1
|
Rochais F, Kelly RG. Fibroblast growth factor 10. Differentiation 2024; 139:100741. [PMID: 38040515 DOI: 10.1016/j.diff.2023.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Fibroblast growth factor 10 (FGF10) is a major morphoregulatory factor that plays essential signaling roles during vertebrate multiorgan development and homeostasis. FGF10 is predominantly expressed in mesenchymal cells and signals though FGFR2b in adjacent epithelia to regulate branching morphogenesis, stem cell fate, tissue differentiation and proliferation, in addition to autocrine roles. Genetic loss of function analyses have revealed critical requirements for FGF10 signaling during limb, lung, digestive system, ectodermal, nervous system, craniofacial and cardiac development. Heterozygous FGF10 mutations have been identified in human genetic syndromes associated with craniofacial anomalies, including lacrimal and salivary gland aplasia. Elevated Fgf10 expression is associated with poor prognosis in a range of cancers. In addition to developmental and disease roles, FGF10 regulates homeostasis and repair of diverse adult tissues and has been identified as a target for regenerative medicine.
Collapse
Affiliation(s)
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France.
| |
Collapse
|
2
|
Takigawa-Imamura H, Fumoto K, Takesue H, Miura T. Exploiting mechanisms for hierarchical branching structure of lung airway. PLoS One 2024; 19:e0309464. [PMID: 39213428 PMCID: PMC11364422 DOI: 10.1371/journal.pone.0309464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The lung airways exhibit distinct features with long, wide proximal branches and short, thin distal branches, crucial for optimal respiratory function. In this study, we investigated the mechanism behind this hierarchical structure through experiments and modeling, focusing on the regulation of branch length and width during the pseudoglandular stage. To evaluate the response of mouse lung epithelium to fibroblast growth factor 10 (FGF10), we monitored the activity of extracellular signal-regulated kinase (ERK). ERK activity exhibited an increase dependent on the curvature of the epithelial tissue, which gradually decreased with the progression of development. We then constructed a computational model that incorporates curvature-dependent growth to predict its impact on branch formation. It was demonstrated that branch length is determined by the curvature dependence of growth. Next, in exploring branch width regulation, we considered the effect of apical constriction, a mechanism we had previously proposed to be regulated by Wnt signaling. Analysis of a mathematical model representing apical constriction showed that branch width is determined by cell shape. Finally, we constructed an integrated computational model that includes curvature-dependent growth and cell shape controls, confirming their coordination in regulating branch formation. This study proposed that changes in the autonomous property of the epithelium may be responsible for the progressive branch morphology.
Collapse
Affiliation(s)
- Hisako Takigawa-Imamura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Fumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroaki Takesue
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Miura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Hirashima T, Matsuda M. ERK-mediated curvature feedback regulates branching morphogenesis in lung epithelial tissue. Curr Biol 2024; 34:683-696.e6. [PMID: 38228149 DOI: 10.1016/j.cub.2023.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Intricate branching patterns emerge in internal organs due to the recurrent occurrence of simple deformations in epithelial tissues. During murine lung development, epithelial cells in distal tips of the single tube require fibroblast growth factor (FGF) signals emanating from their surrounding mesenchyme to form repetitive tip bifurcations. However, it remains unknown how the cells employ FGF signaling to convert their behaviors to achieve the recursive branching processes. Here, we show a mechano-chemical regulatory system underlying lung branching morphogenesis, orchestrated by extracellular signal-regulated kinase (ERK) as a downstream driver of FGF signaling. We found that tissue-scale curvature regulated ERK activity in the lung epithelium using two-photon live cell imaging and mechanical perturbations. ERK activation occurs specifically in epithelial tissues exhibiting positive curvature, regardless of whether the change in curvature was attributable to morphogenesis or perturbations. Moreover, ERK activation accelerates actin polymerization preferentially at the apical side of cells, mechanically contributing to the extension of the apical membrane, culminating in a reduction of epithelial tissue curvature. These results indicate the existence of a negative feedback loop between tissue curvature and ERK activity that transcends spatial scales. Our mathematical model confirms that this regulatory mechanism is sufficient to generate the recursive branching processes. Taken together, we propose that ERK orchestrates a curvature feedback loop pivotal to the self-organized patterning of tissues.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore; The Hakubi Center, Kyoto University, Yoshida-honmachi, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honchō, Kawaguchi 332-0012, Japan.
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Graduate School of Medicine, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8317, Japan
| |
Collapse
|
4
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580629. [PMID: 38405698 PMCID: PMC10888970 DOI: 10.1101/2024.02.16.580629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1 null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth, but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM-interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identify processes regulating early mesoderm development by mechanisms involving both canonical and non-canonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F. Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
5
|
Samad SS, Schwartz JM, Francavilla C. Functional selectivity of Receptor Tyrosine Kinases regulates distinct cellular outputs. Front Cell Dev Biol 2024; 11:1348056. [PMID: 38259512 PMCID: PMC10800419 DOI: 10.3389/fcell.2023.1348056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Functional selectivity refers to the activation of differential signalling and cellular outputs downstream of the same membrane-bound receptor when activated by two or more different ligands. Functional selectivity has been described and extensively studied for G-protein Coupled Receptors (GPCRs), leading to specific therapeutic options for dysregulated GPCRs functions. However, studies regarding the functional selectivity of Receptor Tyrosine Kinases (RTKs) remain sparse. Here, we will summarize recent data about RTK functional selectivity focusing on how the nature and the amount of RTK ligands and the crosstalk of RTKs with other membrane proteins regulate the specificity of RTK signalling. In addition, we will discuss how structural changes in RTKs upon ligand binding affects selective signalling pathways. Much remains to be known about the integration of different signals affecting RTK signalling specificity to orchestrate long-term cellular outcomes. Recent advancements in omics, specifically quantitative phosphoproteomics, and in systems biology methods to study, model and integrate different types of large-scale omics data have increased our ability to compare several signals affecting RTK functional selectivity in a global, system-wide fashion. We will discuss how such methods facilitate the exploration of important signalling hubs and enable data-driven predictions aiming at improving the efficacy of therapeutics for diseases like cancer, where redundant RTK signalling pathways often compromise treatment efficacy.
Collapse
Affiliation(s)
- Sakim S. Samad
- Division of Molecular and Cellular Functions, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Division of Evolution, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Chiara Francavilla
- Division of Molecular and Cellular Functions, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Section of Protein Science and Biotherapeutics, Department of Bioengineering and Biomedicine, Danish Technical University, Lyngby, Denmark
| |
Collapse
|
6
|
Dinsmore CJ, Soriano P. Conditional fluorescent mouse translocation reporters for ERK1/2 and AKT signaling. Dev Biol 2023; 503:113-119. [PMID: 37660778 PMCID: PMC10529872 DOI: 10.1016/j.ydbio.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Understanding how cells activate intracellular signaling pathways in response to external signals, such as growth factors, is a longstanding goal of cell and developmental biology. Recently, live-cell signaling reporters have greatly expanded our understanding of signaling dynamics in response to wide-ranging stimuli and chemical or genetic perturbation, both ex vivo (cell lines) and in vivo (whole embryos or animals). Among the many varieties of reporter systems, translocation reporters that change sub-cellular localization in response to pathway activation have received considerable attention for their ease of use compared to FRET systems and favorable response times compared to transcriptional reporters. We reasoned that mouse reporter lines expressed in a conditional fashion would be a useful addition to the arsenal of mouse genetic tools, as such lines remain undeveloped despite widespread use of these sensors. We therefore created and validated two novel mouse reporter lines at the ROSA26 locus. One expresses an ERK1/2 pathway reporter and a nuclear marker from a single transcript, while the second additionally expresses an AKT reporter in order to simultaneously interrogate both pathways.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Brown LM, Ekert PG, Fleuren EDG. Biological and clinical implications of FGFR aberrations in paediatric and young adult cancers. Oncogene 2023:10.1038/s41388-023-02705-7. [PMID: 37130917 DOI: 10.1038/s41388-023-02705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Rare but recurrent mutations in the fibroblast growth factor receptor (FGFR) pathways, most commonly in one of the four FGFR receptor tyrosine kinase genes, can potentially be targeted with broad-spectrum multi-kinase or FGFR selective inhibitors. The complete spectrum of these mutations in paediatric cancers is emerging as precision medicine programs perform comprehensive sequencing of individual tumours. Identification of patients most likely to benefit from FGFR inhibition currently rests on identifying activating FGFR mutations, gene fusions, or gene amplification events. However, the expanding use of transcriptome sequencing (RNAseq) has identified that many tumours overexpress FGFRs, in the absence of any genomic aberration. The challenge now presented is to determine when this indicates true FGFR oncogenic activity. Under-appreciated mechanisms of FGFR pathway activation, including alternate FGFR transcript expression and concomitant FGFR and FGF ligand expression, may mark those tumours where FGFR overexpression is indicative of a dependence on FGFR signalling. In this review, we provide a comprehensive and mechanistic overview of FGFR pathway aberrations and their functional consequences in paediatric cancer. We explore how FGFR over expression might be associated with true receptor activation. Further, we discuss the therapeutic implications of these aberrations in the paediatric setting and outline current and emerging therapeutic strategies to treat paediatric patients with FGFR-driven cancers.
Collapse
Affiliation(s)
- Lauren M Brown
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Watson J, Ferguson HR, Brady RM, Ferguson J, Fullwood P, Mo H, Bexley KH, Knight D, Howell G, Schwartz JM, Smith MP, Francavilla C. Spatially resolved phosphoproteomics reveals fibroblast growth factor receptor recycling-driven regulation of autophagy and survival. Nat Commun 2022; 13:6589. [PMID: 36329028 PMCID: PMC9633600 DOI: 10.1038/s41467-022-34298-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Receptor Tyrosine Kinase (RTK) endocytosis-dependent signalling drives cell proliferation and motility during development and adult homeostasis, but is dysregulated in diseases, including cancer. The recruitment of RTK signalling partners during endocytosis, specifically during recycling to the plasma membrane, is still unknown. Focusing on Fibroblast Growth Factor Receptor 2b (FGFR2b) recycling, we reveal FGFR signalling partners proximal to recycling endosomes by developing a Spatially Resolved Phosphoproteomics (SRP) approach based on APEX2-driven biotinylation followed by phosphorylated peptides enrichment. Combining this with traditional phosphoproteomics, bioinformatics, and targeted assays, we uncover that FGFR2b stimulated by its recycling ligand FGF10 activates mTOR-dependent signalling and ULK1 at the recycling endosomes, leading to autophagy suppression and cell survival. This adds to the growing importance of RTK recycling in orchestrating cell fate and suggests a therapeutically targetable vulnerability in ligand-responsive cancer cells. Integrating SRP with other systems biology approaches provides a powerful tool to spatially resolve cellular signalling.
Collapse
Affiliation(s)
- Joanne Watson
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Harriet R Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Rosie M Brady
- Division of Cancer Sciences, School of Medical Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester, M20 4GJ, UK
| | - Jennifer Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Paul Fullwood
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Hanyi Mo
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Katherine H Bexley
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - David Knight
- Bio-MS Core Research Facility, FBMH, The University of Manchester, M139PT, Manchester, UK
| | - Gareth Howell
- Flow Cytometry Core Research Facility, FBMH, The University of Manchester, M139PT, Manchester, UK
| | - Jean-Marc Schwartz
- Division of Evolution, Infection and Genomics, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK
| | - Michael P Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK.
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, M139PT, Manchester, UK.
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, M139PT, Manchester, UK.
| |
Collapse
|
9
|
Kale HT, Rajpurohit RS, Jana D, Vishnu VV, Srivastava M, Mourya PR, Srinivas G, Shekar PC. A NANOG‐pERK reciprocal regulatory circuit regulates
Nanog
autoregulation and ERK signaling dynamics. EMBO Rep 2022; 23:e54421. [PMID: 36066347 PMCID: PMC9638859 DOI: 10.15252/embr.202154421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
The self‐renewal and differentiation potential of embryonic stem cells (ESCs) is maintained by the regulated expression of core pluripotency factors. Expression levels of the core pluripotency factor Nanog are tightly regulated by a negative feedback autorepression loop. However, it remains unclear how ESCs perceive NANOG levels and execute autorepression. Here, we show that a dose‐dependent induction of Fgfbp1 and Fgfr2 by NANOG activates autocrine‐mediated ERK signaling in Nanog‐high cells to trigger autorepression. pERK recruits NONO to the Nanog locus to repress transcription by preventing POL2 loading. This Nanog autorepression process establishes a self‐perpetuating reciprocal NANOG‐pERK regulatory circuit. We further demonstrate that this reciprocal regulatory circuit induces pERK heterogeneity and ERK signaling dynamics in pluripotent stem cells. Collectively our data suggest that NANOG induces Fgfr2 and Fgfbp1 to activate ERK signaling in Nanog‐high cells to establish a NANOG‐pERK reciprocal regulatory circuit. This circuit regulates ERK signaling dynamics and Nanog autoregulation in pluripotent cells.
Collapse
Affiliation(s)
- Hanuman T Kale
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | | | - Debabrata Jana
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Vijay V Vishnu
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Mansi Srivastava
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Preeti R Mourya
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Gunda Srinivas
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - P Chandra Shekar
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
10
|
Warner H, Mahajan S, van den Bogaart G. Rerouting trafficking circuits through posttranslational SNARE modifications. J Cell Sci 2022; 135:276344. [PMID: 35972760 DOI: 10.1242/jcs.260112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are membrane-associated trafficking proteins that confer identity to lipid membranes and facilitate membrane fusion. These functions are achieved through the complexing of Q-SNAREs with a specific cognate target R-SNARE, leading to the fusion of their associated membranes. These SNARE complexes then dissociate so that the Q-SNAREs and R-SNAREs can repeat this cycle. Whilst the basic function of SNAREs has been long appreciated, it is becoming increasingly clear that the cell can control the localisation and function of SNARE proteins through posttranslational modifications (PTMs), such as phosphorylation and ubiquitylation. Whilst numerous proteomic methods have shown that SNARE proteins are subject to these modifications, little is known about how these modifications regulate SNARE function. However, it is clear that these PTMs provide cells with an incredible functional plasticity; SNARE PTMs enable cells to respond to an ever-changing extracellular environment through the rerouting of membrane traffic. In this Review, we summarise key findings regarding SNARE regulation by PTMs and discuss how these modifications reprogramme membrane trafficking pathways.
Collapse
Affiliation(s)
- Harry Warner
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Shweta Mahajan
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
11
|
Zhang Z, Zhang Y, Li Y, Jiang S, Xu F, Li K, Chang L, Gao H, Kukic P, Carmichael P, Liddell M, Li J, Zhang Q, Lyu Z, Peng S, Zuo T, Tulum L, Xu P. Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol 2022; 449:116110. [DOI: 10.1016/j.taap.2022.116110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022]
|
12
|
Gai QJ, Fu Z, He J, Mao M, Yao XX, Qin Y, Lan X, Zhang L, Miao JY, Wang YX, Zhu J, Yang FC, Lu HM, Yan ZX, Chen FL, Shi Y, Ping YF, Cui YH, Zhang X, Liu X, Yao XH, Lv SQ, Bian XW, Wang Y. EPHA2 mediates PDGFA activity and functions together with PDGFRA as prognostic marker and therapeutic target in glioblastoma. Signal Transduct Target Ther 2022; 7:33. [PMID: 35105853 PMCID: PMC8807725 DOI: 10.1038/s41392-021-00855-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/10/2022] Open
Abstract
Platelet-derived growth subunit A (PDGFA) plays critical roles in development of glioblastoma (GBM) with substantial evidence from TCGA database analyses and in vivo mouse models. So far, only platelet-derived growth receptor α (PDGFRA) has been identified as receptor for PDGFA. However, PDGFA and PDGFRA are categorized into different molecular subtypes of GBM in TCGA_GBM database. Our data herein further showed that activity or expression deficiency of PDGFRA did not effectively block PDGFA activity. Therefore, PDGFRA might be not necessary for PDGFA function.To profile proteins involved in PDGFA function, we performed co-immunoprecipitation (Co-IP) and Mass Spectrum (MS) and delineated the network of PDGFA-associated proteins for the first time. Unexpectedly, the data showed that EPHA2 could be temporally activated by PDGFA even without activation of PDGFRA and AKT. Furthermore, MS, Co-IP, in vitro binding thermodynamics, and proximity ligation assay consistently proved the interaction of EPHA2 and PDGFA. In addition, we observed that high expression of EPHA2 leaded to upregulation of PDGF signaling targets in TCGA_GBM database and clinical GBM samples. Co-upregulation of PDGFRA and EPHA2 leaded to worse patient prognosis and poorer therapeutic effects than other contexts, which might arise from expression elevation of genes related with malignant molecular subtypes and invasive growth. Due to PDGFA-induced EPHA2 activation, blocking PDGFRA by inhibitor could not effectively suppress proliferation of GBM cells, but simultaneous inhibition of both EPHA2 and PDGFRA showed synergetic inhibitory effects on GBM cells in vitro and in vivo. Taken together, our study provided new insights on PDGFA function and revealed EPHA2 as a potential receptor of PDGFA. EPHA2 might contribute to PDGFA signaling transduction in combination with PDGFRA and mediate the resistance of GBM cells to PDGFRA inhibitor. Therefore, combination of inhibitors targeting PDGFRA and EHA2 represented a promising therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Qu-Jing Gai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiang He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Mao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Xue Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Qin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing-Ya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiang Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei-Cheng Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui-Min Lu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Biobank of Institute of Pathology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fang-Lin Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Cancer, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
13
|
Francavilla C, O'Brien CS. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol 2022; 12:210373. [PMID: 35193394 PMCID: PMC8864352 DOI: 10.1098/rsob.210373] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signalling plays a critical role in breast embryonal development, tissue homeostasis, tumorigenesis and metastasis. FGFR, its numerous FGF ligands and signalling partners are often dysregulated in breast cancer progression and are one of the causes of resistance to treatment in breast cancer. Furthermore, FGFR signalling on epithelial cells is affected by signals from the breast microenvironment, therefore increasing the possibility of breast developmental abnormalities or cancer progression. Increasing our understanding of the multi-layered roles of the complex family of FGFRs, their ligands FGFs and their regulatory partners may offer novel treatment strategies for breast cancer patients, as a single agent or rational co-target, which will be explored in depth in this review.
Collapse
Affiliation(s)
- Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester M13 9PT, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| | - Ciara S. O'Brien
- The Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester M20 2BX, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
14
|
Tønne E, Due-Tønnessen BJ, Vigeland MD, Amundsen SS, Ribarska T, Åsten PM, Sheng Y, Helseth E, Gilfillan GD, Mero IL, Heimdal KR. Whole-exome sequencing in syndromic craniosynostosis increases diagnostic yield and identifies candidate genes in osteogenic signaling pathways. Am J Med Genet A 2022; 188:1464-1475. [PMID: 35080095 DOI: 10.1002/ajmg.a.62663] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 12/26/2021] [Indexed: 11/07/2022]
Abstract
Craniosynostosis (CS) is a common congenital anomaly defined by premature fusion of one or more cranial sutures. Syndromic CS involves additional organ anomalies or neurocognitive deficits and accounts for 25%-30% of the cases. In a recent population-based study by our group, 84% of the syndromic CS cases had a genetically verified diagnosis after targeted analyses. A number of different genetic causes were detected, confirming that syndromic CS is highly heterogeneous. In this study, we performed whole-exome sequencing of 10 children and parents from the same cohort where previous genetic results were negative. We detected pathogenic, or likely pathogenic, variants in four additional genes (NFIA, EXTL3, POLR2A, and FOXP2) associated with rare conditions. In two of these (POLR2A and FOXP2), CS has not previously been reported. We further detected a rare predicted damaging variant in SH3BP4, which has not previously been related to human disease. All findings were clustered in genes involved in the pathways of osteogenesis and suture patency. We conclude that whole-exome sequencing expands the list of genes associated with syndromic CS, and provides new candidate genes in osteogenic signaling pathways.
Collapse
Affiliation(s)
- Elin Tønne
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway
| | - Bernt Johan Due-Tønnessen
- Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Magnus Dehli Vigeland
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Teodora Ribarska
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Eirik Helseth
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Gregor Duncan Gilfillan
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ketil Riddervold Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Clark JF, Soriano PM. Pulling back the curtain: The hidden functions of receptor tyrosine kinases in development. Curr Top Dev Biol 2022; 149:123-152. [PMID: 35606055 PMCID: PMC9127239 DOI: 10.1016/bs.ctdb.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor tyrosine kinases (RTKs) are a conserved superfamily of transmembrane growth factor receptors that drive numerous cellular processes during development and in the adult. Upon activation, multiple adaptors and signaling effector proteins are recruited to binding site motifs located within the intracellular domain of the RTK. These RTK-effector interactions drive subsequent intracellular signaling cascades involved in canonical RTK signaling. Genetic dissection has revealed that alleles of Fibroblast Growth Factor receptors (FGFRs) that lack all canonical RTK signaling still retain some kinase-dependent biological activity. Here we examine how genetic analysis can be used to understand the mechanism by which RTKs drive multiple developmental processes via canonical signaling while revealing noncanonical activities. Recent data from both FGFRs and other RTKs highlight potential noncanonical roles in cell adhesion and nuclear signaling. The data supporting such functions are discussed as are recent technologies that have the potential to provide valuable insight into the developmental significance of these noncanonical activities.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Philippe M Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
16
|
Williaume G, de Buyl S, Sirour C, Haupaix N, Bettoni R, Imai KS, Satou Y, Dupont G, Hudson C, Yasuo H. Cell geometry, signal dampening, and a bimodal transcriptional response underlie the spatial precision of an ERK-mediated embryonic induction. Dev Cell 2021; 56:2966-2979.e10. [PMID: 34672970 DOI: 10.1016/j.devcel.2021.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/16/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Precise control of lineage segregation is critical for the development of multicellular organisms, but our quantitative understanding of how variable signaling inputs are integrated to activate lineage-specific gene programs remains limited. Here, we show how precisely two out of eight ectoderm cells adopt neural fates in response to ephrin and FGF signals during ascidian neural induction. In each ectoderm cell, FGF signals activate ERK to a level that mirrors its cell contact surface with FGF-expressing mesendoderm cells. This gradual interpretation of FGF inputs is followed by a bimodal transcriptional response of the immediate early gene, Otx, resulting in its activation specifically in the neural precursors. At low levels of ERK, Otx is repressed by an ETS family transcriptional repressor, ERF2. Ephrin signals are critical for dampening ERK activation levels across ectoderm cells so that only neural precursors exhibit above-threshold levels, evade ERF repression, and "switch on" Otx transcription.
Collapse
Affiliation(s)
- Géraldine Williaume
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Sophie de Buyl
- Applied Physics Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, 1050 Brussels, Belgium
| | - Cathy Sirour
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Nicolas Haupaix
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Rossana Bettoni
- Applied Physics Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, 1050 Brussels, Belgium; Unité de Chronobiologie Théorique, Faculté des Sciences, CP231, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Faculté des Sciences, CP231, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Clare Hudson
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France.
| | - Hitoyoshi Yasuo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France.
| |
Collapse
|
17
|
Moritz S, Krause M, Schlatter J, Cordes N, Vehlow A. Lamellipodin-RICTOR Signaling Mediates Glioblastoma Cell Invasion and Radiosensitivity Downstream of EGFR. Cancers (Basel) 2021; 13:5337. [PMID: 34771501 PMCID: PMC8582497 DOI: 10.3390/cancers13215337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma is a tumor type of unmet need despite the development of multimodal treatment strategies. The main factors contributing to the poor prognosis of glioblastoma patients are diverse genetic and epigenetic changes driving glioblastoma persistence and recurrence. Complemented are these factors by extracellular cues mediated through cell surface receptors, which further aid in fostering pro-invasion and pro-survival signaling contributing to glioblastoma therapy resistance. The underlying mechanisms conferring this therapy resistance are poorly understood. Here, we show that the cytoskeleton regulator Lamellipodin (Lpd) mediates invasiveness, proliferation and radiosensitivity of glioblastoma cells. Phosphoproteome analysis identified the epidermal growth factor receptor (EGFR) signaling axis commonly hyperactive in glioblastoma to depend on Lpd. Mechanistically, EGFR signaling together with an interaction between Lpd and the Rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR) jointly regulate glioblastoma radiosensitivity. Collectively, our findings demonstrate an essential function of Lpd in the radiation response and invasiveness of glioblastoma cells. Thus, we uncover a novel Lpd-driven resistance mechanism, which adds an additional critical facet to the complex glioblastoma resistance network.
Collapse
Affiliation(s)
- Stefanie Moritz
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, PF 41, 01307 Dresden, Germany; (S.M.); (N.C.)
| | - Matthias Krause
- Randall Centre of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK; (M.K.); (J.S.)
| | - Jessica Schlatter
- Randall Centre of Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK; (M.K.); (J.S.)
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, PF 41, 01307 Dresden, Germany; (S.M.); (N.C.)
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, PF 50, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| | - Anne Vehlow
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, PF 41, 01307 Dresden, Germany; (S.M.); (N.C.)
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| |
Collapse
|
18
|
Akimov V, Fehling-Kaschek M, Barrio-Hernandez I, Puglia M, Bunkenborg J, Nielsen MM, Timmer J, Dengjel J, Blagoev B. Magnitude of Ubiquitination Determines the Fate of Epidermal Growth Factor Receptor Upon Ligand Stimulation. J Mol Biol 2021; 433:167240. [PMID: 34508725 DOI: 10.1016/j.jmb.2021.167240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022]
Abstract
Receptor tyrosine kinases (RTK) bind growth factors and are critical for cell proliferation and differentiation. Their dysregulation leads to a loss of growth control, often resulting in cancer. Epidermal growth factor receptor (EGFR) is the prototypic RTK and can bind several ligands exhibiting distinct mitogenic potentials. Whereas the phosphorylation on individual EGFR sites and their roles for downstream signaling have been extensively studied, less is known about ligand-specific ubiquitination events on EGFR, which are crucial for signal attenuation and termination. We used a proteomics-based workflow for absolute quantitation combined with mathematical modeling to unveil potentially decisive ubiquitination events on EGFR from the first 30 seconds to 15 minutes of stimulation. Four ligands were used for stimulation: epidermal growth factor (EGF), heparin-binding-EGF like growth factor, transforming growth factor-α and epiregulin. Whereas only little differences in the order of individual ubiquitination sites were observed, the overall amount of modified receptor differed depending on the used ligand, indicating that absolute magnitude of EGFR ubiquitination, and not distinctly regulated ubiquitination sites, is a major determinant for signal attenuation and the subsequent cellular outcomes.
Collapse
Affiliation(s)
- Vyacheslav Akimov
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mirjam Fehling-Kaschek
- Institut of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Inigo Barrio-Hernandez
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Michele Puglia
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jakob Bunkenborg
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mogens M Nielsen
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jens Timmer
- Institut of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Blagoy Blagoev
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
19
|
Clark JF, Ciccarelli EJ, Kayastha P, Ranepura G, Yamamoto KK, Hasan MS, Madaan U, Meléndez A, Savage-Dunn C. BMP pathway regulation of insulin signaling components promotes lipid storage in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009836. [PMID: 34634043 PMCID: PMC8530300 DOI: 10.1371/journal.pgen.1009836] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
A small number of peptide growth factor ligands are used repeatedly in development and homeostasis to drive programs of cell differentiation and function. Cells and tissues must integrate inputs from these diverse signals correctly, while failure to do so leads to pathology, reduced fitness, or death. Previous work using the nematode C. elegans identified an interaction between the bone morphogenetic protein (BMP) and insulin/IGF-1-like signaling (IIS) pathways in the regulation of lipid homeostasis. The molecular components required for this interaction, however, were not fully understood. Here we report that INS-4, one of 40 insulin-like peptides (ILPs), is regulated by BMP signaling to modulate fat accumulation. Furthermore, we find that the IIS transcription factor DAF-16/FoxO, but not SKN-1/Nrf, acts downstream of BMP signaling in lipid homeostasis. Interestingly, BMP activity alters sensitivity of these two transcription factors to IIS-promoted cytoplasmic retention in opposite ways. Finally, we probe the extent of BMP and IIS interactions by testing additional IIS functions including dauer formation, aging, and autophagy induction. Coupled with our previous work and that of other groups, we conclude that BMP and IIS pathways have at least three modes of interaction: independent, epistatic, and antagonistic. The molecular interactions we identify provide new insight into mechanisms of signaling crosstalk and potential therapeutic targets for IIS-related pathologies such as diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- James F. Clark
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Emma J. Ciccarelli
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Peter Kayastha
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
| | - Gehan Ranepura
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
| | - Katerina K. Yamamoto
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Muhammad S. Hasan
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
| | - Uday Madaan
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Alicia Meléndez
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Cathy Savage-Dunn
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Rauschendorfer T, Gurri S, Heggli I, Maddaluno L, Meyer M, Inglés-Prieto Á, Janovjak H, Werner S. Acute and chronic effects of a light-activated FGF receptor in keratinocytes in vitro and in mice. Life Sci Alliance 2021; 4:4/11/e202101100. [PMID: 34548382 PMCID: PMC8473723 DOI: 10.26508/lsa.202101100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/24/2022] Open
Abstract
Optogenetic activation of FGFR2 allowed temporally precise induction of signaling and behavioural changes, but counter-regulation at multiple levels prevented a sustained response in keratinocytes. FGFs and their high-affinity receptors (FGFRs) play key roles in development, tissue repair, and disease. Because FGFRs bind overlapping sets of ligands, their individual functions cannot be determined using ligand stimulation. Here, we generated a light-activated FGFR2 variant (OptoR2) to selectively activate signaling by the major FGFR in keratinocytes. Illumination of OptoR2-expressing HEK 293T cells activated FGFR signaling with remarkable temporal precision and promoted cell migration and proliferation. In murine and human keratinocytes, OptoR2 activation rapidly induced the classical FGFR signaling pathways and expression of FGF target genes. Surprisingly, multi-level counter-regulation occurred in keratinocytes in vitro and in transgenic mice in vivo, including OptoR2 down-regulation and loss of responsiveness to light activation. These results demonstrate unexpected cell type–specific limitations of optogenetic FGFRs in long-term in vitro and in vivo settings and highlight the complex consequences of transferring optogenetic cell signaling tools into their relevant cellular contexts.
Collapse
Affiliation(s)
- Theresa Rauschendorfer
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Selina Gurri
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Irina Heggli
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Luigi Maddaluno
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Michael Meyer
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | | | - Harald Janovjak
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria .,Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia.,European Molecular Biology Laboratory Australia, Monash University, Clayton, Australia
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Karl K, Hristova K. Pondering the mechanism of receptor tyrosine kinase activation: The case for ligand-specific dimer microstate ensembles. Curr Opin Struct Biol 2021; 71:193-199. [PMID: 34399300 DOI: 10.1016/j.sbi.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that regulate cell growth, differentiation, motility, and metabolism. Here, we review recent advancements in RTK structure determination and in the understanding of RTK activation. We argue that further progress in the field will necessitate new ways of thinking, and we introduce the concept that RTK dimers explore ensembles of microstates, each characterized by different kinase domain dimer conformations, but the same extracellular domain dimer structure. Many microstates are phosphorylation-competent and ensure the phosphorylation of one specific tyrosine. The prevalence of each microstate correlates with its stability. A switch in ligand will lead to a switch in the extracellular domain configuration and to a subsequent switch in the ensemble of microstates. This model can explain how different ligands produce specific phosphorylation patterns, how receptor overexpression leads to enhanced signaling even in the absence of activating ligands, and why RTK kinase domain structures have remained unresolved in cryogenic electron microscopy studies.
Collapse
Affiliation(s)
- Kelly Karl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA.
| |
Collapse
|
22
|
Smith MP, Ferguson HR, Ferguson J, Zindy E, Kowalczyk KM, Kedward T, Bates C, Parsons J, Watson J, Chandler S, Fullwood P, Warwood S, Knight D, Clarke RB, Francavilla C. Reciprocal priming between receptor tyrosine kinases at recycling endosomes orchestrates cellular signalling outputs. EMBO J 2021; 40:e107182. [PMID: 34086370 PMCID: PMC8447605 DOI: 10.15252/embj.2020107182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
Integration of signalling downstream of individual receptor tyrosine kinases (RTKs) is crucial to fine-tune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration remains poorly elucidated. Combining quantitative phosphoproteomics and targeted assays, we generated a detailed picture of recycling-dependent fibroblast growth factor (FGF) signalling in breast cancer cells, with a focus on distinct FGF receptors (FGFRs). We discovered reciprocal priming between FGFRs and epidermal growth factor (EGF) receptor (EGFR) that is coordinated at recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFR-mediated proliferation but not cell invasion. In turn, FGFR signalling primes EGF-mediated outputs via EGFR threonine 693 phosphorylation. This reciprocal priming between distinct families of RTKs from recycling endosomes exemplifies a novel signalling integration hub where recycling endosomes orchestrate cellular behaviour. Therefore, targeting reciprocal priming over individual receptors may improve personalized therapies in breast and other cancers.
Collapse
Affiliation(s)
- Michael P Smith
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Harriet R Ferguson
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Jennifer Ferguson
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Egor Zindy
- Division of Cell Matrix and Regenerative MedicineSchool of Biological Science, FBMHThe University of ManchesterManchesterUK
- Present address:
Center for Microscopy and Molecular ImagingUniversité Libre de Bruxelles (ULB)GosseliesBelgium
| | - Katarzyna M Kowalczyk
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
- Present address:
Department of BiochemistryUniversity of OxfordOxfordUK
| | - Thomas Kedward
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
| | - Christian Bates
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Joseph Parsons
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
| | - Joanne Watson
- Division of Evolution and Genomic SciencesSchool of Biological ScienceFBMHThe University of ManchesterManchesterUK
| | - Sarah Chandler
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Paul Fullwood
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Stacey Warwood
- Bio‐MS Core Research FacilityFBMHThe University of ManchesterManchesterUK
| | - David Knight
- Bio‐MS Core Research FacilityFBMHThe University of ManchesterManchesterUK
| | - Robert B Clarke
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
- Manchester Breast CentreManchester Cancer Research CentreManchesterUK
| | - Chiara Francavilla
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
- Manchester Breast CentreManchester Cancer Research CentreManchesterUK
| |
Collapse
|
23
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
24
|
Taghizadeh S, Heiner M, Vazquez-Armendariz AI, Wilhelm J, Herold S, Chen C, Zhang JS, Bellusci S. Characterization in mice of the resident mesenchymal niche maintaining AT2 stem cell proliferation in homeostasis and disease. STEM CELLS (DAYTON, OHIO) 2021; 39:1382-1394. [PMID: 34048616 DOI: 10.1002/stem.3423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/08/2021] [Indexed: 11/06/2022]
Abstract
Resident mesenchymal cells (rMCs defined as Cd31Neg Cd45Neg EpcamNeg ) control the proliferation and differentiation of alveolar epithelial type 2 (AT2) stem cells in vitro. The identity of these rMCs is still elusive. Among them, Axin2Pos mesenchymal alveolar niche cells (MANCs), which are expressing Fgf7, have been previously described. We propose that an additional population of rMCs, expressing Fgf10 (called rMC-Sca1Pos Fgf10Pos ) are equally important to maintain AT2 stem cell proliferation. The alveolosphere model, based on the AT2-rMC co-culture in growth factor-reduced Matrigel, was used to test the efficiency of different rMC subpopulations isolated by FACS from adult murine lung to sustain the proliferation and differentiation of AT2 stem cells. We demonstrate that rMC-Sca1Pos Fgf10Pos cells are efficient to promote the proliferation and differentiation of AT2 stem cells. Co-staining of adult lung for Fgf10 mRNA and Sftpc protein respectively, indicate that 28% of Fgf10Pos cells are located close to AT2 cells. Co-ISH for Fgf7 and Fgf10 indicate that these two populations do not significantly overlap. Gene arrays comparing rMC-Sca1Pos Axin2Pos and rMC-Sca1Pos Fgf10Pos support that these two cell subsets express differential markers. In addition, rMC function is decreased in obese ob/ob mutant compared to WT mice with a much stronger loss of function in males compared to females. In conclusion, rMC-Sca1Pos Fgf10Pos cells play important role in supporting AT2 stem cells proliferation and differentiation. This result sheds a new light on the subpopulations of rMCs contributing to the AT2 stem cell niche in homeostasis and in the context of pre-existing metabolic diseases.
Collapse
Affiliation(s)
- Sara Taghizadeh
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou.,Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany
| | - Monika Heiner
- Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany
| | | | - Jochen Wilhelm
- Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany.,Institute for Lung Health (ILH), Germany
| | - Susanne Herold
- Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Jin San Zhang
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Saverio Bellusci
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou.,Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany
| |
Collapse
|
25
|
Szybowska P, Kostas M, Wesche J, Haugsten EM, Wiedlocha A. Negative Regulation of FGFR (Fibroblast Growth Factor Receptor) Signaling. Cells 2021; 10:cells10061342. [PMID: 34071546 PMCID: PMC8226934 DOI: 10.3390/cells10061342] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
FGFR (fibroblast growth factor receptor) signaling controls fundamental processes in embryonic, fetal and adult human life. The magnitude, duration, and location of FGFR signaling must be strictly controlled in order to induce the correct biological response. Uncontrolled receptor signaling has been shown to lead to a variety of diseases, such as skeletal disorders and cancer. Here we review the numerous cellular mechanisms that regulate and turn off FGFR signaling, once the receptor is activated. These mechanisms include endocytosis and endocytic sorting, phosphatase activity, negative regulatory proteins and negative feedback phosphorylation events. The mechanisms act together simultaneously or sequentially, controlling the same or different steps in FGFR signaling. Although more work is needed to fully understand the regulation of FGFR signaling, it is clear that the cells in our body have evolved an extensive repertoire of mechanisms that together keep FGFR signaling tightly controlled and prevent excess FGFR signaling.
Collapse
Affiliation(s)
- Patrycja Szybowska
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Michal Kostas
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| | - Antoni Wiedlocha
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| |
Collapse
|
26
|
Chen Y, Chen Y, Jiang X, Shi M, Yang Z, Chen Z, Hua X, Chen J, Wang Y. Vascular Adventitial Fibroblasts-Derived FGF10 Promotes Vascular Smooth Muscle Cells Proliferation and Migration in vitro and the Neointima Formation in vivo. J Inflamm Res 2021; 14:2207-2223. [PMID: 34079328 PMCID: PMC8164702 DOI: 10.2147/jir.s305204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/21/2021] [Indexed: 01/26/2023] Open
Abstract
Background Activation of vascular adventitial fibroblasts (VAFs) upon vascular injury contributes greatly to the medial vascular smooth muscle cells (VSMCs) proliferation, migration and the subsequent neointima formation. A number of factors including fibroblast growth factors (FGFs) have been shown to control VSMC growth, proliferation and phenotypic switching, suggesting that they may function as paracrine signals for VAFs to modulate VSMCs functions. However, little is known about the signaling molecule(s) and its mechanism of action. This study is set to identify which and how FGF family members are involved in VAFs mediated vascular remodeling. Methods We used qPCR, Western blot and Immunohistochemistry to observe the spatiotemporal expression of FGF10 and FGFR2 in injured vascular tissue. The proliferation and migration assays of VSMCs were performed in a co-culture system. The activation of signaling pathway was detected by Western blot, immunohistochemistry and immunofluorescence. Hematoxylin-eosin and immunofluorescence were used to assess the effects of exogenous FGF10 and siFGF10 on the neointima formation. Results The expression of FGF10 and FGFR2 were increased from day 3 through day 14 post injury. FGF10 was significantly upregulated in adventitia, and FGFR2 was detected in both media and neointima after injury. In vitro, FGF10 was most prominently expressed in VAFs and FGFR2 was significantly expressed in VSMCs. Both were regulated by PDGF. Co-culture of VAFs and VSMCs in vitro showed that VAF-derived FGF10 promoted the proliferation and migration of VSMCs. PDGF could synergistically enhance the process. VAF-derived FGF10 can significantly activate the FGFR2 in VSMCs and furthermore significantly activate the downstream MAPK/PI3K-AKT signaling pathways. Delivery of exogenous FGF10 potentiated the neointima formation, while siFGF10 attenuated the neointima formation. Conclusion VAFs-derived FGF10 promoted the proliferation and migration of VSMCs and neointima formation, and FGF10-FGFR2 signaling triggered the activation of MAPK/PI3K-AKT pathways in VSMCs and PDGF synergistically amplified FGF10 signaling.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Yuanyuan Chen
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Xueze Jiang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Mengkun Shi
- Department of Cardio-Thoracic Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Zhenwei Yang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Zhiyong Chen
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Xuesheng Hua
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Jie Chen
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| |
Collapse
|
27
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
28
|
Abstract
Branching morphogenesis generates epithelial trees which facilitate gas exchange, filtering, as well as secretion processes with their large surface to volume ratio. In this review, we focus on the developmental mechanisms that control the early stages of lung branching morphogenesis. Lung branching morphogenesis involves the stereotypic, recurrent definition of new branch points, subsequent epithelial budding, and lung tube elongation. We discuss current models and experimental evidence for each of these steps. Finally, we discuss the role of the mesenchyme in determining the organ-specific shape.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
29
|
SH3BP4 promotes neuropilin-1 and α5-integrin endocytosis and is inhibited by Akt. Dev Cell 2021; 56:1164-1181.e12. [PMID: 33761321 DOI: 10.1016/j.devcel.2021.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/23/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Cells probe their surrounding matrix for attachment sites via integrins that are internalized by endocytosis. We find that SH3BP4 regulates integrin surface expression in a signaling-dependent manner via clathrin-coated pits (CCPs). Dephosphorylated SH3BP4 at S246 is efficiently recruited to CCPs, while upon Akt phosphorylation, SH3BP4 is sequestered by 14-3-3 adaptors and excluded from CCPs. In the absence of Akt activity, SH3BP4 binds GIPC1 and targets neuropilin-1 and α5/β1-integrin for endocytosis, leading to inhibition of cell spreading. Similarly, chemorepellent semaphorin-3a binds neuropilin-1 to activate PTEN, which antagonizes Akt and thus recruits SH3BP4 to CCPs to internalize both receptors and induce cell contraction. In PTEN mutant non-small cell lung cancer cells with high Akt activity, expression of non-phosphorylatable active SH3BP4-S246A restores semaphorin-3a induced cell contraction. Thus, SH3BP4 links Akt signaling to endocytosis of NRP1 and α5/β1-integrins to modulate cell-matrix interactions in response to intrinsic and extrinsic cues.
Collapse
|
30
|
Proteomic investigation of Cbl and Cbl-b in neuroblastoma cell differentiation highlights roles for SHP-2 and CDK16. iScience 2021; 24:102321. [PMID: 33889818 PMCID: PMC8050387 DOI: 10.1016/j.isci.2021.102321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma is a highly heterogeneous embryonal solid tumor of the sympathetic nervous system. As some tumors can be treated to undergo differentiation, investigating this process can guide differentiation-based therapies of neuroblastoma. Here, we studied the role of E3 ubiquitin ligases Cbl and Cbl-b in regulation of long-term signaling responses associated with extracellular signal-regulated kinase phosphorylation and neurite outgrowth, a morphological marker of neuroblastoma cell differentiation. Using quantitative mass spectrometry (MS)-based proteomics, we analyzed how the neuroblastoma cell line proteome, phosphoproteome, and ubiquitylome were affected by Cbl and Cbl-b depletion. To quantitatively assess neurite outgrowth, we developed a high-throughput microscopy assay that was applied in combination with inhibitor studies to pinpoint signaling underlying neurite outgrowth and to functionally validate proteins identified in the MS data sets. Using this combined approach, we identified a role for SHP-2 and CDK16 in Cbl/Cbl-b-dependent regulation of extracellular signal-regulated kinase phosphorylation and neurite outgrowth, highlighting their involvement in neuroblastoma cell differentiation. Multi-layered proteomics captures cellular changes induced by Cbl/Cbl-b depletion SHP-2 and CDK16 protein and phosphorylation levels increase upon Cbl/Cbl-b depletion SHP-2 and CDK16 regulate phospho-ERK and neurite outgrowth in neuroblastoma cells Inhibition of SHP-2 or CDK16 reverts Cbl/Cbl-b knockdown effects on differentiation
Collapse
|
31
|
Su Y, Yang LM, Ornitz DM. FGF20-FGFR1 signaling through MAPK and PI3K controls sensory progenitor differentiation in the organ of Corti. Dev Dyn 2021; 250:134-144. [PMID: 32735383 PMCID: PMC8415122 DOI: 10.1002/dvdy.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Fibroblast Growth Factor 20 (FGF20)-FGF receptor 1 (FGFR1) signaling is essential for cochlear hair cell (HC) and supporting cell (SC) differentiation. In other organ systems, FGFR1 signals through several intracellular pathways including MAPK (ERK), PI3K, phospholipase C ɣ (PLCɣ), and p38. Previous studies implicated MAPK and PI3K pathways in HC and SC development. We hypothesized that one or both would be important downstream mediators of FGF20-FGFR1 signaling for HC differentiation. RESULTS By inhibiting pathways downstream of FGFR1 in cochlea explant cultures, we established that both MAPK and PI3K pathways are required for HC differentiation while PLCɣ and p38 pathways are not. Examining the canonical PI3K pathway, we found that while AKT is necessary for HC differentiation, it is not sufficient to rescue the Fgf20-/- phenotype. To determine whether PI3K functions downstream of FGF20, we inhibited Phosphatase and Tensin Homolog (PTEN) in Fgf20-/- explants. Overactivation of PI3K resulted in a partial rescue of the Fgf20-/- phenotype, demonstrating a requirement for PI3K downstream of FGF20. Consistent with a requirement for the MAPK pathway for FGF20-regulated HC differentiation, we show that treating Fgf20-/- explants with FGF9 increased levels of dpERK. CONCLUSIONS Together, these data provide evidence that both MAPK and PI3K are important downstream mediators of FGF20-FGFR1 signaling during HC and SC differentiation.
Collapse
Affiliation(s)
- Yutao Su
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
32
|
Imbastari F, Dahlmann M, Sporbert A, Mattioli CC, Mari T, Scholz F, Timm L, Twamley S, Migotti R, Walther W, Dittmar G, Rehm A, Stein U. MACC1 regulates clathrin-mediated endocytosis and receptor recycling of transferrin receptor and EGFR in colorectal cancer. Cell Mol Life Sci 2021; 78:3525-3542. [PMID: 33469705 PMCID: PMC8038998 DOI: 10.1007/s00018-020-03734-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 11/16/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Metastasis Associated in Colon Cancer 1 (MACC1) is a novel prognostic, predictive and causal biomarker for tumor progression and metastasis in many cancer types, including colorectal cancer. Besides its clinical value, little is known about its molecular function. Its similarity to SH3BP4, involved in regulating uptake and recycling of transmembrane receptors, suggests a role of MACC1 in endocytosis. By exploring the MACC1 interactome, we identified the clathrin-mediated endocytosis (CME)-associated proteins CLTC, DNM2 and AP-2 as MACC1 binding partners. We unveiled a MACC1-dependent routing of internalized transferrin receptor towards recycling. Elevated MACC1 expression caused also the activation and internalization of EGFR, a higher rate of receptor recycling, as well as earlier and stronger receptor activation and downstream signaling. These effects are limited by deletion of CME-related protein interaction sites in MACC1. Thus, MACC1 regulates CME and receptor recycling, causing increased growth factor-mediated downstream signaling and cell proliferation. This novel mechanism unveils potential therapeutic intervention points restricting MACC1-driven metastasis.
Collapse
Affiliation(s)
- Francesca Imbastari
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Mathias Dahlmann
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Anje Sporbert
- Advanced Light Microscopy, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Camilla Ciolli Mattioli
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Tommaso Mari
- Proteome Dynamics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Florian Scholz
- Tumor Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Lena Timm
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Shailey Twamley
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | | | - Wolfgang Walther
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Armin Rehm
- Tumor Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ulrike Stein
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
33
|
Butterfield NC, Curry KF, Steinberg J, Dewhurst H, Komla-Ebri D, Mannan NS, Adoum AT, Leitch VD, Logan JG, Waung JA, Ghirardello E, Southam L, Youlten SE, Wilkinson JM, McAninch EA, Vancollie VE, Kussy F, White JK, Lelliott CJ, Adams DJ, Jacques R, Bianco AC, Boyde A, Zeggini E, Croucher PI, Williams GR, Bassett JHD. Accelerating functional gene discovery in osteoarthritis. Nat Commun 2021; 12:467. [PMID: 33473114 PMCID: PMC7817695 DOI: 10.1038/s41467-020-20761-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease.
Collapse
Affiliation(s)
- Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Katherine F Curry
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Cancer Council NSW, Sydney, NSW, 2000, Australia
| | - Hannah Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Naila S Mannan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Anne-Tounsia Adoum
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Julian A Waung
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Elena Ghirardello
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Scott E Youlten
- The Garvan Institute of Medical Research and St. Vincent's Clinical School, University of New South Wales Medicine, Sydney, NSW, 2010, Australia
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
- Centre for Integrated Research into Musculoskeletal Ageing and Sheffield Healthy Lifespan Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Elizabeth A McAninch
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, 60612, USA
| | | | - Fiona Kussy
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Jacqueline K White
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Richard Jacques
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, S1 4DA, UK
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Alan Boyde
- Dental Physical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Peter I Croucher
- The Garvan Institute of Medical Research and St. Vincent's Clinical School, University of New South Wales Medicine, Sydney, NSW, 2010, Australia
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
34
|
Ray AT, Mazot P, Brewer JR, Catela C, Dinsmore CJ, Soriano P. FGF signaling regulates development by processes beyond canonical pathways. Genes Dev 2020; 34:1735-1752. [PMID: 33184218 PMCID: PMC7706708 DOI: 10.1101/gad.342956.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023]
Abstract
FGFs are key developmental regulators that engage a signal transduction cascade through receptor tyrosine kinases, prominently engaging ERK1/2 but also other pathways. However, it remains unknown whether all FGF activities depend on this canonical signal transduction cascade. To address this question, we generated allelic series of knock-in Fgfr1 and Fgfr2 mouse strains, carrying point mutations that disrupt binding of signaling effectors, and a kinase dead allele of Fgfr2 that broadly phenocopies the null mutant. When interrogated in cranial neural crest cells, we identified discrete functions for signaling pathways in specific craniofacial contexts, but point mutations, even when combined, failed to recapitulate the single or double null mutant phenotypes. Furthermore, the signaling mutations abrogated established FGF-induced signal transduction pathways, yet FGF functions such as cell-matrix and cell-cell adhesion remained unaffected, though these activities did require FGFR kinase activity. Our studies establish combinatorial roles of Fgfr1 and Fgfr2 in development and uncouple novel FGFR kinase-dependent cell adhesion properties from canonical intracellular signaling.
Collapse
MESH Headings
- Animals
- Cell Adhesion/genetics
- Cell Death/genetics
- Cells, Cultured
- Fibroblast Growth Factors/physiology
- Gene Expression Regulation, Developmental/genetics
- Mice
- Mutation
- Neural Crest/cytology
- Protein Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Ayan T Ray
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Pierre Mazot
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - J Richard Brewer
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Catarina Catela
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
35
|
Sampadi B, Pines A, Munk S, Mišovic B, de Groot AJ, van de Water B, Olsen JV, Mullenders LHF, Vrieling H. Quantitative phosphoproteomics to unravel the cellular response to chemical stressors with different modes of action. Arch Toxicol 2020; 94:1655-1671. [PMID: 32189037 PMCID: PMC7261734 DOI: 10.1007/s00204-020-02712-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 12/02/2022]
Abstract
Damage to cellular macromolecules and organelles by chemical exposure evokes activation of various stress response pathways. To what extent different chemical stressors activate common and stressor-specific pathways is largely unknown. Here, we used quantitative phosphoproteomics to compare the signaling events induced by four stressors with different modes of action: the DNA damaging agent: cisplatin (CDDP), the topoisomerase II inhibitor: etoposide (ETO), the pro-oxidant: diethyl maleate (DEM) and the immunosuppressant: cyclosporine A (CsA) administered at an equitoxic dose to mouse embryonic stem cells. We observed major differences between the stressors in the number and identity of responsive phosphosites and the amplitude of phosphorylation. Kinase motif and pathway analyses indicated that the DNA damage response (DDR) activation by CDDP occurs predominantly through the replication-stress-related Atr kinase, whereas ETO triggers the DDR through Atr as well as the DNA double-strand-break-associated Atm kinase. CsA shares with ETO activation of CK2 kinase. Congruent with their known modes of action, CsA-mediated signaling is related to down-regulation of pathways that control hematopoietic differentiation and immunity, whereas oxidative stress is the most prominent initiator of DEM-modulated stress signaling. This study shows that even at equitoxic doses, different stressors induce distinctive and complex phosphorylation signaling cascades.
Collapse
Affiliation(s)
- Bharath Sampadi
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Alex Pines
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Stephanie Munk
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark
| | - Branislav Mišovic
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Anton J de Groot
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark
| | - Leon H F Mullenders
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
36
|
Gulberti S, Mao X, Bui C, Fournel-Gigleux S. The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs). Semin Cancer Biol 2020; 62:68-85. [DOI: 10.1016/j.semcancer.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
|
37
|
Antas P, Novellasdemunt L, Kucharska A, Massie I, Carvalho J, Oukrif D, Nye E, Novelli M, Li VSW. SH3BP4 Regulates Intestinal Stem Cells and Tumorigenesis by Modulating β-Catenin Nuclear Localization. Cell Rep 2020; 26:2266-2273.e4. [PMID: 30811977 PMCID: PMC6391711 DOI: 10.1016/j.celrep.2019.01.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/09/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023] Open
Abstract
Wnt signals at the base of mammalian crypts play a pivotal role in intestinal stem cell (ISC) homeostasis, whereas aberrant Wnt activation causes colon cancer. Precise control of Wnt signal strength is governed by a number of negative inhibitory mechanisms acting at distinct levels of the cascade. Here, we identify the Wnt negative regulatory role of Sh3bp4 in the intestinal crypt. We show that the loss of Sh3bp4 increases ISC and Paneth cell numbers in murine intestine and accelerates adenoma development in Apcmin mice. Mechanistically, human SH3BP4 inhibits Wnt signaling downstream of β-catenin phosphorylation and ubiquitination. This Wnt inhibitory role is dependent on the ZU5 domain of SH3BP4. We further demonstrate that SH3BP4 is expressed at the perinuclear region to restrict nuclear localization of β-catenin. Our data uncover the tumor-suppressive role of SH3BP4 that functions as a negative feedback regulator of Wnt signaling through modulating β-catenin’s subcellular localization. SH3BP4 is a Wnt inhibitor and is expressed in the intestinal crypt Deletion of Sh3bp4 increases stem cell numbers and accelerates tumor development SH3BP4 inhibits β-catenin nuclear localization at the perinuclear region
Collapse
Affiliation(s)
- Pedro Antas
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Anna Kucharska
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Isobel Massie
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joana Carvalho
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dahmane Oukrif
- Histopathology Department, University College London Hospitals NHS Foundation Trust, London, UK
| | - Emma Nye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marco Novelli
- Histopathology Department, University College London Hospitals NHS Foundation Trust, London, UK
| | - Vivian S W Li
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
38
|
Chen M, Bao L, Zhao M, Cao J, Zheng H. Progress in Research on the Role of FGF in the Formation and Treatment of Corneal Neovascularization. Front Pharmacol 2020; 11:111. [PMID: 32158390 PMCID: PMC7052042 DOI: 10.3389/fphar.2020.00111] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022] Open
Abstract
Corneal neovascularization (CNV) is a sight-threatening disease usually associated with inflammatory, infectious, degenerative, and traumatic disorders of the ocular surface. Fibroblast growth factor (FGF) family members play an important role in angiogenesis to induce corneal neovascularization, which significantly affects the differentiation, proliferation, metastasis, and chemotaxis of vascular endothelial cells. Both acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) demonstrate positive staining in capillaries and induce corneal stromal cells. The anabolism of endothelial cells is induced by bFGF in corneal neovascularization. FGFs exert their effects via specific binding to cell surface-expressed specific receptors. We believe that both anti-FGF antibodies and anti-FGF receptor antibodies represent new directions for the treatment of CNV. Similar to anti-vascular endothelial growth factor antibodies, subconjunctival injection and eye drops can be considered effective forms of drug delivery.
Collapse
Affiliation(s)
- Mengji Chen
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Licheng Bao
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengying Zhao
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiarong Cao
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haihua Zheng
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
O'Loughlin T, Kendrick-Jones J, Buss F. Approaches to Identify and Characterise MYO6-Cargo Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:355-380. [PMID: 32451866 DOI: 10.1007/978-3-030-38062-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the prevalence and importance of the actin cytoskeleton and the host of associated myosin motors, it comes as no surprise to find that they are linked to a plethora of cellular functions and pathologies. Although our understanding of the biophysical properties of myosin motors has been aided by the high levels of conservation in their motor domains and the extensive work on myosin in skeletal muscle contraction, our understanding of how the nonmuscle myosins participate in such a wide variety of cellular processes is less clear. It is now well established that the highly variable myosin tails are responsible for targeting these myosins to distinct cellular sites for specific functions, and although a number of adaptor proteins have been identified, our current understanding of the cellular processes involved is rather limited. Furthermore, as more adaptor proteins, cargoes and complexes are identified, the importance of elucidating the regulatory mechanisms involved is essential. Ca2+, and now phosphorylation and ubiquitination, are emerging as important regulators of cargo binding, and it is likely that other post-translational modifications are also involved. In the case of myosin VI (MYO6), a number of immediate binding partners have been identified using traditional approaches such as yeast two-hybrid screens and affinity-based pull-downs. However, these methods have only been successful in identifying the cargo adaptors, but not the cargoes themselves, which may often comprise multi-protein complexes. Furthermore, motor-adaptor-cargo interactions are dynamic by nature and often weak, transient and highly regulated and therefore difficult to capture using traditional affinity-based methods. In this chapter we will discuss the various approaches including functional proteomics that have been used to uncover and characterise novel MYO6-associated proteins and complexes and how this work contributes to a fuller understanding of the targeting and function(s) of this unique myosin motor.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK.
| |
Collapse
|
40
|
Chu X, Chen C, Chen C, Zhang JS, Bellusci S, Li X. Evidence for lung repair and regeneration in humans: key stem cells and therapeutic functions of fibroblast growth factors. Front Med 2019; 14:262-272. [PMID: 31741137 PMCID: PMC7095240 DOI: 10.1007/s11684-019-0717-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/05/2019] [Indexed: 01/19/2023]
Abstract
Regeneration carries the idea of regrowing partially or completely a missing organ. Repair, on the other hand, allows restoring the function of an existing but failing organ. The recognition that human lungs can both repair and regenerate is quite novel, the concept has not been widely used to treat patients. We present evidence that the human adult lung does repair and regenerate and introduce different ways to harness this power. Various types of lung stem cells are capable of proliferating and differentiating upon injury driving the repair/regeneration process. Injury models, primarily in mice, combined with lineage tracing studies, have allowed the identification of these important cells. Some of these cells, such as basal cells, broncho-alveolar stem cells, and alveolar type 2 cells, rely on fibroblast growth factor (FGF) signaling for their survival, proliferation and/or differentiation. While preclinical studies have shown the therapeutic benefits of FGFs, a recent clinical trial for acute respiratory distress syndrome (ARDS) using intravenous injection of FGF7 did not report the expected beneficial effects. We discuss the potential reasons for these negative results and propose the rationale for new approaches for future clinical trials, such as delivery of FGFs to the damaged lungs through efficient inhalation systems, which may be more promising than systemic exposure to FGFs. While this change in the administration route presents a challenge, the therapeutic promises displayed by FGFs are worth the effort.
Collapse
Affiliation(s)
- Xuran Chu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Chengshui Chen
- Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaolei Chen
- Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Saverio Bellusci
- Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China.
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
41
|
Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature 2019; 575:355-360. [PMID: 31695196 DOI: 10.1038/s41586-019-1732-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/03/2019] [Indexed: 11/08/2022]
Abstract
Central to understanding cellular behaviour in multi-cellular organisms is the question of how a cell exits one transcriptional state to adopt and eventually become committed to another. Fibroblast growth factor-extracellular signal-regulated kinase (FGF -ERK) signalling drives differentiation of mouse embryonic stem cells (ES cells) and pre-implantation embryos towards primitive endoderm, and inhibiting ERK supports ES cell self-renewal1. Paracrine FGF-ERK signalling induces heterogeneity, whereby cells reversibly progress from pluripotency towards primitive endoderm while retaining their capacity to re-enter self-renewal2. Here we find that ERK reversibly regulates transcription in ES cells by directly affecting enhancer activity without requiring a change in transcription factor binding. ERK triggers the reversible association and disassociation of RNA polymerase II and associated co-factors from genes and enhancers with the mediator component MED24 having an essential role in ERK-dependent transcriptional regulation. Though the binding of mediator components responds directly to signalling, the persistent binding of pluripotency factors to both induced and repressed genes marks them for activation and/or reactivation in response to fluctuations in ERK activity. Among the repressed genes are several core components of the pluripotency network that act to drive their own expression and maintain the ES cell state; if their binding is lost, the ability to reactivate transcription is compromised. Thus, as long as transcription factor occupancy is maintained, so is plasticity, enabling cells to distinguish between transient and sustained signals. If ERK signalling persists, pluripotency transcription factor levels are reduced by protein turnover and irreversible gene silencing and commitment can occur.
Collapse
|
42
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
43
|
Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell 2019; 179:543-560.e26. [DOI: 10.1016/j.cell.2019.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022]
|
44
|
Liu L, Lu J, Li X, Wu A, Wu Q, Zhao M, Tang N, Song H. The LIS1/NDE1 Complex Is Essential for FGF Signaling by Regulating FGF Receptor Intracellular Trafficking. Cell Rep 2019; 22:3277-3291. [PMID: 29562183 DOI: 10.1016/j.celrep.2018.02.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/23/2018] [Accepted: 02/21/2018] [Indexed: 11/27/2022] Open
Abstract
Intracellular transport of membranous organelles and protein complexes to various destinations is fundamental to signaling transduction and cellular function. The cytoplasmic dynein motor and its regulatory proteins LIS1 and NDE1 are required for transporting a variety of cellular cargos along the microtubule network. In this study, we show that deletion of Lis1 in developing lung endoderm and limb mesenchymal cells causes agenesis of the lungs and limbs. In both mutants, there is increased cell death and decreased fibroblast growth factor (FGF) signaling activity. Mechanistically, LIS1 and its interacting protein NDE1/NDEL1 are associated with FGF receptor-containing vesicles and regulate FGF receptor intracellular trafficking and degradation. Notably, FGF signaling promotes NDE1 tyrosine phosphorylation, which leads to dissociation of LIS1/NDE1 complex. Thus, our studies identify the LIS1/NDE1 complex as an important FGF signaling regulator and provide insights into the bidirectional regulation of cell signaling and transport machinery for endocytosis.
Collapse
Affiliation(s)
- Liansheng Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Jinqiu Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Ailing Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qingzhe Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Mujun Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hai Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Mesenchyme-specific deletion of Tgf-β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia. J Transl Med 2019; 99:1363-1375. [PMID: 31028279 PMCID: PMC7422700 DOI: 10.1038/s41374-019-0256-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
Proper lung development depends on the precise temporal and spatial expression of several morphogenic factors, including Fgf10, Fgf9, Shh, Bmp4, and Tgf-β. Over- or under-expression of these molecules often leads to aberrant embryonic or postnatal lung development. Herein, we deleted the Tgf-β1 gene specifically within the lung embryonic mesenchymal compartment at specific gestational stages to determine the contribution of this cytokine to lung development. Mutant embryos developed severe lung hypoplasia and died at birth due to the inability to breathe. Despite the markedly reduced lung size, proliferation and differentiation of the lung epithelium was not affected by the lack of mesenchymal expression of the Tgf-β1 gene, while apoptosis was significantly increased in the mutant lung parenchyma. Lack of mesenchymal expression of the Tgf-β1 gene was also associated with reduced lung branching morphogenesis, with accompanying inhibition of the local FGF10 signaling pathway as well as abnormal development of the vascular system. To shed light on the mechanism of lung hypoplasia, we quantified the phosphorylation of 226 proteins in the mutant E12.5 lung compared with control. We identified five proteins, Hrs, Vav2, c-Kit, the regulatory subunit of Pi3k (P85), and Fgfr1, that were over- or under-phosphorylated in the mutant lung, suggesting that they could be indispensable effectors of the TGF-β signaling program during embryonic lung development. In conclusion, we have uncovered novel roles of the mesenchyme-specific Tgf-β1 ligand in embryonic mouse lung development and generated a mouse model that may prove helpful to identify some of the key pathogenic mechanisms underlying lung hypoplasia in humans.
Collapse
|
46
|
Vafaizadeh V, Peuhu E, Mikkola ML, Khaled WT, Bentires-Alj M, Koledova Z. The Eleventh ENBDC Workshop: Advances in Technology Help to Unveil Mechanisms of Mammary Gland Development and Cancerogenesis. J Mammary Gland Biol Neoplasia 2019; 24:201-206. [PMID: 31494779 DOI: 10.1007/s10911-019-09436-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 02/02/2023] Open
Abstract
The eleventh annual workshop of the European Network for Breast Development and Cancer, Methods in mammary gland biology and breast cancer, took place on the 16th to 18th of May 2019 in Weggis, Switzerland. The main topics of the meeting were high resolution genomics and proteomics for the study of mammary gland development and cancer, breast cancer signaling, tumor microenvironment, preclinical models of breast cancer, and tissue morphogenesis. Exciting novel findings in, or highly relevant to, mammary gland biology and breast cancer field were presented, with insights into the methods used to obtain them. Among others, the discussed methods included single-cell RNA sequencing, genetic barcoding, lineage tracing, spatial transcriptomics, optogenetics, genetic mouse models and organoids.
Collapse
Affiliation(s)
- Vida Vafaizadeh
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Cancer Research Laboratory FICAN West, University of Turku and Turku University Hospital, Turku, Finland
| | - Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Mohamed Bentires-Alj
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
47
|
Gallegos TF, Kamei CN, Rohly M, Drummond IA. Fibroblast growth factor signaling mediates progenitor cell aggregation and nephron regeneration in the adult zebrafish kidney. Dev Biol 2019; 454:44-51. [PMID: 31220433 DOI: 10.1016/j.ydbio.2019.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022]
Abstract
The zebrafish kidney regenerates after injury by development of new nephrons from resident adult kidney stem cells. Although adult kidney progenitor cells have been characterized by transplantation and single cell RNA seq, signals that stimulate new nephron formation are not known. Here we demonstrate that fibroblast growth factors and FGF signaling is rapidly induced after kidney injury and that FGF signaling is required for recruitment of progenitor cells to sites of new nephron formation. Chemical or dominant negative blockade of Fgfr1 prevented formation of nephron progenitor cell aggregates after injury and during kidney development. Implantation of FGF soaked beads induced local aggregation of lhx1a:EGFP + kidney progenitor cells. Our results reveal a previously unexplored role for FGF signaling in recruitment of renal progenitors to sites of new nephron formation and suggest a role for FGF signaling in maintaining cell adhesion and cell polarity in newly forming kidney epithelia.
Collapse
Affiliation(s)
- Thomas F Gallegos
- Massachusetts General Hospital, Nephrology Division, Boston, MA, 02129, USA
| | - Caramai N Kamei
- Massachusetts General Hospital, Nephrology Division, Boston, MA, 02129, USA
| | | | - Iain A Drummond
- Massachusetts General Hospital, Nephrology Division, Boston, MA, 02129, USA; Harvard Medical School Department of Genetics, Boston, MA, 02115, USA.
| |
Collapse
|
48
|
Sacco F, Perfetto L, Cesareni G. Combining Phosphoproteomics Datasets and Literature Information to Reveal the Functional Connections in a Cell Phosphorylation Network. Proteomics 2019; 18:e1700311. [PMID: 29280302 DOI: 10.1002/pmic.201700311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/11/2017] [Indexed: 01/08/2023]
Abstract
Protein phosphorylation modulates many biological processes. However, the characterization of the complex regulatory circuits underlying cell response to external and internal stimuli is still limited by our inability to describe the phosphorylation network on a global scale. Modern MS-based phosphoproteomics allows monitoring tens of thousands of phosphorylation sites in multiple conditions, making the approach ideal to explore signaling pathways mediated by phosphorylation. Here, we review recent advances in phosphoproteomics and discuss some of the computational approaches developed to facilitate extraction of signaling information from these datasets. Finally, this review focuses on approaches that integrate prior literature information with unbiased phosphoproteomics experiments.
Collapse
Affiliation(s)
- Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | - Livia Perfetto
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| |
Collapse
|
49
|
Zinkle A, Mohammadi M. Structural Biology of the FGF7 Subfamily. Front Genet 2019; 10:102. [PMID: 30809251 PMCID: PMC6379346 DOI: 10.3389/fgene.2019.00102] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/29/2019] [Indexed: 11/13/2022] Open
Abstract
Mammalian fibroblast growth factor (FGF) signaling is intricately regulated via selective binding interactions between 18 FGF ligands and four FGF receptors (FGFR1–4), three of which (FGFR1–3) are expressed as either epithelial (“b”) or mesenchymal (“c”) splice isoforms. The FGF7 subfamily, consisting of FGF3, FGF7, FGF10, and FGF22, is unique among FGFs in that its members are secreted exclusively by the mesenchyme, and specifically activate the “b” isoforms of FGFR1 (FGFR1b) and FGFR2 (FGFR2b) present in the overlying epithelium. This unidirectional mesenchyme-to-epithelium signaling contributes to the development of essentially all organs, glands, and limbs. Structural analysis has shown that members of the FGF7 subfamily achieve their restricted specificity for FGFR1b/FGFR2b by engaging in specific contacts with two alternatively spliced loop regions in the immunoglobulin-like domain 3 (D3) of these receptors. Weak basal receptor-binding affinity further constrains the FGF7 subfamily’s specificity for FGFR1b/2b. In this review, we elaborate on the structural determinants of FGF7 subfamily receptor-binding specificity, and discuss how affinity differences among the four members for the heparin sulfate (HS) co-receptor contribute to their disparate biological activities.
Collapse
Affiliation(s)
- Allen Zinkle
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, United States
| | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
50
|
Jones MR, Dilai S, Lingampally A, Chao CM, Danopoulos S, Carraro G, Mukhametshina R, Wilhelm J, Baumgart-Vogt E, Al Alam D, Chen C, Minoo P, Zhang JS, Bellusci S. A Comprehensive Analysis of Fibroblast Growth Factor Receptor 2b Signaling on Epithelial Tip Progenitor Cells During Early Mouse Lung Branching Morphogenesis. Front Genet 2019; 9:746. [PMID: 30728831 PMCID: PMC6351499 DOI: 10.3389/fgene.2018.00746] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023] Open
Abstract
This study demonstrates that FGF10/FGFR2b signaling on distal epithelial progenitor cells, via ß-catenin/EP300, controls, through a comprehensive set of developmental genes, morphogenesis, and differentiation. Fibroblast growth factor (FGF) 10 signaling through FGF receptor 2b (FGFR2b) is mandatory during early lung development as the deletion of either the ligand or the receptor leads to lung agenesis. However, this drastic phenotype previously hampered characterization of the primary biological activities, immediate downstream targets and mechanisms of action. Through the use of a dominant negative transgenic mouse model (Rosa26rtTA; tet(o)sFgfr2b), we conditionally inhibited FGF10 signaling in vivo in E12.5 embryonic lungs via doxycycline IP injection to pregnant females, and in vitro by culturing control and experimental lungs with doxycycline. The impact on branching morphogenesis 9 h after doxycycline administration was analyzed by morphometry, fluorescence and electron microscopy. Gene arrays at 6 and 9 h following doxycycline administration were carried out. The relationship between FGF10 and ß-catenin signaling was also analyzed through in vitro experiments using IQ1, a pharmacological inhibitor of ß-catenin/EP300 transcriptional activity. Loss of FGF10 signaling did not impact proliferation or survival, but affected both adherens junctions (up-regulation of E-cadherin), and basement membrane organization (increased laminin). Gene arrays identified multiple direct targets of FGF10, including main transcription factors. Immunofluorescence showed a down-regulation of the distal epithelial marker SOX9 and mis-expression distally of the proximal marker SOX2. Staining for the transcriptionally-active form of ß-catenin showed a reduction in experimental vs. control lungs. In vitro experiments using IQ1 phenocopied the impacts of blocking FGF10. This study demonstrates that FGF10/FGFR2b signaling on distal epithelial progenitor cells via ß-catenin/EP300 controls, through a comprehensive set of developmental genes, cell adhesion, and differentiation.
Collapse
Affiliation(s)
- Matthew R Jones
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany
| | - Salma Dilai
- Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany
| | - Arun Lingampally
- Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany
| | - Cho-Ming Chao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany
| | - Soula Danopoulos
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles and University of Southern California, Los Angeles, CA, United States
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Lung and Regenerative Medicine Institutes, Los Angeles, CA, United States
| | - Regina Mukhametshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Jochen Wilhelm
- Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles and University of Southern California, Los Angeles, CA, United States
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Parviz Minoo
- Division of Newborn Medicine, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Jin San Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Life Sciences, Wenzhou University, Zhejiang, China.,International Collaborative Research Center on Growth Factors, Wenzhou Medical University, Zhejiang, China
| | - Saverio Bellusci
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Internal Medicine II, Member of the German Lung Center, Excellence Cluster Cardio-Pulmonary Systems, University of Giessen Lung Center, Giessen, Germany.,Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles and University of Southern California, Los Angeles, CA, United States.,Institute of Life Sciences, Wenzhou University, Zhejiang, China.,International Collaborative Research Center on Growth Factors, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|