1
|
Zhang X, Liang SB, Yi Z, Qiao Z, Xu B, Geng H, Wang H, Yin X, Tang M, Ge W, Xu YZ, Liang K, Fan YJ, Chen L. Global coupling of R-loop dynamics with RNA polymerase II modulates gene expression and early development of Drosophila. Nucleic Acids Res 2024:gkae933. [PMID: 39470713 DOI: 10.1093/nar/gkae933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
R-loops are involved in many biological processes in cells, yet the regulatory principles for R-loops in vivo and their impact on development remain to be explored. Here, we modified the CUT&Tag strategy to profile R-loops in Drosophila at multiple developmental stages. While high GC content promotes R-loop formation in mammalian cells, it is not required in Drosophila. In contrast, RNAPII abundance appears to be a universal inducing factor for R-loop formation, including active promoters and enhancers, and H3K27me3 decorated repressive regions and intergenic repeat sequences. Importantly, such a regulatory relationship is dynamically maintained throughout development, and development-related transcription factors may regulate RNAPII activation and R-loop dynamics. By ablating Spt6, we further showed the global R-loop induction coupled with RNAPII pausing. Importantly, depending on the gene length, genes underwent up- or down-regulation, both of which were largely reversed by rnh1 overexpression, suggesting that R-loops play a significant role in the divergent regulation of transcription by Spt6 ablation. DNA damage, defects in survival, and cuticle development were similarly alleviated by rnh1 overexpression. Altogether, our findings indicate that dynamic R-loop regulation is dictated by RNAPII pausing and transcription activity, and plays a feedback role in gene regulation, genome stability maintenance, and Drosophila development.
Collapse
Affiliation(s)
- Xianhong Zhang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shao-Bo Liang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhuoyun Yi
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaohui Qiao
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Xu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huichao Geng
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Honghong Wang
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Research Center for Medicine and Structural Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinhua Yin
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Mingliang Tang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yong-Zhen Xu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kaiwei Liang
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Research Center for Medicine and Structural Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Jie Fan
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Van Gils J, Karkar S, Barre A, Ley-Ngardigal S, Nothof S, Claverol S, Tokarski C, Trani JP, Chevalier R, Broucqsault N, El Yazidi C, Lacombe D, Fergelot P, Magdinier F. Transcriptome and acetylome profiling identify crucial steps of neuronal differentiation in Rubinstein-Taybi syndrome. Commun Biol 2024; 7:1331. [PMID: 39407026 PMCID: PMC11480426 DOI: 10.1038/s42003-024-06939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Rubinstein-Taybi syndrome (RTS) is a rare and severe genetic developmental disorder characterized by multiple congenital anomalies and intellectual disability. CREBBP and EP300, the two genes known to cause RTS encode transcriptional coactivators with a catalytic lysine acetyltransferase (KAT) activity. Loss of CBP or p300 function results in a deficit in protein acetylation, in particular at histones. In RTS, nothing is known on the consequences of the loss of histone acetylation on the transcriptomic profiles during neuronal differentiation. To address this question, we differentiated induced pluripotent stem cells from RTS patients carrying a recurrent CREBBP mutation that inactivates the KAT domain into cortical and pyramidal neurons. By comparing their acetylome and their transcriptome at different neuronal differentiation time points, we identified 25 specific acetylated histone residues altered in RTS. We also identified the transition between neural progenitors and immature neurons as a critical step of the differentiation process, with a delayed neuronal maturation in RTS. Overall, this study opens new perspectives in the definition of epigenetic biomarkers for RTS, whose methodology could be extended to other chromatinopathies.
Collapse
Affiliation(s)
- Julien Van Gils
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France.
| | - Slim Karkar
- Bordeaux Bioinformatic Center CBiB, University of Bordeaux, Bordeaux, France
| | - Aurélien Barre
- Bordeaux Bioinformatic Center CBiB, University of Bordeaux, Bordeaux, France
| | - Seyta Ley-Ngardigal
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Sophie Nothof
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Stéphane Claverol
- Bordeaux Proteomic Platform, University of Bordeaux, Bordeaux, France
| | - Caroline Tokarski
- Bordeaux Proteomic Platform, University of Bordeaux, Bordeaux, France
| | | | - Raphael Chevalier
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Claire El Yazidi
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Patricia Fergelot
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France
| | | |
Collapse
|
3
|
Ciabrelli F, Atinbayeva N, Pane A, Iovino N. Epigenetic inheritance and gene expression regulation in early Drosophila embryos. EMBO Rep 2024; 25:4131-4152. [PMID: 39285248 PMCID: PMC11467379 DOI: 10.1038/s44319-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences/UFRJ, 21941902, Rio de Janeiro, Brazil
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
4
|
Shahib AK, Rastegar M, van Wijnen AJ, Davie JR. Neurodevelopmental functions and activities of the KAT3 class of lysine acetyltransferases. Biochem Cell Biol 2024. [PMID: 39293094 DOI: 10.1139/bcb-2024-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
The human lysine acetyltransferases KAT3A (CREBBP) and KAT3B (EP300) are essential enzymes in gene regulation in the nucleus. Their ubiquitous expression in metazoan cell types controls cell proliferation and differentiation during development. This comprehensive review delves into the biological roles of KAT3A and KAT3B in neurodevelopment, shedding light on how alterations in their regulation or activity can potentially contribute to a spectrum of neurodegenerative diseases (e.g., Huntington's and Alzheimer's). We explore the pathophysiological implications of KAT3 function loss in these disorders, considering their conserved protein domains and biochemical functions in chromatin regulation. The discussion also underscores the crucial role of KAT3 proteins and their substrates in supporting the integration of key cell signaling pathways. Furthermore, the narrative highlights the interdependence of KAT3-mediated lysine acetylation with lysine methylation and arginine methylation. From a cellular perspective, KAT3-dependent signal integration at subnuclear domains is mediated by liquid-liquid phase separation in response to KAT3-mediated lysine acetylation. The disruption of these finely tuned regulatory processes underscores their pathological roles in neurodegeneration. This review also points to the exciting potential for future research in this field, inspiring further investigation and discovery in the area of neurodevelopment and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashraf K Shahib
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
5
|
Feng XA, Yamadi M, Fu Y, Ness KM, Liu C, Ahmed I, Bowman GD, Johnson ME, Ha T, Wu C. GAGA zinc finger transcription factor searches chromatin by 1D-3D facilitated diffusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.14.549009. [PMID: 37502885 PMCID: PMC10369947 DOI: 10.1101/2023.07.14.549009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
To elucidate how eukaryotic sequence-specific transcription factors (TFs) search for gene targets on chromatin, we used multi-color smFRET and single-particle imaging to track the diffusion of purified GAGA-Associated Factor (GAF) on DNA and nucleosomes. Monomeric GAF DNA-binding domain (DBD) bearing one zinc finger finds its cognate site by 1D or 3D diffusion on bare DNA and rapidly slides back-and-forth between naturally clustered motifs for seconds before escape. Multimeric, full-length GAF also finds clustered motifs on DNA by 1D-3D diffusion, but remains locked on target for longer periods. Nucleosome architecture effectively blocks GAF-DBD 1D-sliding into the histone core but favors retention of GAF-DBD when targeting solvent-exposed sites by 3D-diffusion. Despite the occlusive power of nucleosomes, 1D-3D facilitated diffusion enables GAF to effectively search for clustered cognate motifs in chromatin, providing a mechanism for navigation to nucleosome and nucleosome-free sites by a member of the largest TF family.
Collapse
Affiliation(s)
- Xinyu A. Feng
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maryam Yamadi
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yiben Fu
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kaitlin M. Ness
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Celina Liu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ishtiyaq Ahmed
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gregory D. Bowman
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Margaret E. Johnson
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Shendy NAM, Bikowitz M, Sigua LH, Zhang Y, Mercier A, Khashana Y, Nance S, Liu Q, Delahunty IM, Robinson S, Goel V, Rees MG, Ronan MA, Wang T, Kocak M, Roth JA, Wang Y, Freeman BB, Orr BA, Abraham BJ, Roussel MF, Schonbrunn E, Qi J, Durbin AD. Group 3 medulloblastoma transcriptional networks collapse under domain specific EP300/CBP inhibition. Nat Commun 2024; 15:3483. [PMID: 38664416 PMCID: PMC11045757 DOI: 10.1038/s41467-024-47102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.
Collapse
Affiliation(s)
- Noha A M Shendy
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa Bikowitz
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Logan H Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yang Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Audrey Mercier
- Tumor Cell Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yousef Khashana
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephanie Nance
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ian M Delahunty
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sarah Robinson
- Tumor Cell Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vanshita Goel
- Tumor Cell Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew G Rees
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mustafa Kocak
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Yingzhe Wang
- Preclinical Pharmacokinetics Shared Resource, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Burgess B Freeman
- Preclinical Pharmacokinetics Shared Resource, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Martine F Roussel
- Tumor Cell Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ernst Schonbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA.
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Hunt G, Vaid R, Pirogov S, Pfab A, Ziegenhain C, Sandberg R, Reimegård J, Mannervik M. Tissue-specific RNA Polymerase II promoter-proximal pause release and burst kinetics in a Drosophila embryonic patterning network. Genome Biol 2024; 25:2. [PMID: 38166964 PMCID: PMC10763363 DOI: 10.1186/s13059-023-03135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Formation of tissue-specific transcriptional programs underlies multicellular development, including dorsoventral (DV) patterning of the Drosophila embryo. This involves interactions between transcriptional enhancers and promoters in a chromatin context, but how the chromatin landscape influences transcription is not fully understood. RESULTS Here we comprehensively resolve differential transcriptional and chromatin states during Drosophila DV patterning. We find that RNA Polymerase II pausing is established at DV promoters prior to zygotic genome activation (ZGA), that pausing persists irrespective of cell fate, but that release into productive elongation is tightly regulated and accompanied by tissue-specific P-TEFb recruitment. DV enhancers acquire distinct tissue-specific chromatin states through CBP-mediated histone acetylation that predict the transcriptional output of target genes, whereas promoter states are more tissue-invariant. Transcriptome-wide inference of burst kinetics in different cell types revealed that while DV genes are generally characterized by a high burst size, either burst size or frequency can differ between tissues. CONCLUSIONS The data suggest that pausing is established by pioneer transcription factors prior to ZGA and that release from pausing is imparted by enhancer chromatin state to regulate bursting in a tissue-specific manner in the early embryo. Our results uncover how developmental patterning is orchestrated by tissue-specific bursts of transcription from Pol II primed promoters in response to enhancer regulatory cues.
Collapse
Affiliation(s)
- George Hunt
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Roshan Vaid
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergei Pirogov
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexander Pfab
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Rickard Sandberg
- Department Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Reimegård
- Department Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Mannervik
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
8
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
9
|
Mulet-Lazaro R, Delwel R. From Genotype to Phenotype: How Enhancers Control Gene Expression and Cell Identity in Hematopoiesis. Hemasphere 2023; 7:e969. [PMID: 37953829 PMCID: PMC10635615 DOI: 10.1097/hs9.0000000000000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023] Open
Abstract
Blood comprises a wide array of specialized cells, all of which share the same genetic information and ultimately derive from the same precursor, the hematopoietic stem cell (HSC). This diversity of phenotypes is underpinned by unique transcriptional programs gradually acquired in the process known as hematopoiesis. Spatiotemporal regulation of gene expression depends on many factors, but critical among them are enhancers-sequences of DNA that bind transcription factors and increase transcription of genes under their control. Thus, hematopoiesis involves the activation of specific enhancer repertoires in HSCs and their progeny, driving the expression of sets of genes that collectively determine morphology and function. Disruption of this tightly regulated process can have catastrophic consequences: in hematopoietic malignancies, dysregulation of transcriptional control by enhancers leads to misexpression of oncogenes that ultimately drive transformation. This review attempts to provide a basic understanding of enhancers and their role in transcriptional regulation, with a focus on normal and malignant hematopoiesis. We present examples of enhancers controlling master regulators of hematopoiesis and discuss the main mechanisms leading to enhancer dysregulation in leukemia and lymphoma.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
10
|
Bu H, Lan X, Cheng H, Pei C, Ouyang M, Chen Y, Huang X, Yu L, Tan Y. Development of an interfering peptide M1-20 with potent anti-cancer effects by targeting FOXM1. Cell Death Dis 2023; 14:533. [PMID: 37598210 PMCID: PMC10439915 DOI: 10.1038/s41419-023-06056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Disrupting protein-protein interactions (PPIs) has emerged as a promising strategy for cancer drug development. Interfering peptides disrupting PPIs can be rationally designed based on the structures of natural sequences mediating these interactions. Transcription factor FOXM1 overexpresses in multiple cancers and is considered an effective target for cancer therapeutic drug development. Using a rational design approach, we have generated a peptide library from the FOXM1 C-terminal sequence and screened FOXM1-binding peptides. Combining FOXM1 binding and cell inhibitory results, we have obtained a FOXM1-targeting interfering peptide M1-20 that is optimized from the natural parent peptide to the D-retro-inverso peptide. With improved stability characteristics, M1-20 inhibits proliferation and migration, and induces apoptosis of cancer cells. Mechanistically, M1-20 inhibits FOXM1 transcriptional activities by disrupting its interaction between the MuvB complex and the transcriptional co-activator CBP. These are consistent with the results that M1-20 suppresses cancer progression and metastasis without noticeable toxic and side effects in wild-type mice. These findings reveal that M1-20 has the potential to be developed as an anti-cancer drug candidate targeting FOXM1.
Collapse
Affiliation(s)
- Huitong Bu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Xianling Lan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Haojie Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Chaozhu Pei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Min Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Yan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaoqin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Li Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
11
|
Ciabrelli F, Rabbani L, Cardamone F, Zenk F, Löser E, Schächtle MA, Mazina M, Loubiere V, Iovino N. CBP and Gcn5 drive zygotic genome activation independently of their catalytic activity. SCIENCE ADVANCES 2023; 9:eadf2687. [PMID: 37083536 PMCID: PMC10121174 DOI: 10.1126/sciadv.adf2687] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Zygotic genome activation (ZGA) is a crucial step of embryonic development. So far, little is known about the role of chromatin factors during this process. Here, we used an in vivo RNA interference reverse genetic screen to identify chromatin factors necessary for embryonic development in Drosophila melanogaster. Our screen reveals that histone acetyltransferases (HATs) and histone deacetylases are crucial ZGA regulators. We demonstrate that Nejire (CBP/EP300 ortholog) is essential for the acetylation of histone H3 lysine-18 and lysine-27, whereas Gcn5 (GCN5/PCAF ortholog) for lysine-9 of H3 at ZGA, with these marks being enriched at all actively transcribed genes. Nonetheless, these HATs activate distinct sets of genes. Unexpectedly, individual catalytic dead mutants of either Nejire or Gcn5 can activate zygotic transcription (ZGA) and transactivate a reporter gene in vitro. Together, our data identify Nejire and Gcn5 as key regulators of ZGA.
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Leily Rabbani
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Francesco Cardamone
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- University of Freiburg, Faculty of Biology, Freiburg im Breisgau, Germany
| | - Fides Zenk
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Eva Löser
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Melanie A. Schächtle
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Marina Mazina
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | | | - Nicola Iovino
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
12
|
Pfab A, Belikov S, Keuper M, Jastroch M, Mannervik M. Inhibition of mitochondrial transcription by the neurotoxin MPP . Exp Cell Res 2023; 425:113536. [PMID: 36858342 DOI: 10.1016/j.yexcr.2023.113536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
The neurotoxin MPP+ triggers cell death of dopamine neurons and induces Parkinson's disease symptoms in mice and men, but the immediate transcriptional response to this neurotoxin has not been studied. We therefore treated human SH-SY5Y cells with a low dose (0.1 mM) of MPP+ and measured the effect on nascent transcription by precision run-on sequencing (PRO-seq). We found that transcription of the mitochondrial genome was significantly reduced already after 30 min, whereas nuclear gene transcription was unaffected. Inhibition of respiratory complex I by MPP+ led to reduced ATP production, that may explain the diminished activity of mitochondrial RNA polymerase. Our results show that MPP+ has a direct effect on mitochondrial function and transcription, and that other gene expression or epigenetic changes induced by this neurotoxin are secondary effects that reflect a cellular adaptation program.
Collapse
Affiliation(s)
- Alexander Pfab
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Sergey Belikov
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Michaela Keuper
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Martin Jastroch
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Mattias Mannervik
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
13
|
Bentley EP, Scholl D, Wright PE, Deniz AA. Coupling of binding and differential subdomain folding of the intrinsically disordered transcription factor CREB. FEBS Lett 2023; 597:917-932. [PMID: 36480418 PMCID: PMC10089947 DOI: 10.1002/1873-3468.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The cyclic AMP response element binding protein (CREB) contains a basic leucine zipper motif (bZIP) that forms a coiled coil structure upon dimerization and specific DNA binding. Although this state is well characterized, key features of CREB bZIP binding and folding are not well understood. We used single-molecule Förster resonance energy transfer (smFRET) to probe conformations of CREB bZIP subdomains. We found differential folding of the basic region and leucine zipper in response to different binding partners; a strong and previously unreported DNA-independent dimerization affinity; folding upon binding to nonspecific DNA; and evidence of long-range interdomain interactions in full-length CREB that modulate DNA binding. These studies provide new insights into DNA binding and dimerization and have implications for CREB function.
Collapse
Affiliation(s)
- Emily P. Bentley
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Daniel Scholl
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
14
|
Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems. Int J Mol Sci 2023; 24:ijms24032855. [PMID: 36769179 PMCID: PMC9917889 DOI: 10.3390/ijms24032855] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In higher eukaryotes, the regulation of developmental gene expression is determined by enhancers, which are often located at a large distance from the promoters they regulate. Therefore, the architecture of chromosomes and the mechanisms that determine the functional interaction between enhancers and promoters are of decisive importance in the development of organisms. Mammals and the model animal Drosophila have homologous key architectural proteins and similar mechanisms in the organization of chromosome architecture. This review describes the current progress in understanding the mechanisms of the formation and regulation of long-range interactions between enhancers and promoters at three well-studied key regulatory loci in Drosophila.
Collapse
|
15
|
Horowitz BB, Nanda S, Walhout AJ. A Transcriptional Cofactor Regulatory Network for the C. elegans Intestine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522920. [PMID: 36711629 PMCID: PMC9881946 DOI: 10.1101/2023.01.05.522920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chromatin modifiers and transcriptional cofactors (collectively referred to as CFs) work with DNA-binding transcription factors (TFs) to regulate gene expression. In multicellular eukaryotes, distinct tissues each execute their own gene expression program for accurate differentiation and subsequent functionality. While the function of TFs in differential gene expression has been studied in detail in many systems, the contribution of CFs has remained less explored. Here we uncovered the contributions of CFs to gene regulation in the Caenorhabditis elegans intestine. We first annotated 366 CFs encoded by the C. elegans genome and assembled a library of 335 RNAi clones. Using this library, we analyzed the effects of individually depleting these CFs on the expression of 19 fluorescent transcriptional reporters in the intestine and identified 216 regulatory interactions. We found that different CFs interact specifically with different promoters, and that both essential and intestinally expressed CFs exhibit the highest proportion of interactions. We did not find all members of CF complexes acting on the same set of reporters but instead found diversity in the promoter targets of each complex component. Finally, we found that previously identified activation mechanisms for the acdh-1 promoter use different CFs and TFs. Overall, we demonstrate that CFs function specifically rather than ubiquitously at intestinal promoters and provide an RNAi resource for reverse genetic screens.
Collapse
|
16
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
17
|
Abstract
Efforts to decrease the adverse effects of nuclear receptor (NR) drugs have yielded experimental agonists that produce better outcomes in mice. Some of these agonists have been shown to cause different, not just less intense, on-target transcriptomic effects; however, a structural explanation for such agonist-specific effects remains unknown. Here, we show that partial agonists of the NR peroxisome proliferator-associated receptor γ (PPARγ), which induce better outcomes in mice compared to clinically utilized type II diabetes PPARγ-binding drugs thiazolidinediones (TZDs), also favor a different group of coactivator peptides than the TZDs. We find that PPARγ full agonists can also be biased relative to each other in terms of coactivator peptide binding. We find differences in coactivator-PPARγ bonding between the coactivator subgroups which allow agonists to favor one group of coactivator peptides over another, including differential bonding to a C-terminal residue of helix 4. Analysis of all available NR-coactivator structures indicates that such differential helix 4 bonding persists across other NR-coactivator complexes, providing a general structural mechanism of biased agonism for many NRs. Further work will be necessary to determine if such bias translates into altered coactivator occupancy and physiology in cells.
Collapse
|
18
|
McKowen JK, Avva SVSP, Maharjan M, Duarte FM, Tome JM, Judd J, Wood JL, Negedu S, Dong Y, Lis JT, Hart CM. The Drosophila BEAF insulator protein interacts with the polybromo subunit of the PBAP chromatin remodeling complex. G3 (BETHESDA, MD.) 2022; 12:jkac223. [PMID: 36029240 PMCID: PMC9635645 DOI: 10.1093/g3journal/jkac223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022]
Abstract
The Drosophila Boundary Element-Associated Factor of 32 kDa (BEAF) binds in promoter regions of a few thousand mostly housekeeping genes. BEAF is implicated in both chromatin domain boundary activity and promoter function, although molecular mechanisms remain elusive. Here, we show that BEAF physically interacts with the polybromo subunit (Pbro) of PBAP, a SWI/SNF-class chromatin remodeling complex. BEAF also shows genetic interactions with Pbro and other PBAP subunits. We examine the effect of this interaction on gene expression and chromatin structure using precision run-on sequencing and micrococcal nuclease sequencing after RNAi-mediated knockdown in cultured S2 cells. Our results are consistent with the interaction playing a subtle role in gene activation. Fewer than 5% of BEAF-associated genes were significantly affected after BEAF knockdown. Most were downregulated, accompanied by fill-in of the promoter nucleosome-depleted region and a slight upstream shift of the +1 nucleosome. Pbro knockdown caused downregulation of several hundred genes and showed a correlation with BEAF knockdown but a better correlation with promoter-proximal GAGA factor binding. Micrococcal nuclease sequencing supports that BEAF binds near housekeeping gene promoters while Pbro is more important at regulated genes. Yet there is a similar general but slight reduction of promoter-proximal pausing by RNA polymerase II and increase in nucleosome-depleted region nucleosome occupancy after knockdown of either protein. We discuss the possibility of redundant factors keeping BEAF-associated promoters active and masking the role of interactions between BEAF and the Pbro subunit of PBAP in S2 cells. We identify Facilitates Chromatin Transcription (FACT) and Nucleosome Remodeling Factor (NURF) as candidate redundant factors.
Collapse
Affiliation(s)
- J Keller McKowen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Satya V S P Avva
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mukesh Maharjan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabiana M Duarte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Jamie L Wood
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sunday Negedu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yunkai Dong
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Craig M Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
19
|
Hendy O, Serebreni L, Bergauer K, Muerdter F, Huber L, Nemčko F, Stark A. Developmental and housekeeping transcriptional programs in Drosophila require distinct chromatin remodelers. Mol Cell 2022; 82:3598-3612.e7. [PMID: 36113480 PMCID: PMC7614073 DOI: 10.1016/j.molcel.2022.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/13/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023]
Abstract
Gene transcription is a highly regulated process in all animals. In Drosophila, two major transcriptional programs, housekeeping and developmental, have promoters with distinct regulatory compatibilities and nucleosome organization. However, it remains unclear how the differences in chromatin structure relate to the distinct regulatory properties and which chromatin remodelers are required for these programs. Using rapid degradation of core remodeler subunits in Drosophila melanogaster S2 cells, we demonstrate that developmental gene transcription requires SWI/SNF-type complexes, primarily to maintain distal enhancer accessibility. In contrast, wild-type-level housekeeping gene transcription requires the Iswi and Ino80 remodelers to maintain nucleosome positioning and phasing at promoters. These differential remodeler dependencies relate to different DNA-sequence-intrinsic nucleosome affinities, which favor a default ON state for housekeeping but a default OFF state for developmental gene transcription. Overall, our results demonstrate how different transcription-regulatory strategies are implemented by DNA sequence, chromatin structure, and remodeler activity.
Collapse
Affiliation(s)
- Oliver Hendy
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
| | - Leonid Serebreni
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
| | - Katharina Bergauer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Felix Muerdter
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Lukas Huber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Filip Nemčko
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Medical University of Vienna, Vienna BioCenter (VBC), Vienna 1030, Austria.
| |
Collapse
|
20
|
p300/CBP sustains Polycomb silencing by non-enzymatic functions. Mol Cell 2022; 82:3580-3597.e9. [DOI: 10.1016/j.molcel.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022]
|
21
|
Kinetic principles underlying pioneer function of GAGA transcription factor in live cells. Nat Struct Mol Biol 2022; 29:665-676. [PMID: 35835866 PMCID: PMC10177624 DOI: 10.1038/s41594-022-00800-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
How pioneer factors interface with chromatin to promote accessibility for transcription control is poorly understood in vivo. Here, we directly visualize chromatin association by the prototypical GAGA pioneer factor (GAF) in live Drosophila hemocytes. Single-particle tracking reveals that most GAF is chromatin bound, with a stable-binding fraction showing nucleosome-like confinement residing on chromatin for more than 2 min, far longer than the dynamic range of most transcription factors. These kinetic properties require the full complement of GAF's DNA-binding, multimerization and intrinsically disordered domains, and are autonomous from recruited chromatin remodelers NURF and PBAP, whose activities primarily benefit GAF's neighbors such as Heat Shock Factor. Evaluation of GAF kinetics together with its endogenous abundance indicates that, despite on-off dynamics, GAF constitutively and fully occupies major chromatin targets, thereby providing a temporal mechanism that sustains open chromatin for transcriptional responses to homeostatic, environmental and developmental signals.
Collapse
|
22
|
Prudêncio P, Savisaar R, Rebelo K, Martinho RG, Carmo-Fonseca M. Transcription and splicing dynamics during early Drosophila development. RNA (NEW YORK, N.Y.) 2022; 28:139-161. [PMID: 34667107 PMCID: PMC8906543 DOI: 10.1261/rna.078933.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/23/2021] [Indexed: 05/03/2023]
Abstract
Widespread cotranscriptional splicing has been demonstrated from yeast to human. However, most studies to date addressing the kinetics of splicing relative to transcription used either Saccharomyces cerevisiae or metazoan cultured cell lines. Here, we adapted native elongating transcript sequencing technology (NET-seq) to measure cotranscriptional splicing dynamics during the early developmental stages of Drosophila melanogaster embryos. Our results reveal the position of RNA polymerase II (Pol II) when both canonical and recursive splicing occur. We found heterogeneity in splicing dynamics, with some RNAs spliced immediately after intron transcription, whereas for other transcripts no splicing was observed over the first 100 nt of the downstream exon. Introns that show splicing completion before Pol II has reached the end of the downstream exon are necessarily intron-defined. We studied the splicing dynamics of both nascent pre-mRNAs transcribed in the early embryo, which have few and short introns, as well as pre-mRNAs transcribed later in embryonic development, which contain multiple long introns. As expected, we found a relationship between the proportion of spliced reads and intron size. However, intron definition was observed at all intron sizes. We further observed that genes transcribed in the early embryo tend to be isolated in the genome whereas genes transcribed later are often overlapped by a neighboring convergent gene. In isolated genes, transcription termination occurred soon after the polyadenylation site, while in overlapped genes, Pol II persisted associated with the DNA template after cleavage and polyadenylation of the nascent transcript. Taken together, our data unravel novel dynamic features of Pol II transcription and splicing in the developing Drosophila embryo.
Collapse
Affiliation(s)
- Pedro Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rosina Savisaar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Kenny Rebelo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rui Gonçalo Martinho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
- Department of Medical Sciences and Institute for Biomedicine (iBiMED), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
23
|
Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 2022; 23:329-349. [PMID: 35042977 DOI: 10.1038/s41580-021-00441-y] [Citation(s) in RCA: 292] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a widespread and versatile protein post-translational modification. Lysine acetyltransferases and lysine deacetylases catalyse the addition or removal, respectively, of acetyl groups at both histone and non-histone targets. In this Review, we discuss several features of acetylation and deacetylation, including their diversity of targets, rapid turnover, exquisite sensitivity to the concentrations of the cofactors acetyl-CoA, acyl-CoA and NAD+, and tight interplay with metabolism. Histone acetylation and non-histone protein acetylation influence a myriad of cellular and physiological processes, including transcription, phase separation, autophagy, mitosis, differentiation and neural function. The activity of lysine acetyltransferases and lysine deacetylases can, in turn, be regulated by metabolic states, diet and specific small molecules. Histone acetylation has also recently been shown to mediate cellular memory. These features enable acetylation to integrate the cellular state with transcriptional output and cell-fate decisions.
Collapse
Affiliation(s)
- Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
24
|
Böttcher R, Schmidts I, Nitschko V, Duric P, Förstemann K. RNA polymerase II is recruited to DNA double-strand breaks for dilncRNA transcription in Drosophila. RNA Biol 2021; 19:68-77. [PMID: 34965182 PMCID: PMC8786327 DOI: 10.1080/15476286.2021.2014694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
DNA double-strand breaks are among the most toxic lesions that can occur in a genome and their faithful repair is thus of great importance. Recent findings have uncovered local transcription that initiates at the break and forms a non-coding transcript, called damage-induced long non-coding RNA (dilncRNA), which helps to coordinate the DNA transactions necessary for repair. We provide nascent RNA sequencing-based evidence that RNA polymerase II transcribes the dilncRNA in Drosophila and that this is more efficient for DNA breaks in an intron-containing gene, consistent with the higher damage-induced siRNA levels downstream of an intron. The spliceosome thus stimulates recruitment of RNA polymerase II to the break, rather than merely promoting the annealing of sense and antisense RNA to form the siRNA precursor. In contrast, RNA polymerase III nascent RNA libraries did not contain reads corresponding to the cleaved loci and selective inhibition of RNA polymerase III did not reduce the yield of damage-induced siRNAs. Finally, the damage-induced siRNA density was unchanged downstream of a T8 sequence, which terminates RNA polymerase III transcription. We thus found no evidence for a participation of RNA polymerase III in dilncRNA transcription in cultured Drosophila cells.
Collapse
Affiliation(s)
- Romy Böttcher
- Department. Of Biochemistry and Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Ines Schmidts
- Department. Of Biochemistry and Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Volker Nitschko
- Department. Of Biochemistry and Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Petar Duric
- Department. Of Biochemistry and Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Klaus Förstemann
- Department. Of Biochemistry and Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
25
|
Shaukat A, Khan MHF, Ahmad H, Umer Z, Tariq M. Interplay Between BALL and CREB Binding Protein Maintains H3K27 Acetylation on Active Genes in Drosophila. Front Cell Dev Biol 2021; 9:740866. [PMID: 34650987 PMCID: PMC8509297 DOI: 10.3389/fcell.2021.740866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
CREB binding protein (CBP) is a multifunctional transcriptional co-activator that interacts with a variety of transcription factors and acts as a histone acetyltransferase. In Drosophila, CBP mediated acetylation of histone H3 lysine 27 (H3K27ac) is a known hallmark of gene activation regulated by trithorax group proteins (trxG). Recently, we have shown that a histone kinase Ballchen (BALL) substantially co-localizes with H3K27ac at trxG target loci and is required to maintain gene activation in Drosophila. Here, we report a previously unknown interaction between BALL and CBP, which positively regulates H3K27ac. Analysis of genome-wide binding profile of BALL and CBP reveals major overlap and their co-localization at actively transcribed genes. We show that BALL biochemically interacts with CBP and depletion of BALL results in drastic reduction in H3K27ac. Together, these results demonstrate a previously unknown synergy between BALL and CBP and reveals a potentially new pathway required to maintain gene activation during development.
Collapse
Affiliation(s)
- Ammad Shaukat
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Haider Farooq Khan
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Hina Ahmad
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zain Umer
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Tariq
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
26
|
Recently Evolved Enhancers Emerge with High Interindividual Variability and Less Frequently Associate with Disease. Cell Rep 2021; 31:107799. [PMID: 32579926 DOI: 10.1016/j.celrep.2020.107799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/23/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in non-coding regulatory DNA such as enhancers underlie a wide variety of diseases including developmental disorders and cancer. As enhancers rapidly evolve, understanding their function and configuration in non-human disease models can have important clinical applications. Here, we analyze enhancer configurations in tissues isolated from the common marmoset, a widely used primate model for human disease. Integrating these data with human and mouse data, we find that enhancers containing trait-associated variants are preferentially conserved. In contrast, most human-specific enhancers are highly variable between individuals, with a subset failing to contact promoters. These are located further away from genes and more often reside in inactive B-compartments. Our data show that enhancers typically emerge as instable elements with minimal biological impact prior to their integration in a transcriptional program. Furthermore, our data provide insight into which trait variations in enhancers can be faithfully modeled using the common marmoset.
Collapse
|
27
|
Abstract
Nucleosomes wrap DNA and impede access for the machinery of transcription. The core histones that constitute nucleosomes are subject to a diversity of posttranslational modifications, or marks, that impact the transcription of genes. Their functions have sometimes been difficult to infer because the enzymes that write and read them are complex, multifunctional proteins. Here, we examine the evidence for the functions of marks and argue that the major marks perform a fairly small number of roles in either promoting transcription or preventing it. Acetylations and phosphorylations on the histone core disrupt histone-DNA contacts and/or destabilize nucleosomes to promote transcription. Ubiquitylations stimulate methylations that provide a scaffold for either the formation of silencing complexes or resistance to those complexes, and carry a memory of the transcriptional state. Tail phosphorylations deconstruct silencing complexes in particular contexts. We speculate that these fairly simple roles form the basis of transcriptional regulation by histone marks.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| |
Collapse
|
28
|
Hsu E, Zemke NR, Berk AJ. Promoter-specific changes in initiation, elongation, and homeostasis of histone H3 acetylation during CBP/p300 inhibition. eLife 2021; 10:63512. [PMID: 33704060 PMCID: PMC8009678 DOI: 10.7554/elife.63512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Regulation of RNA polymerase II (Pol2) elongation in the promoter-proximal region is an important and ubiquitous control point for gene expression in metazoans. We report that transcription of the adenovirus 5 E4 region is regulated during the release of paused Pol2 into productive elongation by recruitment of the super-elongation complex, dependent on promoter H3K18/27 acetylation by CBP/p300. We also establish that this is a general transcriptional regulatory mechanism that applies to ~7% of expressed protein-coding genes in primary human airway epithelial cells. We observed that a homeostatic mechanism maintains promoter, but not enhancer, H3K18/27ac in response to extensive inhibition of CBP/p300 acetyl transferase activity by the highly specific small molecule inhibitor A-485. Further, our results suggest a function for BRD4 association at enhancers in regulating paused Pol2 release at nearby promoters. Taken together, our results uncover the processes regulating transcriptional elongation by promoter region histone H3 acetylation and homeostatic maintenance of promoter, but not enhancer, H3K18/27ac in response to inhibition of CBP/p300 acetyl transferase activity.
Collapse
Affiliation(s)
- Emily Hsu
- Molecular Biology Institute, UCLA, Los Angeles, United States
| | - Nathan R Zemke
- Molecular Biology Institute, UCLA, Los Angeles, United States
| | - Arnold J Berk
- Molecular Biology Institute, UCLA, Los Angeles, United States.,Department of Microbiology, UCLA, Los Angeles, United States
| |
Collapse
|
29
|
Chetverina D, Erokhin M, Schedl P. GAGA factor: a multifunctional pioneering chromatin protein. Cell Mol Life Sci 2021; 78:4125-4141. [PMID: 33528710 DOI: 10.1007/s00018-021-03776-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
The Drosophila GAGA factor (GAF) is a multifunctional protein implicated in nucleosome organization and remodeling, activation and repression of gene expression, long distance enhancer-promoter communication, higher order chromosome structure, and mitosis. This broad range of activities poses questions about how a single protein can perform so many seemingly different and unrelated functions. Current studies argue that GAF acts as a "pioneer" factor, generating nucleosome-free regions of chromatin for different classes of regulatory elements. The removal of nucleosomes from regulatory elements in turn enables other factors to bind to these elements and carry out their specialized functions. Consistent with this view, GAF associates with a collection of chromatin remodelers and also interacts with proteins implicated in different regulatory functions. In this review, we summarize the known activities of GAF and the functions of its protein partners.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
30
|
The corepressors GPS2 and SMRT control enhancer and silencer remodeling via eRNA transcription during inflammatory activation of macrophages. Mol Cell 2021; 81:953-968.e9. [PMID: 33503407 DOI: 10.1016/j.molcel.2020.12.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
While the role of transcription factors and coactivators in controlling enhancer activity and chromatin structure linked to gene expression is well established, the involvement of corepressors is not. Using inflammatory macrophage activation as a model, we investigate here a corepressor complex containing GPS2 and SMRT both genome-wide and at the Ccl2 locus, encoding the chemokine CCL2 (MCP-1). We report that corepressors co-occupy candidate enhancers along with the coactivators CBP (H3K27 acetylase) and MED1 (mediator) but act antagonistically by repressing eRNA transcription-coupled H3K27 acetylation. Genome editing, transcriptional interference, and cistrome analysis reveals that apparently related enhancer and silencer elements control Ccl2 transcription in opposite ways. 4C-seq indicates that corepressor depletion or inflammatory signaling functions mechanistically similarly to trigger enhancer activation. In ob/ob mice, adipose tissue macrophage-selective depletion of the Ccl2 enhancer-transcribed eRNA reduces metaflammation. Thus, the identified corepressor-eRNA-chemokine pathway operates in vivo and suggests therapeutic opportunities by targeting eRNAs in immuno-metabolic diseases.
Collapse
|
31
|
Kyrchanova O, Georgiev P. Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. Int J Mol Sci 2021; 22:ijms22020671. [PMID: 33445415 PMCID: PMC7828040 DOI: 10.3390/ijms22020671] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
In higher eukaryotes, enhancers determine the activation of developmental gene transcription in specific cell types and stages of embryogenesis. Enhancers transform the signals produced by various transcription factors within a given cell, activating the transcription of the targeted genes. Often, developmental genes can be associated with dozens of enhancers, some of which are located at large distances from the promoters that they regulate. Currently, the mechanisms underlying specific distance interactions between enhancers and promoters remain poorly understood. This review briefly describes the properties of enhancers and discusses the mechanisms of distance interactions and potential proteins involved in this process.
Collapse
|
32
|
Mazina MY, Vorobyeva NE. Chromatin Modifiers in Transcriptional Regulation: New Findings and Prospects. Acta Naturae 2021; 13:16-30. [PMID: 33959384 PMCID: PMC8084290 DOI: 10.32607/actanaturae.11101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 02/04/2023] Open
Abstract
Histone-modifying and remodeling complexes are considered the main coregulators that affect transcription by changing the chromatin structure. Coordinated action by these complexes is essential for the transcriptional activation of any eukaryotic gene. In this review, we discuss current trends in the study of histone modifiers and chromatin remodelers, including the functional impact of transcriptional proteins/ complexes i.e., "pioneers"; remodeling and modification of non-histone proteins by transcriptional complexes; the supplementary functions of the non-catalytic subunits of remodelers, and the participation of histone modifiers in the "pause" of RNA polymerase II. The review also includes a scheme illustrating the mechanisms of recruitment of the main classes of remodelers and chromatin modifiers to various sites in the genome and their functional activities.
Collapse
Affiliation(s)
- M. Yu. Mazina
- Institute of Gene Biology RAS, Group of transcriptional complexes dynamics, Moscow, 119334 Russia
| | - N. E. Vorobyeva
- Institute of Gene Biology RAS, Group of transcriptional complexes dynamics, Moscow, 119334 Russia
| |
Collapse
|
33
|
Vaid R, Wen J, Mannervik M. Release of promoter-proximal paused Pol II in response to histone deacetylase inhibition. Nucleic Acids Res 2020; 48:4877-4890. [PMID: 32297950 PMCID: PMC7229826 DOI: 10.1093/nar/gkaa234] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
A correlation between histone acetylation and transcription has been noted for a long time, but little is known about what step(s) in the transcription cycle is influenced by acetylation. We have examined the immediate transcriptional response to histone deacetylase (HDAC) inhibition, and find that release of promoter–proximal paused RNA polymerase II (Pol II) into elongation is stimulated, whereas initiation is not. Although histone acetylation is elevated globally by HDAC inhibition, less than 100 genes respond within 10 min. These genes are highly paused, are strongly associated with the chromatin regulators NURF and Trithorax, display a greater increase in acetylation of the first nucleosomes than other genes, and become transcriptionally activated by HDAC inhibition. Among these rapidly up-regulated genes are HDAC1 (Rpd3) and subunits of HDAC-containing co-repressor complexes, demonstrating feedback regulation upon HDAC inhibition. Our results suggest that histone acetylation stimulates transcription of paused genes by release of Pol II into elongation, and that increased acetylation is not a consequence of their enhanced expression. We propose that HDACs are major regulators of Pol II pausing and that this partly explains the presence of HDACs at active genes.
Collapse
Affiliation(s)
- Roshan Vaid
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Jiayu Wen
- Dept. Genome Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Mattias Mannervik
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
34
|
DeLuca SZ, Ghildiyal M, Pang LY, Spradling AC. Differentiating Drosophila female germ cells initiate Polycomb silencing by regulating PRC2-interacting proteins. eLife 2020; 9:e56922. [PMID: 32773039 PMCID: PMC7438113 DOI: 10.7554/elife.56922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 01/18/2023] Open
Abstract
Polycomb silencing represses gene expression and provides a molecular memory of chromatin state that is essential for animal development. We show that Drosophila female germline stem cells (GSCs) provide a powerful system for studying Polycomb silencing. GSCs have a non-canonical distribution of PRC2 activity and lack silenced chromatin like embryonic progenitors. As GSC daughters differentiate into nurse cells and oocytes, nurse cells, like embryonic somatic cells, silence genes in traditional Polycomb domains and in generally inactive chromatin. Developmentally controlled expression of two Polycomb repressive complex 2 (PRC2)-interacting proteins, Pcl and Scm, initiate silencing during differentiation. In GSCs, abundant Pcl inhibits PRC2-dependent silencing globally, while in nurse cells Pcl declines and newly induced Scm concentrates PRC2 activity on traditional Polycomb domains. Our results suggest that PRC2-dependent silencing is developmentally regulated by accessory proteins that either increase the concentration of PRC2 at target sites or inhibit the rate that PRC2 samples chromatin.
Collapse
Affiliation(s)
- Steven Z DeLuca
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Megha Ghildiyal
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Liang-Yu Pang
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| |
Collapse
|
35
|
Climent-Cantó P, Carbonell A, Tatarski M, Reina O, Bujosa P, Font-Mateu J, Bernués J, Beato M, Azorín F. The embryonic linker histone dBigH1 alters the functional state of active chromatin. Nucleic Acids Res 2020; 48:4147-4160. [PMID: 32103264 PMCID: PMC7192587 DOI: 10.1093/nar/gkaa122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
Linker histones H1 are principal chromatin components, whose contribution to the epigenetic regulation of chromatin structure and function is not fully understood. In metazoa, specific linker histones are expressed in the germline, with female-specific H1s being normally retained in the early-embryo. Embryonic H1s are present while the zygotic genome is transcriptionally silent and they are replaced by somatic variants upon activation, suggesting a contribution to transcriptional silencing. Here we directly address this question by ectopically expressing dBigH1 in Drosophila S2 cells, which lack dBigH1. We show that dBigH1 binds across chromatin, replaces somatic dH1 and reduces nucleosome repeat length (NRL). Concomitantly, dBigH1 expression down-regulates gene expression by impairing RNApol II binding and histone acetylation. These effects depend on the acidic N-terminal ED-domain of dBigH1 since a truncated form lacking this domain binds across chromatin and replaces dH1 like full-length dBigH1, but it does not affect NRL either transcription. In vitro reconstitution experiments using Drosophila preblastodermic embryo extracts corroborate these results. Altogether these results suggest that the negatively charged N-terminal tail of dBigH1 alters the functional state of active chromatin compromising transcription.
Collapse
Affiliation(s)
- Paula Climent-Cantó
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Milos Tatarski
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Paula Bujosa
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jofre Font-Mateu
- Centre de Regulació Genòmica (CRG). The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jordi Bernués
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG). The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| |
Collapse
|
36
|
Wang Y, Chen Y, Bao L, Zhang B, Wang JE, Kumar A, Xing C, Wang Y, Luo W. CHD4 Promotes Breast Cancer Progression as a Coactivator of Hypoxia-Inducible Factors. Cancer Res 2020; 80:3880-3891. [PMID: 32699137 DOI: 10.1158/0008-5472.can-20-1049] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Recruitment of RNA polymerase II to hypoxia-inducible factor (HIF) target genes under normoxia is a prerequisite for HIF-mediated transactivation. However, the underlying mechanism of this recruitment remains unknown. Here we report that chromodomain helicase DNA-binding protein 4 (CHD4) physically interacts with α and β subunits of HIF1 and HIF2 and enhances HIF-driven transcriptional programs to promote breast cancer progression. Loss of HIF1/2α abolished CHD4-mediated breast tumor growth in mice. In breast cancer cells under normoxia, CHD4 enrichment at HIF target gene promoters increased RNA polymerase II loading through p300. Hypoxia further promoted CHD4 binding to the chromatin via HIF1/2α, where CHD4 in turn enhanced recruitment of HIF1α, leading to HIF target gene transcription. CHD4 was upregulated and correlated with HIF target gene expression in human breast tumors; upregulation of CHD4 and other known HIF coactivators in human breast tumors was mutually exclusive. Furthermore, CHD4 was associated with poor overall survival of patients with breast cancer. Collectively, these findings reveal a new fundamental mechanism of HIF regulation in breast cancer, which has clinical relevance. SIGNIFICANCE: This study identifies CHD4 as a HIF coactivator and elucidates the fundamental mechanism underlying CHD4-mediated HIF transactivation in breast tumors.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Yan Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Lei Bao
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Bo Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Jennifer E Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas.,Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, Texas
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas. .,Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, Texas
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas. .,Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
37
|
Zhang B, Gu X, Han X, Gao Q, Liu J, Guo T, Gao D. Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells. Clin Epigenetics 2020; 12:47. [PMID: 32183903 PMCID: PMC7079383 DOI: 10.1186/s13148-020-00835-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) is highly expressed in glioblastoma (GBM) and blocking its expression can inhibit the initiation and development of GBM. GDNF is a dual promoter gene, and the promoter II with two enhancers and two silencers plays a major role in transcription initiation. We had previously reported that histone hyperacetylation and DNA hypermethylation in GDNF promoter II region result in high transcription of GDNF in GBM cells, but the mechanism remains unclear. In this study, we investigated whether these modifications synergistically regulate high GDNF transcription in GBM. RESULTS Cyclic AMP response element binding protein (CREB) expression and phosphorylation at S133 were significantly increased in human GBM tissues and GBM cell lines (U251 and U343). In U251 GBM cells, high expressed CREB significantly enhanced GDNF transcription and promoter II activity. CREB regulated GDNF transcription via the cyclic AMP response elements (CREs) in enhancer II and silencer II of GDNF promoter II. However, the two CREs played opposite regulatory roles. Interestingly, hypermethylation of CRE in silencer II occurred in GBM tissues and cells which led to decreased and increased phosphorylated CREB (pCREB) binding to silencer II and enhancer II, respectively. Moreover, pCREB recruited CREB binding protein (CBP) with histone acetylase activity to the CRE of GDNF enhancer II, thereby increasing histone H3 acetylation and RNA polymerase II recruitment there and at the transcription start site (TSS), and promoted GDNF high transcription in U251 cells. The results indicated that high GDNF transcription was attributable to DNA hypermethylation in CRE of GDNF silencer II increasing pCREB binding to CRE in enhancer II, which enhanced CBP recruitment, histone H3 acetylation, and RNA polymerase II recruitment there and at the TSS. CONCLUSIONS Our results demonstrate that pCREB-induced crosstalk between DNA methylation and histone acetylation at the GDNF promoter II enhanced GDNF high transcription, providing a new perspective for GBM treatment.
Collapse
Affiliation(s)
- Baole Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiaohe Gu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiao Han
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Qing Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jie Liu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tingwen Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
38
|
Trizzino M, Barbieri E, Petracovici A, Wu S, Welsh SA, Owens TA, Licciulli S, Zhang R, Gardini A. The Tumor Suppressor ARID1A Controls Global Transcription via Pausing of RNA Polymerase II. Cell Rep 2019; 23:3933-3945. [PMID: 29949775 DOI: 10.1016/j.celrep.2018.05.097] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/20/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
AT-rich interactive domain-containing proteins 1A and 1B (ARID1A and ARID1B) are mutually exclusive subunits of the chromatin remodeler SWI/SNF. ARID1A is the most frequently mutated chromatin regulator across all cancers, and ovarian clear cell carcinoma (OCCC) carries the highest prevalence of ARID1A mutations (∼57%). Despite evidence implicating ARID1A in tumorigenesis, the mechanism remains elusive. Here, we demonstrate that ARID1A binds active regulatory elements in OCCC. Depletion of ARID1A represses RNA polymerase II (RNAPII) transcription but results in modest changes to accessibility. Specifically, pausing of RNAPII is severely impaired after loss of ARID1A. Compromised pausing results in transcriptional dysregulation of active genes, which is compensated by upregulation of ARID1B. However, a subset of ARID1A-dependent genes is not rescued by ARID1B, including many p53 and estrogen receptor (ESR1) targets. Our results provide insight into ARID1A-mediated tumorigenesis and unveil functions of SWI/SNF in modulating RNAPII dynamics.
Collapse
Affiliation(s)
- Marco Trizzino
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Elisa Barbieri
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Ana Petracovici
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Shuai Wu
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sarah A Welsh
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Tori A Owens
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Silvia Licciulli
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Rugang Zhang
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Alessandro Gardini
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Sajwan S, Mannervik M. Gene activation by dCas9-CBP and the SAM system differ in target preference. Sci Rep 2019; 9:18104. [PMID: 31792240 PMCID: PMC6888908 DOI: 10.1038/s41598-019-54179-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
Gene overexpression through the targeting of transcription activation domains to regulatory DNA via catalytically defective Cas9 (dCas9) represents a powerful approach to investigate gene function as well as the mechanisms of gene control. To date, the most efficient dCas9-based activator is the Synergistic Activation Mediator (SAM) system whereby transcription activation domains are directly fused to dCas9 as well as tethered through MS2 loops engineered into the gRNA. Here, we show that dCas9 fused to the catalytic domain of the histone acetyltransferase CBP is a more potent activator than the SAM system at some loci, but less efficient at other locations in Drosophila cells. Our results suggest that different rate-limiting steps in the transcription cycle are affected by dCas9-CBP and the SAM system, and that comparing these activators may be useful for mechanistic studies of transcription as well as for increasing the number of hits in genome-wide overexpression screens.
Collapse
Affiliation(s)
- Suresh Sajwan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
40
|
Talbert PB, Meers MP, Henikoff S. Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nat Rev Genet 2019; 20:283-297. [PMID: 30886348 DOI: 10.1038/s41576-019-0105-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sophisticated gene-regulatory mechanisms probably evolved in prokaryotes billions of years before the emergence of modern eukaryotes, which inherited the same basic enzymatic machineries. However, the epigenomic landscapes of eukaryotes are dominated by nucleosomes, which have acquired roles in genome packaging, mitotic condensation and silencing parasitic genomic elements. Although the molecular mechanisms by which nucleosomes are displaced and modified have been described, just how transcription factors, histone variants and modifications and chromatin regulators act on nucleosomes to regulate transcription is the subject of considerable ongoing study. We explore the extent to which these transcriptional regulatory components function in the context of the evolutionarily ancient role of chromatin as a barrier to processes acting on DNA and how chromatin proteins have diversified to carry out evolutionarily recent functions that accompanied the emergence of differentiation and development in multicellular eukaryotes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael P Meers
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| |
Collapse
|
41
|
Haberle V, Arnold CD, Pagani M, Rath M, Schernhuber K, Stark A. Transcriptional cofactors display specificity for distinct types of core promoters. Nature 2019; 570:122-126. [PMID: 31092928 PMCID: PMC7613045 DOI: 10.1038/s41586-019-1210-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
Transcriptional cofactors (COFs) communicate regulatory cues from enhancers to promoters and are central effectors of transcription activation and gene expression1. Although some COFs have been shown to prefer certain promoter types2-5 over others (for example, see refs 6,7), the extent to which different COFs display intrinsic specificities for distinct promoters is unclear. Here we use a high-throughput promoter-activity assay in Drosophila melanogaster S2 cells to screen 23 COFs for their ability to activate 72,000 candidate core promoters (CPs). We observe differential activation of CPs, indicating distinct regulatory preferences or 'compatibilities'8,9 between COFs and specific types of CPs. These functionally distinct CP types are differentially enriched for known sequence elements2,4, such as the TATA box, downstream promoter element (DPE) or TCT motif, and display distinct chromatin properties at endogenous loci. Notably, the CP types differ in their relative abundance of H3K4me3 and H3K4me1 marks (see also refs 10-12), suggesting that these histone modifications might distinguish trans-regulatory factors rather than promoter- versus enhancer-type cis-regulatory elements. We confirm the existence of distinct COF-CP compatibilities in two additional Drosophila cell lines and in human cells, for which we find COFs that prefer TATA-box or CpG-island promoters, respectively. Distinct compatibilities between COFs and promoters can explain how different enhancers specifically activate distinct sets of genes9, alternative promoters within the same genes, and distinct transcription start sites within the same promoter13. Thus, COF-promoter compatibilities may underlie distinct transcriptional programs in species as divergent as flies and humans.
Collapse
Affiliation(s)
- Vanja Haberle
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Cosmas D. Arnold
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Martina Rath
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Katharina Schernhuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria,Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria,Correspondence and requests for materials should be addressed to A.S. ()
| |
Collapse
|
42
|
Mata-Rocha M, Rangel-López A, Jiménez-Hernández E, Morales-Castillo BA, González-Torres C, Gaytan-Cervantes J, Álvarez-Olmos E, Núñez-Enríquez JC, Fajardo-Gutiérrez A, Martín-Trejo JA, Solís-Labastida KA, Medina-Sansón A, Flores-Lujano J, Sepúlveda-Robles OA, Peñaloza-González JG, Espinoza-Hernández LE, Núñez-Villegas NN, Espinosa-Elizondo RM, Cortés-Herrera B, Torres-Nava JR, Flores-Villegas LV, Merino-Pasaye LE, Bekker-Méndez VC, Velázquez-Aviña MM, Pérez-Saldívar ML, Bautista-Martínez BA, Amador-Sánchez R, González-Avila AI, Jiménez-Morales S, Duarte-Rodríguez DA, Santillán-Juárez JD, García-Velázquez AJ, Rosas-Vargas H, Mejía-Aranguré JM. Identification and Characterization of Novel Fusion Genes with Potential Clinical Applications in Mexican Children with Acute Lymphoblastic Leukemia. Int J Mol Sci 2019; 20:E2394. [PMID: 31096545 PMCID: PMC6566803 DOI: 10.3390/ijms20102394] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 11/16/2022] Open
Abstract
Acute lymphoblastic leukemia is the most common type of childhood cancer worldwide. Mexico City has one of the highest incidences and mortality rates of this cancer. It has previously been recognized that chromosomal translocations are important in cancer etiology. Specific fusion genes have been considered as important treatment targets in childhood acute lymphoblastic leukemia (ALL). The present research aimed at the identification and characterization of novel fusion genes with potential clinical implications in Mexican children with acute lymphoblastic leukemia. The RNA-sequencing approach was used. Four fusion genes not previously reported were identified: CREBBP-SRGAP2B, DNAH14-IKZF1, ETV6-SNUPN, ETV6-NUFIP1. Although a fusion gene is not sufficient to cause leukemia, it could be involved in the pathogenesis of the disease. Notably, these new translocations were found in genes encoding for hematopoietic transcription factors which are known to play an important role in leukemogenesis and disease prognosis such as IKZF1, CREBBP, and ETV6. In addition, they may have an impact on the prognosis of Mexican pediatric patients with ALL, with the potential to be included in the current risk stratification schemes or used as therapeutic targets.
Collapse
Affiliation(s)
- Minerva Mata-Rocha
- CONACyT-Unidad de Investigacion Medica en Epidemiologia Clinica, Hospital de Pediatria, Centro Medico Siglo XXI, IMSS, 06720 Mexico City, Mexico.
- Unidad de Investigacion Medica en Genética Humana, Hospital de Pediatria, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | - Angelica Rangel-López
- Coordinacion de Investigacion en Salud, Unidad Habilitada de Apoyo al Predictamen, Centro Medico Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | - Elva Jiménez-Hernández
- Servicio de Hematologia Pediatrica, Hospital General "Gaudencio González Garza", Centro Medico Nacional (CMN) "La Raza", IMSS, 02990 Mexico City, Mexico.
- Servicio de Oncología, Hospital Pediatrico de Moctezuma, Secretaria de Salud de la Ciudad de Mexico, Ciudad de Mexico, 15530 Mexico City, Mexico.
| | - Blanca Angélica Morales-Castillo
- Unidad de Investigacion Medico en Epidemiologia Clinica, Hospital de Pediatria, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | - Carolina González-Torres
- Laboratorio de Secuenciación, Division de Desarrollo de la Investigacion, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | - Javier Gaytan-Cervantes
- Laboratorio de Secuenciación, Division de Desarrollo de la Investigacion, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | - Enrique Álvarez-Olmos
- Unidad de Investigacion Medico en Epidemiologia Clinica, Hospital de Pediatria, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigacion Medico en Epidemiologia Clinica, Hospital de Pediatria, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | - Arturo Fajardo-Gutiérrez
- Unidad de Investigacion Medico en Epidemiologia Clinica, Hospital de Pediatria, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematologia, UMAE Hospital de Pediatria, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | | | - Aurora Medina-Sansón
- Servicio de Oncología, Hospital Infantil de Mexico Federico Gómez, Secretaria de Salud, 06720 Mexico City, Mexico.
| | - Janet Flores-Lujano
- Unidad de Investigacion Medico en Epidemiologia Clinica, Hospital de Pediatria, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | - Omar Alejandro Sepúlveda-Robles
- CONACyT-Unidad de Investigacion Medica en Epidemiologia Clinica, Hospital de Pediatria, Centro Medico Siglo XXI, IMSS, 06720 Mexico City, Mexico.
- Unidad de Investigacion Medica en Genética Humana, Hospital de Pediatria, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | | | - Laura Eugenia Espinoza-Hernández
- Servicio de Hematologia Pediatrica, Hospital General "Gaudencio González Garza", Centro Medico Nacional (CMN) "La Raza", IMSS, 02990 Mexico City, Mexico.
| | - Nora Nancy Núñez-Villegas
- Servicio de Hematologia Pediatrica, Hospital General "Gaudencio González Garza", Centro Medico Nacional (CMN) "La Raza", IMSS, 02990 Mexico City, Mexico.
| | | | - Beatriz Cortés-Herrera
- Servicio de Hematologia Pediatrica, Hospital General de Mexico, Secretaria de Salud, 06726 Mexico City, Mexico.
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediatrico de Moctezuma, Secretaria de Salud de la Ciudad de Mexico, Ciudad de Mexico, 15530 Mexico City, Mexico.
| | - Luz Victoria Flores-Villegas
- Servicio de Hematologia Pediatrica, Centro Medico Nacional "20 de Noviembre", ISSSTE, 03229 Mexico City, Mexico.
| | | | - Vilma Carolina Bekker-Méndez
- Unidad de Investigacion Medico en Inmunologia e Infectologia, Hospital de Infectologia "Dr. Daniel Méndez Hernández", "La Raza", IMSS, 02990 Mexico City, Mexico.
| | | | - María Luisa Pérez-Saldívar
- Unidad de Investigacion Medico en Epidemiologia Clinica, Hospital de Pediatria, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | | | - Raquel Amador-Sánchez
- Servicio de Hematologia Pediatrica, Hospital General Regional "Carlos McGregor Sanchez Navarro", IMSS, 03100 Mexico City, Mexico.
| | - Ana Itamar González-Avila
- Servicio de Hematologia Pediatrica, Hospital General Regional "Carlos McGregor Sanchez Navarro", IMSS, 03100 Mexico City, Mexico.
| | - Silvia Jiménez-Morales
- Laboratorio de Genomica del Cancer del Instituto Nacional de Medicina Genomica (INMEGEN), 14610 Mexico City, Mexico.
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigacion Medico en Epidemiologia Clinica, Hospital de Pediatria, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | | | | | - Haydeé Rosas-Vargas
- Unidad de Investigacion Medica en Genética Humana, Hospital de Pediatria, Centro Medico Nacional Siglo XXI, IMSS, 06720 Mexico City, Mexico.
| | - Juan Manuel Mejía-Aranguré
- Coordinación de Investigacion en Salud, IMSS, Torre Academia Nacional de Medicina, 06720 Mexico City, Mexico.
| |
Collapse
|
43
|
Lipinski M, Del Blanco B, Barco A. CBP/p300 in brain development and plasticity: disentangling the KAT's cradle. Curr Opin Neurobiol 2019; 59:1-8. [PMID: 30856481 DOI: 10.1016/j.conb.2019.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
The paralogous transcriptional co-activators CBP and p300 (aka KAT3A and KAT3B, respectively) contain a characteristic and promiscuous lysine acetyltransferase (KAT) domain and multiple independent protein-binding domains that enable them to interact with hundreds of proteins, possibly promoting the acetylation of thousands of target lysine residues. Both proteins play critical roles during the development of the nervous system and may also regulate stimuli-driven transcription and plasticity in postmitotic neurons. The multiplicity of functions, substrates, and molecular partners, together with the redundancy and singularity of the two KAT3 paralogs, define a complex cat's cradle of relationships. In this review, we discuss the role of the KAT3 proteins in neurons and integrate recent information regarding their function and mode of action.
Collapse
Affiliation(s)
- Michal Lipinski
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
44
|
MacroH2A1 chromatin specification requires its docking domain and acetylation of H2B lysine 20. Nat Commun 2018; 9:5143. [PMID: 30510186 PMCID: PMC6277393 DOI: 10.1038/s41467-018-07189-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 10/13/2018] [Indexed: 12/23/2022] Open
Abstract
The histone variant macroH2A1 localizes to two functionally distinct chromatin subtypes marked by either H3K27me3 or H2B acetylations, where it is thought to directly regulate transcription. The recent finding, that macroH2A1 regulates mitochondrial respiration by globally dampening PARP activity, requires the field to re-evaluate which functions of macroH2A1 are due to global effects on cellular metabolism and which are direct effects determined by macroH2A1 chromatin localization. Here, we demonstrate macroH2A1 incorporation into H2B-acetylated chromatin requires a feature in its histone-fold domain, distinguishing this process from incorporation into H3K27me3-containing chromatin in which multiple features of macroH2A1 are sufficient for targeting. In addition, we identify H2BK20 acetylation as a critical modification required to target macroH2A1 to H2B-acetylated chromatin. Our findings have allowed us to definitively establish that macroH2A1's regulation of an important transcriptional program, the senescence-associated secretory phenotype (SASP), requires its accurate genomic localization.
Collapse
|
45
|
Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 2018; 19:621-637. [PMID: 29946135 PMCID: PMC6205604 DOI: 10.1038/s41580-018-0028-8] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.
Collapse
Affiliation(s)
- Vanja Haberle
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
46
|
Voss AK, Thomas T. Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals. Bioessays 2018; 40:e1800078. [PMID: 30144132 DOI: 10.1002/bies.201800078] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Indexed: 01/08/2023]
Abstract
Histone acetylation has been recognized as an important post-translational modification of core nucleosomal histones that changes access to the chromatin to allow gene transcription, DNA replication, and repair. Histone acetyltransferases were initially identified as co-activators that link DNA-binding transcription factors to the general transcriptional machinery. Over the years, more chromatin-binding modes have been discovered suggesting direct interaction of histone acetyltransferases and their protein complex partners with histone proteins. While much progress has been made in characterizing histone acetyltransferase complexes biochemically, cell-free activity assay results are often at odds with in-cell histone acetyltransferase activities. In-cell studies suggest specific histone lysine targets, but broad recruitment modes, apparently not relying on specific DNA sequences, but on chromatin of a specific functional state. Here we review the evidence for general versus specific roles of individual nuclear lysine acetyltransferases in light of in vivo and in vitro data in the mammalian system.
Collapse
Affiliation(s)
- Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, 3 1G Royal Parade, Parkville, Melbourne, Victoria, 3052, Australia
| | - Tim Thomas
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Melbourne, Victoria, 3052, Australia
| |
Collapse
|
47
|
Wojciechowski M, Lowe R, Maleszka J, Conn D, Maleszka R, Hurd PJ. Phenotypically distinct female castes in honey bees are defined by alternative chromatin states during larval development. Genome Res 2018; 28:1532-1542. [PMID: 30135090 PMCID: PMC6169885 DOI: 10.1101/gr.236497.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022]
Abstract
The capacity of the honey bee to produce three phenotypically distinct organisms (two female castes; queens and sterile workers, and haploid male drones) from one genotype represents one of the most remarkable examples of developmental plasticity in any phylum. The queen-worker morphological and reproductive divide is environmentally controlled during post-embryonic development by differential feeding. Previous studies implicated metabolic flux acting via epigenetic regulation, in particular DNA methylation and microRNAs, in establishing distinct patterns of gene expression underlying caste-specific developmental trajectories. We produce the first genome-wide maps of chromatin structure in the honey bee at a key larval stage in which developmental canalization into queen or worker is virtually irreversible. We find extensive genome-wide differences in H3K4me3, H3K27ac, and H3K36me3, many of which correlate with caste-specific transcription. Furthermore, we identify H3K27ac as a key chromatin modification, with caste-specific regions of intronic H3K27ac directing the worker caste. These regions may harbor the first examples of caste-specific enhancer elements in the honey bee. Our results demonstrate a key role for chromatin modifications in the establishment and maintenance of caste-specific transcriptional programs in the honey bee. We show that at 96 h of larval growth, the queen-specific chromatin pattern is already established, whereas the worker determination is not, thus providing experimental support for the perceived timing of this critical point in developmental heterochrony in two types of honey bee females. In a broader context, our study provides novel data on environmentally regulated organismal plasticity and the molecular foundation of the evolutionary origins of eusociality.
Collapse
Affiliation(s)
- Marek Wojciechowski
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Robert Lowe
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Joanna Maleszka
- Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Danyal Conn
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Paul J Hurd
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
48
|
Vincek AS, Patel J, Jaganathan A, Green A, Pierre-Louis V, Arora V, Rehmann J, Mezei M, Zhou MM, Ohlmeyer M, Mujtaba S. Inhibitor of CBP Histone Acetyltransferase Downregulates p53 Activation and Facilitates Methylation at Lysine 27 on Histone H3. Molecules 2018; 23:molecules23081930. [PMID: 30072621 PMCID: PMC6222455 DOI: 10.3390/molecules23081930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Tumor suppressor p53-directed apoptosis triggers loss of normal cells, which contributes to the side-effects from anticancer therapies. Thus, small molecules with potential to downregulate the activation of p53 could minimize pathology emerging from anticancer therapies. Acetylation of p53 by the histone acetyltransferase (HAT) domain is the hallmark of coactivator CREB-binding protein (CBP) epigenetic function. During genotoxic stress, CBP HAT-mediated acetylation is essential for the activation of p53 to transcriptionally govern target genes, which control cellular responses. Here, we present a small molecule, NiCur, which blocks CBP HAT activity and downregulates p53 activation upon genotoxic stress. Computational modeling reveals that NiCur docks into the active site of CBP HAT. On CDKN1A promoter, the recruitment of p53 as well as RNA Polymerase II and levels of acetylation on histone H3 were diminished by NiCur. Specifically, NiCur reduces the levels of acetylation at lysine 27 on histone H3, which concomitantly increases the levels of trimethylation at lysine 27. Finally, NiCur attenuates p53-directed apoptosis by inhibiting the Caspase 3 activity and cleavage of Poly (ADP-ribose) polymerase (PARP) in normal gastrointestinal epithelial cells. Collectively, NiCur demonstrates the potential to reprogram the chromatin landscape and modulate biological outcomes of CBP-mediated acetylation under normal and disease conditions.
Collapse
Affiliation(s)
- Adam S Vincek
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Jigneshkumar Patel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Anbalagan Jaganathan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- One Bungtown Rd, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA.
| | - Antonia Green
- Department of Physical Science, St. Joseph's College, 245 Clinton Avenue, Brooklyn, NY 11205, USA.
| | - Valerie Pierre-Louis
- Department of Physical Science, St. Joseph's College, 245 Clinton Avenue, Brooklyn, NY 11205, USA.
| | - Vimal Arora
- Department of Biology, City University of New York, Medgar Evers College, Brooklyn, NY 11225, USA.
| | - Jill Rehmann
- Department of Physical Science, St. Joseph's College, 245 Clinton Avenue, Brooklyn, NY 11205, USA.
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Michael Ohlmeyer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Shiraz Mujtaba
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Biology, City University of New York, Medgar Evers College, Brooklyn, NY 11225, USA.
| |
Collapse
|
49
|
Poly(ADP-Ribose) Polymerase 1 Promotes the Human Heat Shock Response by Facilitating Heat Shock Transcription Factor 1 Binding to DNA. Mol Cell Biol 2018; 38:MCB.00051-18. [PMID: 29661921 DOI: 10.1128/mcb.00051-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/11/2018] [Indexed: 01/09/2023] Open
Abstract
The heat shock response (HSR) is characterized by the rapid and robust induction of heat shock proteins (HSPs), including HSP70, in response to heat shock and is regulated by heat shock transcription factor 1 (HSF1) in mammalian cells. Poly(ADP-ribose) polymerase 1 (PARP1), which can form a complex with HSF1 through the scaffold protein PARP13, has been suggested to be involved in the HSR. However, its effects on and the regulatory mechanisms of the HSR are not well understood. Here we show that prior to heat shock, the HSF1-PARP13-PARP1 complex binds to the HSP70 promoter. In response to heat shock, activated and auto-PARylated PARP1 dissociates from HSF1-PARP13 and is redistributed throughout the HSP70 locus. Remarkably, chromatin in the HSP70 promoter is initially PARylated at high levels and decondensed, whereas chromatin in the gene body is moderately PARylated afterwards. Activated HSF1 then binds to the promoter efficiently and promotes the HSR. Chromatin PARylation and HSF1 binding to the promoter are also facilitated by the phosphorylation-dependent dissociation of PARP13. Furthermore, the HSR and proteostasis capacity are reduced by pretreatment with genotoxic stresses, which disrupt the ternary complex. These results illuminate one of the priming mechanisms of the HSR that facilitates the binding of HSF1 to DNA during heat shock.
Collapse
|
50
|
Gomez-Lamarca MJ, Falo-Sanjuan J, Stojnic R, Abdul Rehman S, Muresan L, Jones ML, Pillidge Z, Cerda-Moya G, Yuan Z, Baloul S, Valenti P, Bystricky K, Payre F, O'Holleran K, Kovall R, Bray SJ. Activation of the Notch Signaling Pathway In Vivo Elicits Changes in CSL Nuclear Dynamics. Dev Cell 2018; 44:611-623.e7. [PMID: 29478922 PMCID: PMC5855320 DOI: 10.1016/j.devcel.2018.01.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/27/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022]
Abstract
A key feature of Notch signaling is that it directs immediate changes in transcription via the DNA-binding factor CSL, switching it from repression to activation. How Notch generates both a sensitive and accurate response-in the absence of any amplification step-remains to be elucidated. To address this question, we developed real-time analysis of CSL dynamics including single-molecule tracking in vivo. In Notch-OFF nuclei, a small proportion of CSL molecules transiently binds DNA, while in Notch-ON conditions CSL recruitment increases dramatically at target loci, where complexes have longer dwell times conferred by the Notch co-activator Mastermind. Surprisingly, recruitment of CSL-related corepressors also increases in Notch-ON conditions, revealing that Notch induces cooperative or "assisted" loading by promoting local increase in chromatin accessibility. Thus, in vivo Notch activity triggers changes in CSL dwell times and chromatin accessibility, which we propose confer sensitivity to small input changes and facilitate timely shut-down.
Collapse
Affiliation(s)
- Maria J Gomez-Lamarca
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Julia Falo-Sanjuan
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Robert Stojnic
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sohaib Abdul Rehman
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Matthew L Jones
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Zoe Pillidge
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Gustavo Cerda-Moya
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Zhenyu Yuan
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Sarah Baloul
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Phillippe Valenti
- Centre de Biologie du Développement/UMR5547, CBI (Centre de Biologie Intégrative) University of Toulouse/CNRS, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Kerstin Bystricky
- LBME/UMR5099, CBI (Centre de Biologie Intégrative) University of Toulouse/CNRS, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Francois Payre
- Centre de Biologie du Développement/UMR5547, CBI (Centre de Biologie Intégrative) University of Toulouse/CNRS, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Kevin O'Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Rhett Kovall
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|