1
|
Garcia-Del Rio DF, Derhourhi M, Bonnefond A, Leblanc S, Guilloy N, Roucou X, Eyckerman S, Gevaert K, Salzet M, Cardon T. Deciphering the ghost proteome in ovarian cancer cells by deep proteogenomic characterization. Cell Death Dis 2024; 15:712. [PMID: 39349928 PMCID: PMC11442847 DOI: 10.1038/s41419-024-07046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024]
Abstract
Proteogenomics is becoming a powerful tool in personalized medicine by linking genomics, transcriptomics and mass spectrometry (MS)-based proteomics. Due to increasing evidence of alternative open reading frame-encoded proteins (AltProts), proteogenomics has a high potential to unravel the characteristics, variants, expression levels of the alternative proteome, in addition to already annotated proteins (RefProts). To obtain a broader view of the proteome of ovarian cancer cells compared to ovarian epithelial cells, cell-specific total RNA-sequencing profiles and customized protein databases were generated. In total, 128 RefProts and 30 AltProts were identified exclusively in SKOV-3 and PEO-4 cells. Among them, an AltProt variant of IP_715944, translated from DHX8, was found mutated (p.Leu44Pro). We show high variation in protein expression levels of RefProts and AltProts in different subcellular compartments. The presence of 117 RefProt and two AltProt variants was described, along with their possible implications in the different physiological/pathological characteristics. To identify the possible involvement of AltProts in cellular processes, cross-linking-MS (XL-MS) was performed in each cell line to identify AltProt-RefProt interactions. This approach revealed an interaction between POLD3 and the AltProt IP_183088, which after molecular docking, was placed between POLD3-POLD2 binding sites, highlighting its possibility of the involvement in DNA replication and repair.
Collapse
Affiliation(s)
- Diego Fernando Garcia-Del Rio
- Univ. Lille, Inserm, CHU Lille, U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Mehdi Derhourhi
- Université de Lille, Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France University of Lille, Lille, France
| | - Amelie Bonnefond
- Université de Lille, Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sébastien Leblanc
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E4K8, Canada
| | - Noé Guilloy
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E4K8, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E4K8, Canada
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Michel Salzet
- Univ. Lille, Inserm, CHU Lille, U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
| | - Tristan Cardon
- Univ. Lille, Inserm, CHU Lille, U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
| |
Collapse
|
2
|
Riestra MR, Pillay BA, Willemsen M, Kienapfel V, Ehlers L, Delafontaine S, Pinton A, Wouters M, Hombrouck A, Sauer K, Bossuyt X, Voet A, Soenen SJ, Conde CD, Bucciol G, Boztug K, Humblet-Baron S, Touzart A, Rieux-Laucat F, Notarangelo LD, Moens L, Meyts I. Human Autosomal Recessive DNA Polymerase Delta 3 Deficiency Presenting as Omenn Syndrome. J Clin Immunol 2023; 44:2. [PMID: 38099988 PMCID: PMC11252662 DOI: 10.1007/s10875-023-01627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
The DNA polymerase δ complex (PolD), comprising catalytic subunit POLD1 and accessory subunits POLD2, POLD3, and POLD4, is essential for DNA synthesis and is central to genome integrity. We identified, by whole exome sequencing, a homozygous missense mutation (c.1118A > C; p.K373T) in POLD3 in a patient with Omenn syndrome. The patient exhibited severely decreased numbers of naïve T cells associated with a restricted T-cell receptor repertoire and a defect in the early stages of TCR recombination. The patient received hematopoietic stem cell transplantation at age 6 months. He manifested progressive neurological regression and ultimately died at age 4 years. We performed molecular and functional analysis of the mutant POLD3 and assessed cell cycle progression as well as replication-associated DNA damage. Patient fibroblasts showed a marked defect in S-phase entry and an enhanced number of double-stranded DNA break-associated foci despite normal expression levels of PolD components. The cell cycle defect was rescued by transduction with WT POLD3. This study validates autosomal recessive POLD3 deficiency as a novel cause of profound T-cell deficiency and Omenn syndrome.
Collapse
Affiliation(s)
- Maria Rodrigo Riestra
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Bethany A Pillay
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mathijs Willemsen
- Laboratory of Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Verena Kienapfel
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lisa Ehlers
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Selket Delafontaine
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Antoine Pinton
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Marjon Wouters
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Anneleen Hombrouck
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Kate Sauer
- Department of Pediatrics, Pediatric Pulmonology Division, University Hospitals Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology Division, AZ Sint-Jan Brugge, Brugge, Belgium
| | - Xavier Bossuyt
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Arnout Voet
- Laboratory for Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Cancer Research Institute, Faculty of Medical Sciences, KU Leuven, Leuven, Belgium
| | - Cecilia Dominguez Conde
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giorgia Bucciol
- Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven, Belgium
| | - Kaan Boztug
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Stephanie Humblet-Baron
- Laboratory of Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Aurore Touzart
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Frédéric Rieux-Laucat
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Leen Moens
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
- Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Mehawej C, Chouery E, Azar-Atallah S, Shebaby W, Delague V, Mansour I, Mustapha M, Lefranc G, Megarbane A. POLD3 deficiency is associated with severe combined immunodeficiency, neurodevelopmental delay, and hearing impairment. Clin Immunol 2023; 251:109326. [PMID: 37030525 DOI: 10.1016/j.clim.2023.109326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Combined immunodeficiency diseases (CID) represent the most severe forms of inborn errors of immunity. Defective T cell development and/or function, leading to an impairment in adaptive immunity are responsible for these diseases. The DNA polymerase δ complex is important for genome duplication and maintenance and consists of the catalytic subunit POLD1, and the accessory subunits POLD2 and POLD3 which stabilizes the complex. Mutations in POLD1 and POLD2 have been recently shown to be associated with a syndromic CID characterized by T cell lymphopenia with or without intellectual deficiency and sensorineural hearing loss. Here we report a homozygous POLD3 variant (NM_006591.3; p.Ile10Thr) in a Lebanese patient, the product of a consanguineous family, presenting with a syndromic severe combined immunodeficiency (SCID) with neurodevelopmental delay and hearing loss. The homozygous POLD3Ile10Thr variant abolishes POLD3 as well as POLD1 and POLD2 expression. Our findings implicate POLD3 deficiency as a novel cause of syndromic SCID.
Collapse
Affiliation(s)
- Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Shirine Azar-Atallah
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Shebaby
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | | | - Issam Mansour
- Molecular Biology Laboratory, Faculty of Health Sciences, American University of Science and Technology, Beirut, Lebanon; Flow Cytometry Departement, Inovie, Fayadieh, Lebanon
| | - Mirna Mustapha
- School of Biosciences, University of Sheffield, Sheffield, UK; Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Gerard Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS, Université de Montpellier, Montpellier, cedex 5, France
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon; Institut Jérôme Lejeune, Paris, France.
| |
Collapse
|
4
|
Loeillet S, Nicolas A. DNA polymerase δ: A single Pol31 polymorphism suppresses the strain background-specific lethality of Pol32 inactivation in Saccharomyces cerevisiae. DNA Repair (Amst) 2023; 127:103514. [PMID: 37244009 DOI: 10.1016/j.dnarep.2023.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
The evolutionarily conserved DNA polymerase delta (Polδ) plays several essential roles in eukaryotic DNA replication and repair, responsible for the synthesis of the lagging-strand, lower replicative mutagenesis via its proof-reading exonuclease activity and synthetizes both strands during break-induced replication. In Saccharomyces cerevisiae, the Polδ protein complex consists of three subunits encoded by the POL3, POL31 and POL32 genes. Surprisingly, in contrast to POL3 and POL31, the POL32 gene deletion was found to be viable but lethal in all other eukaryotes, raising the question to which extent the viability of the POL32 deletion in S. cerevisiae was species specific. To address this issue, we inactivated the POL32 gene in 10 evolutionary close or distant S. cerevisiae strains and found that POL32 was either essential (3 strains including SK1), non-essential (5 strains including the reference S288C strain) or confers a slow-growth phenotype (2 strains). Whole-genome sequencing of S288C/SK1 pol32∆ meiotic segregants identified the lethal/suppressor effect of the single Pol31-C43Y polymorphism. Consistently, the introduction of the Pol31-43C allele in the SK1 and West African (WA) pol32∆ mutants was sufficient to restore cell viability and wild-type growth upon introduction of two copies of POL31-43C in the SK1 haploid strain. Reciprocally, introduction of the SK1 POL31-43Y allele in the S288C pol32∆ mutant was lethal. Sequence analyses of the POL31 polymorphisms in the 1,011 yeasts genome dataset correlates with the strict occurrence of the POL31-43Y allele in the yeast African palm wine clade. Differently, the single Pol31-E400G polymorphism confers pol32∆ lethality in the Malaysian strain. In the yeast two-hybrid assay, we observed a weakened interaction between Pol3 and Pol31-43Y versus Pol31-43C suggesting an insufficient level of the Polδ holoenzyme stability/activity. Thus, the enigmatic non-essentiality of Pol32 in S. cerevisiae results from single Pol31 amino acid polymorphism and is clade rather than species specific.
Collapse
Affiliation(s)
- S Loeillet
- Institut Curie Research Center, CNRS UMR3244, PSL Research University, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - A Nicolas
- Institut Curie Research Center, CNRS UMR3244, PSL Research University, 26 rue d'Ulm, 75248 Paris Cedex 05, France; IRCAN, CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 28 avenue de Valombrose, 06107 Nice, France.
| |
Collapse
|
5
|
Gola M, Stefaniak P, Godlewski J, Jereczek-Fossa BA, Starzyńska A. Prospects of POLD1 in Human Cancers: A Review. Cancers (Basel) 2023; 15:cancers15061905. [PMID: 36980791 PMCID: PMC10047664 DOI: 10.3390/cancers15061905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer is the second leading cause of death globally, exceeded only by cardiovascular disease. Despite the introduction of several survival-prolonging treatment modalities, including targeted therapy and immunotherapy, the overall prognosis for the metastatic disease remains challenging. Therefore, the identification of new molecular biomarkers and therapeutic targets related to cancer diagnosis and prognosis is of paramount importance. DNA polymerase delta 1 (POLD1), a catalytic and proofreading subunit of the DNA polymerase δ complex, performs a crucial role in DNA replication and repair processes. Recently, germline and somatic mutations of the POLD1 gene have been acknowledged in several malignancies. Moreover, diversified POLD1 expression profiles have been reported in association with clinicopathological features in a variety of tumor types. With this review, we aim to summarize the current knowledge on the role of POLD1 in cancers. In addition, we discuss the future prospects and clinical applications of the assessment of POLD1 mutation and expression patterns in tumors.
Collapse
Affiliation(s)
- Michał Gola
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Przemysław Stefaniak
- Department of Surgical Oncology, Hospital Ministry of Internal Affairs with Warmia and Mazury Oncology Centre, 10-228 Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Department of Surgical Oncology, Hospital Ministry of Internal Affairs with Warmia and Mazury Oncology Centre, 10-228 Olsztyn, Poland
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland
| |
Collapse
|
6
|
Willemsen M, Staels F, Gerbaux M, Neumann J, Schrijvers R, Meyts I, Humblet-Baron S, Liston A. DNA replication-associated inborn errors of immunity. J Allergy Clin Immunol 2023; 151:345-360. [PMID: 36395985 DOI: 10.1016/j.jaci.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Inborn errors of immunity are a heterogeneous group of monogenic immunologic disorders caused by mutations in genes with critical roles in the development, maintenance, or function of the immune system. The genetic basis is frequently a mutation in a gene with restricted expression and/or function in immune cells, leading to an immune disorder. Several classes of inborn errors of immunity, however, result from mutation in genes that are ubiquitously expressed. Despite the genes participating in cellular processes conserved between cell types, immune cells are disproportionally affected, leading to inborn errors of immunity. Mutations in DNA replication, DNA repair, or DNA damage response factors can result in monogenic human disease, some of which are classified as inborn errors of immunity. Genetic defects in the DNA repair machinery are a well-known cause of T-B-NK+ severe combined immunodeficiency. An emerging class of inborn errors of immunity is those caused by mutations in DNA replication factors. Considerable heterogeneity exists within the DNA replication-associated inborn errors of immunity, with diverse immunologic defects and clinical manifestations observed. These differences are suggestive for differential sensitivity of certain leukocyte subsets to deficiencies in specific DNA replication factors. Here, we provide an overview of DNA replication-associated inborn errors of immunity and discuss the emerging mechanistic insights that can explain the observed immunologic heterogeneity.
Collapse
Affiliation(s)
- Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.
| | - Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Julika Neumann
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven, Belgium; ERN-RITA Core Center Member, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium.
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Immunology Program, The Babraham Institute, Babraham Research Campus, Cambridge.
| |
Collapse
|
7
|
Gu X, Dai Q, Du P, Li N, Li J, Zeng S, Peng S, Tang S, Wang L, Zhou Z. Pold4 is dispensable for mouse development, DNA replication and DNA repair. Gene X 2022; 851:147029. [DOI: 10.1016/j.gene.2022.147029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|
8
|
Zhang S, Lee EYC, Lee MYWT, Zhang D. DNA polymerase delta interacting protein 3 facilitates the activation and maintenance of DNA damage checkpoint in response to replication stress. Animal Model Exp Med 2022; 5:461-469. [PMID: 36168146 PMCID: PMC9610138 DOI: 10.1002/ame2.12274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 01/22/2023] Open
Abstract
Background Replication stress response is crucial for the maintenance of a stable genome. POLDIP3 (DNA polymerase delta interacting protein 3) was initially identified as one of the DNA polymerase δ (Pol δ) interacting proteins almost 20 years ago. Using a variety of in vitro biochemical assays, we previously established that POLDIP3 is a key regulator of the enzymatic activity of Pol δ. However, the in vivo function of POLDIP3 in DNA replication and DNA damage response has been elusive. Methods We first generated POLDIP3 knockout (KO) cells using the CRISPR/Cas9 technology. We then investigated its biological functions in vivo using a variety of biochemical and cell biology assays. Results We showed that although the POLDIP3‐KO cells manifest no pronounced defect in global DNA synthesis under nonstress conditions, they are sensitive to a variety of replication fork blockers. Intriguingly, we found that POLDIP3 plays a crucial role in the activation and maintenance of the DNA damage checkpoint in response to exogenous as well as endogenous replication stress. Conclusion Our results indicate that when the DNA replication fork is blocked, POLDIP3 can be recruited to the stalled replication fork and functions to bridge the early DNA damage checkpoint response and the later replication fork repair/restart.
Collapse
Affiliation(s)
- Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, New York, USA
| |
Collapse
|
9
|
Zhao Y, Zhao S, Qin XY, He TT, Hu MM, Gong Z, Wang HM, Gong FY, Gao XM, Wang J. Altered Phenotype and Enhanced Antibody-Producing Ability of Peripheral B Cells in Mice with Cd19-Driven Cre Expression. Cells 2022; 11:cells11040700. [PMID: 35203346 PMCID: PMC8870415 DOI: 10.3390/cells11040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Given the importance of B lymphocytes in inflammation and immune defense against pathogens, mice transgenic for Cre under the control of Cd19 promoter (Cd19Cre/+ mice) have been widely used to specifically investigate the role of loxP-flanked genes in B cell development/function. However, impacts of expression/insertion of the Cre transgene on the phenotype and function of B cells have not been carefully studied. Here, we show that the number of marginal zone B and B1a cells was selectively reduced in Cd19Cre/+ mice, while B cell development in the bone marrow and total numbers of peripheral B cells were comparable between Cd19Cre/+ and wild type C57BL/6 mice. Notably, humoral responses to both T cell-dependent and independent antigens were significantly increased in Cd19Cre/+ mice. We speculate that these differences are mainly attributable to reduced surface CD19 levels caused by integration of the Cre-expressing cassette that inactivates one Cd19 allele. Moreover, our literature survey showed that expression of Cd19Cre/+ alone may affect the development/progression of inflammatory and anti-infectious responses. Thus, our results have important implications for the design and interpretation of results on gene functions specifically targeted in B cells in the Cd19Cre/+ mouse strain, for instance, in the context of (auto) inflammatory/infectious diseases.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China;
| | - Sai Zhao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Yuan Qin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Miao-Miao Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Zheng Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Hong-Min Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Fang-Yuan Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| |
Collapse
|
10
|
Zhao S, Wei C, Tang H, Ding H, Han B, Chen S, Song X, Gu Q, Zhang Y, Liu W, Wang J. Elevated DNA Polymerase Delta 1 Expression Correlates With Tumor Progression and Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma. Front Oncol 2021; 11:736363. [PMID: 34868924 PMCID: PMC8632622 DOI: 10.3389/fonc.2021.736363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Background and Objective Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the DNA polymerase delta (POLD) family is significantly related to cancer prognosis. This study aimed to explore the significance of the POLD family in HCC via the DNA damage repair (DDR) pathway. Methods Data mining was conducted using bioinformatics methods. RNA sequencing and clinicopathological data were collected from The Cancer Genome Atlas, GTEx database and the Gumz Renal cohort. Statistical analyses were also performed in cancer samples (n>12,000) and the Affiliated Hospital of Youjiang Medical University for Nationalities (AHYMUN, n=107) cohort. Results The POLD family (POLD1-4) was identified as the most important functional component of the DDR pathway. Based on the analysis of independent cohorts, we found significantly elevated POLD expression in HCC compared with normal tissues. Second, we investigated the prognostic implication of elevated POLD1 expression in HCC and pan-cancers, revealing that increased POLD1 levels were correlated to worse prognoses for HCC patients. Additionally, we identified 11 hub proteins interacting closely with POLD proteins in base excision repair, protein-DNA complex and mismatch repair signaling pathways. Moreover, POLD1 mutation functioned as an independent biomarker to predict the benefit of targeted treatment. Importantly, POLD1 expression was associated with immune checkpoint molecules, including CD274, CD80, CD86, CTLA4, PDCD1 and TCGIT, and facilitated an immune-excluded tumor microenvironment. Additionally, we confirmed that elevated POLD1 expression was closely correlated with the aggressive progression and poor prognosis of HCC in the real-world AHYMUN cohort. Conclusion We identified a significant association between elevated POLD1 expression and poor patient survival and immune-excluded tumor microenvironment of HCC. Together, these findings indicate that POLD1 provides a valuable biomarker to guide the molecular diagnosis and development of novel targeted therapeutic strategies for HCC patients.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuicui Wei
- Department of Outpatient, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Haijia Tang
- Department of Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Ding
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxian Chen
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Song
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Gu
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Yichi Zhang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangrui Liu
- Department of Outpatient, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Shimada K, Tsai-Pflugfelder M, Vijeh Motlagh ND, Delgoshaie N, Fuchs J, Gut H, Gasser SM. The stabilized Pol31-Pol3 interface counteracts Pol32 ablation with differential effects on repair. Life Sci Alliance 2021; 4:4/9/e202101138. [PMID: 34226278 PMCID: PMC8321694 DOI: 10.26508/lsa.202101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
DNA polymerase δ, which contains the catalytic subunit, Pol3, Pol31, and Pol32, contributes both to DNA replication and repair. The deletion of pol31 is lethal, and compromising the Pol3-Pol31 interaction domains confers hypersensitivity to cold, hydroxyurea (HU), and methyl methanesulfonate, phenocopying pol32Δ. We have identified alanine-substitutions in pol31 that suppress these deficiencies in pol32Δ cells. We characterize two mutants, pol31-T415A and pol31-W417A, which map to a solvent-exposed loop that mediates Pol31-Pol3 and Pol31-Rev3 interactions. The pol31-T415A substitution compromises binding to the Pol3 CysB domain, whereas Pol31-W417A improves it. Importantly, loss of Pol32, such as pol31-T415A, leads to reduced Pol3 and Pol31 protein levels, which are restored by pol31-W417A. The mutations have differential effects on recovery from acute HU, break-induced replication and trans-lesion synthesis repair pathways. Unlike trans-lesion synthesis and growth on HU, the loss of break-induced replication in pol32Δ cells is not restored by pol31-W417A, highlighting pathway-specific roles for Pol32 in fork-related repair. Intriguingly, CHIP analyses of replication forks on HU showed that pol32Δ and pol31-T415A indirectly destabilize DNA pol α and pol ε at stalled forks.
Collapse
Affiliation(s)
- Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | - Neda Delgoshaie
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jeannette Fuchs
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
12
|
Abstract
Unlike bacteria, mammalian cells need to complete DNA replication before segregating their chromosomes for the maintenance of genome integrity. Thus, cells have evolved efficient pathways to restore stalled and/or collapsed replication forks during S-phase, and when necessary, also to delay cell cycle progression to ensure replication completion. However, strong evidence shows that cells can proceed to mitosis with incompletely replicated DNA when under mild replication stress (RS) conditions. Consequently, the incompletely replicated genomic gaps form, predominantly at common fragile site regions, where the converging fork-like DNA structures accumulate. These branched structures pose a severe threat to the faithful disjunction of chromosomes as they physically interlink the partially duplicated sister chromatids. In this review, we provide an overview discussing how cells respond and deal with the under-replicated DNA structures that escape from the S/G2 surveillance system. We also focus on recent research of a mitotic break-induced replication pathway (also known as mitotic DNA repair synthesis), which has been proposed to operate during prophase in an attempt to finish DNA synthesis at the under-replicated genomic regions. Finally, we discuss recent data on how mild RS may cause chromosome instability and mutations that accelerate cancer genome evolution.
Collapse
Affiliation(s)
- Camelia Mocanu
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| | - Kok-Lung Chan
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| |
Collapse
|
13
|
Fuchs J, Cheblal A, Gasser SM. Underappreciated Roles of DNA Polymerase δ in Replication Stress Survival. Trends Genet 2021; 37:476-487. [PMID: 33608117 DOI: 10.1016/j.tig.2020.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
Recent structural analysis of Fe-S centers in replication proteins and insights into the structure and function of DNA polymerase δ (DNA Pol δ) subunits have shed light on the key role played by this polymerase at replication forks under stress. The sequencing of cancer genomes reveals multiple point mutations that compromise the activity of POLD1, the DNA Pol δ catalytic subunit, whereas the loci encoding the accessory subunits POLD2 and POLD3 are amplified in a very high proportion of human tumors. Consistently, DNA Pol δ is key for the survival of replication stress and is involved in multiple long-patch repair pathways. Synthetic lethality arises from compromising the function and availability of the noncatalytic subunits of DNA Pol δ under conditions of replication stress, opening the door to novel therapies.
Collapse
Affiliation(s)
- Jeannette Fuchs
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland.
| |
Collapse
|
14
|
Wen F, Huang J, Lu X, Huang W, Wang Y, Bai Y, Ruan S, Gu S, Chen X, Shu P. Identification and prognostic value of metabolism-related genes in gastric cancer. Aging (Albany NY) 2020; 12:17647-17661. [PMID: 32920549 PMCID: PMC7521523 DOI: 10.18632/aging.103838] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is one of the most commonly occurring cancers, and metabolism-related genes (MRGs) are associated with its development. Transcriptome data and the relevant clinical data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, and we identified 194 MRGs differentially expressed between GC and adjacent nontumor tissues. Through univariate Cox and lasso regression analyses we identified 13 potential prognostic differentially expressed MRGs (PDEMRGs). These PDEMRGs (CKMT2, ME1, GSTA2, ASAH1, GGT5, RDH12, NNMT, POLR1A, ACYP1, GLA, OPLAH, DCK, and POLD3) were used to build a Cox regression risk model to predict the prognosis of GC patients. Further univariate and multivariate Cox regression analyses showed that this model could serve as an independent prognostic parameter. Gene Set Enrichment Analysis showed significant enrichment pathways that could potentially contribute to pathogenesis. This model also revealed the probability of genetic alterations of PDEMRGs. We have thus identified a valuable metabolic model for predicting the prognosis of GC patients. The PDEMRGs in this model reflect the dysregulated metabolic microenvironment of GC and provide useful noninvasive biomarkers.
Collapse
Affiliation(s)
- Fang Wen
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Jiani Huang
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaona Lu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wenjie Huang
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yulan Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Hematology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yingfeng Bai
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuai Ruan
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Suping Gu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Xiaoxue Chen
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Peng Shu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
15
|
Conde CD, Petronczki ÖY, Baris S, Willmann KL, Girardi E, Salzer E, Weitzer S, Ardy RC, Krolo A, Ijspeert H, Kiykim A, Karakoc-Aydiner E, Förster-Waldl E, Kager L, Pickl WF, Superti-Furga G, Martínez J, Loizou JI, Ozen A, van der Burg M, Boztug K. Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress. J Clin Invest 2020; 129:4194-4206. [PMID: 31449058 DOI: 10.1172/jci128903] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Polymerase δ is essential for eukaryotic genome duplication and synthesizes DNA at both the leading and lagging strands. The polymerase δ complex is a heterotetramer comprising the catalytic subunit POLD1 and the accessory subunits POLD2, POLD3, and POLD4. Beyond DNA replication, the polymerase δ complex has emerged as a central element in genome maintenance. The essentiality of polymerase δ has constrained the generation of polymerase δ-knockout cell lines or model organisms and, therefore, the understanding of the complexity of its activity and the function of its accessory subunits. To our knowledge, no germline biallelic mutations affecting this complex have been reported in humans. In patients from 2 independent pedigrees, we have identified what we believe to be a novel syndrome with reduced functionality of the polymerase δ complex caused by germline biallelic mutations in POLD1 or POLD2 as the underlying etiology of a previously unknown autosomal-recessive syndrome that combines replicative stress, neurodevelopmental abnormalities, and immunodeficiency. Patients' cells showed impaired cell-cycle progression and replication-associated DNA lesions that were reversible upon overexpression of polymerase δ. The mutations affected the stability and interactions within the polymerase δ complex or its intrinsic polymerase activity. We believe our discovery of human polymerase δ deficiency identifies the central role of this complex in the prevention of replication-related DNA lesions, with particular relevance to adaptive immunity.
Collapse
Affiliation(s)
- Cecilia Domínguez Conde
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
| | - Özlem Yüce Petronczki
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Safa Baris
- Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey.,Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey
| | - Katharina L Willmann
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
| | - Elisabeth Salzer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Stefan Weitzer
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Hanna Ijspeert
- Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey.,Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey.,Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey
| | - Elisabeth Förster-Waldl
- Department of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine
| | - Leo Kager
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, and
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and.,Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Javier Martínez
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
| | - Ahmet Ozen
- Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey.,Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| |
Collapse
|
16
|
Drosopoulos WC, Vierra DA, Kenworthy CA, Coleman RA, Schildkraut CL. Dynamic Assembly and Disassembly of the Human DNA Polymerase δ Holoenzyme on the Genome In Vivo. Cell Rep 2020; 30:1329-1341.e5. [PMID: 32023453 PMCID: PMC7597369 DOI: 10.1016/j.celrep.2019.12.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/21/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Human DNA polymerase delta (Pol δ) forms a holoenzyme complex with the DNA sliding clamp proliferating cell nuclear antigen (PCNA) to perform its essential roles in genome replication. Here, we utilize live-cell single-molecule tracking to monitor Pol δ holoenzyme interaction with the genome in real time. We find holoenzyme assembly and disassembly in vivo are highly dynamic and ordered. PCNA generally loads onto the genome before Pol δ. Once assembled, the holoenzyme has a relatively short lifetime on the genome, implying multiple Pol δ binding events may be needed to synthesize an Okazaki fragment. During disassembly, Pol δ dissociation generally precedes PCNA unloading. We also find that Pol δ p125, the catalytic subunit of the holoenzyme, is maintained at a constant cellular level, indicating an active mechanism for control of Pol δ levels in vivo. Collectively, our studies reveal that Pol δ holoenzyme assembly and disassembly follow a predominant pathway in vivo; however, alternate pathways are observed.
Collapse
Affiliation(s)
- William C Drosopoulos
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA.
| | - David A Vierra
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Charles A Kenworthy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA.
| | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA.
| |
Collapse
|
17
|
Combined immunodeficiency caused by a loss-of-function mutation in DNA polymerase delta 1. J Allergy Clin Immunol 2019; 145:391-401.e8. [PMID: 31629014 DOI: 10.1016/j.jaci.2019.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/11/2019] [Accepted: 10/04/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Mutations affecting DNA polymerases have been implicated in genomic instability and cancer development, but the mechanisms by which they can affect the immune system remain largely unexplored. OBJECTIVE We sought to establish the role of DNA polymerase δ1 catalytic subunit (POLD1) as the cause of a primary immunodeficiency in an extended kindred. METHODS We performed whole-exome and targeted gene sequencing, lymphocyte characterization, molecular and functional analyses of the DNA polymerase δ (Polδ) complex, and T- and B-cell antigen receptor repertoire analysis. RESULTS We identified a missense mutation (c. 3178C>T; p.R1060C) in POLD1 in 3 related subjects who presented with recurrent, especially herpetic, infections and T-cell lymphopenia with impaired T-cell but not B-cell proliferation. The mutation destabilizes the Polδ complex, leading to ineffective recruitment of replication factor C to initiate DNA replication. Molecular dynamics simulation revealed that the R1060C mutation disrupts the intramolecular interaction between the POLD1 CysB motif and the catalytic domain and also between POLD1 and the Polδ subunit POLD2. The patients exhibited decreased numbers of naive CD4 and especially CD8 T cells in favor of effector memory subpopulations. This skewing was associated with oligoclonality and restricted T-cell receptor β-chain V-J pairing in CD8+ but not CD4+ T cells, suggesting that POLD1R1060C differentially affects peripheral CD8+ T-cell expansion and possibly thymic selection. CONCLUSION These results identify gene defects in POLD1 as a novel cause of T-cell immunodeficiency.
Collapse
|
18
|
Zhou Z, Wang L, Ge F, Gong P, Wang H, Wang F, Chen L, Liu L. Pold3 is required for genomic stability and telomere integrity in embryonic stem cells and meiosis. Nucleic Acids Res 2019; 46:3468-3486. [PMID: 29447390 PMCID: PMC6283425 DOI: 10.1093/nar/gky098] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/01/2018] [Indexed: 12/29/2022] Open
Abstract
Embryonic stem cells (ESCs) and meiosis are featured by relatively higher frequent homologous recombination associated with DNA double strand breaks (DSB) repair. Here, we show that Pold3 plays important roles in DSB repair, telomere maintenance and genomic stability of both ESCs and spermatocytes in mice. By attempting to generate Pold3 deficient mice using CRISPR/Cas9 or transcription activator-like effector nucleases, we show that complete loss of Pold3 (Pold3−/−) resulted in early embryonic lethality at E6.5. Rapid DNA damage response and massive apoptosis occurred in both outgrowths of Pold3-null (Pold3−/−) blastocysts and Pold3 inducible knockout (iKO) ESCs. While Pold3−/− ESCs were not achievable, Pold3 iKO led to increased DNA damage response, telomere loss and chromosome breaks accompanied by extended S phase. Meanwhile, loss of Pold3 resulted in replicative stress, micronucleation and aneuploidy. Also, DNA repair was impaired in Pold3+/− or Pold3 knockdown ESCs. Moreover, Pold3 mediates DNA replication and repair by regulating 53BP1, RIF1, ATR and ATM pathways. Furthermore, spermatocytes of Pold3 haploinsufficient (Pold3+/−) mice with increasing age displayed impaired DSB repair, telomere shortening and loss, and chromosome breaks, like Pold3 iKO ESCs. These data suggest that Pold3 maintains telomere integrity and genomic stability of both ESCs and meiosis by suppressing replicative stress.
Collapse
Affiliation(s)
- Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lingling Wang
- Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feixiang Ge
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Peng Gong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feng Wang
- Department of Genetics, School of basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Ji J, Tang X, Hu W, Maggert KA, Rong YS. The processivity factor Pol32 mediates nuclear localization of DNA polymerase delta and prevents chromosomal fragile site formation in Drosophila development. PLoS Genet 2019; 15:e1008169. [PMID: 31100062 PMCID: PMC6542543 DOI: 10.1371/journal.pgen.1008169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/30/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
The Pol32 protein is one of the universal subunits of DNA polymerase δ (Pol δ), which is responsible for genome replication in eukaryotic cells. Although the role of Pol32 in DNA repair has been well-characterized, its exact function in genome replication remains obscure as studies in single cell systems have not established an essential role for Pol32 in the process. Here we characterize Pol32 in the context of Drosophila melanogaster development. In the rapidly dividing embryonic cells, loss of Pol32 halts genome replication as it specifically disrupts Pol δ localization to the nucleus. This function of Pol32 in facilitating the nuclear import of Pol δ would be similar to that of accessory subunits of DNA polymerases from mammalian Herpes viruses. In post-embryonic cells, loss of Pol32 reveals mitotic fragile sites in the Drosophila genome, a defect more consistent with Pol32’s role as a polymerase processivity factor. Interestingly, these fragile sites do not favor repetitive sequences in heterochromatin, with the rDNA locus being a striking exception. Our study uncovers a possibly universal function for DNA polymerase ancillary factors and establishes a powerful system for the study of chromosomal fragile sites in a non-mammalian organism. Cancer etiological studies suggest that the majority of pathological mutations occurred under near normal DNA replication conditions, emphasizing the importance of understanding replication regulation under non-lethal conditions. To gain such a better understanding, we investigated the function of Pol32, a conserved ancillary subunit of the essential DNA polymerase Delta complex, through the development of the fruit fly Drosophila. We uncovered a previously unappreciated function of Pol32 in regulating the nuclear import of the polymerase complex, and this function is developmentally regulated. By utilizing mutations in pol32 and other replication factors, we have started to define basic features of Chromosome Fragile Sites (CFS) in Drosophila somatic cells. CFS is a major source of genome instability associated with replication stresses, and has been an important topic of cancer biology. We discovered that CFS formation does not favor genomic regions with repetitive sequences except the highly transcribed locus encoding ribosomal RNA. Our work lays the groundwork for future studies using Drosophila as an alternative system to uncover the most fundamental features of CFS.
Collapse
Affiliation(s)
- Jingyun Ji
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaona Tang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wen Hu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keith A. Maggert
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Yikang S. Rong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
20
|
Khandagale P, Peroumal D, Manohar K, Acharya N. Human DNA polymerase delta is a pentameric holoenzyme with a dimeric p12 subunit. Life Sci Alliance 2019; 2:2/2/e201900323. [PMID: 30885984 PMCID: PMC6424025 DOI: 10.26508/lsa.201900323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023] Open
Abstract
The subunit p12 of human DNA polymerase delta (hPolδ) can dimerize, facilitating its interaction with PCNA and suggesting that hPolδ exists in a pentameric form in the cell. Human DNA polymerase delta (Polδ), a holoenzyme consisting of p125, p50, p68, and p12 subunits, plays an essential role in DNA replication, repair, and recombination. Herein, using multiple physicochemical and cellular approaches, we found that the p12 protein forms a dimer in solution. In vitro reconstitution and pull down of cellular Polδ by tagged p12 substantiate the pentameric nature of this critical holoenzyme. Furthermore, a consensus proliferating nuclear antigen (PCNA) interaction protein motif at the extreme carboxyl-terminal tail and a homodimerization domain at the amino terminus of the p12 subunit were identified. Mutational analyses of these motifs in p12 suggest that dimerization facilitates p12 binding to the interdomain connecting loop of PCNA. In addition, we observed that oligomerization of the smallest subunit of Polδ is evolutionarily conserved as Cdm1 of Schizosaccharomyces pombe also dimerizes. Thus, we suggest that human Polδ is a pentameric complex with a dimeric p12 subunit, and discuss implications of p12 dimerization in enzyme architecture and PCNA interaction during DNA replication.
Collapse
Affiliation(s)
- Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Doureradjou Peroumal
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
21
|
Yan R, Yang T, Zhai H, Zhou Z, Gao L, Li Y. MicroRNA-150-5p affects cell proliferation, apoptosis, and EMT by regulation of the BRAF V600E mutation in papillary thyroid cancer cells. J Cell Biochem 2018; 119:8763-8772. [PMID: 30126001 DOI: 10.1002/jcb.27108] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/09/2018] [Indexed: 01/26/2023]
Abstract
Papillary thyroid cancer (PTC) is the most common endocrine malignancy. Studies have confirmed an association between microRNA (miRNA) and the BRAFV600E mutation in various cellular biological processes of PTC. This study aimed to clarify the potential relationship between miR-150-5p and the BRAFV600E mutation in PTC. Human PTC cell lines B-CPAP and TPC-1 were transfected with the miR-150-5p mimic, an inhibitor, and the corresponding controls. Then, cell proliferation, viability, and apoptosis were detected by bromodeoxyuridine, trypan blue exclusion, and flow cytometry assays. The expressions of the main factors of cell cycle, epithelial mesenchymal transition (EMT), and DNA mismatch repair were examined by Western blot analysis and a real-time quantitative polymerase chain reaction. Additionally, pc-BRAFV600E was transfected into B-CPAP and TPC-1 cells to determine the relationship between miR-150-5p and BRAFV600E . In addition, the methyl ethyl ketone (MEK)/extracellular signal-regulated kinase (ERK) signal pathway was examined using Western blot analysis. Overexpression of miR-150-5p promoted cell proliferation and viability, inhibited apoptosis, and upregulated cell cycle factor expressions at 50 passages of B-CPAP and TPC-1 cells after transfection. Overexpression of miR-150-5p led to an obvious decrease in E-cadherin expression, but enhanced N-cadherin, Slug and Vimentin, ZEB1, and Snail expression. Moreover, overexpression of miR-150-5p markedly suppressed POLD3, MSH2, and MSH3 expression. Furthermore, BRAFV600E overexpression increased the expression level of miR-150-5p in TPC cells, and overexpression of telomerase reverse transcriptase further enhanced the promoting effect of BRAFV600E on miR-150-5p expression in B-CPAP and TPC-1 cells. Finally, BRAFV600E overexpression activated the MEK/ERK signal pathway in B-CPAP and TPC-1 cells. These data indicated that miR-150-5p promoted cell proliferation, suppressed apoptosis, and accelerated the EMT process by regulation of the BRAFV600E mutation. Our findings will help elucidate the pathogenesis of PTC and identify biomarkers.
Collapse
Affiliation(s)
- Ruihong Yan
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, China
| | - Tianzheng Yang
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, China
| | - Hongyan Zhai
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, China
| | - Zhenhu Zhou
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, China
| | - Lei Gao
- Laboratory of Molecular Medicine, Liaocheng People's Hospital, Liaocheng, China
| | - Yuhong Li
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
22
|
Bellelli R, Borel V, Logan C, Svendsen J, Cox DE, Nye E, Metcalfe K, O'Connell SM, Stamp G, Flynn HR, Snijders AP, Lassailly F, Jackson A, Boulton SJ. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis. Mol Cell 2018; 70:707-721.e7. [PMID: 29754823 PMCID: PMC5972231 DOI: 10.1016/j.molcel.2018.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
Abstract
DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4-/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4-/-p53+/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention.
Collapse
Affiliation(s)
| | - Valerie Borel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Clare Logan
- MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | - Danielle E Cox
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emma Nye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kay Metcalfe
- Department of Genetic Medicine, St Mary's Hospital, Oxford Road, Manchester, M13 OJH, UK
| | - Susan M O'Connell
- Department of Paediatrics, Cork University Hospital, Wilton, Cork T12 DC4A, Ireland
| | - Gordon Stamp
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Helen R Flynn
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | | | - Andrew Jackson
- MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
23
|
Kramara J, Osia B, Malkova A. Break-Induced Replication: The Where, The Why, and The How. Trends Genet 2018; 34:518-531. [PMID: 29735283 DOI: 10.1016/j.tig.2018.04.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/27/2018] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
Abstract
Break-induced replication (BIR) is a pathway that repairs one-ended double-strand breaks (DSBs). For decades, yeast model systems offered the only opportunities to study eukaryotic BIR. These studies described an unusual mode of BIR synthesis that is carried out by a migrating bubble and shows conservative inheritance of newly synthesized DNA, leading to genomic instabilities like those associated with cancer in humans. Yet, evidence of BIR functioning in mammals or during repair of other DNA breaks has been missing. Recent studies have uncovered multiple examples of BIR working in replication restart and repair of eroded telomeres in yeast and mammals, as well as some unexpected findings, including the RAD51 independence of BIR. Strong interest remains in determining the variations in molecular mechanisms that drive and regulate BIR in different genetic backgrounds, across organisms, and particularly in the context of human disease.
Collapse
Affiliation(s)
- J Kramara
- These authors contributed equally to this work
| | - B Osia
- These authors contributed equally to this work
| | - A Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
24
|
Sotiriou SK, Kamileri I, Lugli N, Evangelou K, Da-Ré C, Huber F, Padayachy L, Tardy S, Nicati NL, Barriot S, Ochs F, Lukas C, Lukas J, Gorgoulis VG, Scapozza L, Halazonetis TD. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks. Mol Cell 2017; 64:1127-1134. [PMID: 27984746 PMCID: PMC5179496 DOI: 10.1016/j.molcel.2016.10.038] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/08/2016] [Accepted: 10/28/2016] [Indexed: 02/01/2023]
Abstract
Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Mammalian RAD52 is involved in the oncogene-induced DNA replication stress response Mammalian RAD52 functions in the repair of collapsed DNA replication forks Rad52 deficiency prolongs the lifespan of Apcmin/+ mice
Collapse
Affiliation(s)
- Sotirios K Sotiriou
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Irene Kamileri
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Natalia Lugli
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Konstantinos Evangelou
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Caterina Da-Ré
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Florian Huber
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Laura Padayachy
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Sebastien Tardy
- School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, CMU, University of Geneva and University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Noemie L Nicati
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, CMU, University of Geneva and University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Samia Barriot
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Fena Ochs
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Claudia Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, CMU, University of Geneva and University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
25
|
Lee MYWT, Wang X, Zhang S, Zhang Z, Lee EYC. Regulation and Modulation of Human DNA Polymerase δ Activity and Function. Genes (Basel) 2017; 8:genes8070190. [PMID: 28737709 PMCID: PMC5541323 DOI: 10.3390/genes8070190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022] Open
Abstract
This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4).
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Xiaoxiao Wang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Sufang Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Zhongtao Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Ernest Y C Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
26
|
Santaguida S, Richardson A, Iyer DR, M'Saad O, Zasadil L, Knouse KA, Wong YL, Rhind N, Desai A, Amon A. Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System. Dev Cell 2017; 41:638-651.e5. [PMID: 28633018 PMCID: PMC5536848 DOI: 10.1016/j.devcel.2017.05.022] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/07/2017] [Accepted: 05/23/2017] [Indexed: 01/14/2023]
Abstract
Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance.
Collapse
Affiliation(s)
- Stefano Santaguida
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA.
| | - Amelia Richardson
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Divya Ramalingam Iyer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ons M'Saad
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA
| | - Lauren Zasadil
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA
| | - Kristin A Knouse
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA; Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Liang Wong
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Arshad Desai
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelika Amon
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA.
| |
Collapse
|
27
|
Natsume T, Nishimura K, Minocherhomji S, Bhowmick R, Hickson ID, Kanemaki MT. Acute inactivation of the replicative helicase in human cells triggers MCM8-9-dependent DNA synthesis. Genes Dev 2017; 31:816-829. [PMID: 28487407 PMCID: PMC5435893 DOI: 10.1101/gad.297663.117] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/10/2017] [Indexed: 01/15/2023]
Abstract
DNA replication fork progression can be disrupted at difficult to replicate loci in the human genome, which has the potential to challenge chromosome integrity. This replication fork disruption can lead to the dissociation of the replisome and the formation of DNA damage. To model the events stemming from replisome dissociation during DNA replication perturbation, we used a degron-based system for inducible proteolysis of a subunit of the replicative helicase. We show that MCM2-depleted cells activate a DNA damage response pathway and generate replication-associated DNA double-strand breaks (DSBs). Remarkably, these cells maintain some DNA synthesis in the absence of MCM2, and this requires the MCM8-9 complex, a paralog of the MCM2-7 replicative helicase. We show that MCM8-9 functions in a homologous recombination-based pathway downstream from RAD51, which is promoted by DSB induction. This RAD51/MCM8-9 axis is distinct from the recently described RAD52-dependent DNA synthesis pathway that operates in early mitosis at common fragile sites. We propose that stalled replication forks can be restarted in S phase via homologous recombination using MCM8-9 as an alternative replicative helicase.
Collapse
Affiliation(s)
- Toyoaki Natsume
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kohei Nishimura
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan
| | - Sheroy Minocherhomji
- Center for Chromosome Stability.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Rahul Bhowmick
- Center for Chromosome Stability.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Masato T Kanemaki
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
28
|
Kolinjivadi AM, Sannino V, de Antoni A, Técher H, Baldi G, Costanzo V. Moonlighting at replication forks - a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett 2017; 591:1083-1100. [PMID: 28079255 DOI: 10.1002/1873-3468.12556] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/27/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022]
Abstract
Coordination between DNA replication and DNA repair ensures maintenance of genome integrity, which is lost in cancer cells. Emerging evidence has linked homologous recombination (HR) proteins RAD51, BRCA1 and BRCA2 to the stability of nascent DNA. This function appears to be distinct from double-strand break (DSB) repair and is in part due to the prevention of MRE11-mediated degradation of nascent DNA at stalled forks. The role of RAD51 in fork protection resembles the activity described for its prokaryotic orthologue RecA, which prevents nuclease-mediated degradation of DNA and promotes replication fork restart in cells challenged by DNA-damaging agents. Here, we examine the mechanistic aspects of HR-mediated fork protection, addressing the crosstalk between HR and replication proteins.
Collapse
Affiliation(s)
| | - Vincenzo Sannino
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Anna de Antoni
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Hervé Técher
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Baldi
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Vincenzo Costanzo
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
29
|
Zhao L, Washington MT. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases. Genes (Basel) 2017; 8:genes8010024. [PMID: 28075396 PMCID: PMC5295019 DOI: 10.3390/genes8010024] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 01/05/2023] Open
Abstract
DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1) template switching and recombination-dependent DNA synthesis; and (2) translesion synthesis (TLS) using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - M Todd Washington
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
30
|
Roles of human POLD1 and POLD3 in genome stability. Sci Rep 2016; 6:38873. [PMID: 27974823 PMCID: PMC5156928 DOI: 10.1038/srep38873] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022] Open
Abstract
DNA replication is essential for cellular proliferation. If improperly controlled it can constitute a major source of genome instability, frequently associated with cancer and aging. POLD1 is the catalytic subunit and POLD3 is an accessory subunit of the replicative Pol δ polymerase, which also functions in DNA repair, as well as the translesion synthesis polymerase Pol ζ, whose catalytic subunit is REV3L. In cells depleted of POLD1 or POLD3 we found a differential but general increase in genome instability as manifested by DNA breaks, S-phase progression impairment and chromosome abnormalities. Importantly, we showed that both proteins are needed to maintain the proper amount of active replication origins and that POLD3-depletion causes anaphase bridges accumulation. In addition, POLD3-associated DNA damage showed to be dependent on RNA-DNA hybrids pointing toward an additional and specific role of this subunit in genome stability. Interestingly, a similar increase in RNA-DNA hybrids-dependent genome instability was observed in REV3L-depleted cells. Our findings demonstrate a key role of POLD1 and POLD3 in genome stability and S-phase progression revealing RNA-DNA hybrids-dependent effects for POLD3 that might be partly due to its Pol ζ interaction.
Collapse
|
31
|
Santos JC, Brianti MT, Almeida VR, Ortega MM, Fischer W, Haas R, Matheu A, Ribeiro ML. Helicobacter pylori infection modulates the expression of miRNAs associated with DNA mismatch repair pathway. Mol Carcinog 2016; 56:1372-1379. [PMID: 27862371 DOI: 10.1002/mc.22590] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/27/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Genetic and epigenetic inactivation of DNA mismatch repair (MMR) genes might lead to modifications in cancer-related gene expression and cancer development. Recently, it has been shown that the infection by Helicobacter pylori, the major causative agent of gastric cancer, induces DNA damage and inhibits MMR DNA repair. Also, it has been reported that microRNAs (miRs) have an important role in regulating genomic stability and MMR DNA repair. Thus, the aim of this study was to identify miRs regulating MMR pathway in H. pylori-associated gastric carcinogenesis. To address this question, a gastric epithelial cell line and AGS cancer gastric cells were infected with several H. pylori strains. MMR gene expression and miRs correlating with H. pylori strain infection were evaluated. The results showed that H. pylori infection significantly down-regulated the expression of all selected MMR genes. Also, H. pylori infection modulated the expression of several miRs (including miR-150-5p, miR-155-5p, and miR-3163), after 4, 8, and 12 h of infection. Computational prediction of candidate miRs and their predicted MMR targeting sites were obtained from TargetScan, mirDB, and MetaCore. The generated data indicated that the selected miRs (miR-150-5p, miR-155-5p, and miR-3163) could possibly target and modulate MMR genes (POLD3, MSH2, and MSH3, respectively). The target validation was performed using mimics and luciferase gene reporter assays. Briefly, this study shows that H. pylori impairs MMR DNA repair pathway and identifies miRs that regulate MMR gene expression in gastric cancer. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juliana C Santos
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, São Francisco University, Bragança Paulista, São Paulo, Brazil.,Women's Integrated Healthcare Center (CAISM), State University of Campinas, (UNICAMP) Campinas, São Paulo, Brazil
| | - Mitsue T Brianti
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Victor R Almeida
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Manoela M Ortega
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Wolfgang Fischer
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, München, Germany
| | - Rainer Haas
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, München, Germany
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, and IKERBASQUE, Basque Foundation, Bilbao, Spain
| | - Marcelo L Ribeiro
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, São Francisco University, Bragança Paulista, São Paulo, Brazil
| |
Collapse
|
32
|
Dilley RL, Verma P, Cho NW, Winters HD, Wondisford AR, Greenberg RA. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature 2016; 539:54-58. [PMID: 27760120 PMCID: PMC5384111 DOI: 10.1038/nature20099] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Abstract
Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10-15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC-PCNA-Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance.
Collapse
Affiliation(s)
- Robert L Dilley
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Priyanka Verma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Nam Woo Cho
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Harrison D Winters
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Anne R Wondisford
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|