1
|
She F, Anderson BW, Khana DB, Zhang S, Steinchen W, Fung DK, Lucas LN, Lesser NG, Stevenson DM, Astmann TJ, Bange G, van Pijkeren JP, Amador-Noguez D, Wang JD. Allosteric Regulation of Pyruvate Kinase Enables Efficient and Robust Gluconeogenesis by Preventing Metabolic Conflicts and Carbon Overflow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.607825. [PMID: 39211278 PMCID: PMC11361145 DOI: 10.1101/2024.08.15.607825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Glycolysis and gluconeogenesis are reciprocal metabolic pathways that utilize different carbon sources. Pyruvate kinase catalyzes the irreversible final step of glycolysis, yet the physiological function of its regulation is poorly understood. Through metabolomics and enzyme kinetics studies, we discovered that pyruvate kinase activity is inhibited during gluconeogenesis in the soil bacterium Bacillus subtilis . This regulation involves an extra C-terminal domain (ECTD) of pyruvate kinase, which is essential for autoinhibition and regulation by metabolic effectors. Introducing a pyruvate kinase mutant lacking the ECTD into B. subtilis resulted in defects specifically under gluconeogenic conditions, including inefficient carbon utilization, slower growth, and decreased resistance to the herbicide glyphosate. These defects are not caused by the phosphoenolpyruvate-pyruvate-oxaloacetate futile cycle. Instead, we identified two significant metabolic consequences of pyruvate kinase dysregulation during gluconeogenesis: increased carbon overflow into the medium and failure to expand glycolytic intermediates such as phosphoenolpyruvate (PEP). In silico analysis revealed that in wild-type cells, an expanded PEP pool enabled by pyruvate kinase regulation is critical for the thermodynamic feasibility of gluconeogenesis. Our findings underscore the importance of allosteric regulation during gluconeogenesis in coordinating metabolic flux, efficient energy utilization, and antimicrobial resistance.
Collapse
|
2
|
Jaiaue P, Srimongkol P, Thitiprasert S, Piluk J, Thammaket J, Assabumrungrat S, Cheirsilp B, Tanasupawat S, Thongchul N. Inactivation of guanylate kinase in Bacillus sp. TL7-3 cultivated under an optimized ratio of carbon and nitrogen sources influenced GTP regeneration capability and sporulation. Heliyon 2024; 10:e31956. [PMID: 38841476 PMCID: PMC11152743 DOI: 10.1016/j.heliyon.2024.e31956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Bacillus sp. TL7-3 has potential as a dietary supplement to promote human and animal health. It produces spores that can survive in harsh environments. Thus, when supplemented with nutrients, these spores can withstand the acidic pH of the stomach and resume vegetative development in the gut when exposed to growth-promoting conditions. Spores are formed as a cellular defense mechanism when a culture experiences stress and process optimization to achieve high spore production in a typical batch process remains challenging. Existing literature on the manipulation of gene expression and enzyme activity during batch cultivation is limited. Studies on the growth patterns, morphological changes, and relevant gene expression have aided in enhancing spore production. The present study used the response surface methodology for medium optimization. The model suggested that yeast extract and NH4Cl were significant factors controlling spore production. A comparison between the high weight ratio of carbon and nitrogen (C:N) substrates (8.57:1) in the optimized and basal media (0.52:1) showed an 8.76-fold increase in the final spore concentration. The expression of major genes, including codY, spo0A, kinA, and spo0F, involved in the sporulation was compared when cultivating Bacillus sp. TL7-3 in media with varying C:N ratios. At high C:N ratios, spo0A, kinA, and spo0F were upregulated, whereas codY was downregulated. This led to decreased guanylate kinase activity, resulting in a low guanosine triphosphate concentration and inactivation of CodY, thereby reducing the repression of spo0A and CodY-repressed genes and stimulating sporulation.
Collapse
Affiliation(s)
- Phetcharat Jaiaue
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Sitanan Thitiprasert
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jirabhorn Piluk
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jesnipit Thammaket
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Suttichai Assabumrungrat
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Benjamas Cheirsilp
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkla, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nuttha Thongchul
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Kennelly C, Tran P, Prindle A. Environmental purines decrease Pseudomonas aeruginosa biofilm formation by disrupting c-di-GMP metabolism. Cell Rep 2024; 43:114154. [PMID: 38669142 PMCID: PMC11197132 DOI: 10.1016/j.celrep.2024.114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Cyclic di-guanosine monophosphate (c-di-GMP) is a bacterial second messenger that governs the lifestyle switch between planktonic and biofilm states. While substantial investigation has focused on the proteins that produce and degrade c-di-GMP, less attention has been paid to the potential for metabolic control of c-di-GMP signaling. Here, we show that micromolar levels of specific environmental purines unexpectedly decrease c-di-GMP and biofilm formation in Pseudomonas aeruginosa. Using a fluorescent genetic reporter, we show that adenosine and inosine decrease c-di-GMP even when competing purines are present. We confirm genetically that purine salvage is required for c-di-GMP decrease. Furthermore, we find that (p)ppGpp prevents xanthosine and guanosine from producing an opposing c-di-GMP increase, reinforcing a salvage hierarchy that favors c-di-GMP decrease even at the expense of growth. We propose that purines can act as a cue for bacteria to shift their lifestyle away from the recalcitrant biofilm state via upstream metabolic control of c-di-GMP signaling.
Collapse
Affiliation(s)
- Corey Kennelly
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Peter Tran
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
4
|
Ontai-Brenning A, Hamchand R, Crawford JM, Goodman AL. Gut microbes modulate (p)ppGpp during a time-restricted feeding regimen. mBio 2023; 14:e0190723. [PMID: 37971266 PMCID: PMC10746209 DOI: 10.1128/mbio.01907-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Mammals do not eat continuously, instead concentrating their feeding to a restricted portion of the day. This behavior presents the mammalian gut microbiota with a fluctuating environment with consequences for host-microbiome interaction, infection risk, immune response, drug metabolism, and other aspects of health. We demonstrate that in mice, gut microbes elevate levels of an intracellular signaling molecule, (p)ppGpp, during the fasting phase of a time-restricted feeding regimen. Disabling this response in a representative human gut commensal species significantly reduces colonization during this host-fasting phase. This response appears to be general across species and conserved across mammalian gut communities, highlighting a pathway that allows healthy gut microbiomes to maintain stability in an unstable environment.
Collapse
Affiliation(s)
- Amy Ontai-Brenning
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Randy Hamchand
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Jason M. Crawford
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Andrew L. Goodman
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Wirth NT, Rohr K, Danchin A, Nikel PI. Recursive genome engineering decodes the evolutionary origin of an essential thymidylate kinase activity in Pseudomonas putida KT2440. mBio 2023; 14:e0108123. [PMID: 37732760 PMCID: PMC10653934 DOI: 10.1128/mbio.01081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Investigating fundamental aspects of metabolism is vital for advancing our understanding of the diverse biochemical capabilities and biotechnological applications of bacteria. The origin of the essential thymidylate kinase function in the model bacterium Pseudomonas putida KT2440, seemingly interrupted due to the presence of a large genomic island that disrupts the cognate gene, eluded a satisfactory explanation thus far. This is a first-case example of an essential metabolic function, likely acquired by horizontal gene transfer, which "landed" in a locus encoding the same activity. As such, foreign DNA encoding an essential dNMPK could immediately adjust to the recipient host-instead of long-term accommodation and adaptation. Understanding how these functions evolve is a major biological question, and the work presented here is a decisive step toward this direction. Furthermore, identifying essential and accessory genes facilitates removing those deemed irrelevant in industrial settings-yielding genome-reduced cell factories with enhanced properties and genetic stability.
Collapse
Affiliation(s)
- Nicolas T. Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Katja Rohr
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Antoine Danchin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| |
Collapse
|
6
|
Herzberg C, Meißner J, Warneke R, Stülke J. The many roles of cyclic di-AMP to control the physiology of Bacillus subtilis. MICROLIFE 2023; 4:uqad043. [PMID: 37954098 PMCID: PMC10636490 DOI: 10.1093/femsml/uqad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
The dinucleotide cyclic di-AMP (c-di-AMP) is synthesized as a second messenger in the Gram-positive model bacterium Bacillus subtilis as well as in many bacteria and archaea. Bacillus subtilis possesses three diadenylate cyclases and two phosphodiesterases that synthesize and degrade the molecule, respectively. Among the second messengers, c-di-AMP is unique since it is essential for B. subtilis on the one hand but toxic upon accumulation on the other. This role as an "essential poison" is related to the function of c-di-AMP in the control of potassium homeostasis. C-di-AMP inhibits the expression and activity of potassium uptake systems by binding to riboswitches and transporters and activates the activity of potassium exporters. In this way, c-di-AMP allows the adjustment of uptake and export systems to achieve a balanced intracellular potassium concentration. C-di-AMP also binds to two dedicated signal transduction proteins, DarA and DarB. Both proteins seem to interact with other proteins in their apo state, i.e. in the absence of c-di-AMP. For DarB, the (p)ppGpp synthetase/hydrolase Rel and the pyruvate carboxylase PycA have been identified as targets. The interactions trigger the synthesis of the alarmone (p)ppGpp and of the acceptor molecule for the citric acid cycle, oxaloacetate, respectively. In the absence of c-di-AMP, many amino acids inhibit the growth of B. subtilis. This feature can be used to identify novel players in amino acid homeostasis. In this review, we discuss the different functions of c-di-AMP and their physiological relevance.
Collapse
Affiliation(s)
- Christina Herzberg
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Janek Meißner
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Robert Warneke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Gruffaz C, Smirnov A. GTPase Era at the heart of ribosome assembly. Front Mol Biosci 2023; 10:1263433. [PMID: 37860580 PMCID: PMC10582724 DOI: 10.3389/fmolb.2023.1263433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Ribosome biogenesis is a key process in all organisms. It relies on coordinated work of multiple proteins and RNAs, including an array of assembly factors. Among them, the GTPase Era stands out as an especially deeply conserved protein, critically required for the assembly of bacterial-type ribosomes from Escherichia coli to humans. In this review, we bring together and critically analyze a wealth of phylogenetic, biochemical, structural, genetic and physiological data about this extensively studied but still insufficiently understood factor. We do so using a comparative and, wherever possible, synthetic approach, by confronting observations from diverse groups of bacteria and eukaryotic organelles (mitochondria and chloroplasts). The emerging consensus posits that Era intervenes relatively early in the small subunit biogenesis and is essential for the proper shaping of the platform which, in its turn, is a prerequisite for efficient translation. The timing of Era action on the ribosome is defined by its interactions with guanosine nucleotides [GTP, GDP, (p)ppGpp], ribosomal RNA, and likely other factors that trigger or delay its GTPase activity. As a critical nexus of the small subunit biogenesis, Era is subject to sophisticated regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels. Failure of these mechanisms or a deficiency in Era function entail dramatic generalized consequences for the protein synthesis and far-reaching, pleiotropic effects on the organism physiology, such as the Perrault syndrome in humans.
Collapse
Affiliation(s)
- Christelle Gruffaz
- UMR7156- Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| | - Alexandre Smirnov
- UMR7156- Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
8
|
Singh S, Anand R. Diverse strategies adopted by nature for regulating purine biosynthesis via fine-tuning of purine metabolic enzymes. Curr Opin Chem Biol 2023; 73:102261. [PMID: 36682088 DOI: 10.1016/j.cbpa.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
Purine nucleotides, generated by de novo synthesis and salvage pathways, are essential for metabolism and act as building blocks of genetic material. To avoid an imbalance in the nucleotide pool, nature has devised several strategies to regulate/tune the catalytic performance of key purine metabolic enzymes. Here, we discuss some recent examples, such as stress-regulating alarmones that bind to select pathway enzymes, huge ensembles like dynamic metabolons and self-assembled filaments that highlight the layered fine-control prevalent in the purine metabolic pathway to fulfill requisite purine demands. Examples of enzymes that turn-on only under allosteric control, are regulated via long-distance communication that facilitates transient conduits have additionally been explored.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; DBT-Wellcome Trust India Alliance Senior Fellow, Mumbai 400076, India.
| |
Collapse
|
9
|
Carrilero L, Urwin L, Ward E, Choudhury NR, Monk IR, Turner CE, Stinear TP, Corrigan RM. Stringent Response-Mediated Control of GTP Homeostasis Is Required for Long-Term Viability of Staphylococcus aureus. Microbiol Spectr 2023; 11:e0044723. [PMID: 36877013 PMCID: PMC10101089 DOI: 10.1128/spectrum.00447-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 03/07/2023] Open
Abstract
Staphylococcus aureus is an opportunistic bacterial pathogen that often results in difficult-to-treat infections. One mechanism used by S. aureus to enhance survival during infection is the stringent response. This is a stress survival pathway that utilizes the nucleotides (p)ppGpp to reallocate bacterial resources, shutting down growth until conditions improve. Small colony variants (SCVs) of S. aureus are frequently associated with chronic infections, and this phenotype has previously been linked to a hyperactive stringent response. Here, we examine the role of (p)ppGpp in the long-term survival of S. aureus under nutrient-restricted conditions. When starved, a (p)ppGpp-null S. aureus mutant strain ((p)ppGpp0) initially had decreased viability. However, after 3 days we observed the presence and dominance of a population of small colonies. Similar to SCVs, these small colony isolates (p0-SCIs) had reduced growth but remained hemolytic and sensitive to gentamicin, phenotypes that have been tied to SCVs previously. Genomic analysis of the p0-SCIs revealed mutations arising within gmk, encoding an enzyme in the GTP synthesis pathway. We show that a (p)ppGpp0 strain has elevated levels of GTP, and that the mutations in the p0-SCIs all lower Gmk enzyme activity and consequently cellular GTP levels. We further show that in the absence of (p)ppGpp, cell viability can be rescued using the GuaA inhibitor decoyinine, which artificially lowers the intracellular GTP concentration. Our study highlights the role of (p)ppGpp in GTP homeostasis and underscores the importance of nucleotide signaling for long-term survival of S. aureus in nutrient-limiting conditions, such as those encountered during infections. IMPORTANCE Staphylococcus aureus is a human pathogen that upon invasion of a host encounters stresses, such as nutritional restriction. The bacteria respond by switching on a signaling cascade controlled by the nucleotides (p)ppGpp. These nucleotides function to shut down bacterial growth until conditions improve. Therefore, (p)ppGpp are important for bacterial survival and have been implicated in promoting chronic infections. Here, we investigate the importance of (p)ppGpp for long-term survival of bacteria in nutrient-limiting conditions similar to those in a human host. We discovered that in the absence of (p)ppGpp, bacterial viability decreases due to dysregulation of GTP homeostasis. However, the (p)ppGpp-null bacteria were able to compensate by introducing mutations in the GTP synthesis pathway that led to a reduction in GTP build-up and a rescue of viability. This study therefore highlights the importance of (p)ppGpp for the regulation of GTP levels and for long-term survival of S. aureus in restricted environments.
Collapse
Affiliation(s)
- Laura Carrilero
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Lucy Urwin
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Ezra Ward
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Naznin R. Choudhury
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Ian R. Monk
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Claire E. Turner
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca M. Corrigan
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
Protein-Ligand Interactions in Scarcity: The Stringent Response from Bacteria to Metazoa, and the Unanswered Questions. Int J Mol Sci 2023; 24:ijms24043999. [PMID: 36835415 PMCID: PMC9965611 DOI: 10.3390/ijms24043999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The stringent response, originally identified in Escherichia coli as a signal that leads to reprogramming of gene expression under starvation or nutrient deprivation, is now recognized as ubiquitous in all bacteria, and also as part of a broader survival strategy in diverse, other stress conditions. Much of our insight into this phenomenon derives from the role of hyperphosphorylated guanosine derivatives (pppGpp, ppGpp, pGpp; guanosine penta-, tetra- and tri-phosphate, respectively) that are synthesized on starvation cues and act as messengers or alarmones. These molecules, collectively referred to here as (p)ppGpp, orchestrate a complex network of biochemical steps that eventually lead to the repression of stable RNA synthesis, growth, and cell division, while promoting amino acid biosynthesis, survival, persistence, and virulence. In this analytical review, we summarize the mechanism of the major signaling pathways in the stringent response, consisting of the synthesis of the (p)ppGpp, their interaction with RNA polymerase, and diverse factors of macromolecular biosynthesis, leading to differential inhibition and activation of specific promoters. We also briefly touch upon the recently reported stringent-like response in a few eukaryotes, which is a very disparate mechanism involving MESH1 (Metazoan SpoT Homolog 1), a cytosolic NADPH phosphatase. Lastly, using ppGpp as an example, we speculate on possible pathways of simultaneous evolution of alarmones and their multiple targets.
Collapse
|
11
|
|
12
|
Mehrez M, Romand S, Field B. New perspectives on the molecular mechanisms of stress signalling by the nucleotide guanosine tetraphosphate (ppGpp), an emerging regulator of photosynthesis in plants and algae. THE NEW PHYTOLOGIST 2023; 237:1086-1099. [PMID: 36349398 PMCID: PMC10107265 DOI: 10.1111/nph.18604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The nucleotides guanosine tetraphosphate and guanosine pentaphosphate (together (p)ppGpp) are found in a wide range of prokaryotic and eukaryotic organisms where they are associated with stress signalling. In this review, we will discuss recent research highlighting the role of (p)ppGpp signalling as a conserved regulator of photosynthetic activity in the chloroplasts of plants and algae, and the latest discoveries that open up new perspectives on the emerging roles of (p)ppGpp in acclimation to environmental stress. We explore how rapid advances in the study of (p)ppGpp signalling in prokaryotes are now revealing large gaps in our understanding of the molecular mechanisms of signalling by (p)ppGpp and related nucleotides in plants and algae. Filling in these gaps is likely to lead to the discovery of conserved as well as new plant- and algal-specific (p)ppGpp signalling mechanisms that will offer new insights into the taming of the chloroplast and the regulation of stress tolerance.
Collapse
Affiliation(s)
- Marwa Mehrez
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar2092TunisTunisia
| | - Shanna Romand
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| | - Ben Field
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| |
Collapse
|
13
|
Yang J, Barra JT, Fung DK, Wang JD. Bacillus subtilis produces (p)ppGpp in response to the bacteriostatic antibiotic chloramphenicol to prevent its potential bactericidal effect. MLIFE 2022; 1:101-113. [PMID: 38817674 PMCID: PMC10989873 DOI: 10.1002/mlf2.12031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 06/01/2024]
Abstract
Antibiotics combat bacteria through their bacteriostatic (by growth inhibition) or bactericidal (by killing bacteria) action. Mechanistically, it has been proposed that bactericidal antibiotics trigger cellular damage, while bacteriostatic antibiotics suppress cellular metabolism. Here, we demonstrate how the difference between bacteriostatic and bactericidal activities of the antibiotic chloramphenicol can be attributed to an antibiotic-induced bacterial protective response: the stringent response. Chloramphenicol targets the ribosome to inhibit the growth of the Gram-positive bacterium Bacillus subtilis. Intriguingly, we found that chloramphenicol becomes bactericidal in B. subtilis mutants unable to produce (p)ppGpp. We observed a similar (p)ppGpp-dependent bactericidal effect of chloramphenicol in the Gram-positive pathogen Enterococcus faecalis. In B. subtilis, chloramphenicol treatment induces (p)ppGpp accumulation through the action of the (p)ppGpp synthetase RelA. (p)ppGpp subsequently depletes the intracellular concentration of GTP and antagonizes GTP action. This GTP regulation is critical for preventing chloramphenicol from killing B. subtilis, as bypassing (p)ppGpp-dependent GTP regulation potentiates chloramphenicol killing, while reducing GTP synthesis increases survival. Finally, chloramphenicol treatment protects cells from the classical bactericidal antibiotic vancomycin, reminiscent of the clinical phenomenon of antibiotic antagonism. Taken together, our findings suggest a role of (p)ppGpp in the control of the bacteriostatic and bactericidal activity of antibiotics in Gram-positive bacteria, which can be exploited to potentiate the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Jin Yang
- Department of BacteriologyUniversity of WisconsinMadisonUSA
| | | | - Danny K. Fung
- Department of BacteriologyUniversity of WisconsinMadisonUSA
| | - Jue D. Wang
- Department of BacteriologyUniversity of WisconsinMadisonUSA
| |
Collapse
|
14
|
Abstract
With the overmining of actinomycetes for compounds acting against Gram-negative pathogens, recent efforts to discover novel antibiotics have been focused on other groups of bacteria. Teixobactin, the first antibiotic without detectable resistance that binds lipid II, comes from an uncultured Eleftheria terra, a betaproteobacterium; odilorhabdins, from Xenorhabdus, are broad-spectrum inhibitors of protein synthesis, and darobactins from Photorhabdus target BamA, the essential chaperone of the outer membrane of Gram-negative bacteria. Xenorhabdus and Photorhabdus are symbionts of the nematode gut microbiome and attractive producers of secondary metabolites. Only small portions of their biosynthetic gene clusters (BGC) are expressed in vitro. To access their silent operons, we first separated extracts from a small library of isolates into fractions, resulting in 200-fold concentrated material, and then screened them for antimicrobial activity. This resulted in a hit with selective activity against Escherichia coli, which we identified as a novel natural product antibiotic, 3′-amino 3′-deoxyguanosine (ADG). Mutants resistant to ADG mapped to gsk and gmk, kinases of guanosine. Biochemical analysis shows that ADG is a prodrug that is converted into an active ADG triphosphate (ADG-TP), a mimic of GTP. ADG incorporates into a growing RNA chain, interrupting transcription, and inhibits cell division, apparently by interfering with the GTPase activity of FtsZ. Gsk of the purine salvage pathway, which is the first kinase in the sequential phosphorylation of ADG, is restricted to E. coli and closely related species, explaining the selectivity of the compound. There are probably numerous targets of ADG-TP among GTP-dependent proteins. The discovery of ADG expands our knowledge of prodrugs, which are rare among natural compounds.
Collapse
|
15
|
Fernández-Justel D, Marcos-Alcalde Í, Abascal F, Vidaña N, Gómez-Puertas P, Jiménez A, Revuelta JL, Buey RM. Diversity of mechanisms to control bacterial GTP homeostasis by the mutually exclusive binding of adenine and guanine nucleotides to IMP dehydrogenase. Protein Sci 2022; 31:e4314. [PMID: 35481629 PMCID: PMC9462843 DOI: 10.1002/pro.4314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate‐limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine‐tuned by post‐translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide‐controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis. PDB Code(s): 7PJI and 7PMZ;
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Nerea Vidaña
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - José L Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
16
|
Inhibition of SRP-dependent protein secretion by the bacterial alarmone (p)ppGpp. Nat Commun 2022; 13:1069. [PMID: 35217658 PMCID: PMC8881573 DOI: 10.1038/s41467-022-28675-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
The stringent response enables bacteria to respond to nutrient limitation and other stress conditions through production of the nucleotide-based second messengers ppGpp and pppGpp, collectively known as (p)ppGpp. Here, we report that (p)ppGpp inhibits the signal recognition particle (SRP)-dependent protein targeting pathway, which is essential for membrane protein biogenesis and protein secretion. More specifically, (p)ppGpp binds to the SRP GTPases Ffh and FtsY, and inhibits the formation of the SRP receptor-targeting complex, which is central for the coordinated binding of the translating ribosome to the SecYEG translocon. Cryo-EM analysis of SRP bound to translating ribosomes suggests that (p)ppGpp may induce a distinct conformational stabilization of the NG domain of Ffh and FtsY in Bacillus subtilis but not in E. coli. Bacterial responses to nutrient limitation and other stress conditions are often modulated by the nucleotide-based second messenger (p)ppGpp. Here, the authors show that (p)ppGpp inhibits the SRP membrane-protein insertion and secretion pathway by binding to GTPases Ffh and FtsY.
Collapse
|
17
|
Impact of the Stringent Stress Response on the Expression of Methicillin Resistance in Staphylococcaceae Strains Carrying mecA, mecA1 and mecC. Antibiotics (Basel) 2022; 11:antibiotics11020255. [PMID: 35203858 PMCID: PMC8868139 DOI: 10.3390/antibiotics11020255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
The acquisition of the resistance determinant mecA by Staphylococcus aureus is of major clinical importance, since it confers a resistant phenotype to virtually the entire large family of structurally diverse β-lactam antibiotics. While the common resistance determinant mecA is essential, the optimal expression of the resistance phenotype also requires additional factors. Previous studies showed that the great majority of clinical isolates of methicillin-resistant S. aureus (MRSA) have a heterogeneous resistant phenotype, and we observed that strains carrying methicillin genetic determinants other than mecA also produce similar heterogeneous phenotypes. All these strains were able to express high and homogeneous levels of oxacillin resistance when sub-inhibitory concentrations of mupirocin, an effector of the stringent stress response, were added to growth media. Our studies show that the gene gmk, involved in guanine metabolism, was one of the first genes to exhibit mutations in homoresistant (H*R) derivatives obtained through serial passages (with increasing concentrations of oxacillin) of the prototype mecC-carrying MRSA strain LGA251. All these observations led us to propose that a common molecular mechanism for the establishment of high and homogeneous oxacillin resistance must be present among isolates carrying different methicillin resistance determinants. In this work, we tested this hypothesis using whole-genome sequencing (WGS) to compare isogenic populations differing only in their degrees of oxacillin resistance and carrying various methicillin genetic determinants
Collapse
|
18
|
Anderson BW, Schumacher MA, Yang J, Turdiev A, Turdiev H, Schroeder J, He Q, Lee V, Brennan R, Wang J. The nucleotide messenger (p)ppGpp is an anti-inducer of the purine synthesis transcription regulator PurR in Bacillus. Nucleic Acids Res 2022; 50:847-866. [PMID: 34967415 PMCID: PMC8789054 DOI: 10.1093/nar/gkab1281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The nucleotide messenger (p)ppGpp allows bacteria to adapt to fluctuating environments by reprogramming the transcriptome. Despite its well-recognized role in gene regulation, (p)ppGpp is only known to directly affect transcription in Proteobacteria by binding to the RNA polymerase. Here, we reveal a different mechanism of gene regulation by (p)ppGpp in Firmicutes: (p)ppGpp directly binds to the transcription factor PurR to downregulate purine biosynthesis gene expression upon amino acid starvation. We first identified PurR as a receptor of (p)ppGpp in Bacillus anthracis. A co-structure with Bacillus subtilis PurR reveals that (p)ppGpp binds to a PurR pocket reminiscent of the active site of phosphoribosyltransferase enzymes that has been repurposed to serve a purely regulatory role, where the effectors (p)ppGpp and PRPP compete to allosterically control transcription. PRPP inhibits PurR DNA binding to induce transcription of purine synthesis genes, whereas (p)ppGpp antagonizes PRPP to enhance PurR DNA binding and repress transcription. A (p)ppGpp-refractory purR mutant in B. subtilis fails to downregulate purine synthesis genes upon amino acid starvation. Our work establishes the precedent of (p)ppGpp as an effector of a classical transcription repressor and reveals the key function of (p)ppGpp in regulating nucleotide synthesis through gene regulation, from soil bacteria to pathogens.
Collapse
Affiliation(s)
- Brent W Anderson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Asan Turdiev
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Husan Turdiev
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Jeremy W Schroeder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qixiang He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vincent T Lee
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
Travis BA, Schumacher MA. Diverse molecular mechanisms of transcription regulation by the bacterial alarmone ppGpp. Mol Microbiol 2021; 117:252-260. [PMID: 34894005 PMCID: PMC9304144 DOI: 10.1111/mmi.14860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022]
Abstract
Bacteria must rapidly detect and respond to stressful environmental conditions. Guanosine tetraphosphate (ppGpp) is a universal stress signal that, in most bacteria, drives the reprograming of transcription at a global level. However, recent studies have revealed that the molecular mechanisms utilized by ppGpp to rewire bacterial transcriptomes are unexpectedly diverse. In Proteobacteria, ppGpp regulates the expression of hundreds of genes by directly binding to two sites on RNA polymerase (RNAP), one in combination with the transcription factor, DksA. Conversely, ppGpp indirectly regulates transcription in Firmicutes by controlling GTP levels. In this case, ppGpp inhibits enzymes that salvage and synthesize GTP, which indirectly represses transcription from rRNA and other promoters that use GTP for initiation. More recently, two different mechanisms of transcription regulation involving the direct binding of transcription factors by ppGpp have been described. First, in Francisella tularensis, ppGpp was shown to modulate the formation of a tripartite transcription factor complex that binds RNAP and activates virulence genes. Second, in Firmicutes, ppGpp allosterically regulates the transcription repressor, PurR, which controls purine biosynthesis genes. The diversity in bacterial ppGpp signaling revealed in these studies suggests the likelihood that additional paradigms in ppGpp-mediated transcription regulation await discovery.
Collapse
Affiliation(s)
- Brady A Travis
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
20
|
Anderson BW, Fung DK, Wang JD. Regulatory Themes and Variations by the Stress-Signaling Nucleotide Alarmones (p)ppGpp in Bacteria. Annu Rev Genet 2021; 55:115-133. [PMID: 34416118 DOI: 10.1146/annurev-genet-021821-025827] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial stress-signaling alarmones are important components of a protective network against diverse stresses such as nutrient starvation and antibiotic assault. pppGpp and ppGpp, collectively (p)ppGpp, have well-documented regulatory roles in gene expression and protein translation. Recent work has highlighted another key function of (p)ppGpp: inducing rapid and coordinated changes in cellular metabolism by regulating enzymatic activities, especially those involved in purine nucleotide synthesis. Failure of metabolic regulation by (p)ppGpp results in the loss of coordination between metabolic and macromolecular processes, leading to cellular toxicity. In this review, we document how (p)ppGpp and newly characterized nucleotides pGpp and (p)ppApp directly regulate these enzymatic targets for metabolic remodeling. We examine targets' common determinants for alarmone interaction as well as their evolutionary diversification. We highlight classical and emerging themes in nucleotide signaling, including oligomerization and allostery along with metabolic interconversion and crosstalk, illustrating how they allow optimized bacterial adaptation to their environmental niches.
Collapse
Affiliation(s)
- Brent W Anderson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , ,
| | - Danny K Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , ,
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , ,
| |
Collapse
|
21
|
Chaiden C, Jaresitthikunchai J, Phaonakrop N, Roytrakul S, Kerdsin A, Nuanualsuwan S. Peptidomics Analysis of Virulent Peptides Involved in Streptococcus suis Pathogenesis. Animals (Basel) 2021; 11:ani11092480. [PMID: 34573446 PMCID: PMC8468194 DOI: 10.3390/ani11092480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The virulence factors and pathogenesis of S. suis are inconclusive. Here, the associated proteins, or their derived peptides, involved in the survival of S. suis when simulated with a blood environment are demonstrated. The results reveal the derived peptides or proteins of S. suis potentially serving as the putative virulence factors. Further studies based on our findings could be used to fulfill the knowledge gap of S. suis pathogenesis. Abstract Streptococcus suis (S. suis) is a zoonotic pathogen causing severe streptococcal disease worldwide. S. suis infections in pigs and humans are frequently associated with the virulent S. suis serotype 2 (SS2). Though various virulence factors of S. suis have been proposed, most of them were not essentially accounted for in the experimental infections. In the present study, we compared the peptidomes of highly virulent SS2 and SS14 in humans, the swine causative serotypes SS7 and SS9, and the rarely reported serotypes SS25 and SS27, and they were cultured in a specified culture medium containing whole blood to simulate their natural host environment. LC-MS/MS could identify 22 unique peptides expressed in the six S. suis serotypes. Under the host-simulated environment, peptides from the ABC-type phosphate transport system (SSU05_1106) and 30S ribosomal protein S2 (rpsB) were detected in the peptidome of virulent SS2 and SS14. Therefore, we suggest that these two proteins or their derived peptides might be involved in the survival of S. suis when simulated with a blood environment.
Collapse
Affiliation(s)
- Chadaporn Chaiden
- Department of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani 12120, Thailand; (J.J.); (N.P.)
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani 12120, Thailand; (J.J.); (N.P.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani 12120, Thailand; (J.J.); (N.P.)
- Correspondence: (S.R.); (S.N.)
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand;
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (S.R.); (S.N.)
| |
Collapse
|
22
|
The alarmone (p)ppGpp regulates primer extension by bacterial primase. J Mol Biol 2021; 433:167189. [PMID: 34389317 DOI: 10.1016/j.jmb.2021.167189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022]
Abstract
Primase is an essential component of the DNA replication machinery, responsible for synthesizing RNA primers that initiate leading and lagging strand DNA synthesis. Bacterial primase activity can be regulated by the starvation-inducible nucleotide (p)ppGpp. This regulation contributes to a timely inhibition of DNA replication upon amino acid starvation in the Gram-positive bacterium Bacillus subtilis. Here, we characterize the effect of (p)ppGpp on B. subtilis DnaG primase activity in vitro. Using a single-nucleotide resolution primase assay, we dissected the effect of ppGpp on the initiation, extension, and fidelity of B. subtilis primase. We found that ppGpp has a mild effect on initiation, but strongly inhibits primer extension and reduces primase processivity, promoting termination of primer extension. High (p)ppGpp concentration, together with low GTP concentration, additively inhibit primase activity. This explains the strong inhibition of replication elongation during starvation which induces high levels of (p)ppGpp and depletion of GTP in B. subtilis. Finally, we found that lowering GTP concentration results in mismatches in primer base pairing that allow priming readthrough, and that ppGpp reduces readthrough to protect priming fidelity. These results highlight the importance of (p)ppGpp in protecting replisome integrity and genome stability in fluctuating nucleotide concentrations upon onset of environmental stress.
Collapse
|
23
|
Bange G, Brodersen DE, Liuzzi A, Steinchen W. Two P or Not Two P: Understanding Regulation by the Bacterial Second Messengers (p)ppGpp. Annu Rev Microbiol 2021; 75:383-406. [PMID: 34343020 DOI: 10.1146/annurev-micro-042621-122343] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Under stressful growth conditions and nutrient starvation, bacteria adapt by synthesizing signaling molecules that profoundly reprogram cellular physiology. At the onset of this process, called the stringent response, members of the RelA/SpoT homolog (RSH) protein superfamily are activated by specific stress stimuli to produce several hyperphosphorylated forms of guanine nucleotides, commonly referred to as (p)ppGpp. Some bifunctional RSH enzymes also harbor domains that allow for degradation of (p)ppGpp by hydrolysis. (p)ppGpp synthesis or hydrolysis may further be executed by single-domain alarmone synthetases or hydrolases, respectively. The downstream effects of (p)ppGpp rely mainly on direct interaction with specific intracellular effectors, which are widely used throughout most cellular processes. The growing number of identified (p)ppGpp targets allows us to deduce both common features of and differences between gram-negative and gram-positive bacteria. In this review, we give an overview of (p)ppGpp metabolism with a focus on the functional and structural aspects of the enzymes involved and discuss recent findings on alarmone-regulated cellular effectors. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gert Bange
- SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany; .,Department of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Aarhus University, 8000 Aarhus C, Denmark
| | - Anastasia Liuzzi
- Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Aarhus University, 8000 Aarhus C, Denmark
| | - Wieland Steinchen
- SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany; .,Department of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
24
|
Bange G, Bedrunka P. Physiology of guanosine-based second messenger signaling in Bacillus subtilis. Biol Chem 2021; 401:1307-1322. [PMID: 32881708 DOI: 10.1515/hsz-2020-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022]
Abstract
The guanosine-based second messengers (p)ppGpp and c-di-GMP are key players of the physiological regulation of the Gram-positive model organism Bacillus subtilis. Their regulatory spectrum ranges from key metabolic processes over motility to biofilm formation. Here we review our mechanistic knowledge on their synthesis and degradation in response to environmental and stress signals as well as what is known on their cellular effectors and targets. Moreover, we discuss open questions and our gaps in knowledge on these two important second messengers.
Collapse
Affiliation(s)
- Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, Marburg, D-35043,Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, Marburg, D-35043,Germany
| |
Collapse
|
25
|
Chau NYE, Ahmad S, Whitney JC, Coombes BK. Emerging and divergent roles of pyrophosphorylated nucleotides in bacterial physiology and pathogenesis. PLoS Pathog 2021; 17:e1009532. [PMID: 33984072 PMCID: PMC8118318 DOI: 10.1371/journal.ppat.1009532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria inhabit diverse environmental niches and consequently must modulate their metabolism to adapt to stress. The nucleotide second messengers guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) (collectively referred to as (p)ppGpp) are essential for survival during nutrient starvation. (p)ppGpp is synthesized by the RelA-SpoT homologue (RSH) protein family and coordinates the control of cellular metabolism through its combined effect on over 50 proteins. While the role of (p)ppGpp has largely been associated with nutrient limitation, recent studies have shown that (p)ppGpp and related nucleotides have a previously underappreciated effect on different aspects of bacterial physiology, such as maintaining cellular homeostasis and regulating bacterial interactions with a host, other bacteria, or phages. (p)ppGpp produced by pathogenic bacteria facilitates the evasion of host defenses such as reactive nitrogen intermediates, acidic pH, and the complement system. Additionally, (p)ppGpp and pyrophosphorylated derivatives of canonical adenosine nucleotides called (p)ppApp are emerging as effectors of bacterial toxin proteins. Here, we review the RSH protein family with a focus on its unconventional roles during host infection and bacterial competition.
Collapse
Affiliation(s)
- N. Y Elizabeth Chau
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Shehryar Ahmad
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - John C. Whitney
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
26
|
Akanuma G. Diverse relationships between metal ions and the ribosome. Biosci Biotechnol Biochem 2021; 85:1582-1593. [PMID: 33877305 DOI: 10.1093/bbb/zbab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/30/2021] [Indexed: 11/12/2022]
Abstract
The ribosome requires metal ions for structural stability and translational activity. These metal ions are important for stabilizing the secondary structure of ribosomal RNA, binding of ribosomal proteins to the ribosome, and for interaction of ribosomal subunits. In this review, various relationships between ribosomes and metal ions, especially Mg2+ and Zn2+, are presented. Mg2+ regulates gene expression by modulating the translational stability and synthesis of ribosomes, which in turn contribute to the cellular homeostasis of Mg2+. In addition, Mg2+ can partly complement the function of ribosomal proteins. Conversely, a reduction in the cellular concentration of Zn2+ induces replacement of ribosomal proteins, which mobilizes free-Zn2+ in the cell and represses translation activity. Evolutional relationships between these metal ions and the ribosome are also discussed.
Collapse
Affiliation(s)
- Genki Akanuma
- Department of Life Science, Graduate School of Science, Gakushuin University, Toshima-ku, Tokyo, Japan.,Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| |
Collapse
|
27
|
Updegrove TB, Harke J, Anantharaman V, Yang J, Gopalan N, Wu D, Piszczek G, Stevenson DM, Amador-Noguez D, Wang JD, Aravind L, Ramamurthi KS. Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. eLife 2021; 10:65845. [PMID: 33704064 PMCID: PMC7952092 DOI: 10.7554/elife.65845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrolysis of nucleoside triphosphates releases similar amounts of energy. However, ATP hydrolysis is typically used for energy-intensive reactions, whereas GTP hydrolysis typically functions as a switch. SpoIVA is a bacterial cytoskeletal protein that hydrolyzes ATP to polymerize irreversibly during Bacillus subtilis sporulation. SpoIVA evolved from a TRAFAC class of P-loop GTPases, but the evolutionary pressure that drove this change in nucleotide specificity is unclear. We therefore reengineered the nucleotide-binding pocket of SpoIVA to mimic its ancestral GTPase activity. SpoIVAGTPase functioned properly as a GTPase but failed to polymerize because it did not form an NDP-bound intermediate that we report is required for polymerization. Further, incubation of SpoIVAGTPase with limiting ATP did not promote efficient polymerization. This approach revealed that the nucleotide base, in addition to the energy released from hydrolysis, can be critical in specific biological functions. We also present data suggesting that increased levels of ATP relative to GTP at the end of sporulation was the evolutionary pressure that drove the change in nucleotide preference in SpoIVA.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Jailynn Harke
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | - Nikhil Gopalan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
28
|
Kurkela J, Fredman J, Salminen TA, Tyystjärvi T. Revealing secrets of the enigmatic omega subunit of bacterial RNA polymerase. Mol Microbiol 2021; 115:1-11. [PMID: 32920946 DOI: 10.1111/mmi.14603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
The conserved omega (ω) subunit of RNA polymerase (RNAP) is the only nonessential subunit of bacterial RNAP core. The small ω subunit (7 kDa-11.5 kDa) contains three conserved α helices, and helices α2 and α3 contain five fully conserved amino acids of ω. Four conserved amino acids stabilize the correct folding of the ω subunit and one is located in the vicinity of the β' subunit of RNAP. Otherwise ω shows high variation between bacterial taxa, and although the main interaction partner of ω is always β', many interactions are taxon-specific. ω-less strains show pleiotropic phenotypes, and based on in vivo and in vitro results, a few roles for the ω subunits have been described. Interactions of the ω subunit with the β' subunit are important for the RNAP core assembly and integrity. In addition, the ω subunit plays a role in promoter selection, as ω-less RNAP cores recruit fewer primary σ factors and more alternative σ factors than intact RNAP cores in many species. Furthermore, the promoter selection of an ω-less RNAP holoenzyme bearing the primary σ factor seems to differ from that of an intact RNAP holoenzyme.
Collapse
Affiliation(s)
- Juha Kurkela
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Julia Fredman
- Faculty of Science and Engineering/Biochemistry/Structural Bioinformatics Laboratory, Åbo Akademi University, Turku, Finland
| | - Tiina A Salminen
- Faculty of Science and Engineering/Biochemistry/Structural Bioinformatics Laboratory, Åbo Akademi University, Turku, Finland
| | - Taina Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
29
|
Ito D, Kawamura H, Oikawa A, Ihara Y, Shibata T, Nakamura N, Asano T, Kawabata SI, Suzuki T, Masuda S. ppGpp functions as an alarmone in metazoa. Commun Biol 2020; 3:671. [PMID: 33188280 PMCID: PMC7666150 DOI: 10.1038/s42003-020-01368-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/09/2020] [Indexed: 01/20/2023] Open
Abstract
Guanosine 3′,5′-bis(pyrophosphate) (ppGpp) functions as a second messenger in bacteria to adjust their physiology in response to environmental changes. In recent years, the ppGpp-specific hydrolase, metazoan SpoT homolog-1 (Mesh1), was shown to have important roles for growth under nutrient deficiency in Drosophila melanogaster. Curiously, however, ppGpp has never been detected in animal cells, and therefore the physiological relevance of this molecule, if any, in metazoans has not been established. Here, we report the detection of ppGpp in Drosophila and human cells and demonstrate that ppGpp accumulation induces metabolic changes, cell death, and eventually lethality in Drosophila. Our results provide the evidence of the existence and function of the ppGpp-dependent stringent response in animals. Ito et al. succeed in detecting guanosine tetraphosphate (ppGpp) in measurable levels in metazoan, specifically in Drosophila. They further demonstrate that the ppGpp-specific hydrolase, metazoan SpoT homolog-1 (Mesh1), is necessary, at least in certain conditions, to maintain low ppGpp levels, hence providing insights into the role of Mesh1 as a ppGpp hydrolase in vivo.
Collapse
Affiliation(s)
- Doshun Ito
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hinata Kawamura
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | - Yuta Ihara
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshio Shibata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | | | - Takashi Suzuki
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
30
|
Kushwaha GS, Patra A, Bhavesh NS. Structural Analysis of (p)ppGpp Reveals Its Versatile Binding Pattern for Diverse Types of Target Proteins. Front Microbiol 2020; 11:575041. [PMID: 33224117 PMCID: PMC7674647 DOI: 10.3389/fmicb.2020.575041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 11/25/2022] Open
Abstract
(p)ppGpp, highly phosphorylated guanosine, are global regulatory nucleotides that modulate several biochemical events in bacterial physiology ranging from core central dogma to various metabolic pathways. Conventionally, (p)ppGpp collectively refers to two nucleotides, ppGpp, and pppGpp in the literature. Initially, (p)ppGpp has been discovered as a transcription regulatory molecule as it binds to RNA polymerase and regulates transcriptional gene regulation. During the past decade, several other target proteins of (p)ppGpp have been discovered and as of now, more than 30 proteins have been reported to be regulated by the binding of these two signaling nucleotides. The regulation of diverse biochemical activities by (p)ppGpp requires fine-tuned molecular interactions with various classes of proteins so that it can moderate varied functions. Here we report a structural dynamics of (p)ppGpp in the unbound state using well-defined computational tools and its interactions with target proteins to understand the differential regulation by (p)ppGpp at the molecular level. We carried out replica exchange molecular dynamics simulation studies to enhance sampling of conformations during (p)ppGpp simulation. The detailed comparative analysis of torsion angle conformation of ribose sugar of unbound (p)ppGpp and bound states of (p)ppGpp was carried out. The structural dynamics shows that two linear phosphate chains provide plasticity to (p)ppGpp nucleotides for the binding to diverse proteins. Moreover, the intermolecular interactions between (p)ppGpp and target proteins were characterized through various physicochemical parameters including, hydrogen bonds, van der Waal’s interactions, aromatic stacking, and side chains of interacting residues of proteins. Surprisingly, we observed that interactions of (p)ppGpp to target protein have a consensus binding pattern for a particular functional class of enzymes. For example, the binding of (p)ppGpp to RNA polymerase is significantly different from the binding of (p)ppGpp to the proteins involved in the ribosome biogenesis pathway. Whereas, (p)ppGpp binding to enzymes involved in nucleotide metabolism facilitates the functional regulation through oligomerization. Analysis of these datasets revealed that guanine base-specific contacts are key determinants to discriminate functional class of protein. Altogether, our studies provide significant information to understand the differential interaction pattern of (p)ppGpp to its target and this information may be useful to design antibacterial compounds based on (p)ppGpp analogs.
Collapse
Affiliation(s)
- Gajraj Singh Kushwaha
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,KIIT Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) (Deemed to be University), Bhubaneswar, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
31
|
Irving SE, Choudhury NR, Corrigan RM. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol 2020; 19:256-271. [PMID: 33149273 DOI: 10.1038/s41579-020-00470-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
The stringent response is a stress signalling system mediated by the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) in response to nutrient deprivation. Recent research highlights the complexity and broad range of functions that these alarmones control. This Review provides an update on our current understanding of the enzymes involved in ppGpp, pppGpp and guanosine 5'-monophosphate 3'-diphosphate (pGpp) (collectively (pp)pGpp) turnover, including those shown to produce pGpp and its analogue (pp)pApp. We describe the well-known interactions with RNA polymerase as well as a broader range of cellular target pathways controlled by (pp)pGpp, including DNA replication, transcription, nucleotide synthesis, ribosome biogenesis and function, as well as lipid metabolism. Finally, we review the role of ppGpp and pppGpp in bacterial pathogenesis, providing examples of how these nucleotides are involved in regulating many aspects of virulence and chronic infection.
Collapse
Affiliation(s)
- Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Naznin R Choudhury
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
32
|
Yang J, Anderson BW, Turdiev A, Turdiev H, Stevenson DM, Amador-Noguez D, Lee VT, Wang JD. The nucleotide pGpp acts as a third alarmone in Bacillus, with functions distinct from those of (p) ppGpp. Nat Commun 2020; 11:5388. [PMID: 33097692 PMCID: PMC7584652 DOI: 10.1038/s41467-020-19166-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023] Open
Abstract
The alarmone nucleotides guanosine tetraphosphate and pentaphosphate, commonly referred to as (p)ppGpp, regulate bacterial responses to nutritional and other stresses. There is evidence for potential existence of a third alarmone, guanosine-5′-monophosphate-3′-diphosphate (pGpp), with less-clear functions. Here, we demonstrate the presence of pGpp in bacterial cells, and perform a comprehensive screening to identify proteins that interact respectively with pGpp, ppGpp and pppGpp in Bacillus species. Both ppGpp and pppGpp interact with proteins involved in inhibition of purine nucleotide biosynthesis and with GTPases that control ribosome assembly or activity. By contrast, pGpp interacts with purine biosynthesis proteins but not with the GTPases. In addition, we show that hydrolase NahA (also known as YvcI) efficiently produces pGpp by hydrolyzing (p)ppGpp, thus modulating alarmone composition and function. Deletion of nahA leads to reduction of pGpp levels, increased (p)ppGpp levels, slower growth recovery from nutrient downshift, and loss of competitive fitness. Our results support the existence and physiological relevance of pGpp as a third alarmone, with functions that can be distinct from those of (p)ppGpp. Nucleotides pppGpp and ppGpp regulate bacterial responses to nutritional and other stresses, while the potential roles of the related pGpp are unclear. Here, Yang et al. systematically identify proteins interacting with these nucleotides in Bacillus, and show that pGpp has roles distinct from those of (p)ppGpp.
Collapse
Affiliation(s)
- Jin Yang
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Brent W Anderson
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Asan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Husan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
33
|
Petchiappan A, Gottesman S. How Does the Alarmone ppGpp Change Bacterial Cell Metabolism? From Genome-wide Approaches to Structure to Physiology. Mol Cell 2020; 80:1-2. [PMID: 33007252 DOI: 10.1016/j.molcel.2020.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Wang et al. (2020) show that binding of the second messenger ppGpp to inosine-guanosine kinase (Gsk) in E. coli modulates the levels of the key metabolite phosphoribosyl pyrophosphate (pRpp), decreasing purine synthesis to favor amino acid synthesis during stress adaptation.
Collapse
Affiliation(s)
- Anushya Petchiappan
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Steinchen W, Zegarra V, Bange G. (p)ppGpp: Magic Modulators of Bacterial Physiology and Metabolism. Front Microbiol 2020; 11:2072. [PMID: 33013756 PMCID: PMC7504894 DOI: 10.3389/fmicb.2020.02072] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/06/2020] [Indexed: 01/21/2023] Open
Abstract
When bacteria experience growth-limiting environmental conditions, the synthesis of the hyperphosphorylated guanosine derivatives (p)ppGpp is induced by enzymes of the RelA/SpoT homology (RSH)-type protein family. High levels of (p)ppGpp induce a process called "stringent response", a major cellular reprogramming during which ribosomal RNA (rRNA) and transfer RNA (tRNA) synthesis is downregulated, stress-related genes upregulated, messenger RNA (mRNA) stability and translation altered, and allocation of scarce resources optimized. The (p)ppGpp-mediated stringent response is thus often regarded as an all-or-nothing paradigm induced by stress. Over the past decades, several binding partners of (p)ppGpp have been uncovered displaying dissociation constants from below one micromolar to more than one millimolar and thus coincide with the accepted intracellular concentrations of (p)ppGpp under non-stringent (basal levels) and stringent conditions. This suggests that the ability of (p)ppGpp to modulate target proteins or processes would be better characterized as an unceasing continuum over a concentration range instead of being an abrupt switch of biochemical processes under specific conditions. We analyzed the reported binding affinities of (p)ppGpp targets and depicted a scheme for prioritization of modulation by (p)ppGpp. In this ranking, many enzymes of e.g., nucleotide metabolism are among the first targets to be affected by rising (p)ppGpp while more fundamental processes such as DNA replication are among the last. This preference should be part of (p)ppGpp's "magic" in the adaptation of microorganisms while still maintaining their potential for outgrowth once a stressful condition is overcome.
Collapse
Affiliation(s)
- Wieland Steinchen
- Department of Chemistry, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | | | - Gert Bange
- Department of Chemistry, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
35
|
Fung DK, Yang J, Stevenson DM, Amador-Noguez D, Wang JD. Small Alarmone Synthetase SasA Expression Leads to Concomitant Accumulation of pGpp, ppApp, and AppppA in Bacillus subtilis. Front Microbiol 2020; 11:2083. [PMID: 32983059 PMCID: PMC7492591 DOI: 10.3389/fmicb.2020.02083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
(p)ppGpp is a highly conserved bacterial alarmone which regulates many aspects of cellular physiology and metabolism. In Gram-positive bacteria such as B. subtilis, cellular (p)ppGpp level is determined by the bifunctional (p)ppGpp synthetase/hydrolase RelA and two small alarmone synthetases (SASs) YjbM (SasB) and YwaC (SasA). However, it is less clear whether these enzymes are also involved in regulation of alarmones outside of (p)ppGpp. Here we developed an improved LC-MS-based method to detect a broad spectrum of metabolites and alarmones from bacterial cultures with high efficiency. By characterizing the metabolomic signatures of SasA expressing B. subtilis, we identified strong accumulation of the (p)ppGpp analog pGpp, as well as accumulation of ppApp and AppppA. The induced accumulation of these alarmones is abolished in the catalytically dead sasA mutant, suggesting that it is a consequence of SasA synthetase activity. In addition, we also identified depletion of specific purine nucleotides and their precursors including IMP precursors FGAR, SAICAR and AICAR (ZMP), as well as GTP and GDP. Furthermore, we also revealed depletion of multiple pyrimidine precursors such as orotate and orotidine 5′-phosphate. Taken together, our work shows that induction of a single (p)ppGpp synthetase can cause concomitant accumulation and potential regulatory interplay of multiple alarmones.
Collapse
Affiliation(s)
- Danny K Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
36
|
Quantification of guanosine triphosphate and tetraphosphate in plants and algae using stable isotope-labelled internal standards. Talanta 2020; 219:121261. [PMID: 32887152 DOI: 10.1016/j.talanta.2020.121261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
Guanosine tetraphosphate (G4P) and guanosine pentaphosphate (G5P) are signalling nucleotides found in bacteria and photosynthetic eukaryotes that are implicated in a wide-range of processes including stress acclimation, developmental transitions and growth control. Measurements of G4P/G5P levels are essential for studying the diverse roles of these nucleotides. However, G4P/G5P quantification is particularly challenging in plants and algae due to lower cellular concentrations, compartmentalization and high metabolic complexity. Despite recent advances the speed and accuracy of G4P quantification in plants and algae can still be improved. Here, we report a new approach for rapid and accurate G4P quantification which relies on the use of synthesized stable isotope-labelled as internal standards. We anticipate that this approach will accelerate research into the function of G4P signaling in plants, algae and other organisms.
Collapse
|
37
|
Molecular Mechanism of Regulation of the Purine Salvage Enzyme XPRT by the Alarmones pppGpp, ppGpp, and pGpp. J Mol Biol 2020; 432:4108-4126. [PMID: 32446804 DOI: 10.1016/j.jmb.2020.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
The alarmones pppGpp and ppGpp mediate starvation response and maintain purine homeostasis to protect bacteria. In the bacterial phyla Firmicutes and Bacteroidetes, xanthine phosphoribosyltransferase (XPRT) is a purine salvage enzyme that produces the nucleotide XMP from PRPP and xanthine. Combining structural, biochemical, and genetic analyses, we show that pppGpp and ppGpp, as well as a third newly identified alarmone pGpp, all directly interact with XPRT from the Gram-positive bacterium Bacillus subtilis and inhibit XPRT activity by competing with its substrate PRPP. Structural analysis reveals that ppGpp binds the PRPP binding motif within the XPRT active site. This motif is present in another (p)ppGpp target, the purine salvage enzyme HPRT, suggesting evolutionary conservation in different enzymes. However, XPRT oligomeric interaction is distinct from HPRT in that XPRT forms a symmetric dimer with two (p)ppGpp binding sites at the dimer interface. (p)ppGpp's interaction with an XPRT bridging loop across the interface results in XPRT cooperatively binding (p)ppGpp. Also, XPRT displays differential regulation by the alarmones as it is potently inhibited by both ppGpp and pGpp, but only modestly by pppGpp. Lastly, we demonstrate that the alarmones are necessary for protecting GTP homeostasis against excess environmental xanthine in B. subtilis, suggesting that regulation of XPRT is key for regulating the purine salvage pathway.
Collapse
|
38
|
Basal-Level Effects of (p)ppGpp in the Absence of Branched-Chain Amino Acids in Actinobacillus pleuropneumoniae. J Bacteriol 2020; 202:JB.00640-19. [PMID: 32015147 DOI: 10.1128/jb.00640-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/24/2020] [Indexed: 12/23/2022] Open
Abstract
The (p)ppGpp-mediated stringent response (SR) is a highly conserved regulatory mechanism in bacterial pathogens, enabling adaptation to adverse environments, and is linked to pathogenesis. Actinobacillus pleuropneumoniae can cause damage to the lungs of pigs, its only known natural host. Pig lungs are known to have a low concentration of free branched-chain amino acids (BCAAs) compared to the level in plasma. We had investigated the role for (p)ppGpp in viability and biofilm formation of A. pleuropneumoniae Now, we sought to determine whether (p)ppGpp was a trigger signal for the SR in A. pleuropneumoniae in the absence of BCAAs. Combining transcriptome and phenotypic analyses of the wild type (WT) and an relA spoT double mutant [which does not produce (p)ppGpp], we found that (p)ppGpp could repress de novo purine biosynthesis and activate antioxidant pathways. There was a positive correlation between GTP and endogenous hydrogen peroxide content. Furthermore, the growth, viability, morphology, and virulence were altered by the inability to produce (p)ppGpp. Genes involved in the biosynthesis of BCAAs were constitutively upregulated, regardless of the existence of BCAAs, without accumulation of (p)ppGpp beyond a basal level. Collectively, our study shows that the absence of BCAAs was not a sufficient signal to trigger the SR in A. pleuropneumoniae (p)ppGpp-mediated regulation in A. pleuropneumoniae is different from that described for the model organism Escherichia coli Further work will establish whether the (p)ppGpp-dependent SR mechanism in A. pleuropneumoniae is conserved among other veterinary pathogens, especially those in the Pasteurellaceae family.IMPORTANCE (p)ppGpp is a key player in reprogramming transcriptomes to respond to nutritional challenges. Here, we present transcriptional and phenotypic differences of A. pleuropneumoniae grown in different chemically defined media in the absence of (p)ppGpp. We show that the deprivation of branched-chain amino acids (BCAAs) does not elicit a change in the basal-level (p)ppGpp, but this level is sufficient to regulate the expression of BCAA biosynthesis. The mechanism found in A. pleuropneumoniae is different from that of the model organism Escherichia coli but similar to that found in some Gram-positive bacteria. This study not only broadens the research scope of (p)ppGpp but also further validates the complexity and multiplicity of (p)ppGpp regulation in microorganisms that occupy different biological niches.
Collapse
|
39
|
Bergé M, Pezzatti J, González-Ruiz V, Degeorges L, Mottet-Osman G, Rudaz S, Viollier PH. Bacterial cell cycle control by citrate synthase independent of enzymatic activity. eLife 2020; 9:52272. [PMID: 32149608 PMCID: PMC7083601 DOI: 10.7554/elife.52272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/04/2020] [Indexed: 11/17/2022] Open
Abstract
Proliferating cells must coordinate central metabolism with the cell cycle. How central energy metabolism regulates bacterial cell cycle functions is not well understood. Our forward genetic selection unearthed the Krebs cycle enzyme citrate synthase (CitA) as a checkpoint regulator controlling the G1→S transition in the polarized alpha-proteobacterium Caulobacter crescentus, a model for cell cycle regulation and asymmetric cell division. We find that loss of CitA promotes the accumulation of active CtrA, an essential cell cycle transcriptional regulator that maintains cells in G1-phase, provided that the (p)ppGpp alarmone is present. The enzymatic activity of CitA is dispensable for CtrA control, and functional citrate synthase paralogs cannot replace CitA in promoting S-phase entry. Our evidence suggests that CitA was appropriated specifically to function as a moonlighting enzyme to link central energy metabolism with S-phase entry. Control of the G1-phase by a central metabolic enzyme may be a common mechanism of cellular regulation.
Collapse
Affiliation(s)
- Matthieu Bergé
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julian Pezzatti
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Laurence Degeorges
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Geneviève Mottet-Osman
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
40
|
Osaka N, Kanesaki Y, Watanabe M, Watanabe S, Chibazakura T, Takada H, Yoshikawa H, Asai K. Novel (p)ppGpp 0 suppressor mutations reveal an unexpected link between methionine catabolism and GTP synthesis in Bacillus subtilis. Mol Microbiol 2020; 113:1155-1169. [PMID: 32052499 DOI: 10.1111/mmi.14484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 11/29/2022]
Abstract
In bacteria, guanosine (penta)tetra-phosphate ([p]ppGpp) is essential for controlling intracellular metabolism that is needed to adapt to environmental changes, such as amino acid starvation. The (p)ppGpp0 strain of Bacillus subtilis, which lacks (p)ppGpp synthetase, is unable to form colonies on minimal medium. Here, we found suppressor mutations in the (p)ppGpp0 strain, in the purine nucleotide biosynthesis genes, prs, purF and rpoB/C, which encode RNA polymerase core enzymes. In comparing our work with prior studies of ppGpp0 suppressors, we discovered that methionine addition masks the suppression on minimal medium, especially of rpoB/C mutations. Furthermore, methionine addition increases intracellular GTP in rpoB suppressor and this effect is decreased by inhibiting GTP biosynthesis, indicating that methionine addition activated GTP biosynthesis and inhibited growth under amino acid starvation conditions in (p)ppGpp0 backgrounds. Furthermore, we propose that the increase in intracellular GTP levels induced by methionine is due to methionine derivatives that increase the activity of the de novo GTP biosynthesis enzyme, GuaB. Our study sheds light on the potential relationship between GTP homeostasis and methionine metabolism, which may be the key to adapting to environmental changes.
Collapse
Affiliation(s)
- Natsuki Osaka
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Megumi Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | | | - Kei Asai
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
41
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
42
|
Toxin discovery reveals fresh ammunition for bacterial warfare. Nature 2020; 575:599-600. [PMID: 31768037 DOI: 10.1038/d41586-019-03217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
RelZ-Mediated Stress Response in Mycobacterium smegmatis: pGpp Synthesis and Its Regulation. J Bacteriol 2020; 202:JB.00444-19. [PMID: 31659009 DOI: 10.1128/jb.00444-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022] Open
Abstract
Stringent response is a conserved stress response mechanism in which bacteria employ the second messengers guanosine tetraphosphate and guanosine pentaphosphate [collectively termed (p)ppGpp] to reprogram their cellular processes under stress. In mycobacteria, these alarmones govern a multitude of cellular phenotypes, such as cell division, biofilm formation, antibiotic tolerance, and long-term survival. Mycobacterium smegmatis possesses the bifunctional RelMsm as a (p)ppGpp synthetase and hydrolase. In addition, it contains a short alarmone synthetase MS_RHII-RSD (renamed RelZ), which contains an RNase H domain in tandem with the (p)ppGpp synthetase domain. The physiological functions of RelMsm have been well documented, but there is no clear picture about the cellular functions of RelZ in M. smegmatis RelZ has been implicated in R-loop induced stress response due to its unique domain architecture. In this study, we elucidate the differential substrate utilization pattern of RelZ compared to that of RelMsm We unveil the ability of RelZ to use GMP as a substrate to synthesize pGpp, thereby expanding the repertoire of second messengers known in mycobacteria. We have demonstrated that the pGpp synthesis activity of RelZ is negatively regulated by RNA and pppGpp. Furthermore, we investigated its role in biofilm formation and antibiotic tolerance. Our findings highlight the complex role played by the RelZ in cellular physiology of M. smegmatis and sheds light upon its functions distinct from those of RelMsm IMPORTANCE Bacteria utilize nucleotide messengers to survive the hostile environmental conditions and the onslaught of attacks within the host. The second messengers guanosine tetraphosphate and pentaphosphate [(p)ppGpp] have a profound impact on the long-term survival, biofilm formation, antibiotic tolerance, virulence, and pathogenesis of bacteria. Therefore, understanding the stress response mechanism regulated by (p)ppGpp is essential for discovering inhibitors of stress response and potential drug targets. Mycobacterium smegmatis contains two (p)ppGpp synthetases: RelMsm and RelZ. Our study unravels the novel regulatory mechanisms of RelZ activity and its role in mediating antibiotic tolerance. We further reveal its ability to synthesize novel second messenger pGpp, which may have regulatory roles in mycobacteria.
Collapse
|
44
|
Ruwe M, Persicke M, Busche T, Müller B, Kalinowski J. Physiology and Transcriptional Analysis of (p)ppGpp-Related Regulatory Effects in Corynebacterium glutamicum. Front Microbiol 2019; 10:2769. [PMID: 31849906 PMCID: PMC6892785 DOI: 10.3389/fmicb.2019.02769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
The alarmone species ppGpp and pppGpp are elementary components of bacterial physiology as they both coordinate the bacterial stress response and serve as fine-tuners of general metabolism during conditions of balanced growth. Since the regulation of (p)ppGpp metabolism and the effects of (p)ppGpp on cellular processes are highly complex and show massive differences between bacterial species, the underlying molecular mechanisms have so far only been insufficiently investigated for numerous microorganisms. In this study, (p)ppGpp physiology in the actinobacterial model organism Corynebacterium glutamicum was analyzed by phenotypic characterization and RNAseq-based transcriptome analysis. Total nutrient starvation was identified as the most effective method to induce alarmone production, whereas traditional induction methods such as the addition of serine hydroxamate (SHX) or mupirocin did not show a strong accumulation of (p)ppGpp. The predominant alarmone in C. glutamicum represents guanosine tetraphosphate, whose stress-associated production depends on the presence of the bifunctional RSH enzyme Rel. Interestingly, in addition to ppGpp, another substance yet not identified accumulated strongly under inducing conditions. A C. glutamicum triple mutant (Δrel,ΔrelS,ΔrelH) unable to produce alarmones [(p)ppGpp0 strain] exhibited unstable growth characteristics and interesting features such as an influence of illumination on its physiology, production of amino acids as well as differences in vitamin and carotenoid production. Differential transcriptome analysis using RNAseq provided numerous indications for the molecular basis of the observed phenotype. An evaluation of the (p)ppGpp-dependent transcriptional regulation under total nutrient starvation revealed a complex interplay with the involvement of ribosome-mediated transcriptional attenuation, the stress-responsive sigma factors σB and σH and transcription factors such as McbR, the master regulator of sulfur metabolism. In addition to the differential regulation of genes connected with various cell functions, the transcriptome analysis revealed conserved motifs within the promoter regions of (p)ppGpp-dependently and independently regulated genes. In particular, the representatives of translation-associated genes are both (p)ppGpp-dependent transcriptionally downregulated and show a highly conserved and so far unknown TTTTG motif in the -35 region, which is also present in other actinobacterial genera.
Collapse
Affiliation(s)
- Matthias Ruwe
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
45
|
Anderson BW, Liu K, Wolak C, Dubiel K, She F, Satyshur KA, Keck JL, Wang JD. Evolution of (p)ppGpp-HPRT regulation through diversification of an allosteric oligomeric interaction. eLife 2019; 8:e47534. [PMID: 31552824 PMCID: PMC6783271 DOI: 10.7554/elife.47534] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
The alarmone (p)ppGpp regulates diverse targets, yet its target specificity and evolution remain poorly understood. Here, we elucidate the mechanism by which basal (p)ppGpp inhibits the purine salvage enzyme HPRT by sharing a conserved motif with its substrate PRPP. Intriguingly, HPRT regulation by (p)ppGpp varies across organisms and correlates with HPRT oligomeric forms. (p)ppGpp-sensitive HPRT exists as a PRPP-bound dimer or an apo- and (p)ppGpp-bound tetramer, where a dimer-dimer interface triggers allosteric structural rearrangements to enhance (p)ppGpp inhibition. Loss of this oligomeric interface results in weakened (p)ppGpp regulation. Our results reveal an evolutionary principle whereby protein oligomerization allows evolutionary change to accumulate away from a conserved binding pocket to allosterically alter specificity of ligand interaction. This principle also explains how another (p)ppGpp target GMK is variably regulated across species. Since most ligands bind near protein interfaces, we propose that this principle extends to many other protein-ligand interactions.
Collapse
Affiliation(s)
- Brent W Anderson
- Department of BacteriologyUniversity of WisconsinMadisonUnited States
| | - Kuanqing Liu
- Department of BacteriologyUniversity of WisconsinMadisonUnited States
| | - Christine Wolak
- Department of Biomolecular ChemistryUniversity of WisconsinMadisonUnited States
| | - Katarzyna Dubiel
- Department of Biomolecular ChemistryUniversity of WisconsinMadisonUnited States
| | - Fukang She
- Department of BacteriologyUniversity of WisconsinMadisonUnited States
| | - Kenneth A Satyshur
- Department of Biomolecular ChemistryUniversity of WisconsinMadisonUnited States
| | - James L Keck
- Department of Biomolecular ChemistryUniversity of WisconsinMadisonUnited States
| | - Jue D Wang
- Department of BacteriologyUniversity of WisconsinMadisonUnited States
| |
Collapse
|
46
|
Lv Y, Sun Q, Wang X, Lu Y, Li Y, Yuan H, Zhu J, Zhu D. Highly Efficient Preparation of Cyclic Dinucleotides via Engineering of Dinucleotide Cyclases in Escherichia coli. Front Microbiol 2019; 10:2111. [PMID: 31572324 PMCID: PMC6753226 DOI: 10.3389/fmicb.2019.02111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Cyclic dinucleotides (CDNs) are widely used secondary signaling molecules in bacterial and mammalian cells. The family of CDNs includes c-di-GMP, c-di-AMP and two distinct versions of hybrid cGAMPs. Studies related to these CDNs require large doses that are relatively expensive to generate by current methods. Here we report what to our knowledge is the first feasible microbial-based method to prepare these CDNs including c-di-GMP, 3′3′-cGAMP and 2′3′-cGAMP. The method mainly includes two parts: producing high yield of CDNs by engineering the overexpression of the proper dinucleotide cyclases (DNCs) and other related proteins in Escherichia coli, and purifying the bacteria-produced CDNs by a unified and simple process involving a STING affinity column, macroporous adsorption resin and C18 reverse-phase liquid chromatography. After purification, we obtained the diammonium salts of c-di-GMP, 3′3′-cGAMP and 2′3′-cGAMP with weight purity of >99, >96, >99% and in yields of >68, >26, and >82 milligrams per liter of culture, respectively. This technological platform enables the production of CDNs from cheaper material, provides a sustainable source of CDNs for scientific investigation, and can easily be further developed to prepare CDNs on a large scale for industry.
Collapse
Affiliation(s)
- Yun Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qichao Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaodan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yi Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huiqing Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Deyu Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
47
|
Van Nerom K, Tamman H, Takada H, Hauryliuk V, Garcia-Pino A. The Rel stringent factor from Thermus thermophilus: crystallization and X-ray analysis. Acta Crystallogr F Struct Biol Commun 2019; 75:561-569. [PMID: 31397328 PMCID: PMC6688660 DOI: 10.1107/s2053230x19010628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/26/2019] [Indexed: 11/11/2022] Open
Abstract
The stringent response, controlled by (p)ppGpp, enables bacteria to trigger a strong phenotypic resetting that is crucial to cope with adverse environmental changes and is required for stress survival and virulence. In the bacterial cell, (p)ppGpp levels are regulated by the concerted opposing activities of RSH (RelA/SpoT homologue) enzymes that can transfer a pyrophosphate group of ATP to the 3' position of GDP (or GTP) or remove the 3' pyrophosphate moiety from (p)ppGpp. Bifunctional Rel enzymes are notoriously difficult to crystallize owing to poor stability and a propensity for aggregation, usually leading to a loss of biological activity after purification. Here, the production, biochemical analysis and crystallization of the bifunctional catalytic region of the Rel stringent factor from Thermus thermophilus (RelTtNTD) in the resting state and bound to nucleotides are described. RelTt and RelTtNTD are monomers in solution that are stabilized by the binding of Mn2+ and mellitic acid. RelTtNTD crystallizes in space group P4122, with unit-cell parameters a = b = 88.4, c = 182.7 Å, at 4°C and in space group P41212, with unit-cell parameters a = b = 105.7, c = 241.4 Å, at 20°C.
Collapse
Affiliation(s)
- Katleen Van Nerom
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| |
Collapse
|
48
|
Ronneau S, Hallez R. Make and break the alarmone: regulation of (p)ppGpp synthetase/hydrolase enzymes in bacteria. FEMS Microbiol Rev 2019; 43:389-400. [PMID: 30980074 PMCID: PMC6606846 DOI: 10.1093/femsre/fuz009] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/21/2019] [Indexed: 11/24/2022] Open
Abstract
Bacteria use dedicated mechanisms to respond adequately to fluctuating environments and to optimize their chances of survival in harsh conditions. One of the major stress responses used by virtually all bacteria relies on the sharp accumulation of an alarmone, the guanosine penta- or tetra-phosphate commonly referred to as (p)ppGpp. Under stressful conditions, essentially nutrient starvation, these second messengers completely reshape the metabolism and physiology by coordinately modulating growth, transcription, translation and cell cycle. As a central regulator of bacterial stress response, the alarmone is also involved in biofilm formation, virulence, antibiotics tolerance and resistance in many pathogenic bacteria. Intracellular concentrations of (p)ppGpp are determined by a highly conserved and widely distributed family of proteins called RelA-SpoT Homologs (RSH). Recently, several studies uncovering mechanisms that regulate RSH activities have renewed a strong interest in this field. In this review, we outline the diversity of the RSH protein family as well as the molecular devices used by bacteria to integrate and transform environmental cues into intracellular (p)ppGpp levels.
Collapse
Affiliation(s)
- Séverin Ronneau
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Régis Hallez
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| |
Collapse
|
49
|
The Stringent Response Inhibits DNA Replication Initiation in E. coli by Modulating Supercoiling of oriC. mBio 2019; 10:mBio.01330-19. [PMID: 31266875 PMCID: PMC6606810 DOI: 10.1128/mbio.01330-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To survive bouts of starvation, cells must inhibit DNA replication. In bacteria, starvation triggers production of a signaling molecule called ppGpp (guanosine tetraphosphate) that helps reprogram cellular physiology, including inhibiting new rounds of DNA replication. While ppGpp has been known to block replication initiation in Escherichia coli for decades, the mechanism responsible was unknown. Early work suggested that ppGpp drives a decrease in levels of the replication initiator protein DnaA. However, we found that this decrease is not necessary to block replication initiation. Instead, we demonstrate that ppGpp leads to a change in DNA topology that prevents initiation. ppGpp is known to inhibit bulk transcription, which normally introduces negative supercoils into the chromosome, and negative supercoils near the origin of replication help drive its unwinding, leading to replication initiation. Thus, the accumulation of ppGpp prevents replication initiation by blocking the introduction of initiation-promoting negative supercoils. This mechanism is likely conserved throughout proteobacteria. The stringent response enables bacteria to respond to a variety of environmental stresses, especially various forms of nutrient limitation. During the stringent response, the cell produces large quantities of the nucleotide alarmone ppGpp, which modulates many aspects of cell physiology, including reprogramming transcription, blocking protein translation, and inhibiting new rounds of DNA replication. The mechanism by which ppGpp inhibits DNA replication initiation in Escherichia coli remains unclear. Prior work suggested that ppGpp blocks new rounds of replication by inhibiting transcription of the essential initiation factor dnaA, but we found that replication is still inhibited by ppGpp in cells ectopically producing DnaA. Instead, we provide evidence that a global reduction of transcription by ppGpp prevents replication initiation by modulating the supercoiling state of the origin of replication, oriC. Active transcription normally introduces negative supercoils into oriC to help promote replication initiation, so the accumulation of ppGpp reduces initiation potential at oriC by reducing transcription. We find that maintaining transcription near oriC, either by expressing a ppGpp-blind RNA polymerase mutant or by inducing transcription from a ppGpp-insensitive promoter, can strongly bypass the inhibition of replication by ppGpp. Additionally, we show that increasing global negative supercoiling by inhibiting topoisomerase I or by deleting the nucleoid-associated protein gene seqA also relieves inhibition. We propose a model, potentially conserved across proteobacteria, in which ppGpp indirectly creates an unfavorable energy landscape for initiation by limiting the introduction of negative supercoils into oriC.
Collapse
|
50
|
Prusińska JM, Boniecka J, Dąbrowska GB, Goc A. Identification and characterization of the Ipomoea nil RelA/SpoT Homologs (InRSHs) and potential directions of their transcriptional regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:161-176. [PMID: 31084869 DOI: 10.1016/j.plantsci.2019.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/13/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Although the stringent response has been known for more than half a century and has been well studied in bacteria, only the research of the past 19 years revealed that the homologous mechanism is conserved in plants. The plant RelA/SpoT Homolog (RSH) genes have been identified and characterized in a limited number of plant species, whereas products of their catalytic activities, (p)ppGpp (alarmones), have been shown to accumulate mainly in chloroplasts. Here, we identified full-length sequences of the Ipomoea nil RSH genes (InRSH1, InRSH2 and InCRSH), determined their copy number in the I. nil genome as well as the structural conservancy between InRSHs and their Arabidopsis and rice orthologs. We showed that InRSHs are differentially expressed in I. nil organ tissues and that only InRSH2 is upregulated in response to salt, osmotic and drought stress. Our results of the E. coli relA/spoT mutant complementation test suggest that InRSH1 is likely a (p)ppGpp hydrolase, InCRSH - synthetase and InRSH2 shows both activities. Finally, we referred our results to the recently published I. nil genomic and proteomic data and uncovered the complexity of the I. nil RSH family as well as potential ways of the InRSH transcriptional regulation.
Collapse
Affiliation(s)
- Justyna M Prusińska
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland.
| | - Justyna Boniecka
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| | - Grażyna B Dąbrowska
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| | - Anna Goc
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|