcel.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
The evolutionarily conserved HIRA/Hir histone chaperone complex and ASF1a/Asf1 co-chaperone cooperate to deposit histone (H3/H4)2 tetramers on DNA for replication-independent chromatin assembly. The molecular architecture of the HIRA/Hir complex and its mode of histone deposition have remained unknown. Here, we report the cryo-EM structure of the S. cerevisiae Hir complex with Asf1/H3/H4 at 2.9-6.8 Å resolution. We find that the Hir complex forms an arc-shaped dimer with a Hir1/Hir2/Hir3/Hpc2 stoichiometry of 2/4/2/4. The core of the complex containing two Hir1/Hir2/Hir2 trimers and N-terminal segments of Hir3 forms a central cavity containing two copies of Hpc2, with one engaged by Asf1/H3/H4, in a suitable position to accommodate a histone (H3/H4)2 tetramer, while the C-terminal segments of Hir3 harbor nucleic acid binding activity to wrap DNA around the Hpc2-assisted histone tetramer. The structure suggests a model for how the Hir/Asf1 complex promotes the formation of histone tetramers for their subsequent deposition onto DNA.
Collapse
Affiliation(s)
- Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary R Szurgot
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor van Eeuwen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Daniel Ricketts
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pratik Basnet
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Athena L Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Austin Vogt
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samah Sharmin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Gómez-Moreno A, Ploss A. Mechanisms of Hepatitis B Virus cccDNA and Minichromosome Formation and HBV Gene Transcription. Viruses 2024; 16:609. [PMID: 38675950 PMCID: PMC11054251 DOI: 10.3390/v16040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatitis B virus (HBV) is the etiologic agent of chronic hepatitis B, which puts at least 300 million patients at risk of developing fibrosis, cirrhosis, and hepatocellular carcinoma. HBV is a partially double-stranded DNA virus of the Hepadnaviridae family. While HBV was discovered more than 50 years ago, many aspects of its replicative cycle remain incompletely understood. Central to HBV persistence is the formation of covalently closed circular DNA (cccDNA) from the incoming relaxed circular DNA (rcDNA) genome. cccDNA persists as a chromatinized minichromosome and is the major template for HBV gene transcription. Here, we review how cccDNA and the viral minichromosome are formed and how viral gene transcription is regulated and highlight open questions in this area of research.
Collapse
Affiliation(s)
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
17
|
Liu Y, Liu S, Jing R, Li C, Guo Y, Cai Z, Xi P, Dai P, Jia L, Zhu H, Zhang X. Identification of ASF1A and HJURP by global H3-H4 histone chaperone analysis as a prognostic two-gene model in hepatocellular carcinoma. Sci Rep 2024; 14:7666. [PMID: 38561384 PMCID: PMC10984954 DOI: 10.1038/s41598-024-58368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with poor prognosis. Abnormal expression of H3-H4 histone chaperones has been identified in many cancers and holds promise as a biomarker for diagnosis and prognosis. However, systemic analysis of H3-H4 histone chaperones in HCC is still lacking. Here, we investigated the expression of 19 known H3-H4 histone chaperones in HCC. Integrated analysis of multiple public databases indicated that these chaperones are highly expressed in HCC tumor tissues, which was further verified by immunohistochemistry (IHC) staining in offline samples. Additionally, survival analysis suggested that HCC patients with upregulated H3-H4 histone chaperones have poor prognosis. Using LASSO and Cox regression, we constructed a two-gene model (ASF1A, HJURP) that accurately predicts prognosis in ICGC-LIRI and GEO HCC data, which was further validated in HCC tissue microarrays with follow-up information. GSEA revealed that HCCs in the high-risk group were associated with enhanced cell cycle progression and DNA replication. Intriguingly, HCCs in the high-risk group exhibited increased immune infiltration and sensitivity to immune checkpoint therapy (ICT). In summary, H3-H4 histone chaperones play a critical role in HCC progression, and the two-gene (ASF1A, HJURP) risk model is effective for predicting survival outcomes and sensitivity to immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Yongkang Liu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shihui Liu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Rui Jing
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Congcong Li
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yongqi Guo
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Zhiye Cai
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Pei Xi
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Penggao Dai
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Lintao Jia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hongli Zhu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Xiang Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
- The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
18
|
Saredi G, Carelli FN, Rolland SGM, Furlan G, Piquet S, Appert A, Sanchez-Pulido L, Price JL, Alcon P, Lampersberger L, Déclais AC, Ramakrishna NB, Toth R, Macartney T, Alabert C, Ponting CP, Polo SE, Miska EA, Gartner A, Ahringer J, Rouse J. The histone chaperone SPT2 regulates chromatin structure and function in Metazoa. Nat Struct Mol Biol 2024; 31:523-535. [PMID: 38238586 PMCID: PMC7615752 DOI: 10.1038/s41594-023-01204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024]
Abstract
Histone chaperones control nucleosome density and chromatin structure. In yeast, the H3-H4 chaperone Spt2 controls histone deposition at active genes but its roles in metazoan chromatin structure and organismal physiology are not known. Here we identify the Caenorhabditis elegans ortholog of SPT2 (CeSPT-2) and show that its ability to bind histones H3-H4 is important for germline development and transgenerational epigenetic gene silencing, and that spt-2 null mutants display signatures of a global stress response. Genome-wide profiling showed that CeSPT-2 binds to a range of highly expressed genes, and we find that spt-2 mutants have increased chromatin accessibility at a subset of these loci. We also show that SPT2 influences chromatin structure and controls the levels of soluble and chromatin-bound H3.3 in human cells. Our work reveals roles for SPT2 in controlling chromatin structure and function in Metazoa.
Collapse
Affiliation(s)
- Giulia Saredi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Francesco N Carelli
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Stéphane G M Rolland
- IBS Centre for Genomic Integrity at Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Giulia Furlan
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Transine Therapeutics, Babraham Hall, Cambridge, UK
| | - Sandra Piquet
- Laboratory of Epigenome Integrity, Epigenetics and Cell Fate Centre, UMR 7216 CNRS - Université Paris Cité, Paris, France
| | - Alex Appert
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Luis Sanchez-Pulido
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Jonathan L Price
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Pablo Alcon
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Lisa Lampersberger
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Maxion Therapeutics, Unity Campus, Cambridge, UK
| | - Anne-Cécile Déclais
- Molecular Cell and Developmental Biology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Navin B Ramakrishna
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Constance Alabert
- Molecular Cell and Developmental Biology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Sophie E Polo
- Laboratory of Epigenome Integrity, Epigenetics and Cell Fate Centre, UMR 7216 CNRS - Université Paris Cité, Paris, France
| | - Eric A Miska
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Anton Gartner
- IBS Centre for Genomic Integrity at Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Julie Ahringer
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
19
|
Ouasti F, Audin M, Fréon K, Quivy JP, Tachekort M, Cesard E, Thureau A, Ropars V, Fernández Varela P, Moal G, Soumana-Amadou I, Uryga A, Legrand P, Andreani J, Guerois R, Almouzni G, Lambert S, Ochsenbein F. Disordered regions and folded modules in CAF-1 promote histone deposition in Schizosaccharomyces pombe. eLife 2024; 12:RP91461. [PMID: 38376141 PMCID: PMC10942606 DOI: 10.7554/elife.91461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.
Collapse
Affiliation(s)
- Fouad Ouasti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Maxime Audin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Karine Fréon
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Université Paris-Saclay, Equipe labellisée Ligue contre le CancerOrsayFrance
| | - Jean-Pierre Quivy
- Institut Curie, PSL Research University, CNRS, Sorbonne Université,CNRS UMR3664, Nuclear Dynamics Unit, Équipe Labellisée Ligue contre le CancerParisFrance
| | - Mehdi Tachekort
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Elizabeth Cesard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Aurélien Thureau
- Synchrotron SOLEIL, HelioBio group, l'Orme des MerisiersSaint-AubinFrance
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Paloma Fernández Varela
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Gwenaelle Moal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Ibrahim Soumana-Amadou
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Université Paris-Saclay, Equipe labellisée Ligue contre le CancerOrsayFrance
| | - Aleksandra Uryga
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Université Paris-Saclay, Equipe labellisée Ligue contre le CancerOrsayFrance
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, l'Orme des MerisiersSaint-AubinFrance
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Raphaël Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université,CNRS UMR3664, Nuclear Dynamics Unit, Équipe Labellisée Ligue contre le CancerParisFrance
| | - Sarah Lambert
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Université Paris-Saclay, Equipe labellisée Ligue contre le CancerOrsayFrance
| | - Francoise Ochsenbein
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| |
Collapse
|
20
|
Mendiratta S, Ray-Gallet D, Lemaire S, Gatto A, Forest A, Kerlin MA, Almouzni G. Regulation of replicative histone RNA metabolism by the histone chaperone ASF1. Mol Cell 2024; 84:791-801.e6. [PMID: 38262410 DOI: 10.1016/j.molcel.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
In S phase, duplicating and assembling the whole genome into chromatin requires upregulation of replicative histone gene expression. Here, we explored how histone chaperones control histone production in human cells to ensure a proper link with chromatin assembly. Depletion of the ASF1 chaperone specifically decreases the pool of replicative histones both at the protein and RNA levels. The decrease in their overall expression, revealed by total RNA sequencing (RNA-seq), contrasted with the increase in nascent/newly synthesized RNAs observed by 4sU-labeled RNA-seq. Further inspection of replicative histone RNAs showed a 3' end processing defect with an increase of pre-mRNAs/unprocessed transcripts likely targeted to degradation. Collectively, these data argue for a production defect of replicative histone RNAs in ASF1-depleted cells. We discuss how this regulation of replicative histone RNA metabolism by ASF1 as a "chaperone checkpoint" fine-tunes the histone dosage to avoid unbalanced situations deleterious for cell survival.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Dominique Ray-Gallet
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Sébastien Lemaire
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Alberto Gatto
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Audrey Forest
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Maciej A Kerlin
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France.
| |
Collapse
|
21
|
Pinto LM, Pailas A, Bondarchenko M, Sharma AB, Neumann K, Rizzo AJ, Jeanty C, Nicot N, Racca C, Graham MK, Naughton C, Liu Y, Chen CL, Meakin PJ, Gilbert N, Britton S, Meeker AK, Heaphy CM, Larminat F, Van Dyck E. DAXX promotes centromeric stability independently of ATRX by preventing the accumulation of R-loop-induced DNA double-stranded breaks. Nucleic Acids Res 2024; 52:1136-1155. [PMID: 38038252 PMCID: PMC10853780 DOI: 10.1093/nar/gkad1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Maintaining chromatin integrity at the repetitive non-coding DNA sequences underlying centromeres is crucial to prevent replicative stress, DNA breaks and genomic instability. The concerted action of transcriptional repressors, chromatin remodelling complexes and epigenetic factors controls transcription and chromatin structure in these regions. The histone chaperone complex ATRX/DAXX is involved in the establishment and maintenance of centromeric chromatin through the deposition of the histone variant H3.3. ATRX and DAXX have also evolved mutually-independent functions in transcription and chromatin dynamics. Here, using paediatric glioma and pancreatic neuroendocrine tumor cell lines, we identify a novel ATRX-independent function for DAXX in promoting genome stability by preventing transcription-associated R-loop accumulation and DNA double-strand break formation at centromeres. This function of DAXX required its interaction with histone H3.3 but was independent of H3.3 deposition and did not reflect a role in the repression of centromeric transcription. DAXX depletion mobilized BRCA1 at centromeres, in line with BRCA1 role in counteracting centromeric R-loop accumulation. Our results provide novel insights into the mechanisms protecting the human genome from chromosomal instability, as well as potential perspectives in the treatment of cancers with DAXX alterations.
Collapse
Affiliation(s)
- Lia M Pinto
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Communication, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Alexandros Pailas
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Communication, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Max Bondarchenko
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Communication, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Abhishek Bharadwaj Sharma
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| | - Katrin Neumann
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| | - Anthony J Rizzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Céline Jeanty
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| | - Nathalie Nicot
- Translational Medicine Operations Hub, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Carine Racca
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex 4, France
| | - Mindy K Graham
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Catherine Naughton
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 1QY, UK
| | - Yaqun Liu
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75248 Paris Cedex 05, France
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75248 Paris Cedex 05, France
| | - Paul J Meakin
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 1QY, UK
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex 4, France
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Christopher M Heaphy
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Florence Larminat
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex 4, France
| | - Eric Van Dyck
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| |
Collapse
|
22
|
Choi J, Kim T, Cho EJ. HIRA vs. DAXX: the two axes shaping the histone H3.3 landscape. Exp Mol Med 2024; 56:251-263. [PMID: 38297159 PMCID: PMC10907377 DOI: 10.1038/s12276-023-01145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 02/02/2024] Open
Abstract
H3.3, the most common replacement variant for histone H3, has emerged as an important player in chromatin dynamics for controlling gene expression and genome integrity. While replicative variants H3.1 and H3.2 are primarily incorporated into nucleosomes during DNA synthesis, H3.3 is under the control of H3.3-specific histone chaperones for spatiotemporal incorporation throughout the cell cycle. Over the years, there has been progress in understanding the mechanisms by which H3.3 affects domain structure and function. Furthermore, H3.3 distribution and relative abundance profoundly impact cellular identity and plasticity during normal development and pathogenesis. Recurrent mutations in H3.3 and its chaperones have been identified in neoplastic transformation and developmental disorders, providing new insights into chromatin biology and disease. Here, we review recent findings emphasizing how two distinct histone chaperones, HIRA and DAXX, take part in the spatial and temporal distribution of H3.3 in different chromatin domains and ultimately achieve dynamic control of chromatin organization and function. Elucidating the H3.3 deposition pathways from the available histone pool will open new avenues for understanding the mechanisms by which H3.3 epigenetically regulates gene expression and its impact on cellular integrity and pathogenesis.
Collapse
Affiliation(s)
- Jinmi Choi
- Sungkyunkwan University School of Pharmacy, Seoburo 2066, Jangan-gu Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Taewan Kim
- Sungkyunkwan University School of Pharmacy, Seoburo 2066, Jangan-gu Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Eun-Jung Cho
- Sungkyunkwan University School of Pharmacy, Seoburo 2066, Jangan-gu Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
23
|
Hao H, Ren C, Lian Y, Zhao M, Bo T, Xu J, Wang W. Independent and Complementary Functions of Caf1b and Hir1 for Chromatin Assembly in Tetrahymena thermophila. Cells 2023; 12:2828. [PMID: 38132148 PMCID: PMC10741905 DOI: 10.3390/cells12242828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Histones and DNA associate to form the nucleosomes of eukaryotic chromatin. Chromatin assembly factor 1 (CAF-1) complex and histone regulatory protein A (HIRA) complex mediate replication-couple (RC) and replication-independent (RI) nucleosome assembly, respectively. CHAF1B and HIRA share a similar domain but play different roles in nucleosome assembly by binding to the different interactors. At present, there is limited understanding for the similarities and differences in their respective functions. Tetrahymena thermophila contains transcriptionally active polyploid macronuclei (MAC) and transcriptionally silent diploid micronuclei (MIC). Here, the distribution patterns of Caf1b and Hir1 exhibited both similarities and distinctions. Both proteins localized to the MAC and MIC during growth, and to the MIC during conjugation. However, Hir1 exhibited additional signaling on parental MAC and new MAC during sexual reproduction and displayed a punctate signal on developing anlagen. Caf1b and Hir1 only co-localized in the MIC with Pcna1 during conjugation. Knockdown of CAF1B impeded cellular growth and arrested sexual reproductive development. Loss of HIR1 led to MIC chromosome defects and aborted sexual development. Co-interference of CAF1B and HIR1 led to a more severe phenotype. Moreover, CAF1B knockdown led to the up-regulation of HIR1 expression, while knockdown of HIR1 also led to an increase in CAF1B expression. Furthermore, Caf1b and Hir1 interacted with different interactors. These results showed that CAF-1 and Hir1 have independent and complementary functions for chromatin assembly in T. thermophila.
Collapse
Affiliation(s)
- Huijuan Hao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Chenhui Ren
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Yinjie Lian
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Min Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
24
|
Jaiswal A, Roy R, Tamrakar A, Singh AK, Kar P, Kodgire P. Activation-induced cytidine deaminase an antibody diversification enzyme interacts with chromatin modifier UBN1 in B-cells. Sci Rep 2023; 13:19615. [PMID: 37949972 PMCID: PMC10638239 DOI: 10.1038/s41598-023-46448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is the key mediator of antibody diversification in activated B-cells by the process of somatic hypermutation (SHM) and class switch recombination (CSR). Targeting AID to the Ig genes requires transcription (initiation and elongation), enhancers, and its interaction with numerous factors. Furthermore, the HIRA chaperon complex, a regulator of chromatin architecture, is indispensable for SHM. The HIRA chaperon complex consists of UBN1, ASF1a, HIRA, and CABIN1 that deposit H3.3 onto the DNA, the SHM hallmark. We explored whether UBN1 interacts with AID using computational and in-vitro experiments. Interestingly, our in-silico studies, such as molecular docking and molecular dynamics simulation results, predict that AID interacts with UBN1. Subsequently, co-immunoprecipitation and pull-down experiments established interactions between UBN1 and AID inside B-cells. Additionally, a double immunofluorescence assay confirmed that AID and UBN1 were co-localized in the human and chicken B-cell lines. Moreover, proximity ligation assay studies validated that AID interacts with UBN1. Ours is the first report on the interaction of genome mutator enzyme AID with UBN1. Nevertheless, the fate of interaction between UBN1 and AID is yet to be explored in the context of SHM or CSR.
Collapse
Affiliation(s)
- Ankit Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, 453 552, India
| | - Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, 453 552, India
| | - Anubhav Tamrakar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, 453 552, India
| | - Amit Kumar Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, 453 552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, 453 552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, 453 552, India.
| |
Collapse
|
25
|
Joly V, Jacob Y. Mitotic inheritance of genetic and epigenetic information via the histone H3.1 variant. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102401. [PMID: 37302254 PMCID: PMC11168788 DOI: 10.1016/j.pbi.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
The replication-dependent histone H3.1 variant, ubiquitous in multicellular eukaryotes, has been proposed to play key roles during chromatin replication due to its unique expression pattern restricted to the S phase of the cell cycle. Here, we describe recent discoveries in plants regarding molecular mechanisms and cellular pathways involving H3.1 that contribute to the maintenance of genomic and epigenomic information. First, we highlight new advances concerning the contribution of the histone chaperone CAF-1 and the TSK-H3.1 DNA repair pathway in preventing genomic instability during replication. We then summarize the evidence connecting H3.1 to specific roles required for the mitotic inheritance of epigenetic states. Finally, we discuss the recent identification of a specific interaction between H3.1 and DNA polymerase epsilon and its functional implications.
Collapse
Affiliation(s)
- Valentin Joly
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
26
|
Dunjić M, Jonas F, Yaakov G, More R, Mayshar Y, Rais Y, Orenbuch AH, Cheng S, Barkai N, Stelzer Y. Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells. Nat Commun 2023; 14:3791. [PMID: 37365167 DOI: 10.1038/s41467-023-39477-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Eviction of histones from nucleosomes and their exchange with newly synthesized or alternative variants is a central epigenetic determinant. Here, we define the genome-wide occupancy and exchange pattern of canonical and non-canonical histone variants in mouse embryonic stem cells by genetically encoded exchange sensors. While exchange of all measured variants scales with transcription, we describe variant-specific associations with transcription elongation and Polycomb binding. We found considerable exchange of H3.1 and H2B variants in heterochromatin and repeat elements, contrasting the occupancy and little exchange of H3.3 in these regions. This unexpected association between H3.3 occupancy and exchange of canonical variants is also evident in active promoters and enhancers, and further validated by reduced H3.1 dynamics following depletion of H3.3-specific chaperone, HIRA. Finally, analyzing transgenic mice harboring H3.1 or H3.3 sensors demonstrates the vast potential of this system for studying histone exchange and its impact on gene expression regulation in vivo.
Collapse
Affiliation(s)
- Marko Dunjić
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Roye More
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoach Rais
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | | | - Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
27
|
Kleijwegt C, Bressac F, Seurre C, Bouchereau W, Cohen C, Texier P, Simonet T, Schaeffer L, Lomonte P, Corpet A. Interplay between PML NBs and HIRA for H3.3 dynamics following type I interferon stimulus. eLife 2023; 12:e80156. [PMID: 37227756 PMCID: PMC10212570 DOI: 10.7554/elife.80156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Promyelocytic leukemia Nuclear Bodies (PML NBs) are nuclear membrane-less organelles physically associated with chromatin underscoring their crucial role in genome function. The H3.3 histone chaperone complex HIRA accumulates in PML NBs upon senescence, viral infection or IFN-I treatment in primary cells. Yet, the molecular mechanisms of this partitioning and its function in regulating histone dynamics have remained elusive. By using specific approaches, we identify intermolecular SUMO-SIM interactions as an essential mechanism for HIRA recruitment in PML NBs. Hence, we describe a role of PML NBs as nuclear depot centers to regulate HIRA distribution in the nucleus, dependent both on SP100 and DAXX/H3.3 levels. Upon IFN-I stimulation, PML is required for interferon-stimulated genes (ISGs) transcription and PML NBs become juxtaposed to ISGs loci at late time points of IFN-I treatment. HIRA and PML are necessary for the prolonged H3.3 deposition at the transcriptional end sites of ISGs, well beyond the peak of transcription. Though, HIRA accumulation in PML NBs is dispensable for H3.3 deposition on ISGs. We thus uncover a dual function for PML/PML NBs, as buffering centers modulating the nuclear distribution of HIRA, and as chromosomal hubs regulating ISGs transcription and thus HIRA-mediated H3.3 deposition at ISGs upon inflammatory response.
Collapse
Affiliation(s)
- Constance Kleijwegt
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Florent Bressac
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Coline Seurre
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Wilhelm Bouchereau
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Camille Cohen
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Pascale Texier
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Thomas Simonet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), team Nerve-Muscle interactionsLyonFrance
| | - Laurent Schaeffer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), team Nerve-Muscle interactionsLyonFrance
| | - Patrick Lomonte
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| | - Armelle Corpet
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) laboratory, team Chromatin Dynamics, Nuclear Domains, VirusLyonFrance
| |
Collapse
|
28
|
Rouillon C, Eckhardt BV, Kollenstart L, Gruss F, Verkennis AE, Rondeel I, Krijger PHL, Ricci G, Biran A, van Laar T, Delvaux de Fenffe CM, Luppens G, Albanese P, Sato K, Scheltema RA, de Laat W, Knipscheer P, Dekker N, Groth A, Mattiroli F. CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands. Nucleic Acids Res 2023; 51:3770-3792. [PMID: 36942484 PMCID: PMC10164577 DOI: 10.1093/nar/gkad171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication.
Collapse
Affiliation(s)
- Clément Rouillon
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruna V Eckhardt
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Gruss
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Inge Rondeel
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Theo van Laar
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | | | - Georgiana Luppens
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal Albanese
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard A Scheltema
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nynke H Dekker
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
Ilter D, Drapela S, Schild T, Ward NP, Adhikari E, Low V, Asara J, Oskarsson T, Lau EK, DeNicola GM, McReynolds MR, Gomes AP. NADK-mediated de novo NADP(H) synthesis is a metabolic adaptation essential for breast cancer metastasis. Redox Biol 2023; 61:102627. [PMID: 36841051 PMCID: PMC9982641 DOI: 10.1016/j.redox.2023.102627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Metabolic reprogramming and metabolic plasticity allow cancer cells to fine-tune their metabolism and adapt to the ever-changing environments of the metastatic cascade, for which lipid metabolism and oxidative stress are of particular importance. NADPH is a central co-factor for both lipid and redox homeostasis, suggesting that cancer cells may require larger pools of NADPH to efficiently metastasize. NADPH is recycled through reduction of NADP+ by several enzymatic systems in cells; however, de novo NADP+ is synthesized only through one known enzymatic reaction, catalyzed by NAD+ kinase (NADK). Here, we show that NADK is upregulated in metastatic breast cancer cells enabling de novo production of NADP(H) and the expansion of the NADP(H) pools thereby increasing the ability of these cells to adapt to the challenges of the metastatic cascade and efficiently metastasize. Mechanistically, we found that metastatic signals lead to a histone H3.3 variant-mediated epigenetic regulation of the NADK promoter, resulting in increased NADK levels in cells with metastatic ability. Together, our work presents a previously uncharacterized role for NADK and de novo NADP(H) production as a contributor to breast cancer progression and suggests that NADK constitutes an important and much needed therapeutic target for metastatic breast cancers.
Collapse
Affiliation(s)
- Didem Ilter
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Tanya Schild
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathan P Ward
- Department of Cancer Physiology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Emma Adhikari
- Department of Tumor Biology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Vivien Low
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - John Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Thordur Oskarsson
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Eric K Lau
- Department of Tumor Biology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA; Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
30
|
Gleason RJ, Guo Y, Semancik CS, Ow C, Lakshminarayanan G, Chen X. Developmentally programmed histone H3 expression regulates cellular plasticity at the parental-to-early embryo transition. SCIENCE ADVANCES 2023; 9:eadh0411. [PMID: 37027463 PMCID: PMC10081851 DOI: 10.1126/sciadv.adh0411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
During metazoan development, the marked change in developmental potential from the parental germline to the embryo raises an important question regarding how the next life cycle is reset. As the basic unit of chromatin, histones are essential for regulating chromatin structure and function and, accordingly, transcription. However, the genome-wide dynamics of the canonical, replication-coupled (RC) histones during gametogenesis and embryogenesis remain unknown. In this study, we use CRISPR-Cas9-mediated gene editing in Caenorhabditis elegans to investigate the expression pattern and role of individual RC histone H3 genes and compare them to the histone variant, H3.3. We report a tightly regulated epigenome landscape change from the germline to embryos that are regulated through differential expression of distinct histone gene clusters. Together, this study reveals that a change from a H3.3- to H3-enriched epigenome during embryogenesis restricts developmental plasticity and uncovers distinct roles for individual H3 genes in regulating germline chromatin.
Collapse
Affiliation(s)
- Ryan J. Gleason
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yanrui Guo
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Cindy Ow
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gitanjali Lakshminarayanan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
31
|
Zhao F, Xue M, Zhang H, Li H, Zhao T, Jiang D. Coordinated histone variant H2A.Z eviction and H3.3 deposition control plant thermomorphogenesis. THE NEW PHYTOLOGIST 2023; 238:750-764. [PMID: 36647799 DOI: 10.1111/nph.18738] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Plants can sense temperature changes and adjust their development and morphology accordingly in a process called thermomorphogenesis. This phenotypic plasticity implies complex mechanisms regulating gene expression reprogramming in response to environmental alteration. Histone variants often associate with specific chromatin states; yet, how their deposition/eviction modulates transcriptional changes induced by environmental cues remains elusive. In Arabidopsis thaliana, temperature elevation-induced transcriptional activation at thermo-responsive genes entails the chromatin eviction of a histone variant H2A.Z by INO80, which is recruited to these loci via interacting with a key thermomorphogenesis regulator PIF4. Here, we show that both INO80 and the deposition chaperones of another histone variant H3.3 associate with ELF7, a critical component of the transcription elongator PAF1 complex. H3.3 promotes thermomorphogenesis and the high temperature-enhanced RNA Pol II transcription at PIF4 targets, and it is broadly required for the H2A.Z removal-induced gene activation. Reciprocally, INO80 and ELF7 regulate H3.3 deposition, and are necessary for the high temperature-induced H3.3 enrichment at PIF4 targets. Our findings demonstrate close coordination between H2A.Z eviction and H3.3 deposition in gene activation induced by high temperature, and pinpoint the importance of histone variants dynamics in transcriptional regulation.
Collapse
Affiliation(s)
- Fengyue Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
32
|
Aguilera P, López-Contreras AJ. ATRX, a guardian of chromatin. Trends Genet 2023; 39:505-519. [PMID: 36894374 DOI: 10.1016/j.tig.2023.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Abstract
ATRX (alpha-thalassemia mental retardation X-linked) is one of the most frequently mutated tumor suppressor genes in human cancers, especially in glioma, and recent findings indicate roles for ATRX in key molecular pathways, such as the regulation of chromatin state, gene expression, and DNA damage repair, placing ATRX as a central player in the maintenance of genome stability and function. This has led to new perspectives about the functional role of ATRX and its relationship with cancer. Here, we provide an overview of ATRX interactions and molecular functions and discuss the consequences of its impairment, including alternative lengthening of telomeres and therapeutic vulnerabilities that may be exploited in cancer cells.
Collapse
Affiliation(s)
- Paula Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain.
| | - Andrés J López-Contreras
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
33
|
Singha R, Aggarwal R, Sanyal K. Negative regulation of biofilm development by the CUG-Ser1 clade-specific histone H3 variant is dependent on the canonical histone chaperone CAF-1 complex in Candida albicans. Mol Microbiol 2023; 119:574-585. [PMID: 36855815 DOI: 10.1111/mmi.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
The CUG-Ser1 clade-specific histone H3 variant (H3VCTG ) has been reported to be a negative regulator of planktonic to biofilm growth transition in Candida albicans. The preferential binding of H3VCTG at the biofilm gene promoters makes chromatin repressive for the biofilm mode of growth. The two evolutionarily conserved chaperone complexes involved in incorporating histone H3 are CAF-1 and HIRA. In this study, we sought to identify the chaperone complex(es) involved in loading H3VCTG . We demonstrate that C. albicans cells lacking either Cac1 or Cac2 subunit of the CAF-1 chaperone complex, exhibit a hyper-filamentation phenotype on solid surfaces and form more robust biofilms than wild-type cells, thereby mimicking the phenotype of the H3VCTG null mutant. None of the subunits of the HIRA chaperone complex shows any significant difference in biofilm growth as compared to the wild type. The occupancy of H3VCTG is found to be significantly reduced at the promoters of biofilm genes in the absence of CAF-1 subunits. Hence, we provide evidence that CAF-1, a chaperone known to load canonical histone H3 in mammalian cells, is involved in chaperoning of variant histone H3VCTG at the biofilm gene promoters in C. albicans. Our findings also illustrate the acquisition of an unconventional role of the CAF-1 chaperone complex in morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Rima Singha
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Rashi Aggarwal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
34
|
Tafessu A, O’Hara R, Martire S, Dube AL, Saha P, Gant VU, Banaszynski LA. H3.3 contributes to chromatin accessibility and transcription factor binding at promoter-proximal regulatory elements in embryonic stem cells. Genome Biol 2023; 24:25. [PMID: 36782260 PMCID: PMC9926682 DOI: 10.1186/s13059-023-02867-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The histone variant H3.3 is enriched at active regulatory elements such as promoters and enhancers in mammalian genomes. These regions are highly accessible, creating an environment that is permissive to transcription factor binding and the recruitment of transcriptional coactivators that establish a unique chromatin post-translational landscape. How H3.3 contributes to the establishment and function of chromatin states at these regions is poorly understood. RESULTS We perform genomic analyses of features associated with active promoter chromatin in mouse embryonic stem cells (ESCs) and find evidence of subtle yet widespread promoter dysregulation in the absence of H3.3. Loss of H3.3 results in reduced chromatin accessibility and transcription factor (TF) binding at promoters of expressed genes in ESCs. Likewise, enrichment of the transcriptional coactivator p300 and downstream histone H3 acetylation at lysine 27 (H3K27ac) is reduced at promoters in the absence of H3.3, along with reduced enrichment of the acetyl lysine reader BRD4. Despite the observed chromatin dysregulation, H3.3 KO ESCs maintain transcription from ESC-specific genes. However, upon undirected differentiation, H3.3 KO cells retain footprinting of ESC-specific TF motifs and fail to generate footprints of lineage-specific TF motifs, in line with their diminished capacity to differentiate. CONCLUSIONS H3.3 facilitates DNA accessibility, transcription factor binding, and histone post-translational modification at active promoters. While H3.3 is not required for maintaining transcription in ESCs, it does promote de novo transcription factor binding which may contribute to the dysregulation of cellular differentiation in the absence of H3.3.
Collapse
Affiliation(s)
- Amanuel Tafessu
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Ryan O’Hara
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Sara Martire
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Altair L. Dube
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Purbita Saha
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Vincent U. Gant
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Laura A. Banaszynski
- grid.267313.20000 0000 9482 7121Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Medical Center Research Institute, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| |
Collapse
|
35
|
Jennings MR, Parks RJ. Human Adenovirus Gene Expression and Replication Is Regulated through Dynamic Changes in Nucleoprotein Structure throughout Infection. Viruses 2023; 15:161. [PMID: 36680201 PMCID: PMC9863843 DOI: 10.3390/v15010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Human adenovirus (HAdV) is extremely common and can rapidly spread in confined populations such as daycare centers, hospitals, and retirement homes. Although HAdV usually causes only minor illness in otherwise healthy patients, HAdV can cause significant morbidity and mortality in certain populations, such as the very young, very old, or immunocompromised individuals. During infection, the viral DNA undergoes dramatic changes in nucleoprotein structure that promote the rapid expression of viral genes, replication of the DNA, and generation of thousands of new infectious virions-each process requiring a distinct complement of virus and host-encoded proteins. In this review, we summarize our current understanding of the nucleoprotein structure of HAdV DNA during the various phases of infection, the cellular proteins implicated in mediating these changes, and the role of epigenetics in HAdV gene expression and replication.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
36
|
Balaji AK, Saha S, Deshpande S, Poola D, Sengupta K. Nuclear envelope, chromatin organizers, histones, and DNA: The many achilles heels exploited across cancers. Front Cell Dev Biol 2022; 10:1068347. [PMID: 36589746 PMCID: PMC9800887 DOI: 10.3389/fcell.2022.1068347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
In eukaryotic cells, the genome is organized in the form of chromatin composed of DNA and histones that organize and regulate gene expression. The dysregulation of chromatin remodeling, including the aberrant incorporation of histone variants and their consequent post-translational modifications, is prevalent across cancers. Additionally, nuclear envelope proteins are often deregulated in cancers, which impacts the 3D organization of the genome. Altered nuclear morphology, genome organization, and gene expression are defining features of cancers. With advances in single-cell sequencing, imaging technologies, and high-end data mining approaches, we are now at the forefront of designing appropriate small molecules to selectively inhibit the growth and proliferation of cancer cells in a genome- and epigenome-specific manner. Here, we review recent advances and the emerging significance of aberrations in nuclear envelope proteins, histone variants, and oncohistones in deregulating chromatin organization and gene expression in oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
37
|
Forest A, Quivy JP, Almouzni G. Mapping histone variant genomic distribution: Exploiting SNAP-tag labeling to follow the dynamics of incorporation of H3 variants. Methods Cell Biol 2022; 182:49-65. [PMID: 38359987 DOI: 10.1016/bs.mcb.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the eukaryotic cell nucleus, in addition to the genomic information, chromatin organization provides an additional set of information which is more versatile and associates with distinct cell identities. In particular, the marking of the nucleosomes by a choice of specific histone variants can potentially confer distinct functional properties critical for genome function and stability. To understand how this unique marking operates we need to access to the genomic distribution of each variant. A general approach based on ChIP-Seq, relies on the specific isolation of DNA bound to the variant of interest, usually using cross-linked material and specific antibodies. The availability of reliable specific antibodies recognizing with high affinity crosslinked antigen represents a limitation. Here, we describe an experimental approach exploiting a tag fused to the protein of interest. The chose protein is a histone variant and we use native conditions for the selective capture of the histone variant in a nucleosome. Most importantly, we describe how to use a particular labeling system, with a SNAP tag enabling to specifically capture nucleosomes comprising newly synthesized histones. This method allows to follow the newly deposited histone variant at various times thereby offering a unique opportunity to evaluate the dynamics of histone deposition genome wide. We describe the method here for H3 variant, but it can be adapted to any histone variant with the appropriate fused tag to address genome wide a turn-over associated to the biological context of interest.
Collapse
Affiliation(s)
- Audrey Forest
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Jean-Pierre Quivy
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France.
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
38
|
Thakar T, Dhoonmoon A, Straka J, Schleicher EM, Nicolae CM, Moldovan GL. Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling. Nat Commun 2022; 13:5323. [PMID: 36085347 PMCID: PMC9463168 DOI: 10.1038/s41467-022-33028-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The inability to protect stalled replication forks from nucleolytic degradation drives genome instability and underlies chemosensitivity in BRCA-deficient tumors. An emerging hallmark of BRCA-deficiency is the inability to suppress replication-associated single-stranded DNA (ssDNA) gaps. Here, we report that lagging strand ssDNA gaps interfere with the ASF1-CAF-1 nucleosome assembly pathway, and drive fork degradation in BRCA-deficient cells. We show that CAF-1 function at replication forks is lost in BRCA-deficient cells, due to defects in its recycling during replication stress. This CAF-1 recycling defect is caused by lagging strand gaps which preclude PCNA unloading, causing sequestration of PCNA-CAF-1 complexes on chromatin. Importantly, correcting PCNA unloading defects in BRCA-deficient cells restores CAF-1-dependent fork stability. We further show that the activation of a HIRA-dependent compensatory histone deposition pathway restores fork stability to BRCA-deficient cells. We thus define lagging strand gap suppression and nucleosome assembly as critical enablers of BRCA-mediated fork stability. Efficient DNA replication is crucial for genome stability. Here, Thakar et al. report that accumulation of lagging strand ssDNA gaps during replication interferes with nucleosome assembly and drives replication fork degradation in BRCA-deficient cells.
Collapse
Affiliation(s)
- Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Joshua Straka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Emily M Schleicher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
39
|
Huang YC, Yuan W, Jacob Y. The Role of the TSK/TONSL-H3.1 Pathway in Maintaining Genome Stability in Multicellular Eukaryotes. Int J Mol Sci 2022; 23:9029. [PMID: 36012288 PMCID: PMC9409234 DOI: 10.3390/ijms23169029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Replication-dependent histone H3.1 and replication-independent histone H3.3 are nearly identical proteins in most multicellular eukaryotes. The N-terminal tails of these H3 variants, where the majority of histone post-translational modifications are made, typically differ by only one amino acid. Despite extensive sequence similarity with H3.3, the H3.1 variant has been hypothesized to play unique roles in cells, as it is specifically expressed and inserted into chromatin during DNA replication. However, identifying a function that is unique to H3.1 during replication has remained elusive. In this review, we discuss recent findings regarding the involvement of the H3.1 variant in regulating the TSK/TONSL-mediated resolution of stalled or broken replication forks. Uncovering this new function for the H3.1 variant has been made possible by the identification of the first proteins containing domains that can selectively bind or modify the H3.1 variant. The functional characterization of H3-variant-specific readers and writers reveals another layer of chromatin-based information regulating transcription, DNA replication, and DNA repair.
Collapse
Affiliation(s)
| | | | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
| |
Collapse
|
40
|
Abstract
Gene regulation arises out of dynamic competition between nucleosomes, transcription factors, and other chromatin proteins for the opportunity to bind genomic DNA. The timescales of nucleosome assembly and binding of factors to DNA determine the outcomes of this competition at any given locus. Here, we review how these properties of chromatin proteins and the interplay between the dynamics of different factors are critical for gene regulation. We discuss how molecular structures of large chromatin-associated complexes, kinetic measurements, and high resolution mapping of protein-DNA complexes in vivo set the boundary conditions for chromatin dynamics, leading to models of how the steady state behaviors of regulatory elements arise.
Collapse
Affiliation(s)
- Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA;
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics and RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
41
|
Dalui S, Dasgupta A, Adhikari S, Das C, Roy S. Human testis-specific Y-encoded protein-like protein 5 is a histone H3/H4-specific chaperone that facilitates histone deposition in vitro. J Biol Chem 2022; 298:102200. [PMID: 35772497 PMCID: PMC9305336 DOI: 10.1016/j.jbc.2022.102200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/20/2022] Open
Abstract
DNA and core histones are hierarchically packaged into a complex organization called chromatin. The nucleosome assembly protein (NAP) family of histone chaperones is involved in the deposition of histone complexes H2A/H2B and H3/H4 onto DNA and prevents nonspecific aggregation of histones. Testis-specific Y-encoded protein (TSPY)–like protein 5 (TSPYL5) is a member of the TSPY-like protein family, which has been previously reported to interact with ubiquitin-specific protease USP7 and regulate cell proliferation and is thus implicated in various cancers, but its interaction with chromatin has not been investigated. In this study, we characterized the chromatin association of TSPYL5 and found that it preferentially binds histone H3/H4 via its C-terminal NAP-like domain both in vitro and ex vivo. We identified the critical residues involved in the TSPYL5–H3/H4 interaction and further quantified the binding affinity of TSPYL5 toward H3/H4 using biolayer interferometry. We then determined the binding stoichiometry of the TSPYL5–H3/H4 complex in vitro using a chemical cross-linking assay and size-exclusion chromatography coupled with multiangle laser light scattering. Our results indicate that a TSPYL5 dimer binds to either two histone H3/H4 dimers or a single tetramer. We further demonstrated that TSPYL5 has a specific affinity toward longer DNA fragments and that the same histone-binding residues are also critically involved in its DNA binding. Finally, employing histone deposition and supercoiling assays, we confirmed that TSPYL5 is a histone chaperone responsible for histone H3/H4 deposition and nucleosome assembly. We conclude that TSPYL5 is likely a new member of the NAP histone chaperone family.
Collapse
Affiliation(s)
- Sambit Dalui
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Anirban Dasgupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhaba National Institute, Mumbai, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhaba National Institute, Mumbai, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
42
|
HIRA Supports Hepatitis B Virus Minichromosome Establishment and Transcriptional Activity in Infected Hepatocytes. Cell Mol Gastroenterol Hepatol 2022; 14:527-551. [PMID: 35643233 PMCID: PMC9304598 DOI: 10.1016/j.jcmgh.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Upon hepatitis B virus (HBV) infection, partially double-stranded viral DNA converts into a covalently closed circular chromatinized episomal structure (cccDNA). This form represents the long-lived genomic reservoir responsible for viral persistence in the infected liver. Although the involvement of host cell DNA damage response in cccDNA formation has been established, this work investigated the yet-to-be-identified histone dynamics on cccDNA during early phases of infection in human hepatocytes. METHODS Detailed studies of host chromatin-associated factors were performed in cell culture models of natural infection (ie, Na+-taurocholate cotransporting polypeptide (NTCP)-overexpressing HepG2 cells, HepG2hNTCP) and primary human hepatocytes infected with HBV, by cccDNA-specific chromatin immunoprecipitation and loss-of-function experiments during early kinetics of viral minichromosome establishment and onset of viral transcription. RESULTS Our results show that cccDNA formation requires the deposition of the histone variant H3.3 via the histone regulator A (HIRA)-dependent pathway. This occurs simultaneously with repair of the cccDNA precursor and independently from de novo viral protein expression. Moreover, H3.3 in its S31 phosphorylated form appears to be the preferential H3 variant found on transcriptionally active cccDNA in infected cultured cells and human livers. HIRA depletion after cccDNA pool establishment showed that HIRA recruitment is required for viral transcription and RNA production. CONCLUSIONS Altogether, we show a crucial role for HIRA in the interplay between HBV genome and host cellular machinery to ensure the formation and active transcription of the viral minichromosome in infected hepatocytes.
Collapse
|
43
|
Transcription-coupled H3.3 recycling: A link with chromatin states. Semin Cell Dev Biol 2022; 135:13-23. [PMID: 35595602 DOI: 10.1016/j.semcdb.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/09/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022]
Abstract
Histone variant H3.3 is incorporated into chromatin throughout the cell cycle and even in non-cycling cells. This histone variant marks actively transcribed chromatin regions with high nucleosome turnover, as well as silent pericentric and telomeric repetitive regions. In the past few years, significant progress has been made in our understanding of mechanisms involved in the transcription-coupled deposition of H3.3. Here we review how, during transcription, new H3.3 deposition intermingles with the fate of the old H3.3 variant and its recycling. First, we describe pathways enabling the incorporation of newly synthesized vs old H3.3 histones in the context of transcription. We then review the current knowledge concerning differences between these two H3.3 populations, focusing on their PTMs composition. Finally, we discuss the implications of H3.3 recycling for the maintenance of the transcriptional state and underline the emerging importance of H3.3 as a potent epigenetic regulator for both maintaining and switching a transcriptional state.
Collapse
|
44
|
Xu X, Duan S, Hua X, Li Z, He R, Zhang Z. Stable inheritance of H3.3-containing nucleosomes during mitotic cell divisions. Nat Commun 2022; 13:2514. [PMID: 35523900 PMCID: PMC9076889 DOI: 10.1038/s41467-022-30298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
Newly synthesized H3.1 and H3.3 histones are assembled into nucleosomes by different histone chaperones in replication-coupled and replication-independent pathways, respectively. However, it is not clear how parental H3.3 molecules are transferred following DNA replication, especially when compared to H3.1. Here, by monitoring parental H3.1- and H3.3-SNAP signals, we show that parental H3.3, like H3.1, are stably transferred into daughter cells. Moreover, Mcm2-Pola1 and Pole3-Pole4, two pathways involved in parental histone transfer based upon the analysis of modifications on parental histones, participate in the transfer of both H3.1 and H3.3 following DNA replication. Lastly, we found that Mcm2, Pole3 and Pole4 mutants defective in parental histone transfer show defects in chromosome segregation. These results indicate that in contrast to deposition of newly synthesized H3.1 and H3.3, transfer of parental H3.1 and H3.3 is mediated by these shared mechanisms, which contributes to epigenetic memory of gene expression and maintenance of genome stability.
Collapse
Affiliation(s)
- Xiaowei Xu
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard He
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
45
|
Udugama M, Vinod B, Chan FL, Hii L, Garvie A, Collas P, Kalitsis P, Steer D, Das P, Tripathi P, Mann J, Voon HPJ, Wong L. Histone H3.3 phosphorylation promotes heterochromatin formation by inhibiting H3K9/K36 histone demethylase. Nucleic Acids Res 2022; 50:4500-4514. [PMID: 35451487 PMCID: PMC9071403 DOI: 10.1093/nar/gkac259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 12/24/2022] Open
Abstract
Histone H3.3 is an H3 variant which differs from the canonical H3.1/2 at four residues, including a serine residue at position 31 which is evolutionarily conserved. The H3.3 S31 residue is phosphorylated (H3.3 S31Ph) at heterochromatin regions including telomeres and pericentric repeats. However, the role of H3.3 S31Ph in these regions remains unknown. In this study, we find that H3.3 S31Ph regulates heterochromatin accessibility at telomeres during replication through regulation of H3K9/K36 histone demethylase KDM4B. In mouse embryonic stem (ES) cells, substitution of S31 with an alanine residue (H3.3 A31 -phosphorylation null mutant) results in increased KDM4B activity that removes H3K9me3 from telomeres. In contrast, substitution with a glutamic acid (H3.3 E31, mimics S31 phosphorylation) inhibits KDM4B, leading to increased H3K9me3 and DNA damage at telomeres. H3.3 E31 expression also increases damage at other heterochromatin regions including the pericentric heterochromatin and Y chromosome-specific satellite DNA repeats. We propose that H3.3 S31Ph regulation of KDM4B is required to control heterochromatin accessibility of repetitive DNA and preserve chromatin integrity.
Collapse
Affiliation(s)
| | | | - F Lyn Chan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Linda Hii
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew Garvie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway,Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Paul Kalitsis
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - David Steer
- Biomedical Proteomics Facility, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Partha P Das
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pratibha Tripathi
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jeffrey R Mann
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Hsiao P J Voon
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lee H Wong
- To whom correspondence should be addressed.
| |
Collapse
|
46
|
Ray-Gallet D, Almouzni G. H3–H4 histone chaperones and cancer. Curr Opin Genet Dev 2022; 73:101900. [DOI: 10.1016/j.gde.2022.101900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/16/2022]
|
47
|
Zhang M, Zhao X, Feng X, Hu X, Zhao X, Lu W, Lu X. Histone chaperone HIRA complex regulates retrotransposons in embryonic stem cells. Stem Cell Res Ther 2022; 13:137. [PMID: 35365225 PMCID: PMC8973876 DOI: 10.1186/s13287-022-02814-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone cell cycle regulator (HIRA) complex is an important histone chaperone that mediates the deposition of the H3.3 histone variant onto chromatin independently from DNA synthesis. However, it is still unknown whether it participates in the expression control of retrotransposons and cell fate determination. METHODS We screened the role of HIRA complex members in repressing the expression of retrotransposons by shRNA depletion in embryonic stem cells (ESCs) followed by RT-qPCR. RNA-seq was used to study the expression profiles after depletion of individual HIRA member. RT-qPCR and western blot were used to determine overexpression of HIRA complex members. Chromatin immunoprecipitation (ChIP)-qPCR was used to find the binding of H3.3, HIRA members to chromatin. Co-immunoprecipitation was used to identify the interaction between Hira mutant and Ubn2. ChIP-qPCR was used to identify H3.3 deposition change and western blot of chromatin extract was used to validate the epigenetic change. Bioinformatics analysis was applied for the analysis of available ChIP-seq data. RESULTS We revealed that Hira, Ubn2, and Ubn1 were the main repressors of 2-cell marker retrotransposon MERVL among HIRA complex members. Surprisingly, Ubn2 and Hira targeted different groups of retrotransposons and retrotransposon-derived long noncoding RNAs (lncRNAs), despite that they partially shared target genes. Furthermore, Ubn2 prevented ESCs to gain a 2-cell like state or activate trophectodermal genes upon differentiation. Mechanistically, Ubn2 and Hira suppressed retrotransposons by regulating the deposition of histone H3.3. Decreased H3.3 deposition, that was associated with the loss of Ubn2 or Hira, caused the reduction of H3K9me2 and H3K9me3, which are known repressive marks of retrotransposons. CONCLUSIONS Overall, our findings shed light on the distinct roles of HIRA complex members in controlling retrotransposons and cell fate conversion in ESCs.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, People's Republic of China
| | - Xin Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, People's Republic of China
| | - Xiao Feng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, People's Republic of China
| | | | - Xuan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, People's Republic of China
| | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
48
|
Gatto A, Forest A, Quivy JP, Almouzni G. HIRA-dependent boundaries between H3 variants shape early replication in mammals. Mol Cell 2022; 82:1909-1923.e5. [PMID: 35381196 DOI: 10.1016/j.molcel.2022.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
The lack of a consensus DNA sequence defining replication origins in mammals has led researchers to consider chromatin as a means to specify these regions. However, to date, there is no mechanistic understanding of how this could be achieved and maintained given that nucleosome disruption occurs with each fork passage and with transcription. Here, by genome-wide mapping of the de novo deposition of the histone variants H3.1 and H3.3 in human cells during S phase, we identified how their dual deposition mode ensures a stable marking with H3.3 flanked on both sides by H3.1. These H3.1/H3.3 boundaries correspond to the initiation zones of early origins. Loss of the H3.3 chaperone HIRA leads to the concomitant disruption of H3.1/H3.3 boundaries and initiation zones. We propose that the HIRA-dependent deposition of H3.3 preserves H3.1/H3.3 boundaries by protecting them from H3.1 invasion linked to fork progression, contributing to a chromatin-based definition of early replication zones.
Collapse
Affiliation(s)
- Alberto Gatto
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Audrey Forest
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Jean-Pierre Quivy
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
49
|
Wen T, Chen QY. Dynamic Activity of Histone H3-Specific Chaperone Complexes in Oncogenesis. Front Oncol 2022; 11:806974. [PMID: 35087762 PMCID: PMC8786718 DOI: 10.3389/fonc.2021.806974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Canonical histone H3.1 and variant H3.3 deposit at different sites of the chromatin via distinct histone chaperones. Histone H3.1 relies on chaperone CAF-1 to mediate replication-dependent nucleosome assembly during S-phase, while H3.3 variant is regulated and incorporated into the chromatin in a replication-independent manner through HIRA and DAXX/ATRX. Current literature suggests that dysregulated expression of histone chaperones may be implicated in tumor progression. Notably, ectopic expression of CAF-1 can promote a switch between canonical H3.1 and H3 variants in the chromatin, impair the chromatic state, lead to chromosome instability, and impact gene transcription, potentially contributing to carcinogenesis. This review focuses on the chaperone proteins of H3.1 and H3.3, including structure, regulation, as well as their oncogenic and tumor suppressive functions in tumorigenesis.
Collapse
Affiliation(s)
- Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
50
|
Zhang Y, Yang Y, Qiao P, Wang X, Yu R, Sun H, Xing X, Zhang Y, Su J. CHAF1b, chromatin assembly factor-1 subunit b, is essential for mouse preimplantation embryos. Int J Biol Macromol 2022; 195:547-557. [PMID: 34906611 DOI: 10.1016/j.ijbiomac.2021.11.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022]
Abstract
Chromatin assembly factor-1, subunit b (CHAF1b), the p60 subunit of the chromatin-assembly factor-1 (CAF-1) complex, is an evolutionarily conserved protein that has been implicated in various biological processes. Although a variety of functions have been attributed to CHAF1b, its function in preimplantation embryos remains obscure. In this study, we showed that CHAF1b knockdown did not affect the blastocyst rate, but resulted in a low blastocyst hatching rate, outgrowth failure in vitro, and embryonic lethality after implantation in vivo. Notably, CHAF1b depletion increased apoptosis and caused down-regulated expression of key regulators of cell fate specification, including Oct4, Cdx2, Sox2, and Nanog. Further analysis revealed that CHAF1b mediated the replacement of H3.3 with H3.1/3.2, which was associated with decreased repressive histone marks (H3K9me2/3 and H3K27me2/3) and increased active histone marks (H3K4me2/3). Moreover, RNA-sequencing analysis revealed that CHAF1b depletion resulted in the differential expression of 1508 genes, including epigenetic modifications genes, multiple lineage-specific genes, and several genes encoding apoptosis proteins. In addition, assay for transposase-accessible chromatin-sequencing analysis demonstrated that silencing CHAF1b altered the chromatin accessibility of lineage-specific genes and epigenetic modifications genes. Taken together, these data imply that CHAF1b plays significant roles in preimplantation embryos, probably by regulating epigenetic modifications and lineage specification.
Collapse
Affiliation(s)
- Yingbing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ying Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Peipei Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiyue Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ruiluan Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongzheng Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|