1
|
Blow F, Jeffrey K, Chow FWN, Nikonorova IA, Barr MM, Cook AG, Prevo B, Cheerambathur DK, Buck AH. SID-2 is a conserved extracellular vesicle protein that is not associated with environmental RNAi in parasitic nematodes. Open Biol 2024; 14:240190. [PMID: 39501794 PMCID: PMC11538922 DOI: 10.1098/rsob.240190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
In the free-living nematode Caenorhabditis elegans, the transmembrane protein SID-2 imports double-stranded RNA into intestinal cells to trigger systemic RNA interference (RNAi), allowing organisms to sense and respond to environmental cues such as the presence of pathogens. This process, known as environmental RNAi, has not been observed in the most closely related parasites that are also within clade V. Previous sequence-based searches failed to identify sid-2 orthologues in available clade V parasite genomes. In this study, we identified sid-2 orthologues in these parasites using genome synteny and protein structure-based comparison, following identification of a SID-2 orthologue in extracellular vesicles from the murine intestinal parasitic nematode Heligmosomoides bakeri. Expression of GFP-tagged H. bakeri SID-2 in C. elegans showed similar localization to the intestinal apical membrane as seen for GFP-tagged C. elegans SID-2, and further showed mobility in intestinal cells in vesicle-like structures. We tested the capacity of H. bakeri SID-2 to functionally complement environmental RNAi in a C. elegans SID-2 null mutant and show that H. bakeri SID-2 does not rescue the phenotype in this context. Our work identifies SID-2 as a highly abundant EV protein whose ancestral function may be unrelated to environmental RNAi, and rather highlights an association with extracellular vesicles in nematodes.
Collapse
Affiliation(s)
- Frances Blow
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Kate Jeffrey
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Franklin Wang-Ngai Chow
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong
| | - Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey NJ 08854, USA
| | - Atlanta G Cook
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
2
|
Wang J, Barr MM, Wehman AM. Extracellular vesicles. Genetics 2024; 227:iyae088. [PMID: 38884207 PMCID: PMC11304975 DOI: 10.1093/genetics/iyae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Extracellular vesicles (EVs) encompass a diverse array of membrane-bound organelles released outside cells in response to developmental and physiological cell needs. EVs play important roles in remodeling the shape and content of differentiating cells and can rescue damaged cells from toxic or dysfunctional content. EVs can send signals and transfer metabolites between tissues and organisms to regulate development, respond to stress or tissue damage, or alter mating behaviors. While many EV functions have been uncovered by characterizing ex vivo EVs isolated from body fluids and cultured cells, research using the nematode Caenorhabditis elegans has provided insights into the in vivo functions, biogenesis, and uptake pathways. The C. elegans EV field has also developed methods to analyze endogenous EVs within the organismal context of development and adult physiology in free-living, behaving animals. In this review, we summarize major themes that have emerged for C. elegans EVs and their relevance to human health and disease. We also highlight the diversity of biogenesis mechanisms, locations, and functions of worm EVs and discuss open questions and unexplored topics tenable in C. elegans, given the nematode model is ideal for light and electron microscopy, genetic screens, genome engineering, and high-throughput omics.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
3
|
Chen S, Phillips CM. Nuclear Argonaute protein NRDE-3 switches small RNA binding partners during embryogenesis coincident with the formation of SIMR granules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605686. [PMID: 39131395 PMCID: PMC11312606 DOI: 10.1101/2024.07.29.605686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
RNA interference (RNAi) is a conserved gene regulation mechanism that utilizes the Argonaute protein and their associated small RNAs to exert regulatory function on complementary transcripts. While the majority of germline-expressed RNAi pathway components reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here we find that the small RNA biogenesis machinery is spatially and temporally organized during embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Further, we observe that many other RNAi factors form foci in embryonic cells distinct from SIMR granules, including the Argonaute protein CSR-1, underscoring a potential role for cytoplasmic concentrates of RNAi factors to promote gene regulation in embryos. Curiously, coincident with the appearance of the "SIMR granules", the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during early embryogenesis and switching later in embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.
Collapse
Affiliation(s)
- Shihui Chen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
4
|
Zhang J, Zhan C, Fan J, Wu D, Zhang R, Wu D, Chen X, Lu Y, Li M, Lin M, Gong J, Jiang D. Structural insights into double-stranded RNA recognition and transport by SID-1. Nat Struct Mol Biol 2024; 31:1095-1104. [PMID: 38664565 DOI: 10.1038/s41594-024-01276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/14/2024] [Indexed: 07/20/2024]
Abstract
RNA uptake by cells is critical for RNA-mediated gene interference (RNAi) and RNA-based therapeutics. In Caenorhabditis elegans, RNAi is systemic as a result of SID-1-mediated double-stranded RNA (dsRNA) across cells. Despite the functional importance, the underlying mechanisms of dsRNA internalization by SID-1 remain elusive. Here we describe cryogenic electron microscopy structures of SID-1, SID-1-dsRNA complex and human SID-1 homologs SIDT1 and SIDT2, elucidating the structural basis of dsRNA recognition and import by SID-1. The homodimeric SID-1 homologs share conserved architecture, but only SID-1 possesses the molecular determinants within its extracellular domains for distinguishing dsRNA from single-stranded RNA and DNA. We show that the removal of the long intracellular loop between transmembrane helix 1 and 2 attenuates dsRNA uptake and systemic RNAi in vivo, suggesting a possible endocytic mechanism of SID-1-mediated dsRNA internalization. Our study provides mechanistic insights into dsRNA internalization by SID-1, which may facilitate the development of dsRNA applications based on SID-1.
Collapse
Affiliation(s)
- Jiangtao Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Chunhua Zhan
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junping Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Dian Wu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruixue Zhang
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy Agricultural Sciences, Beijing, China
| | - Di Wu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyao Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Lin
- Food Laboratory of Zhongyuan, College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Mouton S, Mougel A, Ustyantsev K, Dissous C, Melnyk O, Berezikov E, Vicogne J. Optimized protocols for RNA interference in Macrostomum lignano. G3 (BETHESDA, MD.) 2024; 14:jkae037. [PMID: 38421640 PMCID: PMC11075559 DOI: 10.1093/g3journal/jkae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Macrostomum lignano, a marine free-living flatworm, has emerged as a potent invertebrate model in developmental biology for studying stem cells, germline, and regeneration processes. In recent years, many tools have been developed to manipulate this worm and to facilitate genetic modification. RNA interference is currently the most accessible and direct technique to investigate gene functions. It is obtained by soaking worms in artificial seawater containing dsRNA targeting the gene of interest. Although easy to perform, the original protocol calls for daily exchange of dsRNA solutions, usually until phenotypes are observed, which is both time- and cost-consuming. In this work, we have evaluated alternative dsRNA delivery techniques, such as electroporation and osmotic shock, to facilitate the experiments with improved time and cost efficiency. During our investigation to optimize RNAi, we demonstrated that, in the absence of diatoms, regular single soaking in artificial seawater containing dsRNA directly produced in bacteria or synthesized in vitro is, in most cases, sufficient to induce a potent gene knockdown for several days with a single soaking step. Therefore, this new and highly simplified method allows a very significant reduction of dsRNA consumption and lab work. In addition, it enables performing experiments on a larger number of worms at minimal cost.
Collapse
Affiliation(s)
- Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9700AD, The Netherlands
| | - Alexandra Mougel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Kirill Ustyantsev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9700AD, The Netherlands
| | - Colette Dissous
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9700AD, The Netherlands
| | - Jérôme Vicogne
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
6
|
Sengupta T, St. Ange J, Kaletsky R, Moore RS, Seto RJ, Marogi J, Myhrvold C, Gitai Z, Murphy CT. A natural bacterial pathogen of C. elegans uses a small RNA to induce transgenerational inheritance of learned avoidance. PLoS Genet 2024; 20:e1011178. [PMID: 38547071 PMCID: PMC10977744 DOI: 10.1371/journal.pgen.1011178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024] Open
Abstract
C. elegans can learn to avoid pathogenic bacteria through several mechanisms, including bacterial small RNA-induced learned avoidance behavior, which can be inherited transgenerationally. Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and transgenerational inheritance of that avoidance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we screened a set of wild habitat bacteria, and found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. We identified Pv1, a small RNA expressed in P. vranovensis, that has a 16-nucleotide match to an exon of the C. elegans gene maco-1. Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance may be functional in C. elegans' natural environment, and that this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our data also suggest that different bacterial small RNA-mediated regulation systems evolved independently, but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.
Collapse
Affiliation(s)
- Titas Sengupta
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan St. Ange
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rachel Kaletsky
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rebecca S. Moore
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Renee J. Seto
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jacob Marogi
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
7
|
Yoshida K, Suehiro Y, Dejima K, Yoshina S, Mitani S. Distinct pathways for export of silencing RNA in Caenorhabditis elegans systemic RNAi. iScience 2023; 26:108067. [PMID: 37854694 PMCID: PMC10579535 DOI: 10.1016/j.isci.2023.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Dietary supplied double-stranded RNA (dsRNA) can trigger RNA interference (RNAi) systemically in some animals, including the nematode Caenorhabditis elegans. Although this phenomenon has been utilized as a major tool for gene silencing in C. elegans, how cells spread the silencing RNA throughout the organism is largely unknown. Here, we identify two novel systemic RNAi-related factors, REXD-1 and TBC-3, and show that these two factors together with SID-5 act redundantly to promote systemic spreading of dsRNA. Animals that are defective in all REXD-1, TBC-3, and SID-5 functions show strong deficiency in export of dsRNA from intestinal cells, whereas cellular uptake and processing of dsRNA and general secretion events other than dsRNA secretion are still functional in the triple mutant animals. Our findings reveal pathways that specifically regulate the export of dsRNA in parallel, implying the importance of spreading RNA molecules for intercellular communication in organisms.
Collapse
Affiliation(s)
- Keita Yoshida
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Katsufumi Dejima
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
8
|
Koo J, Gurusamy D, Palli SR. Inefficient uptake of small interfering RNAs is responsible for their inability to trigger RNA interference in Colorado potato beetle cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-12. [PMID: 37452750 PMCID: PMC10528746 DOI: 10.1002/arch.22036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
There has been limited success in the usage of exogenous small interference RNA (siRNA) or small hairpin RNA (shRNA) to trigger RNA interference (RNAi) in insects. Instead, long double-stranded RNAs (dsRNA) are used to induce knockdown of target genes in insects. Here, we compared the potency of si/sh RNAs and dsRNA in Colorado potato beetle (CPB) cells. CPB cells showed highly efficient RNAi response to dsRNA. However, si/sh RNAs were inefficient in triggering RNAi in CPB cells. Confocal microscopy observations of Cy3 labeled-si/sh RNA cellular uptake revealed reduced si/sh RNA uptake compared to dsRNA. si/sh RNAs were stable in the conditioned media of CPB cells. Although in a small amount, when internalized by CPB cells, the si/sh RNAs were processed by the Dicer enzyme. Lipid-mediated transfection and chimeric dsRNA approaches were used to improve the delivery of si/sh RNAs. Our results suggest that the uptake of si/sh RNAs is inefficient in CPB cells, resulting in ineffective RNAi response. However, with the help of effective delivery methods, si/sh RNA could be a useful option for developing target-specific RNAi-mediated biopesticides.
Collapse
Affiliation(s)
- Jinmo Koo
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | - Dhandapani Gurusamy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
- Current address, Department of Botany, Kongunadu Arts and Science College (Autonomous), Bharathiar University, Coimbatore, India
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
9
|
Chai P, Lebedenko CG, Flynn RA. RNA Crossing Membranes: Systems and Mechanisms Contextualizing Extracellular RNA and Cell Surface GlycoRNAs. Annu Rev Genomics Hum Genet 2023; 24:85-107. [PMID: 37068783 DOI: 10.1146/annurev-genom-101722-101224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The subcellular localization of a biopolymer often informs its function. RNA is traditionally confined to the cytosolic and nuclear spaces, where it plays critical and conserved roles across nearly all biochemical processes. Our recent observation of cell surface glycoRNAs may further explain the extracellular role of RNA. While cellular membranes are efficient gatekeepers of charged polymers such as RNAs, a large body of research has demonstrated the accumulation of specific RNA species outside of the cell, termed extracellular RNAs (exRNAs). Across various species and forms of life, protein pores have evolved to transport RNA across membranes, thus providing a mechanistic path for exRNAs to achieve their extracellular topology. Here, we review types of exRNAs and the pores capable of RNA transport to provide a logical and testable path toward understanding the biogenesis and regulation of cell surface glycoRNAs.
Collapse
Affiliation(s)
- Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Charlotta G Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Dejima K, Imae R, Suehiro Y, Yoshida K, Mitani S. An endomembrane zinc transporter negatively regulates systemic RNAi in Caenorhabditis elegans. iScience 2023; 26:106930. [PMID: 37305693 PMCID: PMC10250833 DOI: 10.1016/j.isci.2023.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Double-stranded RNA (dsRNA) regulates gene expression in a sequence-dependent manner. In Caenorhabditis elegans, dsRNA spreads through the body and leads to systemic RNA silencing. Although several genes involved in systemic RNAi have been genetically identified, molecules that mediate systemic RNAi remain largely unknown. Here, we identified ZIPT-9, a C. elegans homolog of ZIP9/SLC39A9, as a broad-spectrum negative regulator of systemic RNAi. We showed that RSD-3, SID-3, and SID-5 genetically act in parallel for efficient RNAi, and that zipt-9 mutants suppress the RNAi defects of all the mutants. Analysis of a complete set of deletion mutants for SLC30 and SLC39 family genes revealed that only zipt-9 mutants showed altered RNAi activity. Based on these results and our analysis using transgenic Zn2+ reporters, we propose that ZIPT-9-dependent Zn2+ homeostasis, rather than overall cytosolic Zn2+, modulates systemic RNAi activity. Our findings reveal a previously unknown function of zinc transporters in negative RNAi regulation.
Collapse
Affiliation(s)
- Katsufumi Dejima
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Rieko Imae
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Keita Yoshida
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
11
|
Gaeta AL, Willicott K, Willicott CW, McKay LE, Keogh CM, Altman TJ, Kimble LC, Yarbrough AL, Caldwell KA, Caldwell GA. Mechanistic impacts of bacterial diet on dopaminergic neurodegeneration in a Caenorhabditis elegans α-synuclein model of Parkinson's disease. iScience 2023; 26:106859. [PMID: 37260751 PMCID: PMC10227375 DOI: 10.1016/j.isci.2023.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/03/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Failure of inherently protective cellular processes and misfolded protein-associated stress contribute to the progressive loss of dopamine (DA) neurons characteristic of Parkinson's disease (PD). A disease-modifying role for the microbiome has recently emerged in PD, representing an impetus to employ the soil-dwelling nematode, Caenorhabditis elegans, as a preclinical model to correlate changes in gene expression with neurodegeneration in transgenic animals grown on distinct bacterial food sources. Even under tightly controlled conditions, hundreds of differentially expressed genes and a robust neuroprotective response were discerned between clonal C. elegans strains overexpressing human alpha-synuclein in the DA neurons fed either one of only two subspecies of Escherichia coli. Moreover, this neuroprotection persisted in a transgenerational manner. Genetic analysis revealed a requirement for the double-stranded RNA (dsRNA)-mediated gene silencing machinery in conferring neuroprotection. In delineating the contribution of individual genes, evidence emerged for endopeptidase activity and heme-associated pathway(s) as mechanistic components for modulating dopaminergic neuroprotection.
Collapse
Affiliation(s)
- Anthony L. Gaeta
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Karolina Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Corey W. Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Luke E. McKay
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Candice M. Keogh
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Tyler J. Altman
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Logan C. Kimble
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Abigail L. Yarbrough
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, AL 35487, USA
- Alabama Research Institute on Aging, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for Basic Research in the Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for Basic Research in the Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
A Tale of Two Lobsters—Transcriptomic Analysis Reveals a Potential Gap in the RNA Interference Pathway in the Tropical Rock Lobster Panulirus ornatus. Int J Mol Sci 2022; 23:ijms231911752. [PMID: 36233053 PMCID: PMC9569428 DOI: 10.3390/ijms231911752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
RNA interference (RNAi) has been widely utilised in many invertebrate models since its discovery, and in a majority of instances presents as a highly efficient and potent gene silencing mechanism. This is emphasized in crustaceans with almost all taxa having the capacity to trigger effective silencing, with a notable exception in the spiny lobsters where repeated attempts at dsRNA induced RNAi have demonstrated extremely ineffective gene knockdown. A comparison of the core RNAi machinery in transcriptomic data from spiny lobsters (Panulirus ornatus) and the closely related slipper lobsters (Thenus australiensis, where silencing is highly effective) revealed that both lobsters possess all proteins involved in the small interfering and microRNA pathways, and that there was little difference at both the sequence and domain architecture level. Comparing the expression of these genes however demonstrated that T. australiensis had significantly higher expression in the transcripts encoding proteins which directly interact with dsRNA when compared to P. ornatus, validated via qPCR. These results suggest that low expression of the core RNAi genes may be hindering the silencing response in P. ornatus, and suggest that it may be critical to enhance the expression of these genes to induce efficient silencing in spiny lobsters.
Collapse
|
13
|
Bhatia S, Hunter CP. SID-4/NCK-1 is important for dsRNA import in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:6722623. [PMID: 36165710 PMCID: PMC9635667 DOI: 10.1093/g3journal/jkac252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
RNA interference is sequence-specific gene silencing triggered by double-stranded RNA. Systemic RNA interference is where double-stranded RNA, expressed or introduced into 1 cell, is transported to and initiates RNA interference in other cells. Systemic RNA interference is very efficient in Caenorhabditis elegans and genetic screens for systemic RNA interference-defective mutants have identified RNA transporters (SID-1, SID-2, and SID-5) and a signaling protein (SID-3). Here, we report that SID-4 is nck-1, a C. elegans NCK-like adaptor protein. sid-4 null mutations cause a weak, dose-sensitive, systemic RNA interference defect and can be effectively rescued by SID-4 expression in target tissues only, implying a role in double-stranded RNA import. SID-4 and SID-3 (ACK-1 kinase) homologs interact in mammals and insects, suggesting that they may function in a common signaling pathway; however, a sid-3; sid-4 double mutants showed additive resistance to RNA interference, suggesting that these proteins likely interact with other signaling pathways as well. A bioinformatic screen coupled to RNA interference sensitivity tests identified 23 additional signaling components with weak RNA interference-defective phenotypes. These observations suggest that environmental conditions may modulate systemic RNA interference efficacy, and indeed, sid-3 and sid-4 are required for growth temperature effects on systemic RNA interference silencing efficiency.
Collapse
Affiliation(s)
- Sonya Bhatia
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138, USA
| | - Craig P Hunter
- Corresponding author: Department of Molecular and Cellular Biology, 16 Divinity Avenue, Harvard University, Cambridge MA, 02138 USA.
| |
Collapse
|
14
|
Bensoussan N, Milojevic M, Bruinsma K, Dixit S, Pham S, Singh V, Zhurov V, Grbić M, Grbić V. Localized efficacy of environmental RNAi in Tetranychus urticae. Sci Rep 2022; 12:14791. [PMID: 36042376 PMCID: PMC9427735 DOI: 10.1038/s41598-022-19231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Environmental RNAi has been developed as a tool for reverse genetics studies and is an emerging pest control strategy. The ability of environmental RNAi to efficiently down-regulate the expression of endogenous gene targets assumes efficient uptake of dsRNA and its processing. In addition, its efficiency can be augmented by the systemic spread of RNAi signals. Environmental RNAi is now a well-established tool for the manipulation of gene expression in the chelicerate acari, including the two-spotted spider mite, Tetranychus urticae. Here, we focused on eight single and ubiquitously-expressed genes encoding proteins with essential cellular functions. Application of dsRNAs that specifically target these genes led to whole mite body phenotypes—dark or spotless. These phenotypes were associated with a significant reduction of target gene expression, ranging from 20 to 50%, when assessed at the whole mite level. Histological analysis of mites treated with orally-delivered dsRNAs was used to investigate the spatial range of the effectiveness of environmental RNAi. Although macroscopic changes led to two groups of body phenotypes, silencing of target genes was associated with the distinct cellular phenotypes. We show that regardless of the target gene tested, cells that displayed histological changes were those that are in direct contact with the dsRNA-containing gut lumen, suggesting that the greatest efficiency of the orally-delivered dsRNAs is localized to gut tissues in T. urticae.
Collapse
Affiliation(s)
- Nicolas Bensoussan
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.,Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, 33882, Villenave d'Ornon, France
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Sameer Dixit
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.,National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sean Pham
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Vinayak Singh
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Vojislava Grbić
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.
| |
Collapse
|
15
|
Wang X, Li X, Wang J, Wang J, Hu C, Zeng J, Shi A, Lin L. SMGL-1/NBAS acts as a RAB-8 GEF to regulate unconventional protein secretion. J Cell Biol 2022; 221:213235. [PMID: 35604368 PMCID: PMC9129922 DOI: 10.1083/jcb.202111125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 01/07/2023] Open
Abstract
Unconventional protein secretion (UPS) pathways are conserved across species. However, the underlying mechanisms that regulate Golgi-bypassing UPS of integral proteins remain elusive. In this study, we show that RAB-8 and SMGL-1/NBAS are required for the UPS of integral proteins in C. elegans intestine. SMGL-1 resides in the ER-Golgi intermediate compartment and adjacent RAB-8-positive structures, and NRZ complex component CZW-1/ZW10 is required for this residency. Notably, SMGL-1 acts as a guanine nucleotide exchange factor for RAB-8, ensuring UPS of integral proteins by driving the activation of RAB-8. Furthermore, we show that Pseudomonas aeruginosa infection elevated the expression of SMGL-1 and RAB-8. Loss of SMGL-1 or RAB-8 compromised resistance to environmental colchicine, arsenite, and pathogenic bacteria. These results suggest that the SMGL-1/RAB-8-mediated UPS could integrate environmental signals to serve as a host defense response. Together, by establishing the C. elegans intestine as a multicellular model, our findings provide insights into RAB-8-dependent Golgi-bypassing UPS, especially in the context of epithelia in vivo.
Collapse
Affiliation(s)
- Xianghong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinxin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junkai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiabin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Zeng
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,Correspondence to Anbing Shi:
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,Long Lin:
| |
Collapse
|
16
|
Nikonorova IA, Wang J, Cope AL, Tilton PE, Power KM, Walsh JD, Akella JS, Krauchunas AR, Shah P, Barr MM. Isolation, profiling, and tracking of extracellular vesicle cargo in Caenorhabditis elegans. Curr Biol 2022; 32:1924-1936.e6. [PMID: 35334227 PMCID: PMC9491618 DOI: 10.1016/j.cub.2022.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 01/04/2023]
Abstract
Extracellular vesicles (EVs) may mediate intercellular communication by carrying protein and RNA cargo. The composition, biology, and roles of EVs in physiology and pathology have been primarily studied in the context of biofluids and in cultured mammalian cells. The experimental tractability of C. elegans makes for a powerful in vivo animal system to identify and study EV cargo from its cellular source. We developed an innovative method to label, track, and profile EVs using genetically encoded, fluorescent-tagged EV cargo and conducted a large-scale isolation and proteomic profiling. Nucleic acid binding proteins (∼200) are overrepresented in our dataset. By integrating our EV proteomic dataset with single-cell transcriptomic data, we identified and validated ciliary EV cargo: CD9-like tetraspanin (TSP-6), ectonucleotide pyrophosphatase/phosphodiesterase (ENPP-1), minichromosome maintenance protein (MCM-3), and double-stranded RNA transporter SID-2. C. elegans EVs also harbor RNA, suggesting that EVs may play a role in extracellular RNA-based communication.
Collapse
Affiliation(s)
- Inna A Nikonorova
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA.
| | - Juan Wang
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Alexander L Cope
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Peter E Tilton
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Kaiden M Power
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Jonathon D Walsh
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Jyothi S Akella
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Amber R Krauchunas
- University of Delaware, Department of Biological Sciences, 105 The Green, Newark, DE 19716, USA
| | - Premal Shah
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
17
|
Quarato P, Singh M, Bourdon L, Cecere G. Inheritance and maintenance of small RNA-mediated epigenetic effects. Bioessays 2022; 44:e2100284. [PMID: 35338497 DOI: 10.1002/bies.202100284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Heritable traits are predominantly encoded within genomic DNA, but it is now appreciated that epigenetic information is also inherited through DNA methylation, histone modifications, and small RNAs. Several examples of transgenerational epigenetic inheritance of traits have been documented in plants and animals. These include even the inheritance of traits acquired through the soma during the life of an organism, implicating the transfer of epigenetic information via the germline to the next generation. Small RNAs appear to play a significant role in carrying epigenetic information across generations. This review focuses on how epigenetic information in the form of small RNAs is transmitted from the germline to the embryos through the gametes. We also consider how inherited epigenetic information is maintained across generations in a small RNA-dependent and independent manner. Finally, we discuss how epigenetic traits acquired from the soma can be inherited through small RNAs.
Collapse
Affiliation(s)
- Piergiuseppe Quarato
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Meetali Singh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Loan Bourdon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Germano Cecere
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| |
Collapse
|
18
|
Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 2022; 23:185-203. [PMID: 34707241 PMCID: PMC9208737 DOI: 10.1038/s41580-021-00425-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 01/09/2023]
Abstract
Since the discovery of eukaryotic small RNAs as the main effectors of RNA interference in the late 1990s, diverse types of endogenous small RNAs have been characterized, most notably microRNAs, small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). These small RNAs associate with Argonaute proteins and, through sequence-specific gene regulation, affect almost every major biological process. Intriguing features of small RNAs, such as their mechanisms of amplification, rapid evolution and non-cell-autonomous function, bestow upon them the capacity to function as agents of intercellular communications in development, reproduction and immunity, and even in transgenerational inheritance. Although there are many types of extracellular small RNAs, and despite decades of research, the capacity of these molecules to transmit signals between cells and between organisms is still highly controversial. In this Review, we discuss evidence from different plants and animals that small RNAs can act in a non-cell-autonomous manner and even exchange information between species. We also discuss mechanistic insights into small RNA communications, such as the nature of the mobile agents, small RNA signal amplification during transit, signal perception and small RNA activity at the destination.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Oded Rechavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
19
|
Darlington M, Reinders JD, Sethi A, Lu AL, Ramaseshadri P, Fischer JR, Boeckman CJ, Petrick JS, Roper JM, Narva KE, Vélez AM. RNAi for Western Corn Rootworm Management: Lessons Learned, Challenges, and Future Directions. INSECTS 2022; 13:57. [PMID: 35055900 PMCID: PMC8779393 DOI: 10.3390/insects13010057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is considered one of the most economically important pests of maize (Zea mays L.) in the United States (U.S.) Corn Belt with costs of management and yield losses exceeding USD ~1-2 billion annually. WCR management has proven challenging given the ability of this insect to evolve resistance to multiple management strategies including synthetic insecticides, cultural practices, and plant-incorporated protectants, generating a constant need to develop new management tools. One of the most recent developments is maize expressing double-stranded hairpin RNA structures targeting housekeeping genes, which triggers an RNA interference (RNAi) response and eventually leads to insect death. Following the first description of in planta RNAi in 2007, traits targeting multiple genes have been explored. In June 2017, the U.S. Environmental Protection Agency approved the first in planta RNAi product against insects for commercial use. This product expresses a dsRNA targeting the WCR snf7 gene in combination with Bt proteins (Cry3Bb1 and Cry34Ab1/Cry35Ab1) to improve trait durability and will be introduced for commercial use in 2022.
Collapse
Affiliation(s)
- Molly Darlington
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Jordan D. Reinders
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Amit Sethi
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Albert L. Lu
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Joshua R. Fischer
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Chad J. Boeckman
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Jay S. Petrick
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Jason M. Roper
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Ana M. Vélez
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| |
Collapse
|
20
|
Mehlhorn S, Hunnekuhl VS, Geibel S, Nauen R, Bucher G. Establishing RNAi for basic research and pest control and identification of the most efficient target genes for pest control: a brief guide. Front Zool 2021; 18:60. [PMID: 34863212 PMCID: PMC8643023 DOI: 10.1186/s12983-021-00444-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
RNA interference (RNAi) has emerged as a powerful tool for knocking-down gene function in diverse taxa including arthropods for both basic biological research and application in pest control. The conservation of the RNAi mechanism in eukaryotes suggested that it should-in principle-be applicable to most arthropods. However, practical hurdles have been limiting the application in many taxa. For instance, species differ considerably with respect to efficiency of dsRNA uptake from the hemolymph or the gut. Here, we review some of the most frequently encountered technical obstacles when establishing RNAi and suggest a robust procedure for establishing this technique in insect species with special reference to pests. Finally, we present an approach to identify the most effective target genes for the potential control of agricultural and public health pests by RNAi.
Collapse
Affiliation(s)
- Sonja Mehlhorn
- Crop Science Division, Bayer AG, R&D, Pest Control, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Vera S Hunnekuhl
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Sven Geibel
- Crop Science Division, Bayer AG, R&D, Pest Control, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Ralf Nauen
- Crop Science Division, Bayer AG, R&D, Pest Control, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
21
|
Choudhary C, Meghwanshi KK, Shukla N, Shukla JN. Innate and adaptive resistance to RNAi: a major challenge and hurdle to the development of double stranded RNA-based pesticides. 3 Biotech 2021; 11:498. [PMID: 34881161 PMCID: PMC8595431 DOI: 10.1007/s13205-021-03049-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022] Open
Abstract
RNA interference (RNAi) is a post-transcriptional gene silencing process where short interfering RNAs degrade targeted mRNA. Exploration of gene function through reverse genetics is the major achievement of RNAi discovery. Besides, RNAi can be used as a potential strategy for the control of insect pests. This has led to the idea of developing RNAi-based pesticides. Differential RNAi efficiency in the different insect orders is the biggest biological obstacle in developing RNAi-based pesticides. dsRNA stability, the sensitivity of core RNAi machinery, uptake of dsRNA and amplification and spreading of the RNAi signal are the key factors responsible for RNAi efficiency in insects. This review discusses the physiological and adaptive factors responsible for reduced RNAi in insects that pose a major challenge in developing dsRNA- based pesticides.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| | - Nidhi Shukla
- Birla Institute of Scientific Research, Statue Circle, Prithviraj Rd, C-Scheme, Jaipur, Rajasthan 302001 India
| | - Jayendra Nath Shukla
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| |
Collapse
|
22
|
Cecere G. Small RNAs in epigenetic inheritance: from mechanisms to trait transmission. FEBS Lett 2021; 595:2953-2977. [PMID: 34671979 PMCID: PMC9298081 DOI: 10.1002/1873-3468.14210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023]
Abstract
Inherited information is transmitted to progeny primarily by the genome through the gametes. However, in recent years, epigenetic inheritance has been demonstrated in several organisms, including animals. Although it is clear that certain post‐translational histone modifications, DNA methylation, and noncoding RNAs regulate epigenetic inheritance, the molecular mechanisms responsible for epigenetic inheritance are incompletely understood. This review focuses on the role of small RNAs in transmitting epigenetic information across generations in animals. Examples of documented cases of transgenerational epigenetic inheritance are discussed, from the silencing of transgenes to the inheritance of complex traits, such as fertility, stress responses, infections, and behavior. Experimental evidence supporting the idea that small RNAs are epigenetic molecules capable of transmitting traits across generations is highlighted, focusing on the mechanisms by which small RNAs achieve such a function. Just as the role of small RNAs in epigenetic processes is redefining the concept of inheritance, so too our understanding of the molecular pathways and mechanisms that govern epigenetic inheritance in animals is radically changing.
Collapse
Affiliation(s)
- Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| |
Collapse
|
23
|
Suhag A, Yadav H, Chaudhary D, Subramanian S, Jaiwal R, Jaiwal PK. Biotechnological interventions for the sustainable management of a global pest, whitefly (Bemisia tabaci). INSECT SCIENCE 2021; 28:1228-1252. [PMID: 32696581 DOI: 10.1111/1744-7917.12853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/18/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Whiteflies (Bemisia tabaci) are polyphagous invasive hemipteran insects that cause serious losses of important crops by directly feeding on phloem sap and transmitting pathogenic viruses. These insects have emerged as a major threat to global agriculture and food security. Chemically synthesized insecticides are currently the only option to control whiteflies, but the ability of whiteflies to evolve resistance against insecticides has made the management of these insects very difficult. Natural host-plant resistance against whiteflies identified in some crop plants has not been exploited to a great extent. Genetic engineering approaches, such as transgenics and RNA interference (RNAi), are potentially useful for the control of whiteflies. Transgenic plants harboring insecticidal toxins/lectins developed via nuclear or chloroplast transformation are a promising vehicle for whitefly control. Double-stranded RNAs (dsRNAs) of several insect genes, delivered either through microinjection into the insect body cavity or orally via an artificial diet and transiently or stably expressed in transgenic plants, have controlled whiteflies in model plants and in some crops at the laboratory level, but not at the field level. In this review, we highlight the merits and demerits of each delivery method along with strategies for sustained delivery of dsRNAs via fungal entomopathogen/endosymbiont or nontransgenic RNAi approaches, foliar sprays, root absorption or nanocarriers as well as the factors affecting efficient RNAi and their biosafety issues. Genome sequencing and transcriptome studies of whitefly species are facilitating the selection of appropriate genes for RNAi and gene-editing technology for the efficient and resilient management of whiteflies and their transmitted viruses.
Collapse
Affiliation(s)
- Archna Suhag
- Department of Zoology, M.D. University, Rohtak, India
| | - Honey Yadav
- Centre for Biotechnology, M.D. University, Rohtak, India
| | | | - S Subramanian
- Division of Entomology, Indian Agriculture Research Institute, New Delhi, India
| | | | - Pawan K Jaiwal
- Centre for Biotechnology, M.D. University, Rohtak, India
| |
Collapse
|
24
|
The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell 2021; 184:4697-4712.e18. [PMID: 34363756 DOI: 10.1016/j.cell.2021.07.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023]
Abstract
Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations. Here, we found that memories can be transferred from either lysed animals or from conditioned media to naive animals via Cer1 retrotransposon-encoded virus-like particles. Moreover, Cer1 functions internally at the step of transmission of information from the germline to neurons and is required for learned avoidance. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small-RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.
Collapse
|
25
|
Chakraborty K, Anees P, Surana S, Martin S, Aburas J, Moutel S, Perez F, Koushika SP, Kratsios P, Krishnan Y. Tissue-specific targeting of DNA nanodevices in a multicellular living organism. eLife 2021; 10:e67830. [PMID: 34318748 PMCID: PMC8360651 DOI: 10.7554/elife.67830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid nanodevices present great potential as agents for logic-based therapeutic intervention as well as in basic biology. Often, however, the disease targets that need corrective action are localized in specific organs, and thus realizing the full potential of DNA nanodevices also requires ways to target them to specific cell types in vivo. Here, we show that by exploiting either endogenous or synthetic receptor-ligand interactions and leveraging the biological barriers presented by the organism, we can target extraneously introduced DNA nanodevices to specific cell types in Caenorhabditis elegans, with subcellular precision. The amenability of DNA nanostructures to tissue-specific targeting in vivo significantly expands their utility in biomedical applications and discovery biology.
Collapse
Affiliation(s)
- Kasturi Chakraborty
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Palapuravan Anees
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Sunaina Surana
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Simona Martin
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Jihad Aburas
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Sandrine Moutel
- Recombinant Antibody Platform (TAb-IP), Institut Curie, PSL Research University, CNRS UMR144ParisFrance
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS UMR144ParisFrance
| | - Franck Perez
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS UMR144ParisFrance
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| | - Paschalis Kratsios
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Yamuna Krishnan
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| |
Collapse
|
26
|
Abdellatef E, Kamal NM, Tsujimoto H. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses. Int J Mol Sci 2021; 22:ijms22147687. [PMID: 34299307 PMCID: PMC8306419 DOI: 10.3390/ijms22147687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Crop yield is severely affected by biotic and abiotic stresses. Plants adapt to these stresses mainly through gene expression reprogramming at the transcriptional and post-transcriptional levels. Recently, the exogenous application of double-stranded RNAs (dsRNAs) and RNA interference (RNAi) technology has emerged as a sustainable and publicly acceptable alternative to genetic transformation, hence, small RNAs (micro-RNAs and small interfering RNAs) have an important role in combating biotic and abiotic stresses in plants. RNAi limits the transcript level by either suppressing transcription (transcriptional gene silencing) or activating sequence-specific RNA degradation (post-transcriptional gene silencing). Using RNAi tools and their respective targets in abiotic stress responses in many crops is well documented. Many miRNAs families are reported in plant tolerance response or adaptation to drought, salinity, and temperature stresses. In biotic stress, the spray-induced gene silencing (SIGS) provides an intelligent method of using dsRNA as a trigger to silence target genes in pests and pathogens without producing side effects such as those caused by chemical pesticides. In this review, we focus on the potential of SIGS as the most recent application of RNAi in agriculture and point out the trends, challenges, and risks of production technologies. Additionally, we provide insights into the potential applications of exogenous RNAi against biotic stresses. We also review the current status of RNAi/miRNA tools and their respective targets on abiotic stress and the most common responsive miRNA families triggered by stress conditions in different crop species.
Collapse
Affiliation(s)
- Eltayb Abdellatef
- Commission for Biotechnology and Genetic Engineering, National Center for Research, P.O. Box 2404, Khartoum 11111, Sudan;
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Behavioural and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya
| | - Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Agricultural Research Corporation, P.O. Box 30, Khartoum North 11111, Sudan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Correspondence:
| |
Collapse
|
27
|
Khodakova AS, Vilchis DV, Blackburn D, Amanor F, Samuel BS. Population scale nucleic acid delivery to Caenorhabditis elegans via electroporation. G3 (BETHESDA, MD.) 2021; 11:jkab123. [PMID: 33872353 PMCID: PMC8495937 DOI: 10.1093/g3journal/jkab123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/16/2021] [Indexed: 11/14/2022]
Abstract
The free-living nematode Caenorhabditis elegans remains one of the most robust and flexible genetic systems for interrogating the complexities of animal biology. Targeted genetic manipulations, such as RNA interference (RNAi), CRISPR/Cas9- or array-based transgenesis, all depend on initial delivery of nucleic acids. Delivery of dsRNA by feeding can be effective, but the expression in Escherichia coli is not conducive to experiments intended to remain sterile or with defined microbial communities. Soaking-based delivery requires prolonged exposure of animals to high-material concentrations without a food source and is of limited throughput. Last, microinjection of individual animals can precisely deliver materials to animals' germlines, but is limited by the need to target and inject each animal one-by-one. Thus, we sought to address some of these challenges in nucleic acid delivery by developing a population-scale delivery method. We demonstrate efficient electroporation-mediated delivery of dsRNA throughout the worm and effective RNAi-based silencing, including in the germline. Finally, we show that guide RNA delivered by electroporation can be utilized by transgenic Cas9 expressing worms for population-scale genetic targeting. Together, these methods expand the scale and scope of genetic methodologies that can be applied to the C. elegans system.
Collapse
Affiliation(s)
- Anastasia S Khodakova
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- SMART Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniela Vidal Vilchis
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana Blackburn
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ferdinand Amanor
- SMART Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- SMART Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
28
|
Tomita T, Kato M, Mishima T, Matsunaga Y, Sanjo H, Ito KI, Minagawa K, Matsui T, Oikawa H, Takahashi S, Takao T, Iwai N, Mino T, Takeuchi O, Maru Y, Hiratsuka S. Extracellular mRNA transported to the nucleus exerts translation-independent function. Nat Commun 2021; 12:3655. [PMID: 34135341 PMCID: PMC8208975 DOI: 10.1038/s41467-021-23969-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
RNA in extracellular vesicles (EVs) are uptaken by cells, where they regulate fundamental cellular functions. EV-derived mRNA in recipient cells can be translated. However, it is still elusive whether “naked nonvesicular extracellular mRNA” (nex-mRNA) that are not packed in EVs can be uptaken by cells and, if so, whether they have any functions in recipient cells. Here, we show the entrance of nex-mRNA in the nucleus, where they exert a translation-independent function. Human nex-interleukin-1β (IL1β)-mRNA outside cells proved to be captured by RNA-binding zinc finger CCCH domain containing protein 12D (ZC3H12D)-expressing human natural killer (NK) cells. ZC3H12D recruited to the cell membrane binds to the 3′-untranslated region of nex-IL1β-mRNA and transports it to the nucleus. The nex-IL1β-mRNA in the NK cell nucleus upregulates antiapoptotic gene expression, migration activity, and interferon-γ production, leading to the killing of cancer cells and antimetastasis in mice. These results implicate the diverse actions of mRNA. Nonvesicular extracellular RNA (nex-RNA) that are not packed in extracellular vesicles is detected outside the cell, but it is poorly understood. Here the authors report that nex-RNA is captured by a zinc finger protein and transported to the nucleus to enhance antimetastatic characters of the cell.
Collapse
Affiliation(s)
- Takeshi Tomita
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan.,Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan
| | - Masayoshi Kato
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan.,Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan
| | - Taishi Mishima
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yuta Matsunaga
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Hideki Sanjo
- Department of Molecular and Cellular Immunology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan
| | - Ken-Ichi Ito
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan
| | - Kentaro Minagawa
- Department of Hematology/Oncology, Penn State College of Medicine, Hershey, PA, USA
| | - Toshimitsu Matsui
- Department of Hematology, Nishiwaki Municipal Hospital, Nishiwaki, Hyogo, Japan
| | - Hiroyuki Oikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Noriki Iwai
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
| | - Sachie Hiratsuka
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan. .,Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan.
| |
Collapse
|
29
|
Toudji-Zouaz A, Bertrand V, Barrière A. Imaging of native transcription and transcriptional dynamics in vivo using a tagged Argonaute protein. Nucleic Acids Res 2021; 49:e86. [PMID: 34107044 PMCID: PMC8421136 DOI: 10.1093/nar/gkab469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/16/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
A flexible method to image unmodified transcripts and transcription in vivo would be a valuable tool to understand the regulation and dynamics of transcription. Here, we present a novel approach to follow native transcription, with fluorescence microscopy, in live C. elegans. By using the fluorescently tagged Argonaute protein NRDE-3, programmed by exposure to defined dsRNA to bind to nascent transcripts of the gene of interest, we demonstrate transcript labelling of multiple genes, at the transcription site and in the cytoplasm. This flexible approach does not require genetic manipulation, and can be easily scaled up by relying on whole-genome dsRNA libraries. We apply this method to image the transcriptional dynamics of the heat-shock inducible gene hsp-4 (a member of the hsp70 family), as well as two transcription factors: ttx-3 (a LHX2/9 orthologue) in embryos, and hlh-1 (a MyoD orthologue) in larvae, respectively involved in neuronal and muscle development.
Collapse
Affiliation(s)
- Amel Toudji-Zouaz
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Vincent Bertrand
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Antoine Barrière
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
30
|
Braukmann F, Jordan D, Jenkins B, Koulman A, Miska EA. SID-2 negatively regulates development likely independent of nutritional dsRNA uptake. RNA Biol 2021; 18:888-899. [PMID: 33044912 PMCID: PMC8081039 DOI: 10.1080/15476286.2020.1827619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
RNA interference (RNAi) is a gene regulatory mechanism based on RNA-RNA interaction conserved through eukaryotes. Surprisingly, many animals can take-up human-made double stranded RNA (dsRNA) from the environment to initiate RNAi suggesting a mechanism for dsRNA-based information exchange between organisms and their environment. However, no naturally occurring example has been identified since the discovery of the phenomenon 22 years ago. Therefore it remains enigmatic why animals are able to take up dsRNA. Here, we explore other possible functions by performing phenotypic studies of dsRNA uptake deficient sid-2 mutants in Caenorhabditis elegans. We find that SID-2 does not have a nutritional role in feeding experiments using genetic sensitized mutants. Furthermore, we use robot assisted imaging to show that sid-2 mutants accelerate growth rate and, by maternal contribution, body length at hatching. Finally, we perform transcriptome and lipidome analysis showing that sid-2 has no effect on energy storage lipids, but affects signalling lipids and the embryo transcriptome. Overall, these results suggest that sid-2 has mild effects on development and is unlikely functioning in the nutritional uptake of dsRNA. These findings broaden our understanding of the biological role of SID-2 and motivate studies identifying the role of environmental dsRNA uptake.
Collapse
Affiliation(s)
- Fabian Braukmann
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - David Jordan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Benjamin Jenkins
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eric Alexander Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| |
Collapse
|
31
|
Manterola M, Palominos MF, Calixto A. The Heritability of Behaviors Associated With the Host Gut Microbiota. Front Immunol 2021; 12:658551. [PMID: 34054822 PMCID: PMC8155505 DOI: 10.3389/fimmu.2021.658551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
What defines whether the interaction between environment and organism creates a genetic memory able to be transferred to subsequent generations? Bacteria and the products of their metabolism are the most ubiquitous biotic environments to which every living organism is exposed. Both microbiota and host establish a framework where environmental and genetic factors are integrated to produce adaptive life traits, some of which can be inherited. Thus, the interplay between host and microbe is a powerful model to study how phenotypic plasticity is inherited. Communication between host and microbe can occur through diverse molecules such as small RNAs (sRNAs) and the RNA interference machinery, which have emerged as mediators and carriers of heritable environmentally induced responses. Notwithstanding, it is still unclear how the organism integrates sRNA signaling between different tissues to orchestrate a systemic bacterially induced response that can be inherited. Here we discuss current evidence of heritability produced by the intestinal microbiota from several species. Neurons and gut are the sensing systems involved in transmitting changes through transcriptional and post-transcriptional modifications to the gonads. Germ cells express inflammatory receptors, and their development and function are regulated by host and bacterial metabolites and sRNAs thus suggesting that the dynamic interplay between host and microbe underlies the host's capacity to transmit heritable behaviors. We discuss how the host detects changes in the microbiota that can modulate germ cells genomic functions. We also explore the nature of the interactions that leave permanent or long-term memory in the host and propose mechanisms by which the microbiota can regulate the development and epigenetic reprogramming of germ cells, thus influencing the inheritance of the host. We highlight the vast contribution of the bacterivore nematode C. elegans and its commensal and pathogenic bacteria to the understanding on how behavioral adaptations can be inter and transgenerational inherited.
Collapse
Affiliation(s)
- Marcia Manterola
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M. Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Programa de Doctorado en Ciencias, mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
32
|
Ito Y, Taniguchi K, Kuranaga Y, Eid N, Inomata Y, Lee SW, Uchiyama K. Uptake of MicroRNAs from Exosome-Like Nanovesicles of Edible Plant Juice by Rat Enterocytes. Int J Mol Sci 2021; 22:3749. [PMID: 33916868 PMCID: PMC8038500 DOI: 10.3390/ijms22073749] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs present in extracellular vesicles (EVs) that, when transferred to a target cell, affect its biological functions. Plant miRNAs regulate the expression of certain mammalian genes. Here, we characterized EVs in fruit and vegetable juice, and their miRNA cargo, and investigated whether such miRNA-containing EVs could be taken up by mammalian enterocytes in vitro. Using filtration and ultra-centrifugation methods, EVs were purified from commercially available and manually squeezed plant juice. EV morphological features and subcellular localization were analyzed using the NanoSight tracking system and electron microscopy. Plant EV miRNA levels were evaluated using quantitative reverse transcription PCR. For the in vitro EV uptake experiments, rat intestinal epithelial cells (IEC6) were used. Plant EVs shared morphological features with mammalian EVs and contained miR156a-5p, miR166a-3p, and miR168a-5p. EVs were present in the cell sap-filled central vacuoles and were taken up by IEC6 cells. Edible plant cells produce EVs that contain various miRNAs and release them into the central vacuole. The exogenous plant EVs are taken up by mammalian enterocytes in vitro. These findings suggest the possibility that exogenous plant miRNAs carried by EVs can be absorbed via the gastrointestinal tract.
Collapse
Affiliation(s)
- Yuko Ito
- Department of General and Gastrological Surgery, Osaka Medical College, 2-7, Takatsuki, Osaka 569-8686, Japan; (K.T.); (Y.I.); (S.-W.L.); (K.U.)
| | - Kohei Taniguchi
- Department of General and Gastrological Surgery, Osaka Medical College, 2-7, Takatsuki, Osaka 569-8686, Japan; (K.T.); (Y.I.); (S.-W.L.); (K.U.)
- Translational Research Program, Osaka Medical College, 2-7, Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagito, Gifu 501-1193, Japan;
| | - Nabil Eid
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United Arab Emirates;
| | - Yosuke Inomata
- Department of General and Gastrological Surgery, Osaka Medical College, 2-7, Takatsuki, Osaka 569-8686, Japan; (K.T.); (Y.I.); (S.-W.L.); (K.U.)
| | - Sang-Woong Lee
- Department of General and Gastrological Surgery, Osaka Medical College, 2-7, Takatsuki, Osaka 569-8686, Japan; (K.T.); (Y.I.); (S.-W.L.); (K.U.)
| | - Kazuhisa Uchiyama
- Department of General and Gastrological Surgery, Osaka Medical College, 2-7, Takatsuki, Osaka 569-8686, Japan; (K.T.); (Y.I.); (S.-W.L.); (K.U.)
| |
Collapse
|
33
|
Chung SH, Feng H, Jander G. Engineering pest tolerance through plant-mediated RNA interference. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102029. [PMID: 33639339 DOI: 10.1016/j.pbi.2021.102029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 05/18/2023]
Abstract
Expression of insect-targeted RNA interference (RNAi) constructs in transgenic plants is a promising approach for agricultural pest control. Compared to conventional chemical insecticides, RNAi target specificity is high and the potential for negative environmental effects is low. However, although numerous laboratory studies show insect growth inhibition by double stranded RNA or artificial microRNA, few of these constructs have been moved into commercial application as genetically engineered plants. Variation in RNA degradation, uptake, processing, and systemic transport in insects can influence interspecific and intraspecific differences in RNAi efficacy and the development of resistance to RNAi in agricultural settings. Further research is needed, both to identify optimal gene targets for efficient RNAi in pest species and to reduce the potential for off-target effects in beneficial species.
Collapse
Affiliation(s)
- Seung Ho Chung
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Honglin Feng
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA.
| |
Collapse
|
34
|
Ivashuta S, Iandolino A, Watson G. Exogenous RNA as a Regulatory Signal during a Plant's Interaction with the Biotic Environment: An Evolutionary Perspective and Future Applications in Agriculture. PLANTS (BASEL, SWITZERLAND) 2021; 10:532. [PMID: 33808982 PMCID: PMC8000970 DOI: 10.3390/plants10030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022]
Abstract
Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a responsive organism by exogenous RNA. While exogenous RNA transfer between organisms of different kingdoms of life have been unambiguously identified in nature, our understanding of the biological significance of this phenomenon remains obscure, particularly within an evolutionary context. During the last decade multiple reports utilizing various mechanisms of natural eRNAi phenomena have been attempted to develop new agricultural traits and products including weed, disease and insect control. Although these attempts yielded mixed results, this concept remains extremely attractive for many agricultural applications. To better utilize eRNAi for practical applications, we would like to emphasize the necessity of understanding the biological significance of this phenomenon within an evolutionary context and learn from nature by developing advanced tools to identify and study new cases of exogeneous RNA transfer and eRNAi. In this opinion article we would like to look at the exogeneous RNA transfer from an evolutionary perspective, propose that new cases of exogeneous RNA transfer still remain to be identified in nature, and address a knowledge gap in understanding the biological function and significance of RNA transfer. We believe such approach may eventually result in a more successful use of this phenomenon for practical applications in agriculture.
Collapse
|
35
|
Niño-Sánchez J, Chen LH, De Souza JT, Mosquera S, Stergiopoulos I. Targeted Delivery of Gene Silencing in Fungi Using Genetically Engineered Bacteria. J Fungi (Basel) 2021; 7:jof7020125. [PMID: 33572197 PMCID: PMC7914413 DOI: 10.3390/jof7020125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
Exploiting RNA interference (RNAi) in disease control through non-transformative methods that overcome the hurdle of producing transgenic plants has attracted much attention over the last years. Here, we explored such a method and used non-pathogenic bacteria as a versatile system for delivering RNAi to fungi. Specifically, the RNaseIII-null mutant strain of Escherichia coli HT115(DE3) was transformed with two plasmid vectors that enabled the constitutive or IPTG-inducible production of double-stranded RNAs (dsRNAs) against genes involved in aflatoxins production in Aspergillus flavus (AflC) or virulence of Botrytis cinerea (BcSAS1). To facilitate the release of the dsRNAs, the bacterial cells were further genetically engineered to undergo a bacteriophage endolysin R-mediated autolysis, following a freeze-thaw cycle. Exposure under in vitro conditions of A. flavus or B. cinerea to living bacteria or their whole-cell autolysates induced silencing of AflC and BcSAS1 in a bacteria concentration-dependent manner, and instigated a reduction in aflatoxins production and mycelial growth, respectively. In planta applications of the living bacteria or their crude whole-cell autolysates produced similar results, thus creating a basis for translational research. These results demonstrate that bacteria can produce biologically active dsRNA against target genes in fungi and that bacteria-mediated RNAi can be used to control fungal pathogens.
Collapse
Affiliation(s)
- Jonatan Niño-Sánchez
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA; (J.N.-S.); (L.-H.C.); (J.T.D.S.); (S.M.)
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA 92521, USA
| | - Li-Hung Chen
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA; (J.N.-S.); (L.-H.C.); (J.T.D.S.); (S.M.)
- Department of Plant Pathology, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Jorge Teodoro De Souza
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA; (J.N.-S.); (L.-H.C.); (J.T.D.S.); (S.M.)
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, MG 37200-000, Brazil
| | - Sandra Mosquera
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA; (J.N.-S.); (L.-H.C.); (J.T.D.S.); (S.M.)
- Department of Ciencias Biológicas, Universidad EAFIT, Medellín 050022, Colombia
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA; (J.N.-S.); (L.-H.C.); (J.T.D.S.); (S.M.)
- Correspondence: ; Tel.: +1-530-400-9802
| |
Collapse
|
36
|
Cui Y, Wan H, Zhang X. miRNA in food simultaneously controls animal viral disease and human tumorigenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:995-1006. [PMID: 33614246 PMCID: PMC7868940 DOI: 10.1016/j.omtn.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
During virus infection in animals, the virus completes its life cycle in a host cell. A virus infection results in the metabolic deregulation of its host and leads to metabolic disorders, ultimately paving the way for cancer progression. Because metabolic disorders in virus infections occurring in animal are similar to metabolic disorders in human tumorigenesis, animal antiviral microRNAs (miRNAs), which maintain the metabolic homeostasis of animal cells, in essence, may have anti-tumor activity in humans. However, that issue has not been investigated. In this study, shrimp miR-34, a potential antiviral miRNA of shrimp against white spot syndrome virus (WSSV) infection, was identified. Overexpression of shrimp miR-34 in shrimp fed bacteria expressing miR-34 suppressed WSSV infection by targeting the viral wsv330 and wsv359 genes. Furthermore, the expression of shrimp miR-34 in mice fed miR-34-overexpressing shrimp suppressed breast cancer progression by targeting human CCND1, CDK6, CCNE2, E2F3, FOSL1, and MET genes. Therefore, our study suggests that the miRNAs in food could be an effective strategy for synchronously controlling viral diseases of economic animals and cancers in humans.
Collapse
Affiliation(s)
- Yalei Cui
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Haitao Wan
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
37
|
Arraes FBM, Martins-de-Sa D, Noriega Vasquez DD, Melo BP, Faheem M, de Macedo LLP, Morgante CV, Barbosa JARG, Togawa RC, Moreira VJV, Danchin EGJ, Grossi-de-Sa MF. Dissecting protein domain variability in the core RNA interference machinery of five insect orders. RNA Biol 2020; 18:1653-1681. [PMID: 33302789 DOI: 10.1080/15476286.2020.1861816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-mediated gene silencing can be used to control specific insect pest populations. Unfortunately, the variable efficiency in the knockdown levels of target genes has narrowed the applicability of this technology to a few species. Here, we examine the current state of knowledge regarding the miRNA (micro RNA) and siRNA (small interfering RNA) pathways in insects and investigate the structural variability at key protein domains of the RNAi machinery. Our goal was to correlate domain variability with mechanisms affecting the gene silencing efficiency. To this end, the protein domains of 168 insect species, encompassing the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera, were analysed using our pipeline, which takes advantage of meticulous structure-based sequence alignments. We used phylogenetic inference and the evolutionary rate coefficient (K) to outline the variability across domain regions and surfaces. Our results show that four domains, namely dsrm, Helicase, PAZ and Ribonuclease III, are the main contributors of protein variability in the RNAi machinery across different insect orders. We discuss the potential roles of these domains in regulating RNAi-mediated gene silencing and the role of loop regions in fine-tuning RNAi efficiency. Additionally, we identified several order-specific singularities which indicate that lepidopterans have evolved differently from other insect orders, possibly due to constant coevolution with plants and viruses. In conclusion, our results highlight several variability hotspots that deserve further investigation in order to improve the application of RNAi technology in the control of insect pests.
Collapse
Affiliation(s)
| | - Diogo Martins-de-Sa
- Departamento De Biologia Celular, Universidade De Brasília, Brasília-DF, Brazil
| | - Daniel D Noriega Vasquez
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Catholic University of Brasília, Brasília-DF, Brazil
| | - Bruno Paes Melo
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Viçosa University, UFV, Viçosa-MG, Brazil
| | - Muhammad Faheem
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Department of Biological Sciences, National University of Medical Sciences, Punjab, Pakistan
| | | | - Carolina Vianna Morgante
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Embrapa Semiarid, Petrolina-PE, Brazil.,National Institute of Science and Technology, Jakarta Embrapa-Brazil
| | | | - Roberto Coiti Togawa
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil
| | - Valdeir Junio Vaz Moreira
- Biotechnology Center, Brazil.,Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Departamento De Biologia Celular, Universidade De Brasília, Brasília-DF, Brazil
| | - Etienne G J Danchin
- National Institute of Science and Technology, Jakarta Embrapa-Brazil.,INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Catholic University of Brasília, Brasília-DF, Brazil.,National Institute of Science and Technology, Jakarta Embrapa-Brazil
| |
Collapse
|
38
|
Wytinck N, Manchur CL, Li VH, Whyard S, Belmonte MF. dsRNA Uptake in Plant Pests and Pathogens: Insights into RNAi-Based Insect and Fungal Control Technology. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1780. [PMID: 33339102 PMCID: PMC7765514 DOI: 10.3390/plants9121780] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
Efforts to develop more environmentally friendly alternatives to traditional broad-spectrum pesticides in agriculture have recently turned to RNA interference (RNAi) technology. With the built-in, sequence-specific knockdown of gene targets following delivery of double-stranded RNA (dsRNA), RNAi offers the promise of controlling pests and pathogens without adversely affecting non-target species. Significant advances in the efficacy of this technology have been observed in a wide range of species, including many insect pests and fungal pathogens. Two different dsRNA application methods are being developed. First, host induced gene silencing (HIGS) harnesses dsRNA production through the thoughtful and precise engineering of transgenic plants and second, spray induced gene silencing (SIGS) that uses surface applications of a topically applied dsRNA molecule. Regardless of the dsRNA delivery method, one aspect that is critical to the success of RNAi is the ability of the target organism to internalize the dsRNA and take advantage of the host RNAi cellular machinery. The efficiency of dsRNA uptake mechanisms varies across species, and in some uptake is negligible, rendering them effectively resistant to this new generation of control technologies. If RNAi-based methods of control are to be used widely, it is critically important to understand the mechanisms underpinning dsRNA uptake. Understanding dsRNA uptake mechanisms will also provide insight into the design and formulation of dsRNAs for improved delivery and provide clues into the development of potential host resistance to these technologies.
Collapse
Affiliation(s)
| | | | | | | | - Mark F. Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (N.W.); (C.L.M.); (V.H.L.); (S.W.)
| |
Collapse
|
39
|
Abbasi R, Heschuk D, Kim B, Whyard S. A novel paperclip double-stranded RNA structure demonstrates clathrin-independent uptake in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103492. [PMID: 33096213 DOI: 10.1016/j.ibmb.2020.103492] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) has become a widely used technique of knocking down a gene's expression in insects, but its efficacy in some species is limited by a reduced ability of the cells to take in and disperse the double-stranded RNA (dsRNA) throughout the cytoplasm. While RNA transport proteins such as SID-1 and its orthologues can facilitate dsRNA uptake in some invertebrate species, dsRNA uptake in many insects examined to date appears to be facilitated by clathrin-mediated endocytosis (CME). In this study, we used pharmacological inhibitors and RNAi-mediated knockdown of endocytic genes to provide evidence that CME is the primary means of dsRNA uptake in the mosquito Aedes aegypti. Inhibition of clathrin-mediated endocytosis was sufficient to supress uptake of short (21 nt) interfering RNAs (siRNAs), short (23 nt) hairpin RNAs (shRNAs), and long (>200 nt) dsRNA molecules in Aedes aegypti cultured cells and larvae. In contrast, we observed that short (23 nt) "paperclip" RNAs (pcRNAs), with partially closed ends, efficiently enter cells via a clathrin-independent pathway and effectively facilitate transcript knockdown. This alternative dsRNA structure may prove useful in insects generally considered recalcitrant to RNAi and in insect populations where resistance to RNAi-insecticides may arise through changes in dsRNA uptake mechanisms.
Collapse
Affiliation(s)
- Roohollah Abbasi
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Daniel Heschuk
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Brandon Kim
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Steve Whyard
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
40
|
Sanitt P, Panyim S, Udomkit A. An ATP synthase beta subunit is required for internalization of dsRNA into shrimp cells. FISH & SHELLFISH IMMUNOLOGY 2020; 106:948-958. [PMID: 32920201 DOI: 10.1016/j.fsi.2020.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Extracellular double-stranded RNA (dsRNA) is an important modulator in innate immunity in both vertebrates and invertebrates. In shrimp, extracellular dsRNA can trigger RNAi pathway and serves as antiviral defense mechanism. However, the mechanism of dsRNA internalization into the cells has not yet known in shrimp cells. This study identified candidate cell surface proteins from shrimp hepatopancreatic cells that could interact with dsRNA by a ligand blot assay. Among the candidate proteins, a cell-surface beta subunit of ATP synthase was shown to be capable of internalizing dsRNA into shrimp hepatopancreatic cells that could rapidly occur in just 1 min upon dsRNA challenge. Colocalization between dsRNA and ATP synthase beta subunit implied correlation between dsRNA and ATP synthase beta subunit during dsRNA internalization. Furthermore, dsRNA showed colocalization with Ras-related endocytic proteins, Rab5 and Rab7 indicating that dsRNA was internalized via the receptor-mediated endocytosis. For the above evidences as well as the reduction of dsRNA internalization by angiostatin and antibodies against ATP synthase beta subunit, we propose that dsRNA interacts with ATP synthase via a nucleotide binding site in the beta subunit prior to internalize dsRNA into cells.
Collapse
Affiliation(s)
- Poohrawind Sanitt
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Phayathai, Bangkok, 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
41
|
Fernandes De Abreu DA, Salinas-Giegé T, Drouard L, Remy JJ. Alanine tRNAs Translate Environment Into Behavior in Caenorhabditis elegans. Front Cell Dev Biol 2020; 8:571359. [PMID: 33195203 PMCID: PMC7662486 DOI: 10.3389/fcell.2020.571359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Caenorhabditis elegans nematodes produce and maintain imprints of attractive chemosensory cues to which they are exposed early in life. Early odor-exposure increases adult chemo-attraction to the same cues. Imprinting is transiently or stably inherited, depending on the number of exposed generations. We show here that the Alanine tRNA (UGC) plays a central role in regulating C. elegans chemo-attraction. Naive worms fed on tRNAAla (UGC) purified from odor-experienced worms, acquire odor-specific imprints. Chemo-attractive responses require the tRNA-modifying Elongator complex sub-units 1 (elpc-1) and 3 (elpc-3) genes. elpc-3 deletions impair chemo-attraction, which is fully restored by wild-type tRNAAla (UGC) feeding. A stably inherited decrease of odor-specific responses ensues from early odor-exposition of elpc-1 deletion mutants. tRNAAla (UGC) may adopt various chemical forms to mediate the cross-talk between innately-programmed and environment-directed chemo-attractive behavior.
Collapse
Affiliation(s)
- Diana Andrea Fernandes De Abreu
- Genes, Environment, Plasticity, Institut Sophia Agrobiotech ISA UMR CNRS 7254, INRAE 1355, Université Nice Côte d’Azur, Sophia-Antipolis, France
| | - Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Jacques Remy
- Genes, Environment, Plasticity, Institut Sophia Agrobiotech ISA UMR CNRS 7254, INRAE 1355, Université Nice Côte d’Azur, Sophia-Antipolis, France
| |
Collapse
|
42
|
Double-Stranded RNA Binding Proteins in Serum Contribute to Systemic RNAi Across Phyla-Towards Finding the Missing Link in Achelata. Int J Mol Sci 2020; 21:ijms21186967. [PMID: 32971953 PMCID: PMC7554946 DOI: 10.3390/ijms21186967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
RNA interference (RNAi) has become a widely utilized method for studying gene function, yet despite this many of the mechanisms surrounding RNAi remain elusive. The core RNAi machinery is relatively well understood, however many of the systemic mechanisms, particularly double-stranded RNA (dsRNA) transport, are not. Here, we demonstrate that dsRNA binding proteins in the serum contribute to systemic RNAi and may be the limiting factor in RNAi capacity for species such as spiny lobsters, where gene silencing is not functional. Incubating sera from a variety of species across phyla with dsRNA led to a gel mobility shift in species in which systemic RNAi has been observed, with this response being absent in species in which systemic RNAi has never been observed. Proteomic analysis suggested lipoproteins may be responsible for this phenomenon and may transport dsRNA to spread the RNAi signal systemically. Following this, we identified the same gel shift in the slipper lobster Thenus australiensis and subsequently silenced the insulin androgenic gland hormone, marking the first time RNAi has been performed in any lobster species. These results pave the way for inducing RNAi in spiny lobsters and for a better understanding of the mechanisms of systemic RNAi in Crustacea, as well as across phyla.
Collapse
|
43
|
C. elegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature 2020; 586:445-451. [PMID: 32908307 PMCID: PMC8547118 DOI: 10.1038/s41586-020-2699-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
Abstract
C. elegans must distinguish pathogenic from nutritious bacterial food sources among the many bacteria it is exposed to in its environment1. Here we show that a single exposure to purified small RNAs isolated from pathogenic Pseudomonas aeruginosa (PA14) is sufficient to induce pathogen avoidance, both in the treated animals and in four subsequent generations of progeny. The RNA interference and piRNA pathways, the germline, and the ASI neuron are required for bacterial small RNA-induced avoidance behavior and transgenerational inheritance. A single P. aeruginosa non-coding RNA, P11, is both necessary and sufficient to convey learned avoidance of PA14, and its C. elegans target, maco-1, is required for avoidance. Our results suggest that this ncRNA-dependent mechanism evolved to survey the worm’s microbial environment, use this information to make appropriate behavioral decisions, and pass this information on to its progeny.
Collapse
|
44
|
Samad AFA, Kamaroddin MF, Sajad M. Cross-Kingdom Regulation by Plant microRNAs Provides Novel Insight into Gene Regulation. Adv Nutr 2020; 12:197-211. [PMID: 32862223 PMCID: PMC7850022 DOI: 10.1093/advances/nmaa095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are well known as major players in mammalian and plant genetic systems that act by regulating gene expression at the post-transcriptional level. These tiny molecules can regulate target genes (mRNAs) through either cleavage or translational inhibition. Recently, the discovery of plant-derived miRNAs showing cross-kingdom abilities to regulate mammalian gene expression has prompted exciting discussions among researchers. After being acquired orally through the diet, plant miRNAs can survive in the digestive tract, enter the circulatory system, and regulate endogenous mRNAs. Here, we review current knowledge regarding the cross-kingdom mechanisms of plant miRNAs, related controversies, and potential applications of these miRNAs in dietary therapy, which will provide new insights for plant miRNA investigations related to health issues in humans.
Collapse
Affiliation(s)
| | - Mohd Farizal Kamaroddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Muhammad Sajad
- Department of Plant Breeding and Genetics, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
45
|
SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res 2020; 31:247-258. [PMID: 32801357 PMCID: PMC8026584 DOI: 10.1038/s41422-020-0389-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Dietary microRNAs have been shown to be absorbed by mammals and regulate host gene expression, but the absorption mechanism remains unknown. Here, we show that SIDT1 expressed on gastric pit cells in the stomach is required for the absorption of dietary microRNAs. SIDT1-deficient mice show reduced basal levels and impaired dynamic absorption of dietary microRNAs. Notably, we identified the stomach as the primary site for dietary microRNA absorption, which is dramatically attenuated in the stomachs of SIDT1-deficient mice. Mechanistic analyses revealed that the uptake of exogenous microRNAs by gastric pit cells is SIDT1 and low-pH dependent. Furthermore, oral administration of plant-derived miR2911 retards liver fibrosis, and this protective effect was abolished in SIDT1-deficient mice. Our findings reveal a major mechanism underlying the absorption of dietary microRNAs, uncover an unexpected role of the stomach and shed light on developing small RNA therapeutics by oral delivery.
Collapse
|
46
|
Adeyinka OS, Riaz S, Toufiq N, Yousaf I, Bhatti MU, Batcho A, Olajide AA, Nasir IA, Tabassum B. Advances in exogenous RNA delivery techniques for RNAi-mediated pest control. Mol Biol Rep 2020; 47:6309-6319. [DOI: 10.1007/s11033-020-05666-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/12/2020] [Indexed: 01/09/2023]
|
47
|
Gao J, Zhao L, Luo Q, Liu S, Lin Z, Wang P, Fu X, Chen J, Zhang H, Lin L, Shi A. An EHBP-1-SID-3-DYN-1 axis promotes membranous tubule fission during endocytic recycling. PLoS Genet 2020; 16:e1008763. [PMID: 32384077 PMCID: PMC7239482 DOI: 10.1371/journal.pgen.1008763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/20/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
The ACK family tyrosine kinase SID-3 is involved in the endocytic uptake of double-stranded RNA. Here we identified SID-3 as a previously unappreciated recycling regulator in the Caenorhabditis elegans intestine. The RAB-10 effector EHBP-1 is required for the endosomal localization of SID-3. Accordingly, animals with loss of SID-3 phenocopied the recycling defects observed in ehbp-1 and rab-10 single mutants. Moreover, we detected sequential protein interactions between EHBP-1, SID-3, NCK-1, and DYN-1. In the absence of SID-3, DYN-1 failed to localize at tubular recycling endosomes, and membrane tubules breaking away from endosomes were mostly absent, suggesting that SID-3 acts synergistically with the downstream DYN-1 to promote endosomal tubule fission. In agreement with these observations, overexpression of DYN-1 significantly increased recycling transport in SID-3-deficient cells. Finally, we noticed that loss of RAB-10 or EHBP-1 compromised feeding RNAi efficiency in multiple tissues, implicating basolateral recycling in the transport of RNA silencing signals. Taken together, our study demonstrated that in C. elegans intestinal epithelia, SID-3 acts downstream of EHBP-1 to direct fission of recycling endosomal tubules in concert with NCK-1 and DYN-1. After endocytic uptake, a recycling transport system is deployed to deliver endocytosed macromolecules, fluid, membranes, and membrane proteins back to the cell surface. This process is essential for a series of biological processes such as cytokinesis, cell migration, maintenance of cell polarity, and synaptic plasticity. Recycling endosomes mainly consist of membrane tubules and often undergo membrane fission to generate vesicular carriers, which mediates the delivery of cargo proteins back to the plasma membrane. Previous studies suggested that RAB-10 and its effector protein EHBP-1 function jointly to generate and maintain recycling endosomal tubules. However, the mechanism coupling recycling endosomal tubulation and membrane fission remains elusive. Here, we identified SID-3 as a new interactor of EHBP-1. EHBP-1 is required for the endosomal localization of SID-3 and initiates a protein interaction cascade involving SID-3, NCK-1, and DYN-1/dynamin. We also found that SID-3 functions downstream of EHBP-1 to encourage membrane scission, and that ectopic expression of DYN-1 improves recycling transport in SID-3-depleted cells. Our findings revealed EHBP-1 as a point of convergence between RAB-10-mediated endosomal tubulation and SID-3-assisted membrane tubule fission during endocytic recycling.
Collapse
Affiliation(s)
- Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linyue Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuyao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziyang Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peixiang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (LL); (AS)
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (LL); (AS)
| |
Collapse
|
48
|
Werner BT, Gaffar FY, Schuemann J, Biedenkopf D, Koch AM. RNA-Spray-Mediated Silencing of Fusarium graminearum AGO and DCL Genes Improve Barley Disease Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:476. [PMID: 32411160 DOI: 10.1101/821868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/30/2020] [Indexed: 05/24/2023]
Abstract
Over the last decade, several studies have revealed the enormous potential of RNA-silencing strategies as a potential alternative to conventional pesticides for plant protection. We have previously shown that targeted gene silencing mediated by an in planta expression of non-coding inhibitory double-stranded RNAs (dsRNAs) can protect host plants against various diseases with unprecedented efficiency. In addition to the generation of RNA-silencing (RNAi) signals in planta, plants can be protected from pathogens, and pests by spray-applied RNA-based biopesticides. Despite the striking efficiency of RNA-silencing-based technologies holds for agriculture, the molecular mechanisms underlying spray-induced gene silencing (SIGS) strategies are virtually unresolved, a requirement for successful future application in the field. Based on our previous work, we predict that the molecular mechanism of SIGS is controlled by the fungal-silencing machinery. In this study, we used SIGS to compare the silencing efficiencies of computationally-designed vs. manually-designed dsRNA constructs targeting ARGONAUTE and DICER genes of Fusarium graminearum (Fg). We found that targeting key components of the fungal RNAi machinery via SIGS could protect barley leaves from Fg infection and that the manual design of dsRNAs resulted in higher gene-silencing efficiencies than the tool-based design. Moreover, our results indicate the possibility of cross-kingdom RNA silencing in the Fg-barley interaction, a phenomenon in which sRNAs operate as effector molecules to induce gene silencing between species from different kingdoms, such as a plant host and their interacting pathogens.
Collapse
Affiliation(s)
- Bernhard Timo Werner
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Johannes Schuemann
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Dagmar Biedenkopf
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Aline Michaela Koch
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
49
|
Wang M, Dean RA. Movement of small RNAs in and between plants and fungi. MOLECULAR PLANT PATHOLOGY 2020; 21:589-601. [PMID: 32027079 PMCID: PMC7060135 DOI: 10.1111/mpp.12911] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 05/12/2023]
Abstract
RNA interference is a biological process whereby small RNAs inhibit gene expression through neutralizing targeted mRNA molecules. This process is conserved in eukaryotes. Here, recent work regarding the mechanisms of how small RNAs move within and between organisms is examined. Small RNAs can move locally and systemically in plants through plasmodesmata and phloem, respectively. In fungi, transportation of small RNAs may also be achieved by septal pores and vesicles. Recent evidence also supports bidirectional cross-kingdom communication of small RNAs between host plants and adapted fungal pathogens to affect the outcome of infection. We discuss several mechanisms for small RNA trafficking and describe evidence for transport through naked form, combined with RNA-binding proteins or enclosed by vesicles.
Collapse
Affiliation(s)
- Mengying Wang
- Fungal Genomics LaboratoryCenter for Integrated Fungal ResearchDepartment of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Ralph A. Dean
- Fungal Genomics LaboratoryCenter for Integrated Fungal ResearchDepartment of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
50
|
Stephen BJ, Pareek N, Saeed M, Kausar MA, Rahman S, Datta M. Xeno-miRNA in Maternal-Infant Immune Crosstalk: An Aid to Disease Alleviation. Front Immunol 2020; 11:404. [PMID: 32269563 PMCID: PMC7109445 DOI: 10.3389/fimmu.2020.00404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Human milk is a complex liquid that contains multifaceted compounds which provide nutrition to infants and helps to develop their immune system. The presence of secretory immunoglobulins (IgA), leucocytes, lysozyme, lactoferrin, etc., in breast milk and their role in imparting passive immunity to infants as well as modulating development of an infant's immune system is well-established. Breast milk miRNAs (microRNAs) have been found to be differentially expressed in diverse tissues and biological processes during various molecular functions. Lactation is reported to assist mothers and their offspring to adapt to an ever-changing food supply. It has been observed that certain subtypes of miRNAs exist that are codified by non-human genomes but are still present in circulation. They have been termed as xeno-miRNA (XenomiRs). XenomiRs in humans have been found from various exogenous sources. Route of entry in human systems have been mainly dietary. The possibility of miRNAs taken up into mammalian circulation through diet, and thereby effecting gene expression, is a distinct possibility. This mechanism suggests an interesting possibility that dietary foods may modulate the immune strength of infants via highly specific post-transcriptional regulatory information present in mother's milk. This serves as a major breakthrough in understanding the fundamentals of nutrition and cross-organism communication. In this review, we elaborate and understand the complex crosstalk of XenomiRs present in mother's milk and their plausible role in modulating the infant immune system against infectious and inflammatory diseases.
Collapse
Affiliation(s)
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicines, University of Ha'il, Ha'il, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, India
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|