1
|
Strayer EC, Krishna S, Lee H, Vejnar C, Neuenkirchen N, Gupta A, Beaudoin JD, Giraldez AJ. NaP-TRAP reveals the regulatory grammar in 5'UTR-mediated translation regulation during zebrafish development. Nat Commun 2024; 15:10898. [PMID: 39738051 DOI: 10.1038/s41467-024-55274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP). NaP-TRAP measures translation in a frame-specific manner through the immunocapture of epitope tagged nascent peptides of reporter mRNAs. We benchmark NaP-TRAP to polysome profiling and use it to quantify Kozak strength and the regulatory landscapes of 5' UTRs in the developing zebrafish embryo and in human cells. Through this approach we identified general and developmentally dynamic cis-regulatory elements, as well as potential trans-acting proteins. We find that U-rich motifs are general enhancers, and upstream ORFs and GC-rich motifs are global repressors of translation. We also observe a translational switch during the maternal-to-zygotic transition, where C-rich motifs shift from repressors to prominent activators of translation. Conversely, we show that microRNA sites in the 5' UTR repress translation following the zygotic expression of miR-430. Together these results demonstrate that NaP-TRAP is a versatile, accessible, and powerful method to decode the regulatory functions of UTRs across different systems.
Collapse
Affiliation(s)
- Ethan C Strayer
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Srikar Krishna
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Haejeong Lee
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Charles Vejnar
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA
| | - Amit Gupta
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA
| | - Jean-Denis Beaudoin
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University, New Haven, 06510, CT, USA.
| | - Antonio J Giraldez
- Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University, New Haven, 06510, CT, USA.
- Yale Stem Cell Center, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
| |
Collapse
|
2
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2024:10.1038/s41576-024-00792-0. [PMID: 39587307 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
La Fleur A, Shi Y, Seelig G. Decoding biology with massively parallel reporter assays and machine learning. Genes Dev 2024; 38:843-865. [PMID: 39362779 PMCID: PMC11535156 DOI: 10.1101/gad.351800.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Massively parallel reporter assays (MPRAs) are powerful tools for quantifying the impacts of sequence variation on gene expression. Reading out molecular phenotypes with sequencing enables interrogating the impact of sequence variation beyond genome scale. Machine learning models integrate and codify information learned from MPRAs and enable generalization by predicting sequences outside the training data set. Models can provide a quantitative understanding of cis-regulatory codes controlling gene expression, enable variant stratification, and guide the design of synthetic regulatory elements for applications from synthetic biology to mRNA and gene therapy. This review focuses on cis-regulatory MPRAs, particularly those that interrogate cotranscriptional and post-transcriptional processes: alternative splicing, cleavage and polyadenylation, translation, and mRNA decay.
Collapse
Affiliation(s)
- Alyssa La Fleur
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA;
| | - Georg Seelig
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA;
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
4
|
Xu L, Liu Y. Identification, Design, and Application of Noncoding Cis-Regulatory Elements. Biomolecules 2024; 14:945. [PMID: 39199333 PMCID: PMC11352686 DOI: 10.3390/biom14080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Cis-regulatory elements (CREs) play a pivotal role in orchestrating interactions with trans-regulatory factors such as transcription factors, RNA-binding proteins, and noncoding RNAs. These interactions are fundamental to the molecular architecture underpinning complex and diverse biological functions in living organisms, facilitating a myriad of sophisticated and dynamic processes. The rapid advancement in the identification and characterization of these regulatory elements has been marked by initiatives such as the Encyclopedia of DNA Elements (ENCODE) project, which represents a significant milestone in the field. Concurrently, the development of CRE detection technologies, exemplified by massively parallel reporter assays, has progressed at an impressive pace, providing powerful tools for CRE discovery. The exponential growth of multimodal functional genomic data has necessitated the application of advanced analytical methods. Deep learning algorithms, particularly large language models, have emerged as invaluable tools for deconstructing the intricate nucleotide sequences governing CRE function. These advancements facilitate precise predictions of CRE activity and enable the de novo design of CREs. A deeper understanding of CRE operational dynamics is crucial for harnessing their versatile regulatory properties. Such insights are instrumental in refining gene therapy techniques, enhancing the efficacy of selective breeding programs, pushing the boundaries of genetic innovation, and opening new possibilities in microbial synthetic biology.
Collapse
Affiliation(s)
- Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| |
Collapse
|
5
|
Anzell AR, Kunz AB, Donovan JP, Tran TG, Lu X, Young S, Roman BL. Blood flow regulates acvrl1 transcription via ligand-dependent Alk1 activity. Angiogenesis 2024; 27:501-522. [PMID: 38727966 DOI: 10.1007/s10456-024-09924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors ACVRL1/ALK1, a signaling receptor, or endoglin (ENG), an accessory receptor. Because overexpression of Acvrl1 prevents AVM development in both Acvrl1 and Eng null mice, enhancing ACVRL1 expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of ACVRL1 regulation. We previously demonstrated in zebrafish embryos that acvrl1 is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that acvrl1 expression is rapidly restored after reinitiation of flow. Furthermore, we find that acvrl1 expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that, in the absence of flow, intravascular injection of BMP10 or the related ligand, BMP9, restores acvrl1 expression in an Alk1-dependent manner. Using a transgenic acvrl1:egfp reporter line, we find that flow and Bmp10 regulate acvrl1 at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in ACVRL1 in human endothelial cells subjected to shear stress. These data suggest that ligand-dependent Alk1 activity acts downstream of blood flow to maintain or enhance acvrl1 expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and ACVRL1 expression.
Collapse
Affiliation(s)
- Anthony R Anzell
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy B Kunz
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Allegheny Health Network, Pittsburgh, PA, USA
| | - James P Donovan
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thanhlong G Tran
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xinyan Lu
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Sarah Young
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Carnegie Mellon University, University Libraries, Pittsburgh, PA, USA
| | - Beth L Roman
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Musaev D, Abdelmessih M, Vejnar CE, Yartseva V, Weiss LA, Strayer EC, Takacs CM, Giraldez AJ. UPF1 regulates mRNA stability by sensing poorly translated coding sequences. Cell Rep 2024; 43:114074. [PMID: 38625794 PMCID: PMC11259039 DOI: 10.1016/j.celrep.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024] Open
Abstract
Post-transcriptional mRNA regulation shapes gene expression, yet how cis-elements and mRNA translation interface to regulate mRNA stability is poorly understood. We find that the strength of translation initiation, upstream open reading frame (uORF) content, codon optimality, AU-rich elements, microRNA binding sites, and open reading frame (ORF) length function combinatorially to regulate mRNA stability. Machine-learning analysis identifies ORF length as the most important conserved feature regulating mRNA decay. We find that Upf1 binds poorly translated and untranslated ORFs, which are associated with a higher decay rate, including mRNAs with uORFs and those with exposed ORFs after stop codons. Our study emphasizes Upf1's converging role in surveilling mRNAs with exposed ORFs that are poorly translated, such as mRNAs with long ORFs, ORF-like 3' UTRs, and mRNAs containing uORFs. We propose that Upf1 regulation of poorly/untranslated ORFs provides a unifying mechanism of surveillance in regulating mRNA stability and homeostasis in an exon-junction complex (EJC)-independent nonsense-mediated decay (NMD) pathway that we term ORF-mediated decay (OMD).
Collapse
Affiliation(s)
- Damir Musaev
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mario Abdelmessih
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; AstraZeneca, Waltham, MA 02451, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Kenai Therapeutics, San Diego, CA, USA
| | - Linnea A Weiss
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ethan C Strayer
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carter M Takacs
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; University of New Haven, West Haven, CT 06516, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
7
|
Fishman L, Modak A, Nechooshtan G, Razin T, Erhard F, Regev A, Farrell JA, Rabani M. Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq. Nat Commun 2024; 15:3104. [PMID: 38600066 PMCID: PMC11006943 DOI: 10.1038/s41467-024-47290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
During embryonic development, pluripotent cells assume specialized identities by adopting particular gene expression profiles. However, systematically dissecting the relative contributions of mRNA transcription and degradation to shaping those profiles remains challenging, especially within embryos with diverse cellular identities. Here, we combine single-cell RNA-Seq and metabolic labeling to capture temporal cellular transcriptomes of zebrafish embryos where newly-transcribed (zygotic) and pre-existing (maternal) mRNA can be distinguished. We introduce kinetic models to quantify mRNA transcription and degradation rates within individual cell types during their specification. These models reveal highly varied regulatory rates across thousands of genes, coordinated transcription and destruction rates for many transcripts, and link differences in degradation to specific sequence elements. They also identify cell-type-specific differences in degradation, namely selective retention of maternal transcripts within primordial germ cells and enveloping layer cells, two of the earliest specified cell types. Our study provides a quantitative approach to study mRNA regulation during a dynamic spatio-temporal response.
Collapse
Affiliation(s)
- Lior Fishman
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Avani Modak
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20814, USA
| | - Gal Nechooshtan
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Talya Razin
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
- Chair of Computational Immunology, University of Regensburg, Regensburg, Germany
| | - Aviv Regev
- Department of Biology, MIT, Cambridge, MA, 02139, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, 02142, USA
| | - Jeffrey A Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20814, USA.
| | - Michal Rabani
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
8
|
Anzell AR, Kunz AB, Donovan JP, Tran TG, Lu X, Young S, Roman BL. Blood flow regulates acvrl1 transcription via ligand-dependent Alk1 activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.576046. [PMID: 38328175 PMCID: PMC10849739 DOI: 10.1101/2024.01.25.576046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors ACVRL1/ALK1, a signaling receptor, or endoglin (ENG), an accessory receptor. Because overexpression of Acvrl1 prevents AVM development in both Acvrl1 and Eng null mice, enhancing ACVRL1 expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of ACVRL1 regulation. We previously demonstrated in zebrafish embryos that acvrl1 is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that acvrl1 expression is rapidly restored after reinitiation of flow. Furthermore, we find that acvrl1 expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that BMP10 microinjection into the vasculature in the absence of flow enhances acvrl1 expression in an Alk1-dependent manner. Using a transgenic acvrl1:egfp reporter line, we find that flow and Bmp10 regulate acvrl1 at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in ACVRL1 in human endothelial cells subjected to shear stress. These data suggest that Bmp10 acts downstream of blood flow to maintain or enhance acvrl1 expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and ACVRL1 expression.
Collapse
Affiliation(s)
- Anthony R. Anzell
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy Biery Kunz
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Current affiliation: Allegheny Health Network, Pittsburgh, PA, USA
| | - James P. Donovan
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thanhlong G. Tran
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Current affiliation: National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xinyan Lu
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Sarah Young
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Current affiliation: Carnegie Mellon University, University Libraries, Pittsburgh, PA, USA
| | - Beth L. Roman
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568470. [PMID: 38045294 PMCID: PMC10690280 DOI: 10.1101/2023.11.23.568470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR is sufficient to confer temporal dynamics to translation initiation, and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, DaniO5P, revealed a combined role for 5' UTR length, translation initiation site context, upstream AUGs and sequence motifs on in vivo ribosome recruitment. DaniO5P predicts the activities of 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in early vertebrate development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Liao SE, Sudarshan M, Regev O. Deciphering RNA splicing logic with interpretable machine learning. Proc Natl Acad Sci U S A 2023; 120:e2221165120. [PMID: 37796983 PMCID: PMC10576025 DOI: 10.1073/pnas.2221165120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
Machine learning methods, particularly neural networks trained on large datasets, are transforming how scientists approach scientific discovery and experimental design. However, current state-of-the-art neural networks are limited by their uninterpretability: Despite their excellent accuracy, they cannot describe how they arrived at their predictions. Here, using an "interpretable-by-design" approach, we present a neural network model that provides insights into RNA splicing, a fundamental process in the transfer of genomic information into functional biochemical products. Although we designed our model to emphasize interpretability, its predictive accuracy is on par with state-of-the-art models. To demonstrate the model's interpretability, we introduce a visualization that, for any given exon, allows us to trace and quantify the entire decision process from input sequence to output splicing prediction. Importantly, the model revealed uncharacterized components of the splicing logic, which we experimentally validated. This study highlights how interpretable machine learning can advance scientific discovery.
Collapse
Affiliation(s)
- Susan E. Liao
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| | - Mukund Sudarshan
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| | - Oded Regev
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| |
Collapse
|
11
|
Westbrook ER, Ford HZ, Antolović V, Chubb JR. Clearing the slate: RNA turnover to enable cell state switching? Development 2023; 150:dev202084. [PMID: 37831057 PMCID: PMC10617622 DOI: 10.1242/dev.202084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The distribution of mRNA in tissue is determined by the balance between transcription and decay. Understanding the control of RNA decay during development has been somewhat neglected compared with transcriptional control. Here, we explore the potential for mRNA decay to trigger rapid cell state transitions during development, comparing a bistable switch model of cell state conversion with experimental evidence from different developmental systems. We also consider another potential role for large-scale RNA decay that has emerged from studies of stress-induced cell state transitions, in which removal of mRNA unblocks the translation machinery to prioritise the synthesis of proteins that establish the new cell state.
Collapse
Affiliation(s)
- Elizabeth R. Westbrook
- UCL Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Hugh Z. Ford
- UCL Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Vlatka Antolović
- UCL Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jonathan R. Chubb
- UCL Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
12
|
Kleinschmidt H, Xu C, Bai L. Using Synthetic DNA Libraries to Investigate Chromatin and Gene Regulation. Chromosoma 2023; 132:167-189. [PMID: 37184694 PMCID: PMC10542970 DOI: 10.1007/s00412-023-00796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Despite the recent explosion in genome-wide studies in chromatin and gene regulation, we are still far from extracting a set of genetic rules that can predict the function of the regulatory genome. One major reason for this deficiency is that gene regulation is a multi-layered process that involves an enormous variable space, which cannot be fully explored using native genomes. This problem can be partially solved by introducing synthetic DNA libraries into cells, a method that can test the regulatory roles of thousands to millions of sequences with limited variables. Here, we review recent applications of this method to study transcription factor (TF) binding, nucleosome positioning, and transcriptional activity. We discuss the design principles, experimental procedures, and major findings from these studies and compare the pros and cons of different approaches.
Collapse
Affiliation(s)
- Holly Kleinschmidt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
13
|
Schuster SL, Arora S, Wladyka CL, Itagi P, Corey L, Young D, Stackhouse BL, Kollath L, Wu QV, Corey E, True LD, Ha G, Paddison PJ, Hsieh AC. Multi-level functional genomics reveals molecular and cellular oncogenicity of patient-based 3' untranslated region mutations. Cell Rep 2023; 42:112840. [PMID: 37516102 PMCID: PMC10540565 DOI: 10.1016/j.celrep.2023.112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023] Open
Abstract
3' untranslated region (3' UTR) somatic mutations represent a largely unexplored avenue of alternative oncogenic gene dysregulation. To determine the significance of 3' UTR mutations in disease, we identify 3' UTR somatic variants across 185 advanced prostate tumors, discovering 14,497 single-nucleotide mutations enriched in oncogenic pathways and 3' UTR regulatory elements. By developing two complementary massively parallel reporter assays, we measure how thousands of patient-based mutations affect mRNA translation and stability and identify hundreds of functional variants that allow us to define determinants of mutation significance. We demonstrate the clinical relevance of these mutations, observing that CRISPR-Cas9 endogenous editing of distinct variants increases cellular stress resistance and that patients harboring oncogenic 3' UTR mutations have a particularly poor prognosis. This work represents an expansive view of the extent to which disease-relevant 3' UTR mutations affect mRNA stability, translation, and cancer progression, uncovering principles of regulatory functionality and potential therapeutic targets in previously unexplored regulatory regions.
Collapse
Affiliation(s)
- Samantha L Schuster
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Pushpa Itagi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lukas Corey
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dave Young
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Lori Kollath
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Qian V Wu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Gavin Ha
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Patrick J Paddison
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew C Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Ayers TN, Nicotra ML, Lee MT. Parallels and contrasts between the cnidarian and bilaterian maternal-to-zygotic transition are revealed in Hydractinia embryos. PLoS Genet 2023; 19:e1010845. [PMID: 37440598 PMCID: PMC10368294 DOI: 10.1371/journal.pgen.1010845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Embryogenesis requires coordinated gene regulatory activities early on that establish the trajectory of subsequent development, during a period called the maternal-to-zygotic transition (MZT). The MZT comprises transcriptional activation of the embryonic genome and post-transcriptional regulation of egg-inherited maternal mRNA. Investigation into the MZT in animals has focused almost exclusively on bilaterians, which include all classical models such as flies, worms, sea urchin, and vertebrates, thus limiting our capacity to understand the gene regulatory paradigms uniting the MZT across all animals. Here, we elucidate the MZT of a non-bilaterian, the cnidarian Hydractinia symbiolongicarpus. Using parallel poly(A)-selected and non poly(A)-dependent RNA-seq approaches, we find that the Hydractinia MZT is composed of regulatory activities similar to many bilaterians, including cytoplasmic readenylation of maternally contributed mRNA, delayed genome activation, and separate phases of maternal mRNA deadenylation and degradation that likely depend on both maternally and zygotically encoded clearance factors, including microRNAs. But we also observe massive upregulation of histone genes and an expanded repertoire of predicted H4K20 methyltransferases, aspects thus far particular to the Hydractinia MZT and potentially underlying a novel mode of early embryonic chromatin regulation. Thus, similar regulatory strategies with taxon-specific elaboration underlie the MZT in both bilaterian and non-bilaterian embryos, providing insight into how an essential developmental transition may have arisen in ancestral animals.
Collapse
Affiliation(s)
- Taylor N. Ayers
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh Pennsylvania, United States of America
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Miler T. Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh Pennsylvania, United States of America
| |
Collapse
|
15
|
Ayers TN, Nicotra ML, Lee MT. Parallels and contrasts between the cnidarian and bilaterian maternal-to-zygotic transition are revealed in Hydractinia embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540083. [PMID: 37214839 PMCID: PMC10197650 DOI: 10.1101/2023.05.09.540083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Embryogenesis requires coordinated gene regulatory activities early on that establish the trajectory of subsequent development, during a period called the maternal-to-zygotic transition (MZT). The MZT comprises transcriptional activation of the embryonic genome and post-transcriptional regulation of egg-inherited maternal mRNA. Investigation into the MZT in animals has focused almost exclusively on bilaterians, which include all classical models such as flies, worms, sea urchin, and vertebrates, thus limiting our capacity to understand the gene regulatory paradigms uniting the MZT across all animals. Here, we elucidate the MZT of a non-bilaterian, the cnidarian Hydractinia symbiolongicarpus . Using parallel poly(A)-selected and non poly(A)-dependent RNA-seq approaches, we find that the Hydractinia MZT is composed of regulatory activities analogous to many bilaterians, including cytoplasmic readenylation of maternally contributed mRNA, delayed genome activation, and separate phases of maternal mRNA deadenylation and degradation that likely depend on both maternally and zygotically encoded clearance factors, including microRNAs. But we also observe massive upregulation of histone genes and an expanded repertoire of predicted H4K20 methyltransferases, aspects thus far unique to the Hydractinia MZT and potentially underlying a novel mode of early embryonic chromatin regulation. Thus, similar regulatory strategies with taxon-specific elaboration underlie the MZT in both bilaterian and non-bilaterian embryos, providing insight into how an essential developmental transition may have arisen in ancestral animals.
Collapse
Affiliation(s)
- Taylor N. Ayers
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261 U.S.A
| | - Miler T. Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| |
Collapse
|
16
|
Fishman L, Nechooshtan G, Erhard F, Regev A, Farrell JA, Rabani M. Single-cell temporal dynamics reveals the relative contributions of transcription and degradation to cell-type specific gene expression in zebrafish embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537620. [PMID: 37131717 PMCID: PMC10153228 DOI: 10.1101/2023.04.20.537620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During embryonic development, pluripotent cells assume specialized identities by adopting particular gene expression profiles. However, systematically dissecting the underlying regulation of mRNA transcription and degradation remains a challenge, especially within whole embryos with diverse cellular identities. Here, we collect temporal cellular transcriptomes of zebrafish embryos, and decompose them into their newly-transcribed (zygotic) and pre-existing (maternal) mRNA components by combining single-cell RNA-Seq and metabolic labeling. We introduce kinetic models capable of quantifying regulatory rates of mRNA transcription and degradation within individual cell types during their specification. These reveal different regulatory rates between thousands of genes, and sometimes between cell types, that shape spatio-temporal expression patterns. Transcription drives most cell-type restricted gene expression. However, selective retention of maternal transcripts helps to define the gene expression profiles of germ cells and enveloping layer cells, two of the earliest specified cell-types. Coordination between transcription and degradation restricts expression of maternal-zygotic genes to specific cell types or times, and allows the emergence of spatio-temporal patterns when overall mRNA levels are held relatively constant. Sequence-based analysis links differences in degradation to specific sequence motifs. Our study reveals mRNA transcription and degradation events that control embryonic gene expression, and provides a quantitative approach to study mRNA regulation during a dynamic spatio-temporal response.
Collapse
Affiliation(s)
- Lior Fishman
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Gal Nechooshtan
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Aviv Regev
- Department of Biology, MIT, Cambridge MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jeffrey A. Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20814, USA
| | - Michal Rabani
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
17
|
Durrant MG, Fanton A, Tycko J, Hinks M, Chandrasekaran SS, Perry NT, Schaepe J, Du PP, Lotfy P, Bassik MC, Bintu L, Bhatt AS, Hsu PD. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat Biotechnol 2023; 41:488-499. [PMID: 36217031 PMCID: PMC10083194 DOI: 10.1038/s41587-022-01494-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Large serine recombinases (LSRs) are DNA integrases that facilitate the site-specific integration of mobile genetic elements into bacterial genomes. Only a few LSRs, such as Bxb1 and PhiC31, have been characterized to date, with limited efficiency as tools for DNA integration in human cells. In this study, we developed a computational approach to identify thousands of LSRs and their DNA attachment sites, expanding known LSR diversity by >100-fold and enabling the prediction of their insertion site specificities. We tested their recombination activity in human cells, classifying them as landing pad, genome-targeting or multi-targeting LSRs. Overall, we achieved up to seven-fold higher recombination than Bxb1 and genome integration efficiencies of 40-75% with cargo sizes over 7 kb. We also demonstrate virus-free, direct integration of plasmid or amplicon libraries for improved functional genomics applications. This systematic discovery of recombinases directly from microbial sequencing data provides a resource of over 60 LSRs experimentally characterized in human cells for large-payload genome insertion without exposed DNA double-stranded breaks.
Collapse
Affiliation(s)
- Matthew G Durrant
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Alison Fanton
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michaela Hinks
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sita S Chandrasekaran
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Nicholas T Perry
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Julia Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Genetics, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Peter Lotfy
- Laboratory of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA.
| | - Patrick D Hsu
- Arc Institute, Palo Alto, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Laboratory of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
18
|
Bhat P, Cabrera-Quio LE, Herzog VA, Fasching N, Pauli A, Ameres SL. SLAMseq resolves the kinetics of maternal and zygotic gene expression during early zebrafish embryogenesis. Cell Rep 2023; 42:112070. [PMID: 36757845 DOI: 10.1016/j.celrep.2023.112070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/27/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The maternal-to-zygotic transition (MZT) is a key developmental process in metazoan embryos that involves the activation of zygotic transcription (ZGA) and degradation of maternal transcripts. We employed metabolic mRNA sequencing (SLAMseq) to deconvolute the compound embryonic transcriptome in zebrafish. While mitochondrial zygotic transcripts prevail prior to MZT, we uncover the spurious transcription of hundreds of short and intron-poor genes as early as the 2-cell stage. Upon ZGA, most zygotic transcripts originate from thousands of maternal-zygotic (MZ) genes that are transcribed at rates comparable to those of hundreds of purely zygotic genes and replenish maternal mRNAs at distinct timescales. Rapid replacement of MZ transcripts involves transcript decay features unrelated to major maternal degradation pathways and promotes de novo synthesis of the core gene expression machinery by increasing poly(A)-tail length and translation efficiency. SLAMseq hence provides insights into the timescales, molecular features, and regulation of MZT during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Pooja Bhat
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Luis E Cabrera-Quio
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Veronika A Herzog
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Nina Fasching
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Stefan L Ameres
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
19
|
Gallego Romero I, Lea AJ. Leveraging massively parallel reporter assays for evolutionary questions. Genome Biol 2023; 24:26. [PMID: 36788564 PMCID: PMC9926830 DOI: 10.1186/s13059-023-02856-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
A long-standing goal of evolutionary biology is to decode how gene regulation contributes to organismal diversity. Doing so is challenging because it is hard to predict function from non-coding sequence and to perform molecular research with non-model taxa. Massively parallel reporter assays (MPRAs) enable the testing of thousands to millions of sequences for regulatory activity simultaneously. Here, we discuss the execution, advantages, and limitations of MPRAs, with a focus on evolutionary questions. We propose solutions for extending MPRAs to rare taxa and those with limited genomic resources, and we underscore MPRA's broad potential for driving genome-scale, functional studies across organisms.
Collapse
Affiliation(s)
- Irene Gallego Romero
- Melbourne Integrative Genomics, University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia. .,School of BioSciences, The University of Melbourne, Royal Parade, Parkville, 3010, Australia. .,The Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3010, Australia. .,Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia.
| | - Amanda J. Lea
- grid.152326.10000 0001 2264 7217Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240 USA ,grid.152326.10000 0001 2264 7217Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37240 USA ,grid.152326.10000 0001 2264 7217Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37240 USA ,Child and Brain Development Program, Canadian Institute for Advanced Study, Toronto, Canada
| |
Collapse
|
20
|
Blatnik MC, Gallagher TL, Amacher SL. Keeping development on time: Insights into post-transcriptional mechanisms driving oscillatory gene expression during vertebrate segmentation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1751. [PMID: 35851751 PMCID: PMC9840655 DOI: 10.1002/wrna.1751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 01/31/2023]
Abstract
Biological time keeping, or the duration and tempo at which biological processes occur, is a phenomenon that drives dynamic molecular and morphological changes that manifest throughout many facets of life. In some cases, the molecular mechanisms regulating the timing of biological transitions are driven by genetic oscillations, or periodic increases and decreases in expression of genes described collectively as a "molecular clock." In vertebrate animals, molecular clocks play a crucial role in fundamental patterning and cell differentiation processes throughout development. For example, during early vertebrate embryogenesis, the segmentation clock regulates the patterning of the embryonic mesoderm into segmented blocks of tissue called somites, which later give rise to axial skeletal muscle and vertebrae. Segmentation clock oscillations are characterized by rapid cycles of mRNA and protein expression. For segmentation clock oscillations to persist, the transcript and protein molecules of clock genes must be short-lived. Faithful, rhythmic, genetic oscillations are sustained by precise regulation at many levels, including post-transcriptional regulation, and such mechanisms are essential for proper vertebrate development. This article is categorized under: RNA Export and Localization > RNA Localization RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Regulation.
Collapse
Affiliation(s)
- Monica C. Blatnik
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, 43210-1132, United States
| | - Thomas L. Gallagher
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, 43210-1132, United States
| | - Sharon L. Amacher
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, 43210-1132, United States
| |
Collapse
|
21
|
Cooper YA, Guo Q, Geschwind DH. Multiplexed functional genomic assays to decipher the noncoding genome. Hum Mol Genet 2022; 31:R84-R96. [PMID: 36057282 PMCID: PMC9585676 DOI: 10.1093/hmg/ddac194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Linkage disequilibrium and the incomplete regulatory annotation of the noncoding genome complicates the identification of functional noncoding genetic variants and their causal association with disease. Current computational methods for variant prioritization have limited predictive value, necessitating the application of highly parallelized experimental assays to efficiently identify functional noncoding variation. Here, we summarize two distinct approaches, massively parallel reporter assays and CRISPR-based pooled screens and describe their flexible implementation to characterize human noncoding genetic variation at unprecedented scale. Each approach provides unique advantages and limitations, highlighting the importance of multimodal methodological integration. These multiplexed assays of variant effects are undoubtedly poised to play a key role in the experimental characterization of noncoding genetic risk, informing our understanding of the underlying mechanisms of disease-associated loci and the development of more robust predictive classification algorithms.
Collapse
Affiliation(s)
- Yonatan A Cooper
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Qiuyu Guo
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Arora A, Castro-Gutierrez R, Moffatt C, Eletto D, Becker R, Brown M, Moor A, Russ HA, Taliaferro JM. High-throughput identification of RNA localization elements in neuronal cells. Nucleic Acids Res 2022; 50:10626-10642. [PMID: 36107770 PMCID: PMC9561290 DOI: 10.1093/nar/gkac763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Hundreds of RNAs are enriched in the projections of neuronal cells. For the vast majority of them, though, the sequence elements that regulate their localization are unknown. To identify RNA elements capable of directing transcripts to neurites, we deployed a massively parallel reporter assay that tested the localization regulatory ability of thousands of sequence fragments drawn from endogenous mouse 3' UTRs. We identified peaks of regulatory activity within several 3' UTRs and found that sequences derived from these peaks were both necessary and sufficient for RNA localization to neurites in mouse and human neuronal cells. The localization elements were enriched in adenosine and guanosine residues. They were at least tens to hundreds of nucleotides long as shortening of two identified elements led to significantly reduced activity. Using RNA affinity purification and mass spectrometry, we found that the RNA-binding protein Unk was associated with the localization elements. Depletion of Unk in cells reduced the ability of the elements to drive RNAs to neurites, indicating a functional requirement for Unk in their trafficking. These results provide a framework for the unbiased, high-throughput identification of RNA elements and mechanisms that govern transcript localization in neurons.
Collapse
Affiliation(s)
- Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, USA
| | | | - Charlie Moffatt
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, USA
| | - Davide Eletto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Raquel Becker
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, USA
| | - Maya Brown
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, USA
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, USA
| |
Collapse
|
23
|
Comprehensive analysis of the circadian nuclear and cytoplasmic transcriptome in mouse liver. PLoS Genet 2022; 18:e1009903. [PMID: 35921362 PMCID: PMC9377612 DOI: 10.1371/journal.pgen.1009903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/15/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
In eukaryotes, RNA is synthesised in the nucleus, spliced, and exported to the cytoplasm where it is translated and finally degraded. Any of these steps could be subject to temporal regulation during the circadian cycle, resulting in daily fluctuations of RNA accumulation and affecting the distribution of transcripts in different subcellular compartments. Our study analysed the nuclear and cytoplasmic, poly(A) and total transcriptomes of mouse livers collected over the course of a day. These data provide a genome-wide temporal inventory of enrichment in subcellular RNA, and revealed specific signatures of splicing, nuclear export and cytoplasmic mRNA stability related to transcript and gene lengths. Combined with a mathematical model describing rhythmic RNA profiles, we could test the rhythmicity of export rates and cytoplasmic degradation rates of approximately 1400 genes. With nuclear export times usually much shorter than cytoplasmic half-lives, we found that nuclear export contributes to the modulation and generation of rhythmic profiles of 10% of the cycling nuclear mRNAs. This study contributes to a better understanding of the dynamic regulation of the transcriptome during the day-night cycle.
Collapse
|
24
|
Taliaferro JM. Transcriptome-scale methods for uncovering subcellular RNA localization mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119202. [PMID: 34998919 PMCID: PMC9035289 DOI: 10.1016/j.bbamcr.2021.119202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Across a variety of systems, thousands of RNAs are localized to specific subcellular locations. However, for the vast majority of these RNAs, the mechanisms that underlie their transport are unknown. Historically, these mechanisms were uncovered for a single transcript at a time by laboriously testing the ability of RNA fragments to direct transcript localization. Recently developed methods profile the content of subcellular transcriptomes using high-throughput sequencing, allowing the analysis of the localization of thousands of transcripts at once. By identifying commonalities shared among multiple localized transcripts, these methods have the potential to rapidly expand our understanding of RNA localization mechanisms.
Collapse
Affiliation(s)
- J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
25
|
Warren TL, Lambert JT, Nord AS. AAV Deployment of Enhancer-Based Expression Constructs In Vivo in Mouse Brain. J Vis Exp 2022:10.3791/62650. [PMID: 35435902 PMCID: PMC10010840 DOI: 10.3791/62650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Enhancers are binding platforms for a diverse array of transcription factors that drive specific expression patterns of tissue- and cell-type-specific genes. Multiple means of assessing non-coding DNA and various chromatin states have proven useful in predicting the presence of enhancer sequences in the genome, but validating the activity of these sequences and finding the organs and developmental stages they are active in is a labor-intensive process. Recent advances in adeno-associated virus (AAV) vectors have enabled the widespread delivery of transgenes to mouse tissues, enabling in vivo enhancer testing without necessitating a transgenic animal. This protocol shows how a reporter construct that expresses EGFP under the control of a minimal promoter, which does not drive significant expression on its own, can be used to study the activity patterns of candidate enhancer sequences in the mouse brain. An AAV-packaged reporter construct is delivered to the mouse brain and incubated for 1-4 weeks, after which the animal is sacrificed, and brain sections are observed under a microscope. EGFP appears in cells in which the tested enhancer is sufficient to initiate gene expression, pinpointing the location and developmental stage in which the enhancer is active in the brain. Standard cloning methods, low-cost AAV packaging, and expanding AAV serotypes and methods for in vivo delivery and standard imaging readout make this an accessible approach for the study of how gene expression is regulated in the brain.
Collapse
Affiliation(s)
- Tracy L Warren
- Department of Psychiatry and Behavioral Sciences, University of California, Davis; Department of Neurobiology, Physiology and Behavior, University of California, Davis
| | - Jason T Lambert
- Department of Psychiatry and Behavioral Sciences, University of California, Davis; Department of Neurobiology, Physiology and Behavior, University of California, Davis;
| | - Alex S Nord
- Department of Psychiatry and Behavioral Sciences, University of California, Davis; Department of Neurobiology, Physiology and Behavior, University of California, Davis;
| |
Collapse
|
26
|
Yaish O, Orenstein Y. Computational modeling of mRNA degradation dynamics using deep neural networks. Bioinformatics 2022; 38:1087-1101. [PMID: 34849591 DOI: 10.1093/bioinformatics/btab800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION messenger RNA (mRNA) degradation plays critical roles in post-transcriptional gene regulation. A major component of mRNA degradation is determined by 3'-UTR elements. Hence, researchers are interested in studying mRNA dynamics as a function of 3'-UTR elements. A recent study measured the mRNA degradation dynamics of tens of thousands of 3'-UTR sequences using a massively parallel reporter assay. However, the computational approach used to model mRNA degradation was based on a simplifying assumption of a linear degradation rate. Consequently, the underlying mechanism of 3'-UTR elements is still not fully understood. RESULTS Here, we developed deep neural networks to predict mRNA degradation dynamics and interpreted the networks to identify regulatory elements in the 3'-UTR and their positional effect. Given an input of a 110 nt-long 3'-UTR sequence and an initial mRNA level, the model predicts mRNA levels of eight consecutive time points. Our deep neural networks significantly improved prediction performance of mRNA degradation dynamics compared with extant methods for the task. Moreover, we demonstrated that models predicting the dynamics of two identical 3'-UTR sequences, differing by their poly(A) tail, performed better than single-task models. On the interpretability front, by using Integrated Gradients, our convolutional neural networks (CNNs) models identified known and novel cis-regulatory sequence elements of mRNA degradation. By applying a novel systematic evaluation of model interpretability, we demonstrated that the recurrent neural network models are inferior to the CNN models in terms of interpretability and that random initialization ensemble improves both prediction and interoperability performance. Moreover, using a mutagenesis analysis, we newly discovered the positional effect of various 3'-UTR elements. AVAILABILITY AND IMPLEMENTATION All the code developed through this study is available at github.com/OrensteinLab/DeepUTR/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ofir Yaish
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yaron Orenstein
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
27
|
Siegel DA, Le Tonqueze O, Biton A, Zaitlen N, Erle DJ. Massively parallel analysis of human 3' UTRs reveals that AU-rich element length and registration predict mRNA destabilization. G3 (BETHESDA, MD.) 2022; 12:jkab404. [PMID: 34849835 PMCID: PMC8728028 DOI: 10.1093/g3journal/jkab404] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023]
Abstract
AU-rich elements (AREs) are 3' UTR cis-regulatory elements that regulate the stability of mRNAs. Consensus ARE motifs have been determined, but little is known about how differences in 3' UTR sequences that conform to these motifs affect their function. Here, we use functional annotation of sequences from 3' UTRs (fast-UTR), a massively parallel reporter assay (MPRA), to investigate the effects of 41,288 3' UTR sequence fragments from 4653 transcripts on gene expression and mRNA stability in Jurkat and Beas2B cells. Our analyses demonstrate that the length of an ARE and its registration (the first and last nucleotides of the repeating ARE motif) have significant effects on gene expression and stability. Based on this finding, we propose improved ARE classification and concomitant methods to categorize and predict the effect of AREs on gene expression and stability. Finally, to investigate the advantages of our general experimental design we examine other motifs including constitutive decay elements (CDEs), where we show that the length of the CDE stem-loop has a significant impact on steady-state expression and mRNA stability. We conclude that fast-UTR, in conjunction with our analytical approach, can produce improved yet simple sequence-based rules for predicting the activity of human 3' UTRs.
Collapse
Affiliation(s)
- David A Siegel
- Department of Medicine, Lung Biology Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Olivier Le Tonqueze
- Department of Medicine, Lung Biology Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anne Biton
- Department of Medicine, Lung Biology Center, University of California San Francisco, San Francisco, CA 94158, USA
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Noah Zaitlen
- Department of Medicine, Lung Biology Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - David J Erle
- Department of Medicine, Lung Biology Center, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
28
|
Abstract
In the past 20 years, the mRNA vaccine technology has evolved from the first proof of concept to the first licensed vaccine against emerging pandemics such as SARS-CoV-2. Two mRNA vaccines targeting SARS-CoV-2 have received emergency use authorization by US FDA, conditional marketing authorization by EMA, as well as multiple additional national regulatory authorities. The simple composition of an mRNA encoding the antigen formulated in a lipid nanoparticle enables a fast adaptation to new emerging pathogens. This can speed up vaccine development in pandemics from antigen and sequence selection to clinical trial to only a few months. mRNA vaccines are well tolerated and efficacious in animal models for multiple pathogens and will further contribute to the development of vaccines for other unaddressed diseases. Here, we give an overview of the mRNA vaccine design and factors for further optimization of this new promising technology and discuss current knowledge on the mode of action of mRNA vaccines interacting with the innate and adaptive immune system.
Collapse
|
29
|
Chen L, Xu W, Liu K, Jiang Z, Han Y, Jin H, Zhang L, Shen W, Jia S, Sun Q, Meng A. 5' Half of specific tRNAs feeds back to promote corresponding tRNA gene transcription in vertebrate embryos. SCIENCE ADVANCES 2021; 7:eabh0494. [PMID: 34797706 PMCID: PMC8604414 DOI: 10.1126/sciadv.abh0494] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
5′tRFls are small transfer RNA (tRNA) fragments derived from 5′ half of mature tRNAs. However, it is unknown whether 5′tRFls could feed back to regulate tRNA biogenesis. Here, we show that 5′tRFlGly/GCC and 5′tRFlGlu/CTC function to promote transcription of corresponding tRNA genes and are essential for vertebrate early embryogenesis. During zebrafish embryogenesis, dynamics of 5′tRFlGly/GCC and 5′tRFlGlu/CTC levels correlates with that of tRNAGly/GCC and tRNAGlu/CTC levels. Morpholino-mediated knockdown of 5′tRFlGly/GCC or 5′tRFlGlu/CTC down-regulates tRNAGly/GCC or tRNAGlu/CTC levels, respectively, and causes embryonic lethality that is efficiently rescued by coinjection of properly refolded corresponding tRNA. In zebrafish embryos, tRNA:DNA and 5′tRFl:DNA hybrids commonly exist on the template strand of tRNA genes. Mechanistically, unstable 5′tRFl:DNA hybrid may prevent the formation of transcriptionally inhibitory stable tRNA:DNA hybrids on the same tRNA loci so as to facilitate tRNA gene transcription. The uncovered mechanism may be implicated in other physiological and pathological processes.
Collapse
Affiliation(s)
- Luxi Chen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- The Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kunpeng Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- The Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng Jiang
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yang Han
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongbin Jin
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Zhang
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shunji Jia
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianwen Sun
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- The Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Guangzhou Laboratory, Guangzhou 510320, Guangdong Province, China
- Corresponding author.
| |
Collapse
|
30
|
Wang Y, Sun L, Wang L, Yu H, Yu X, Zou Y. PUM1 modulates trophoblast cell proliferation and migration through LRP6. Biochem Cell Biol 2021; 99:735-740. [PMID: 34734756 DOI: 10.1139/bcb-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preeclampsia is a severe pregnancy complication characterized by hypertension and may cause maternal morbidity and mortality. A better understanding of the essential genes involved in preeclampsia pathophysiology is urgently needed. This study investigated the function and molecular mechanisms of pumilio RNA binding family member 1 (PUM1) in extravillous trophoblast cells (EVTs). The interaction between protein and mRNA was verified by RNA pull-down assays, RNA immunoprecipitation assays, and luciferase reporter assays. The mRNA and protein levels of the genes involved were determined by RT-qPCR and western blot assays, respectively. Our results demonstrated that PUM1 could bind to the 3'-untranslated region of low-density lipoprotein receptor-related protein 6 (LRP6) mRNA, resulting in reduced expression of LRP6 mRNA and protein. Repression of PUM1 resulted in enhanced colony formation, cell proliferation, migration, and invasion of EVTs. The PUM1-depletion-mediated promotion effects on EVTs could be abrogated by LRP6 knockdown. PUM1 regulates the growth and mobility of EVTs by modulating LRP6 expression. Developing strategies to balance PUM1 and LRP6 levels may be beneficial for the management of preeclampsia patients.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China.,Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Li Sun
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China.,Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Lanlan Wang
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China.,Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Hui Yu
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China.,Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Xiaoyan Yu
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China.,Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Yanfen Zou
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China.,Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| |
Collapse
|
31
|
Hemolymph Ecdysteroid Titer Affects Maternal mRNAs during Bombyx mori Oogenesis. INSECTS 2021; 12:insects12110969. [PMID: 34821770 PMCID: PMC8622876 DOI: 10.3390/insects12110969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
Simple Summary Both maternal genes and ecdysteroids play important roles during embryonic development. In this study, we aimed to characterize the dynamic landscape of maternal mRNAs and the relationship between maternal genes and ecdysteroids during silkworm oogenesis. For the first time, we determined the start of the accumulation of maternal mRNAs in the ovary at the wandering stage during the larval period. We detected the developmental expression profiles of each gene in the ovary or ovariole. We finally confirmed the role of 20-hydroxyecdysone in regulating maternal gene expression. Taken together, our findings expand the understanding of insect oogenesis and provide a perspective on the embryonic development of the silkworm. Abstract Silkworm larval–pupal metamorphosis and the first half of pupal–adult development occur during oogenesis from previtellogenesis to vitellogenesis and include two peaks of the hemolymph ecdysteroid titer. Moreover, a rise in 20-hydroxyecdysone titer in early pupae can trigger the first major transition from previtellogenesis to vitellogenesis in silkworm oogenesis. In this study, we first investigated the expression patterns of 66 maternal genes in the ovary at the wandering stage. We then examined the developmental expression profiles in six time-series samples of ovaries or ovarioles by reverse transcription–quantitative PCR. We found that the transcripts of 22 maternal genes were regulated by 20-hydroxyecdysone in the isolated abdomens of the pupae following a single injection of 20-hydroxyecdysone. This study is the first to determine the relationship between 20-hydroxyecdysone and maternal genes during silkworm oogenesis. These findings provide a basis for further research into the embryonic development of Bombyx mori.
Collapse
|
32
|
Savinov A, Brandsen BM, Angell BE, Cuperus JT, Fields S. Effects of sequence motifs in the yeast 3' untranslated region determined from massively parallel assays of random sequences. Genome Biol 2021; 22:293. [PMID: 34663436 PMCID: PMC8522215 DOI: 10.1186/s13059-021-02509-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The 3' untranslated region (UTR) plays critical roles in determining the level of gene expression through effects on activities such as mRNA stability and translation. Functional elements within this region have largely been identified through analyses of native genes, which contain multiple co-evolved sequence features. RESULTS To explore the effects of 3' UTR sequence elements outside of native sequence contexts, we analyze hundreds of thousands of random 50-mers inserted into the 3' UTR of a reporter gene in the yeast Saccharomyces cerevisiae. We determine relative protein expression levels from the fitness of transformants in a growth selection. We find that the consensus 3' UTR efficiency element significantly boosts expression, independent of sequence context; on the other hand, the consensus positioning element has only a small effect on expression. Some sequence motifs that are binding sites for Puf proteins substantially increase expression in the library, despite these proteins generally being associated with post-transcriptional downregulation of native mRNAs. Our measurements also allow a systematic examination of the effects of point mutations within efficiency element motifs across diverse sequence backgrounds. These mutational scans reveal the relative in vivo importance of individual bases in the efficiency element, which likely reflects their roles in binding the Hrp1 protein involved in cleavage and polyadenylation. CONCLUSIONS The regulatory effects of some 3' UTR sequence features, like the efficiency element, are consistent regardless of sequence context. In contrast, the consequences of other 3' UTR features appear to be strongly dependent on their evolved context within native genes.
Collapse
Affiliation(s)
- Andrew Savinov
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
- Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Benjamin M Brandsen
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, 68178, USA
| | - Brooke E Angell
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
- Present address: Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA.
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA.
- Department of Medicine, University of Washington, Box 357720, Seattle, WA, 98195, USA.
| |
Collapse
|
33
|
Chung H, Parkhurst CN, Magee EM, Phillips D, Habibi E, Chen F, Yeung BZ, Waldman J, Artis D, Regev A. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat Methods 2021; 18:1204-1212. [PMID: 34608310 PMCID: PMC8532076 DOI: 10.1038/s41592-021-01278-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
Identifying gene-regulatory targets of nuclear proteins in tissues is a challenge. Here we describe intranuclear cellular indexing of transcriptomes and epitopes (inCITE-seq), a scalable method that measures multiplexed intranuclear protein levels and the transcriptome in parallel across thousands of nuclei, enabling joint analysis of transcription factor (TF) levels and gene expression in vivo. We apply inCITE-seq to characterize cell state-related changes upon pharmacological induction of neuronal activity in the mouse brain. Modeling gene expression as a linear combination of quantitative protein levels revealed genome-wide associations of each TF and recovered known gene targets. TF-associated genes were coexpressed as distinct modules that each reflected positive or negative TF levels, showing that our approach can disentangle relative putative contributions of TFs to gene expression and add interpretability to inferred gene networks. inCITE-seq can illuminate how combinations of nuclear proteins shape gene expression in native tissue contexts, with direct applications to solid or frozen tissues and clinical specimens.
Collapse
Affiliation(s)
- Hattie Chung
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Emma M Magee
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Devan Phillips
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Ehsan Habibi
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Fei Chen
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
34
|
Frydas A, Wauters E, van der Zee J, Van Broeckhoven C. Uncovering the impact of noncoding variants in neurodegenerative brain diseases. Trends Genet 2021; 38:258-272. [PMID: 34535299 DOI: 10.1016/j.tig.2021.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Neurodegenerative brain diseases (NBDs) are characterized by cognitive decline and movement impairments caused by neuronal loss in different brain regions. A large fraction of the genetic heritability of NBDs is not explained by the current known mutations. Genome-wide association studies identified novel disease-risk loci, adding to the genetic basis of NBDs. Many of the associated variants reside in noncoding regions with distinct molecular functions. Genetic variation in these regions can alter functions and contribute to disease pathogenesis. Here, we discuss noncoding variants associated with NBDs. Methods for better functional interpretation of noncoding variation will expand our knowledge of the genetic architecture of NBDs and broaden the routes for therapeutic strategies.
Collapse
Affiliation(s)
- Alexandros Frydas
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eline Wauters
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
35
|
Multiplexed functional genomic analysis of 5' untranslated region mutations across the spectrum of prostate cancer. Nat Commun 2021; 12:4217. [PMID: 34244513 PMCID: PMC8270899 DOI: 10.1038/s41467-021-24445-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/16/2021] [Indexed: 01/09/2023] Open
Abstract
The functional consequences of genetic variants within 5’ untranslated regions (UTRs) on a genome-wide scale are poorly understood in disease. Here we develop a high-throughput multi-layer functional genomics method called PLUMAGE (Pooled full-length UTR Multiplex Assay on Gene Expression) to quantify the molecular consequences of somatic 5’ UTR mutations in human prostate cancer. We show that 5’ UTR mutations can control transcript levels and mRNA translation rates through the creation of DNA binding elements or RNA-based cis-regulatory motifs. We discover that point mutations can simultaneously impact transcript and translation levels of the same gene. We provide evidence that functional 5’ UTR mutations in the MAP kinase signaling pathway can upregulate pathway-specific gene expression and are associated with clinical outcomes. Our study reveals the diverse mechanisms by which the mutational landscape of 5’ UTRs can co-opt gene expression and demonstrates that single nucleotide alterations within 5’ UTRs are functional in cancer. Mutations in 5’ untranslated regions (UTRs) have a functional role in gene expression in cancer. Here, the authors develop a sequencing-based high throughput functional assay named PLUMAGE and show the effects of these mutations on gene expression and their association with clinical outcomes in prostate cancer.
Collapse
|
36
|
Holler K, Neuschulz A, Drewe-Boß P, Mintcheva J, Spanjaard B, Arsiè R, Ohler U, Landthaler M, Junker JP. Spatio-temporal mRNA tracking in the early zebrafish embryo. Nat Commun 2021; 12:3358. [PMID: 34099733 PMCID: PMC8184788 DOI: 10.1038/s41467-021-23834-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/18/2021] [Indexed: 01/17/2023] Open
Abstract
Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.
Collapse
Affiliation(s)
- Karoline Holler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Anika Neuschulz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Philipp Drewe-Boß
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Janita Mintcheva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Roberto Arsiè
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Biology, Humboldt University, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- IRI Life Science, Institute of Biology, Humboldt University, Berlin, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
37
|
Letiagina AE, Omelina ES, Ivankin AV, Pindyurin AV. MPRAdecoder: Processing of the Raw MPRA Data With a priori Unknown Sequences of the Region of Interest and Associated Barcodes. Front Genet 2021; 12:618189. [PMID: 34046055 PMCID: PMC8148044 DOI: 10.3389/fgene.2021.618189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Massively parallel reporter assays (MPRAs) enable high-throughput functional evaluation of numerous DNA regulatory elements and/or their mutant variants. The assays are based on the construction of reporter plasmid libraries containing two variable parts, a region of interest (ROI) and a barcode (BC), located outside and within the transcription unit, respectively. Importantly, each plasmid molecule in a such a highly diverse library is characterized by a unique BC-ROI association. The reporter constructs are delivered to target cells and expression of BCs at the transcript level is assayed by RT-PCR followed by next-generation sequencing (NGS). The obtained values are normalized to the abundance of BCs in the plasmid DNA sample. Altogether, this allows evaluating the regulatory potential of the associated ROI sequences. However, depending on the MPRA library construction design, the BC and ROI sequences as well as their associations can be a priori unknown. In such a case, the BC and ROI sequences, their possible mutant variants, and unambiguous BC-ROI associations have to be identified, whereas all uncertain cases have to be excluded from the analysis. Besides the preparation of additional "mapping" samples for NGS, this also requires specific bioinformatics tools. Here, we present a pipeline for processing raw MPRA data obtained by NGS for reporter construct libraries with a priori unknown sequences of BCs and ROIs. The pipeline robustly identifies unambiguous (so-called genuine) BCs and ROIs associated with them, calculates the normalized expression level for each BC and the averaged values for each ROI, and provides a graphical visualization of the processed data.
Collapse
Affiliation(s)
- Anna E Letiagina
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Evgeniya S Omelina
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anton V Ivankin
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey V Pindyurin
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
38
|
Froehlich JJ, Uyar B, Herzog M, Theil K, Glažar P, Akalin A, Rajewsky N. Parallel genetics of regulatory sequences using scalable genome editing in vivo. Cell Rep 2021; 35:108988. [PMID: 33852857 DOI: 10.1016/j.celrep.2021.108988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/13/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
How regulatory sequences control gene expression is fundamental for explaining phenotypes in health and disease. Regulatory elements must ultimately be understood within their genomic environment and development- or tissue-specific contexts. Because this is technically challenging, few regulatory elements have been characterized in vivo. Here, we use inducible Cas9 and multiplexed guide RNAs to create hundreds of mutations in enhancers/promoters and 3' UTRs of 16 genes in C. elegans. Our software crispr-DART analyzes indel mutations in targeted DNA sequencing. We quantify the impact of mutations on expression and fitness by targeted RNA sequencing and DNA sampling. When applying our approach to the lin-41 3' UTR, generating hundreds of mutants, we find that the two adjacent binding sites for the miRNA let-7 can regulate lin-41 expression independently of each other. Finally, we map regulatory genotypes to phenotypic traits for several genes. Our approach enables parallel analysis of regulatory sequences directly in animals.
Collapse
Affiliation(s)
- Jonathan J Froehlich
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Bora Uyar
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Margareta Herzog
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Kathrin Theil
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Petar Glažar
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany.
| |
Collapse
|
39
|
Medina-Muñoz SG, Kushawah G, Castellano LA, Diez M, DeVore ML, Salazar MJB, Bazzini AA. Crosstalk between codon optimality and cis-regulatory elements dictates mRNA stability. Genome Biol 2021; 22:14. [PMID: 33402205 PMCID: PMC7783504 DOI: 10.1186/s13059-020-02251-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The regulation of messenger RNA (mRNA) stability has a profound impact on gene expression dynamics during embryogenesis. For example, in animals, maternally deposited mRNAs are degraded after fertilization to enable new developmental trajectories. Regulatory sequences in 3' untranslated regions (3'UTRs) have long been considered the central determinants of mRNA stability. However, recent work indicates that the coding sequence also possesses regulatory information. Specifically, translation in cis impacts mRNA stability in a codon-dependent manner. However, the strength of this mechanism during embryogenesis, as well as its relationship with other known regulatory elements, such as microRNA, remains unclear. RESULTS Here, we show that codon composition is a major predictor of mRNA stability in the early embryo. We show that this mechanism works in combination with other cis-regulatory elements to dictate mRNA stability in zebrafish and Xenopus embryos as well as in mouse and human cells. Furthermore, we show that microRNA targeting efficacy can be affected by substantial enrichment of optimal (stabilizing) or non-optimal (destabilizing) codons. Lastly, we find that one microRNA, miR-430, antagonizes the stabilizing effect of optimal codons during early embryogenesis in zebrafish. CONCLUSIONS By integrating the contributions of different regulatory mechanisms, our work provides a framework for understanding how combinatorial control of mRNA stability shapes the gene expression landscape.
Collapse
Affiliation(s)
- Santiago Gerardo Medina-Muñoz
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
- Present Address: National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, 36824, Irapuato, Mexico
| | - Gopal Kushawah
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | | | - Michay Diez
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | - Michelle Lynn DeVore
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | - María José Blanco Salazar
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
- Present Address: Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Ariel Alejandro Bazzini
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
40
|
Lambert JT, Su-Feher L, Cichewicz K, Warren TL, Zdilar I, Wang Y, Lim KJ, Haigh JL, Morse SJ, Canales CP, Stradleigh TW, Castillo Palacios E, Haghani V, Moss SD, Parolini H, Quintero D, Shrestha D, Vogt D, Byrne LC, Nord AS. Parallel functional testing identifies enhancers active in early postnatal mouse brain. eLife 2021; 10:69479. [PMID: 34605404 PMCID: PMC8577842 DOI: 10.7554/elife.69479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/02/2021] [Indexed: 01/07/2023] Open
Abstract
Enhancers are cis-regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type-specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted a self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identified and validated putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in the brain.
Collapse
Affiliation(s)
- Jason T Lambert
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Linda Su-Feher
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Karol Cichewicz
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Tracy L Warren
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Iva Zdilar
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Yurong Wang
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Kenneth J Lim
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Jessica L Haigh
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Sarah J Morse
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Tyler W Stradleigh
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Erika Castillo Palacios
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Viktoria Haghani
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Spencer D Moss
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Hannah Parolini
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Diana Quintero
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Diwash Shrestha
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Grand Rapids Research Center, Michigan State UniversityGrand RapidsUnited States
| | - Leah C Byrne
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States,Departments of Ophthalmology and Neurobiology, University of PittsburghPittsburghUnited States
| | - Alex S Nord
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| |
Collapse
|
41
|
Abstract
The stability of RNA transcripts is regulated by signals within their sequences, but the identity of those signals still remain elusive in many biological systems. Recently introduced massively parallel tools for the analysis of regulatory RNA sequences provide the ability to detect functional cis-regulatory sequences of post-transcriptional RNA regulation at a much larger scale and resolution than before. Their application formulates the underlying sequence-based rules and predicts the impact of genetic variations. Here, we describe the application of UTR-Seq, as a strategy to uncover cis-regulatory signals of RNA stability during early zebrafish embryogenesis. The method combines massively parallel reporter assays (MPRA) with computational regression models. It surveys the effect of tens of thousands of regulatory sequences on RNA stability and analyzes the results via regression models to identify sequence signals that impact RNA stability and to predict the in vivo effect of sequence variations.
Collapse
|
42
|
Kontur C, Jeong M, Cifuentes D, Giraldez AJ. Ythdf m 6A Readers Function Redundantly during Zebrafish Development. Cell Rep 2020; 33:108598. [PMID: 33378672 PMCID: PMC11407899 DOI: 10.1016/j.celrep.2020.108598] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/09/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
During the maternal-to-zygotic transition (MZT), multiple mechanisms precisely control massive decay of maternal mRNAs. N6-methyladenosine (m6A) is known to regulate mRNA decay, yet how this modification promotes maternal transcript degradation remains unclear. Here, we find that m6A promotes maternal mRNA deadenylation. Yet, genetic loss of m6A readers Ythdf2 and Ythdf3 did not impact global maternal mRNA clearance, zygotic genome activation, or the onset of gastrulation, challenging the view that Ythdf2 alone is critical to developmental timing. We reveal that Ythdf proteins function redundantly during zebrafish oogenesis and development, as double Ythdf2 and Ythdf3 deletion prevented female gonad formation and triple Ythdf mutants were lethal. Finally, we show that the microRNA miR-430 functions additively with methylation to promote degradation of common transcript targets. Together these findings reveal that m6A facilitates maternal mRNA deadenylation and that multiple pathways and readers act in concert to mediate these effects of methylation on RNA stability.
Collapse
Affiliation(s)
- Cassandra Kontur
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Minsun Jeong
- Chey Institute for Advanced Studies, Seoul 06141, Republic of Korea
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
43
|
Renganaath K, Chong R, Day L, Kosuri S, Kruglyak L, Albert FW. Systematic identification of cis-regulatory variants that cause gene expression differences in a yeast cross. eLife 2020; 9:e62669. [PMID: 33179598 PMCID: PMC7685706 DOI: 10.7554/elife.62669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Sequence variation in regulatory DNA alters gene expression and shapes genetically complex traits. However, the identification of individual, causal regulatory variants is challenging. Here, we used a massively parallel reporter assay to measure the cis-regulatory consequences of 5832 natural DNA variants in the promoters of 2503 genes in the yeast Saccharomyces cerevisiae. We identified 451 causal variants, which underlie genetic loci known to affect gene expression. Several promoters harbored multiple causal variants. In five promoters, pairs of variants showed non-additive, epistatic interactions. Causal variants were enriched at conserved nucleotides, tended to have low derived allele frequency, and were depleted from promoters of essential genes, which is consistent with the action of negative selection. Causal variants were also enriched for alterations in transcription factor binding sites. Models integrating these features provided modest, but statistically significant, ability to predict causal variants. This work revealed a complex molecular basis for cis-acting regulatory variation.
Collapse
Affiliation(s)
- Kaushik Renganaath
- Department of Genetics, Cell Biology, & Development, University of MinnesotaMinneapolisUnited States
| | - Rockie Chong
- Department of Chemistry & Biochemistry, University of California, Los AngelesLos AngelesUnited States
| | - Laura Day
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Sriram Kosuri
- Department of Chemistry & Biochemistry, University of California, Los AngelesLos AngelesUnited States
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Frank W Albert
- Department of Genetics, Cell Biology, & Development, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
44
|
Dar SA, Chatterjee A, Rather MA, Chetia D, Srivastava PP, Gupta S. Identification, functional characterization and expression profiling of cytochrome p450 1A (CYP1A) gene in Labeo rohita against emamectin benzoate. Int J Biol Macromol 2020; 158:S0141-8130(20)33081-6. [PMID: 32437798 DOI: 10.1016/j.ijbiomac.2020.04.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/01/2023]
Abstract
The cytochrome p450 1A (CYP1A) plays vital role in detoxification of xenobiotic compounds in living organisms. In the present study, full-length CYP1A gene was sequenced from liver of Labeo rohita and mRNA expression analysis were carried out at 0, 2, 4, 8, 12, 24, 48, 72, 96 and 120 h (h) time points after emamectin benzoate treatment. The full-length cDNA sequence of CYP1A was 1741 bp which consist of open reading frame (ORF) of 1618 bp, 5'-untranslated region (UTR) 48 bp and 75 bp 3'-UTR respectively. ORF encodes 526 amino acids with a molecular mass a 59.05 kDa and an isoelectric point of 8.74. The subcellular localization confirmed presence of the CYP1A protein was higher in plasma membrane (45.8%), followed by the mitochondrial region (13.9%) and nuclear region (9.2%). The CYP1A protein interaction was found to intermingle more with other CYP family proteins. Analysis of tissue distribution revealed that CYP1A gene was predominantly expressed in the liver compared to other tissues kidney, gills, muscle and intestine. Furthermore, present study reveals that CYP1A mRNA level in emamectin benzoate treated group @ 20 mgkg-1 body was significantly (p < 0.05) higher compared with the control. The CYP1A mRNA expression levels were found upregulating with time and highest expression levels at 24 h. Histological examination found that emamectin benzoate treated liver revealed vacuolisation, hepatocyte infiltrations, cytoplasmic degeneration of hepatocytes compared to control. Overall, present results lay a strong basis for CYP1A is important biomarker for drug detoxification in aquatic animals.
Collapse
Affiliation(s)
- Showkat Ahmad Dar
- Department of Aqualife Medicine, Chonnam National University, South Korea
| | - Arunava Chatterjee
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil- Gandarbal (SKAUST-K), India
| | - Diganta Chetia
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Prem P Srivastava
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Subodh Gupta
- Division of Fish Nutrition, Physiology, and Biochemistry, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India.
| |
Collapse
|
45
|
Tietz KT, Gallagher TL, Mannings MC, Morrow ZT, Derr NL, Amacher SL. Pumilio response and AU-rich elements drive rapid decay of Pnrc2-regulated cyclic gene transcripts. Dev Biol 2020; 462:129-140. [PMID: 32246943 DOI: 10.1016/j.ydbio.2020.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/18/2020] [Accepted: 03/20/2020] [Indexed: 01/06/2023]
Abstract
Vertebrate segmentation is regulated by the segmentation clock, a biological oscillator that controls periodic formation of somites, or embryonic segments, which give rise to many mesodermal tissue types. This molecular oscillator generates cyclic gene expression with the same periodicity as somite formation in the presomitic mesoderm (PSM), an area of mesenchymal cells that give rise to mature somites. Molecular components of the clock include the Hes/her family of genes that encode transcriptional repressors, but additional genes cycle. Cyclic gene transcripts are cleared rapidly, and clearance depends upon the pnrc2 (proline-rich nuclear receptor co-activator 2) gene that encodes an mRNA decay adaptor. Previously, we showed that the her1 3'UTR confers instability to otherwise stable transcripts in a Pnrc2-dependent manner, however, the molecular mechanism(s) by which cyclic gene transcripts are cleared remained largely unknown. To identify features of the her1 3'UTR that are critical for Pnrc2-mediated decay, we developed an array of transgenic inducible reporter lines carrying different regions of the 3'UTR. We find that the terminal 179 nucleotides (nts) of the her1 3'UTR are necessary and sufficient to confer rapid instability. Additionally, we show that the 3'UTR of another cyclic gene, deltaC (dlc), also confers Pnrc2-dependent instability. Motif analysis reveals that both her1 and dlc 3'UTRs contain terminally-located Pumilio response elements (PREs) and AU-rich elements (AREs), and we show that the PRE and ARE in the last 179 nts of the her1 3'UTR drive rapid turnover of reporter mRNA. Finally, we show that mutation of Pnrc2 residues and domains that are known to facilitate interaction of human PNRC2 with decay factors DCP1A and UPF1 reduce the ability of Pnrc2 to restore normal cyclic gene expression in pnrc2 mutant embryos. Our findings suggest that Pnrc2 interacts with decay machinery components and cooperates with Pumilio (Pum) proteins and ARE-binding proteins to promote rapid turnover of cyclic gene transcripts during somitogenesis.
Collapse
Affiliation(s)
- Kiel T Tietz
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Thomas L Gallagher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Monica C Mannings
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zachary T Morrow
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicolas L Derr
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
46
|
Tack DC, Su Z, Yu Y, Bevilacqua PC, Assmann SM. Tissue-specific changes in the RNA structurome mediate salinity response in Arabidopsis. RNA (NEW YORK, N.Y.) 2020; 26:492-511. [PMID: 31937672 PMCID: PMC7075263 DOI: 10.1261/rna.072850.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/13/2020] [Indexed: 05/22/2023]
Abstract
Little is known concerning the effects of abiotic factors on in vivo RNA structures. We applied Structure-seq to assess the in vivo mRNA structuromes of Arabidopsis thaliana under salinity stress, which negatively impacts agriculture. Structure-seq utilizes dimethyl sulfate reactivity to identify As and Cs that lack base-pairing or protection. Salt stress refolded transcripts differentially in root versus shoot, evincing tissue specificity of the structurome. Both tissues exhibited an inverse correlation between salt stress-induced changes in transcript reactivity and changes in abundance, with stress-related mRNAs showing particular structural dynamism. This inverse correlation is more pronounced in mRNAs wherein the mean reactivity of the 5'UTR, CDS, and 3'UTR concertedly change under salinity stress, suggesting increased susceptibility to abundance control mechanisms in transcripts exhibiting this phenomenon, which we name "concordancy." Concordant salinity-induced increases in reactivity were notably observed in photosynthesis genes, thereby implicating mRNA structural loss in the well-known depression of photosynthesis by salt stress. Overall, changes in secondary structure appear to impact mRNA abundance, molding the functional specificity of the transcriptome under stress.
Collapse
Affiliation(s)
- David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Spectrum Health Office of Research, Grand Rapids, Michigan 49503, USA
| | - Zhao Su
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yunqing Yu
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
47
|
Irvine SQ. Embryonic canalization and its limits-A view from temperature. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:128-144. [PMID: 32011096 DOI: 10.1002/jez.b.22930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Many animals are able to produce similar offspring over a range of environmental conditions. This property of the developmental process has been termed canalization-the channeling of developmental pathways to generate a stable outcome despite varying conditions. Temperature is one environmental parameter that has fundamental effects on cell physiology and biochemistry, yet developmental programs generally result in a stable phenotype under a range of temperatures. On the other hand, there are typically upper and lower temperature limits beyond which the developmental program is unable to produce normal offspring. This review summarizes data on how development is affected by temperature, particularly high temperature, in various animal species. It also brings together information on potential cell biological and developmental genetic factors that may be responsible for developmental stability in varying temperatures, and likely critical mechanisms that break down at high temperature. Also reviewed are possible means for studying temperature effects on embryogenesis and how to determine which factors are most critical at the high-temperature limits for normal development. Increased knowledge of these critical factors will point to the targets of selection under climate change, and more generally, how developmental robustness in varying environments is maintained.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
48
|
Simkin A, Geissler R, McIntyre ABR, Grimson A. Evolutionary dynamics of microRNA target sites across vertebrate evolution. PLoS Genet 2020; 16:e1008285. [PMID: 32012152 PMCID: PMC7018135 DOI: 10.1371/journal.pgen.1008285] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/13/2020] [Accepted: 01/02/2020] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) control the abundance of the majority of the vertebrate transcriptome. The recognition sequences, or target sites, for bilaterian miRNAs are found predominantly in the 3' untranslated regions (3'UTRs) of mRNAs, and are amongst the most highly conserved motifs within 3'UTRs. However, little is known regarding the evolutionary pressures that lead to loss and gain of such target sites. Here, we quantify the selective pressures that act upon miRNA target sites. Notably, selective pressure extends beyond deeply conserved binding sites to those that have undergone recent substitutions. Our approach reveals that even amongst ancient animal miRNAs, which exert the strongest selective pressures on 3'UTR sequences, there are striking differences in patterns of target site evolution between miRNAs. Considering only ancient animal miRNAs, we find three distinct miRNA groups, each exhibiting characteristic rates of target site gain and loss during mammalian evolution. The first group both loses and gains sites rarely. The second group shows selection only against site loss, with site gains occurring at a neutral rate, whereas the third loses and gains sites at neutral or above expected rates. Furthermore, mutations that alter the strength of existing target sites are disfavored. Applying our approach to individual transcripts reveals variation in the distribution of selective pressure across the transcriptome and between miRNAs, ranging from strong selection acting on a small subset of targets of some miRNAs, to weak selection on many targets for other miRNAs. miR-20 and miR-30, and many other miRNAs, exhibit broad, deeply conserved targeting, while several other comparably ancient miRNAs show a lack of selective constraint, and a small number, including mir-146, exhibit evidence of rapidly evolving target sites. Our approach adds valuable perspective on the evolution of miRNAs and their targets, and can also be applied to characterize other 3'UTR regulatory motifs.
Collapse
Affiliation(s)
- Alfred Simkin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Department of Biology, Elon University, Elon, North Carolina, United States of America
| | - Rene Geissler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Alexa B. R. McIntyre
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
49
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|
50
|
Zebrafish embryogenesis – A framework to study regulatory RNA elements in development and disease. Dev Biol 2020; 457:172-180. [DOI: 10.1016/j.ydbio.2019.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/26/2022]
|