1
|
Lee HH, Chuang HY, Lin K, Yeh CT, Wang YM, Chi HC, Lin KH. RNASE4 promotes malignant progression and chemoresistance in hypoxic glioblastoma via activation of AXL/AKT and NF-κB/cIAPs signaling pathways. Am J Cancer Res 2024; 14:4320-4336. [PMID: 39417186 PMCID: PMC11477813 DOI: 10.62347/udbj5986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor frequently characterized by a hypoxic microenvironment. In this investigation, we unveiled unprecedented role of Ribonuclease 4 (RNASE4) in GBM pathogenesis through integrative methodologies. Leveraging The Cancer Genome Atlas (TCGA) dataset and clinical specimens from normal brain tissues, low- and high-grade gliomas, alongside rigorous in vitro and in vivo functional analyses, we identified a consistent upregulation of RNASE4 correlating with advanced GBM pathological stages and poor clinical survival outcomes. Functional assays corroborated the pivotal influences of RNASE4 on key tumorigenic processes such as cell proliferation, migration, invasion, stemness properties and temozolomide (TMZ) resistance. Further, Gene Set Enrichment Analysis (GSEA) illuminated the involvement of RNASE4 in modulating epithelial-mesenchymal transition (EMT) via activation of AXL, AKT and NF-κB signaling pathways. Furthermore, recombinant human RNASE4 (hRNASE4)-mediated NF-κB activation through IκBα phosphorylation and degradation could result in the upregulation of inhibitors of apoptosis proteins (IAPs), such as cIAP1, cIAP2, and SURVIVIN. Notably, treating RNASE4-induced TMZ-resistant cells with the SURVIVIN inhibitor YM-155 significantly restored cellular sensitivity to TMZ therapy. Herein, this study positions RNASE4 as a potent prognostic biomarker and therapeutic target, offering new insights into molecular pathogenesis of GBM and new avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Hsun-Hua Lee
- Department of Neurology, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 110, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Dizziness and Balance Disorder Center, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 110, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei 23561, Taiwan
- Dizziness and Balance Disorder Center, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei 23561, Taiwan
| | - Hao-Yu Chuang
- School of Medicine, China Medical UniversityTaichung 40447, Taiwan
- Translational Cell Therapy Center, Tainan Municipal An-Nan Hospital-China Medical UniversityTainan 709204, Taiwan
- Division of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical UniversityTainan 709204, Taiwan
- Division of Neurosurgery, China Medical University Beigang HospitalBeigang Township, Yunlin 65152, Taiwan
| | - Kent Lin
- Northern Clinical School, Faculty of Medicine and Health, The University of SydneyNSW 2006, Australia
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 330, Taiwan
| | - Yi-Min Wang
- Department of Neurosurgery, An Nan Hospital, China Medical UniversityTainan 709204, Taiwan
| | - Hsiang-Cheng Chi
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 404333, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung 40447, Taiwan
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 330, Taiwan
- Department of Biochemistry, College of Medicine, Chang-Gung UniversityTaoyuan 330, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung UniversityTaoyuan 330, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan 330, Taiwan
| |
Collapse
|
2
|
McJunkin K, Gottesman S. What goes up must come down: off switches for regulatory RNAs. Genes Dev 2024; 38:597-613. [PMID: 39111824 PMCID: PMC11368247 DOI: 10.1101/gad.351934.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small RNAs base pair with and regulate mRNA translation and stability. For both bacterial small regulatory RNAs and eukaryotic microRNAs, association with partner proteins is critical for the stability and function of the regulatory RNAs. We review the mechanisms for degradation of these RNAs: displacement of the regulatory RNA from its protein partner (in bacteria) or destruction of the protein and its associated microRNAs (in eukaryotes). These mechanisms can allow specific destruction of a regulatory RNA via pairing with a decay trigger RNA or function as global off switches by disrupting the stability or function of the protein partner.
Collapse
Affiliation(s)
- Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, Maryland 20892, USA;
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Seo Y, Rhim J, Kim JH. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within. Exp Mol Med 2024; 56:1080-1106. [PMID: 38689093 PMCID: PMC11148060 DOI: 10.1038/s12276-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.
Collapse
Affiliation(s)
- Yoona Seo
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jiho Rhim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
4
|
Tomasello L, Holub SM, Nigita G, Distefano R, Croce CM. Poly(A)-specific RNase (PARN) generates and regulates miR-125a-5p 3'-isoforms, displaying an altered expression in breast cancer. Signal Transduct Target Ther 2024; 9:90. [PMID: 38616203 PMCID: PMC11016533 DOI: 10.1038/s41392-024-01795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/12/2024] [Accepted: 03/10/2024] [Indexed: 04/16/2024] Open
Affiliation(s)
- Luisa Tomasello
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| | - Shoshanah M Holub
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Rosario Distefano
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Bernard EIM, Towler BP, Rogoyski OM, Newbury SF. Characterisation of the in-vivo miRNA landscape in Drosophila ribonuclease mutants reveals Pacman-mediated regulation of the highly conserved let-7 cluster during apoptotic processes. Front Genet 2024; 15:1272689. [PMID: 38444757 PMCID: PMC10912645 DOI: 10.3389/fgene.2024.1272689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
The control of gene expression is a fundamental process essential for correct development and to maintain homeostasis. Many post-transcriptional mechanisms exist to maintain the correct levels of each RNA transcript within the cell. Controlled and targeted cytoplasmic RNA degradation is one such mechanism with the 5'-3' exoribonuclease Pacman (XRN1) and the 3'-5' exoribonuclease Dis3L2 playing crucial roles. Loss of function mutations in either Pacman or Dis3L2 have been demonstrated to result in distinct phenotypes, and both have been implicated in human disease. One mechanism by which gene expression is controlled is through the function of miRNAs which have been shown to be crucial for the control of almost all cellular processes. Although the biogenesis and mechanisms of action of miRNAs have been comprehensively studied, the mechanisms regulating their own turnover are not well understood. Here we characterise the miRNA landscape in a natural developing tissue, the Drosophila melanogaster wing imaginal disc, and assess the importance of Pacman and Dis3L2 on the abundance of miRNAs. We reveal a complex landscape of miRNA expression and show that whilst a null mutation in dis3L2 has a minimal effect on the miRNA expression profile, loss of Pacman has a profound effect with a third of all detected miRNAs demonstrating Pacman sensitivity. We also reveal a role for Pacman in regulating the highly conserved let-7 cluster (containing miR-100, let-7 and miR-125) and present a genetic model outlining a positive feedback loop regulated by Pacman which enhances our understanding of the apoptotic phenotype observed in Pacman mutants.
Collapse
Affiliation(s)
- Elisa I. M. Bernard
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Benjamin P. Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Oliver M. Rogoyski
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Sarah F. Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
6
|
Bofill-De Ros X, Vang Ørom UA. Recent progress in miRNA biogenesis and decay. RNA Biol 2024; 21:1-8. [PMID: 38031325 PMCID: PMC10761092 DOI: 10.1080/15476286.2023.2288741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
MicroRNAs are a class of small regulatory RNAs that mediate regulation of protein synthesis by recognizing sequence elements in mRNAs. MicroRNAs are processed through a series of steps starting from transcription and primary processing in the nucleus to precursor processing and mature function in the cytoplasm. It is also in the cytoplasm where levels of mature microRNAs can be modulated through decay mechanisms. Here, we review the recent progress in the lifetime of a microRNA at all steps required for maintaining their homoeostasis. The increasing knowledge about microRNA regulation upholds great promise as therapeutic targets.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- RNA Biology and Innovation, Institute of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ulf Andersson Vang Ørom
- RNA Biology and Innovation, Institute of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Min KW, Jo MH, Song M, Lee JW, Shim MJ, Kim K, Park HB, Ha S, Mun H, Polash A, Hafner M, Cho JH, Kim D, Jeong JH, Ko S, Hohng S, Kang SU, Yoon JH. Mature microRNA-binding protein QKI promotes microRNA-mediated gene silencing. RNA Biol 2024; 21:1-15. [PMID: 38372062 PMCID: PMC10878027 DOI: 10.1080/15476286.2024.2314846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Although Argonaute (AGO) proteins have been the focus of microRNA (miRNA) studies, we observed AGO-free mature miRNAs directly interacting with RNA-binding proteins, implying the sophisticated nature of fine-tuning gene regulation by miRNAs. To investigate microRNA-binding proteins (miRBPs) globally, we analyzed PAR-CLIP data sets to identify RBP quaking (QKI) as a novel miRBP for let-7b. Potential existence of AGO-free miRNAs were further verified by measuring miRNA levels in genetically engineered AGO-depleted human and mouse cells. We have shown that QKI regulates miRNA-mediated gene silencing at multiple steps, and collectively serves as an auxiliary factor empowering AGO2/let-7b-mediated gene silencing. Depletion of QKI decreases interaction of AGO2 with let-7b and target mRNA, consequently controlling target mRNA decay. This finding indicates that QKI is a complementary factor in miRNA-mediated mRNA decay. QKI, however, also suppresses the dissociation of let-7b from AGO2, and slows the assembly of AGO2/miRNA/target mRNA complexes at the single-molecule level. We also revealed that QKI overexpression suppresses cMYC expression at post-transcriptional level, and decreases proliferation and migration of HeLa cells, demonstrating that QKI is a tumour suppressor gene by in part augmenting let-7b activity. Our data show that QKI is a new type of RBP implicated in the versatile regulation of miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Myung Hyun Jo
- Department of Physics & Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Minseok Song
- Department of Physics & Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Lee
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Min Ji Shim
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Kyungmin Kim
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Hyun Bong Park
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Shinwon Ha
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Oncology Science, University of Oklahoma, Oklahoma City, USA
| | - Ahsan Polash
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Dongsan Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ji-Hoon Jeong
- Department of Oncology Science, University of Oklahoma, Oklahoma City, USA
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Sungchul Hohng
- Department of Physics & Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Oncology Science, University of Oklahoma, Oklahoma City, USA
| |
Collapse
|
8
|
Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 2023; 24:816-833. [PMID: 37380761 PMCID: PMC11087887 DOI: 10.1038/s41576-023-00611-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Gayan Senavirathne
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
9
|
Liu Y, Guo S, Xie W, Yang H, Li W, Zhou N, Yang J, Zhou G, Mao C, Zheng Y. Identification of microRNA editing sites in clear cell renal cell carcinoma. Sci Rep 2023; 13:15117. [PMID: 37704698 PMCID: PMC10499803 DOI: 10.1038/s41598-023-42302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a malignant tumor originating from the renal tubular epithelium. Although the microRNAs (miRNAs) transcriptome of ccRCC has been extensively studied, the role of miRNAs editing in ccRCC is largely unknown. By analyzing small RNA sequencing profiles of renal tissues of 154 ccRCC patients and 22 normal controls, we identified 1025 miRNA editing sites from 246 pre-miRNAs. There were 122 editing events with significantly different editing levels in ccRCC compared to normal samples, which include two A-to-I editing events in the seed regions of hsa-mir-376a-3p and hsa-mir-376c-3p, respectively, and one C-to-U editing event in the seed region of hsa-mir-29c-3p. After comparing the targets of the original and edited miRNAs, we found that hsa-mir-376a-1_49g, hsa-mir-376c_48g and hsa-mir-29c_59u had many new targets, respectively. Many of these new targets were deregulated in ccRCC, which might be related to the different editing levels of hsa-mir-376a-3p, hsa-mir-376c-3p, hsa-mir-29c-3p in ccRCC compared to normal controls. Our study sheds new light on miRNA editing events and their potential biological functions in ccRCC.
Collapse
Affiliation(s)
- Yulong Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Shiyong Guo
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenping Xie
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Huaide Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Wanran Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Nan Zhou
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jun Yang
- School of Criminal Investigation, Yunnan Police College, Kunming, 650223, Yunnan, China
| | - Guangchen Zhou
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Chunyi Mao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yun Zheng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
10
|
Huynh TN, Parker R. The PARN, TOE1, and USB1 RNA deadenylases and their roles in non-coding RNA regulation. J Biol Chem 2023; 299:105139. [PMID: 37544646 PMCID: PMC10493513 DOI: 10.1016/j.jbc.2023.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023] Open
Abstract
The levels of non-coding RNAs (ncRNAs) are regulated by transcription, RNA processing, and RNA degradation pathways. One mechanism for the degradation of ncRNAs involves the addition of oligo(A) tails by non-canonical poly(A) polymerases, which then recruit processive sequence-independent 3' to 5' exonucleases for RNA degradation. This pathway of decay is also regulated by three 3' to 5' exoribonucleases, USB1, PARN, and TOE1, which remove oligo(A) tails and thereby can protect ncRNAs from decay in a manner analogous to the deubiquitination of proteins. Loss-of-function mutations in these genes lead to premature degradation of some ncRNAs and lead to specific human diseases such as Poikiloderma with Neutropenia (PN) for USB1, Dyskeratosis Congenita (DC) for PARN and Pontocerebellar Hypoplasia type 7 (PCH7) for TOE1. Herein, we review the biochemical properties of USB1, PARN, and TOE1, how they modulate ncRNA levels, and their roles in human diseases.
Collapse
Affiliation(s)
- Thao Ngoc Huynh
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
11
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
12
|
Jones BT, Han J, Zhang H, Hammer RE, Evers BM, Rakheja D, Acharya A, Mendell JT. Target-directed microRNA degradation regulates developmental microRNA expression and embryonic growth in mammals. Genes Dev 2023; 37:661-674. [PMID: 37553261 PMCID: PMC10499020 DOI: 10.1101/gad.350906.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in development and disease. Target-directed miRNA degradation (TDMD), a pathway in which miRNAs that bind to specialized targets with extensive complementarity are rapidly decayed, has emerged as a potent mechanism of controlling miRNA levels. Nevertheless, the biological role and scope of miRNA regulation by TDMD in mammals remains poorly understood. To address these questions, we generated mice with constitutive or conditional deletion of Zswim8, which encodes an essential TDMD factor. Loss of Zswim8 resulted in developmental defects in the heart and lungs, growth restriction, and perinatal lethality. Small RNA sequencing of embryonic tissues revealed widespread miRNA regulation by TDMD and greatly expanded the known catalog of miRNAs regulated by this pathway. These experiments also uncovered novel features of TDMD-regulated miRNAs, including their enrichment in cotranscribed clusters and examples in which TDMD underlies "arm switching," a phenomenon wherein the dominant strand of a miRNA precursor changes in different tissues or conditions. Importantly, deletion of two miRNAs, miR-322 and miR-503, rescued growth of Zswim8-null embryos, directly implicating the TDMD pathway as a regulator of mammalian body size. These data illuminate the broad landscape and developmental role of TDMD in mammals.
Collapse
Affiliation(s)
- Benjamin T Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
13
|
Nanjappa DP, De Saffel H, Kalladka K, Arjuna S, Babu N, Prasad K, Sips P, Chakraborty A. Poly (A)-specific ribonuclease deficiency impacts oogenesis in zebrafish. Sci Rep 2023; 13:10026. [PMID: 37340076 DOI: 10.1038/s41598-023-37226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/18/2023] [Indexed: 06/22/2023] Open
Abstract
Poly (A)-specific ribonuclease (PARN) is the most important 3'-5'exonuclease involved in the process of deadenylation, the removal of poly (A) tails of mRNAs. Although PARN is primarily known for its role in mRNA stability, recent studies suggest several other functions of PARN including a role in telomere biology, non-coding RNA maturation, trimming of miRNAs, ribosome biogenesis and TP53 function. Moreover, PARN expression is de-regulated in many cancers, including solid tumours and hematopoietic malignancies. To better understand the in vivo role of PARN, we used a zebrafish model to study the physiological consequences of Parn loss-of-function. Exon 19 of the gene, which partially codes for the RNA binding domain of the protein, was targeted for CRISPR-Cas9-directed genome editing. Contrary to the expectations, no developmental defects were observed in the zebrafish with a parn nonsense mutation. Intriguingly, the parn null mutants were viable and fertile, but turned out to only develop into males. Histological analysis of the gonads in the mutants and their wild type siblings revealed a defective maturation of gonadal cells in the parn null mutants. The results of this study highlight yet another emerging function of Parn, i.e., its role in oogenesis.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Hanna De Saffel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Krithika Kalladka
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Srividya Arjuna
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Kishan Prasad
- Department of Pathology, KS Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
14
|
Huynh TN, Shukla S, Reigan P, Parker R. Identification of PARN nuclease activity inhibitors by computational-based docking and high-throughput screening. Sci Rep 2023; 13:5244. [PMID: 37002320 PMCID: PMC10066322 DOI: 10.1038/s41598-023-32039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that removes poly(A) tails from the 3' end of RNAs. PARN is known to deadenylate some ncRNAs, including hTR, Y RNAs, and some miRNAs and thereby enhance their stability by limiting the access of 3' to 5' exonucleases recruited by oligo(A) tails. Several PARN-regulated miRNAs target p53 mRNA, and PARN knockdown leads to an increase of p53 protein levels in human cells. Thus, PARN inhibitors might be used to induce p53 levels in some human tumors and act as a therapeutic strategy to treat cancers caused by repressed p53 protein. Herein, we used computational-based molecular docking and high-throughput screening (HTS) to identify small molecule inhibitors of PARN. Validation with in vitro and cell-based assays, identified 4 compounds, including 3 novel compounds and pyrimidopyrimidin-2-one GNF-7, previously shown to be a Bcr-Abl inhibitor, as PARN inhibitors. These inhibitors can be used as tool compounds and as lead compounds for the development of improved PARN inhibitors.
Collapse
Affiliation(s)
- Thao Ngoc Huynh
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Siddharth Shukla
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, 80045, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
15
|
Jeong HC, Shukla S, Fok WC, Huynh TN, Batista LFZ, Parker R. USB1 is a miRNA deadenylase that regulates hematopoietic development. Science 2023; 379:901-907. [PMID: 36862787 PMCID: PMC10827040 DOI: 10.1126/science.abj8379] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Mutations in the 3' to 5' RNA exonuclease USB1 cause hematopoietic failure in poikiloderma with neutropenia (PN). Although USB1 is known to regulate U6 small nuclear RNA maturation, the molecular mechanism underlying PN remains undetermined, as pre-mRNA splicing is unaffected in patients. We generated human embryonic stem cells harboring the PN-associated mutation c.531_delA in USB1 and show that this mutation impairs human hematopoiesis. Dysregulated microRNA (miRNA) levels in USB1 mutants during blood development contribute to hematopoietic failure, because of a failure to remove 3'-end adenylated tails added by PAPD5/7. Modulation of miRNA 3'-end adenylation through genetic or chemical inhibition of PAPD5/7 rescues hematopoiesis in USB1 mutants. This work shows that USB1 acts as a miRNA deadenylase and suggests PAPD5/7 inhibition as a potential therapy for PN.
Collapse
Affiliation(s)
- Ho-Chang Jeong
- Division of Hematology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Siddharth Shukla
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, Chevy Chase MD 20815, USA
| | - Wilson Chun Fok
- Division of Hematology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Thao Ngoc Huynh
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, Chevy Chase MD 20815, USA
| | - Luis Francisco Zirnberger Batista
- Division of Hematology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, Chevy Chase MD 20815, USA
| |
Collapse
|
16
|
Meze K, Axhemi A, Thomas DR, Doymaz A, Joshua-Tor L. A shape-shifting nuclease unravels structured RNA. Nat Struct Mol Biol 2023; 30:339-347. [PMID: 36823385 PMCID: PMC10023572 DOI: 10.1038/s41594-023-00923-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2023] [Indexed: 02/25/2023]
Abstract
RNA turnover pathways ensure appropriate gene expression levels by eliminating unwanted transcripts. Dis3-like 2 (Dis3L2) is a 3'-5' exoribonuclease that plays a critical role in human development. Dis3L2 independently degrades structured substrates, including coding and noncoding 3' uridylated RNAs. While the basis for Dis3L2's substrate recognition has been well characterized, the mechanism of structured RNA degradation by this family of enzymes is unknown. We characterized the discrete steps of the degradation cycle by determining cryogenic electron microscopy structures representing snapshots along the RNA turnover pathway and measuring kinetic parameters for RNA processing. We discovered a dramatic conformational change that is triggered by double-stranded RNA (dsRNA), repositioning two cold shock domains by 70 Å. This movement exposes a trihelix linker region, which acts as a wedge to separate the two RNA strands. Furthermore, we show that the trihelix linker is critical for dsRNA, but not single-stranded RNA, degradation. These findings reveal the conformational plasticity of Dis3L2 and detail a mechanism of structured RNA degradation.
Collapse
Affiliation(s)
- Katarina Meze
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, New York, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
- Cold Spring Harbor Laboratory, New York, NY, USA
| | - Armend Axhemi
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, New York, NY, USA
- Cold Spring Harbor Laboratory, New York, NY, USA
| | - Dennis R Thomas
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, New York, NY, USA
- Cold Spring Harbor Laboratory, New York, NY, USA
| | - Ahmet Doymaz
- School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Leemor Joshua-Tor
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, New York, NY, USA.
- School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA.
- Cold Spring Harbor Laboratory, New York, NY, USA.
| |
Collapse
|
17
|
Han J, Mendell JT. MicroRNA turnover: a tale of tailing, trimming, and targets. Trends Biochem Sci 2023; 48:26-39. [PMID: 35811249 PMCID: PMC9789169 DOI: 10.1016/j.tibs.2022.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) post-transcriptionally repress gene expression by guiding Argonaute (AGO) proteins to target mRNAs. While much is known about the regulation of miRNA biogenesis, miRNA degradation pathways are comparatively poorly understood. Although miRNAs generally exhibit slow turnover, they can be rapidly degraded through regulated mechanisms that act in a context- or sequence-specific manner. Recent work has revealed a particularly important role for specialized target interactions in controlling rates of miRNA degradation. Engagement of these targets is associated with the addition and removal of nucleotides from the 3' ends of miRNAs, a process known as tailing and trimming. Here we review these mechanisms of miRNA modification and turnover, highlighting the contexts in which they impact miRNA stability and discussing important questions that remain unanswered.
Collapse
Affiliation(s)
- Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
18
|
de Rooij LA, Mastebroek DJ, ten Voorde N, van der Wall E, van Diest PJ, Moelans CB. The microRNA Lifecycle in Health and Cancer. Cancers (Basel) 2022; 14:cancers14235748. [PMID: 36497229 PMCID: PMC9736740 DOI: 10.3390/cancers14235748] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of ~22 nucleotides that regulate gene expression at the post-transcriptional level. They can bind to around 60% of all protein-coding genes with an average of 200 targets per miRNA, indicating their important function within physiological and pathological cellular processes. miRNAs can be quickly produced in high amounts through canonical and non-canonical pathways that involve a multitude of steps and proteins. In cancer, miRNA biogenesis, availability and regulation of target expression can be altered to promote tumour progression. This can be due to genetic causes, such as single nucleotide polymorphisms, epigenetic changes, differences in host gene expression, or chromosomal remodelling. Alternatively, post-transcriptional changes in miRNA stability, and defective or absent components and mediators of the miRNA-induced silencing complex can lead to altered miRNA function. This review provides an overview of the current knowledge on the lifecycle of miRNAs in health and cancer. Understanding miRNA function and regulation is fundamental prior to potential future application of miRNAs as cancer biomarkers.
Collapse
Affiliation(s)
- Laura Adriana de Rooij
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-887-556-557
| | - Dirk Jan Mastebroek
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Nicky ten Voorde
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Paul Joannes van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Cathy Beatrice Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
19
|
Nagpal N, Tai AK, Nandakumar J, Agarwal S. Domain specific mutations in dyskerin disrupt 3' end processing of scaRNA13. Nucleic Acids Res 2022; 50:9413-9425. [PMID: 36018809 PMCID: PMC9458449 DOI: 10.1093/nar/gkac706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in DKC1 (encoding dyskerin) cause telomere diseases including dyskeratosis congenita (DC) by decreasing steady-state levels of TERC, the non-coding RNA component of telomerase. How DKC1 mutations variably impact numerous other snoRNAs remains unclear, which is a barrier to understanding disease mechanisms in DC beyond impaired telomere maintenance. Here, using DC patient iPSCs, we show that mutations in the dyskerin N-terminal extension domain (NTE) dysregulate scaRNA13. In iPSCs carrying the del37L NTE mutation or engineered to carry NTE mutations via CRISPR/Cas9, but not in those with C-terminal mutations, we found scaRNA13 transcripts with aberrant 3' extensions, as seen when the exoribonuclease PARN is mutated in DC. Biogenesis of scaRNA13 was rescued by repair of the del37L DKC1 mutation by genome-editing, or genetic or pharmacological inactivation of the polymerase PAPD5, which counteracts PARN. Inspection of the human telomerase cryo-EM structure revealed that in addition to mediating intermolecular dyskerin interactions, the NTE interacts with terminal residues of the associated snoRNA, indicating a role for this domain in 3' end definition. Our results provide mechanistic insights into the interplay of dyskerin and the PARN/PAPD5 axis in the biogenesis and accumulation of snoRNAs beyond TERC, broadening our understanding of ncRNA dysregulation in human diseases.
Collapse
Affiliation(s)
- Neha Nagpal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Stem Cell Institute; Department of Pediatrics, Harvard Medical School; Manton Center for Orphan Disease Research; Harvard Initiative in RNA Medicine; Boston, MA, USA
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Data Intensive Studies Center, Tufts University, Medford, MA, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Suneet Agarwal
- To whom correspondence should be addressed. Tel: +1 617 919 4610; Fax: +1 617 919 3359;
| |
Collapse
|
20
|
Yang A, Bofill-De Ros X, Stanton R, Shao TJ, Villanueva P, Gu S. TENT2, TUT4, and TUT7 selectively regulate miRNA sequence and abundance. Nat Commun 2022; 13:5260. [PMID: 36071058 PMCID: PMC9452540 DOI: 10.1038/s41467-022-32969-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
TENTs generate miRNA isoforms by 3' tailing. However, little is known about how tailing regulates miRNA function. Here, we generate isogenic HEK293T cell lines in which TENT2, TUT4 and TUT7 are knocked out individually or in combination. Together with rescue experiments, we characterize TENT-specific effects by deep sequencing, Northern blot and in vitro assays. We find that 3' tailing is not random but highly specific. In addition to its known adenylation, TENT2 contributes to guanylation and uridylation on mature miRNAs. TUT4 uridylates most miRNAs whereas TUT7 is dispensable. Removing adenylation has a marginal impact on miRNA levels. By contrast, abolishing uridylation leads to dysregulation of a set of miRNAs. Besides let-7, miR-181b and miR-222 are negatively regulated by TUT4/7 via distinct mechanisms while the miR-888 cluster is upregulated specifically by TUT7. Our results uncover the selective actions of TENTs in generating 3' isomiRs and pave the way to investigate their functions.
Collapse
Affiliation(s)
- Acong Yang
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ryan Stanton
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tie-Juan Shao
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Patricia Villanueva
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
21
|
Restoration of microRNA metabolism trigger robust antitumor responses. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:498-500. [PMID: 35991311 PMCID: PMC9375147 DOI: 10.1016/j.omtn.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Donnelly BF, Yang B, Grimme AL, Vieux KF, Liu CY, Zhou L, McJunkin K. The developmentally timed decay of an essential microRNA family is seed-sequence dependent. Cell Rep 2022; 40:111154. [PMID: 35947946 PMCID: PMC9413084 DOI: 10.1016/j.celrep.2022.111154] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/04/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNA (miRNA) abundance is tightly controlled by regulation of biogenesis and decay. Here, we show that the mir-35 miRNA family undergoes selective decay at the transition from embryonic to larval development in C. elegans. The seed sequence of the miRNA is necessary and largely sufficient for this regulation. Sequences outside the seed (3' end) regulate mir-35 abundance in the embryo but are not necessary for sharp decay at the transition to larval development. Enzymatic modifications of the miRNA 3' end are neither prevalent nor correlated with changes in decay, suggesting that miRNA 3' end display is not a core feature of this mechanism and further supporting a seed-driven decay model. Our findings demonstrate that seed-sequence-specific decay can selectively and coherently regulate all redundant members of a miRNA seed family, a class of mechanism that has great biological and therapeutic potential for dynamic regulation of a miRNA family's target repertoire.
Collapse
Affiliation(s)
- Bridget F Donnelly
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Karl-Frédéric Vieux
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Chen-Yu Liu
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Lecong Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
EpisomiR, a New Family of miRNAs, and Its Possible Roles in Human Diseases. Biomedicines 2022; 10:biomedicines10061280. [PMID: 35740302 PMCID: PMC9220071 DOI: 10.3390/biomedicines10061280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) are synthesized through a canonical pathway and play a role in human diseases, such as cancers and cardiovascular, neurodegenerative, psychiatric, and chronic inflammatory diseases. The development of sequencing technologies has enabled the identification of variations in noncoding miRNAs. These miRNA variants, called isomiRs, are generated through a non-canonical pathway, by several enzymes that alter the length and sequence of miRNAs. The isomiR family is, now, expanding further to include episomiRs, which are miRNAs with different modifications. Since recent findings have shown that isomiRs reflect the cell-specific biological function of miRNAs, knowledge about episomiRs and isomiRs can, possibly, contribute to the optimization of diagnosis and therapeutic technology for precision medicine.
Collapse
|
24
|
Kyritsis A, Papanastasi E, Kokkori I, Maragozidis P, Chatzileontiadou DSM, Pallaki P, Labrou M, Zarogiannis SG, Chrousos GP, Vlachakis D, Gourgoulianis KI, Balatsos NAA. Integrated Deadenylase Genetic Association Network and Transcriptome Analysis in Thoracic Carcinomas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103102. [PMID: 35630580 PMCID: PMC9145511 DOI: 10.3390/molecules27103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022]
Abstract
The poly(A) tail at the 3′ end of mRNAs determines their stability, translational efficiency, and fate. The shortening of the poly(A) tail, and its efficient removal, triggers the degradation of mRNAs, thus, regulating gene expression. The process is catalyzed by a family of enzymes, known as deadenylases. As the dysregulation of gene expression is a hallmark of cancer, understanding the role of deadenylases has gained additional interest. Herein, the genetic association network shows that CNOT6 and CNOT7 are the most prevalent and most interconnected nodes in the equilibrated diagram. Subsequent silencing and transcriptomic analysis identifies transcripts possibly regulated by specific deadenylases. Furthermore, several gene ontologies are enriched by common deregulated genes. Given the potential concerted action and overlapping functions of deadenylases, we examined the effect of silencing a deadenylase on the remaining ones. Our results suggest that specific deadenylases target unique subsets of mRNAs, whilst at the same time, multiple deadenylases may affect the same mRNAs with overlapping functions.
Collapse
Affiliation(s)
- Athanasios Kyritsis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 411 10 Larissa, Greece;
| | - Eirini Papanastasi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Ioanna Kokkori
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 411 10 Larissa, Greece;
- Department of Pneumonology-Oncology, Theagenio Cancer Hospital, 540 07 Thessaloniki, Greece
| | - Panagiotis Maragozidis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Paschalina Pallaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Maria Labrou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
| | - Sotirios G. Zarogiannis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 411 10 Larissa, Greece;
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 415 00 Larissa, Greece
- Correspondence: (S.G.Z.); (K.I.G.); (N.A.A.B.)
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (G.P.C.); (D.V.)
- UNESCO Chair on Adolescent Health Care, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Dimitrios Vlachakis
- University Research Institute of Maternal and Child Health and Precision Medicine, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (G.P.C.); (D.V.)
- UNESCO Chair on Adolescent Health Care, ‘Aghia Sophia’ Children’s Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece
| | - Konstantinos I. Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 411 10 Larissa, Greece;
- Correspondence: (S.G.Z.); (K.I.G.); (N.A.A.B.)
| | - Nikolaos A. A. Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 415 00 Larissa, Greece; (A.K.); (E.P.); (P.M.); (D.S.M.C.); (P.P.); (M.L.)
- Correspondence: (S.G.Z.); (K.I.G.); (N.A.A.B.)
| |
Collapse
|
25
|
Nanjappa DP, Babu N, Khanna-Gupta A, O'Donohue MF, Sips P, Chakraborty A. Poly (A)-specific ribonuclease (PARN): More than just "mRNA stock clearing". Life Sci 2021; 285:119953. [PMID: 34520768 DOI: 10.1016/j.lfs.2021.119953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the balance between the synthesis and the degradation decides the steady-state levels of messenger RNAs (mRNA). The removal of adenosine residues from the poly(A) tail, called deadenylation, is the first and the most crucial step in the process of mRNA degradation. Poly (A)-specific ribonuclease (PARN) is one such enzyme that catalyses the process of deadenylation. Although PARN has been primarily known as the regulator of the mRNA stability, recent evidence clearly suggests several other functions of PARN, including a role in embryogenesis, oocyte maturation, cell-cycle progression, telomere biology, non-coding RNA maturation and ribosome biogenesis. Also, deregulated PARN activity is shown to be a hallmark of specific disease conditions. Pathogenic variants in the PARN gene have been observed in various cancers and inherited bone marrow failure syndromes. The focus in this review is to highlight the emerging functions of PARN, particularly in the context of human diseases.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Arati Khanna-Gupta
- Consortium of Rare Genetic and Bone Marrow Disorders, India network@NitteDU, NITTE (Deemed to be University, Deralakatte, Mangaluru, India
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative CBI, Université de Toulouse- CNRS- UPS- Toulouse-, Dynamics and Disorders of Ribosome Synthesis, Toulouse, France
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India.
| |
Collapse
|
26
|
Hirayama T. PARN-like Proteins Regulate Gene Expression in Land Plant Mitochondria by Modulating mRNA Polyadenylation. Int J Mol Sci 2021; 22:ijms221910776. [PMID: 34639116 PMCID: PMC8509313 DOI: 10.3390/ijms221910776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022] Open
Abstract
Mitochondria have their own double-stranded DNA genomes and systems to regulate transcription, mRNA processing, and translation. These systems differ from those operating in the host cell, and among eukaryotes. In recent decades, studies have revealed several plant-specific features of mitochondrial gene regulation. The polyadenylation status of mRNA is critical for its stability and translation in mitochondria. In this short review, I focus on recent advances in understanding the mechanisms regulating mRNA polyadenylation in plant mitochondria, including the role of poly(A)-specific ribonuclease-like proteins (PARNs). Accumulating evidence suggests that plant mitochondria have unique regulatory systems for mRNA poly(A) status and that PARNs play pivotal roles in these systems.
Collapse
Affiliation(s)
- Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurahiki 710-0046, Okayama, Japan
| |
Collapse
|
27
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
28
|
Jürgens L, Manske F, Hubert E, Kischka T, Flötotto L, Klaas O, Shabardina V, Schliemann C, Makalowski W, Wethmar K. Somatic Functional Deletions of Upstream Open Reading Frame-Associated Initiation and Termination Codons in Human Cancer. Biomedicines 2021; 9:biomedicines9060618. [PMID: 34072580 PMCID: PMC8227997 DOI: 10.3390/biomedicines9060618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Upstream open reading frame (uORF)-mediated translational control has emerged as an important regulatory mechanism in human health and disease. However, a systematic search for cancer-associated somatic uORF mutations has not been performed. Here, we analyzed the genetic variability at canonical (uAUG) and alternative translational initiation sites (aTISs), as well as the associated upstream termination codons (uStops) in 3394 whole-exome-sequencing datasets from patient samples of breast, colon, lung, prostate, and skin cancer and of acute myeloid leukemia, provided by The Cancer Genome Atlas research network. We found that 66.5% of patient samples were affected by at least one of 5277 recurrent uORF-associated somatic single nucleotide variants altering 446 uAUG, 347 uStop, and 4733 aTIS codons. While twelve uORF variants were detected in all entities, 17 variants occurred in all five types of solid cancer analyzed here. Highest frequencies of individual somatic variants in the TLSs of NBPF20 and CHCHD2 reached 10.1% among LAML and 8.1% among skin cancer patients, respectively. Functional evaluation by dual luciferase reporter assays identified 19 uORF variants causing significant translational deregulation of the associated main coding sequence, ranging from 1.73-fold induction for an AUG.1 > UUG variant in SETD4 to 0.006-fold repression for a CUG.6 > GUG variant in HLA-DRB1. These data suggest that somatic uORF mutations are highly prevalent in human malignancies and that defective translational regulation of protein expression may contribute to the onset or progression of cancer.
Collapse
Affiliation(s)
- Lara Jürgens
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Felix Manske
- Faculty of Medicine, Institute of Bioinformatics, University of Münster, 48149 Münster, Germany; (F.M.); (T.K.); (W.M.)
| | - Elvira Hubert
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Tabea Kischka
- Faculty of Medicine, Institute of Bioinformatics, University of Münster, 48149 Münster, Germany; (F.M.); (T.K.); (W.M.)
| | - Lea Flötotto
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Oliver Klaas
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Victoria Shabardina
- Institute of Evolutionary Biology, CSIC-Unversitat Pompeu Frabra, 08002 Barcelona, Spain;
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Wojciech Makalowski
- Faculty of Medicine, Institute of Bioinformatics, University of Münster, 48149 Münster, Germany; (F.M.); (T.K.); (W.M.)
| | - Klaus Wethmar
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
- Correspondence: ; Tel.: +49-251-8347587; Fax: +49-251-8347588
| |
Collapse
|
29
|
Bofill-De Ros X, Luke B, Guthridge R, Mudunuri U, Loss M, Gu S. Tumor IsomiR Encyclopedia (TIE): a pan-cancer database of miRNA isoforms. Bioinformatics 2021; 37:3023-3025. [PMID: 33729437 PMCID: PMC8479663 DOI: 10.1093/bioinformatics/btab172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
SUMMARY MicroRNAs (miRNAs) are master regulators of gene expression in cancers. Their sequence variants or isoforms (isomiRs) are highly abundant and possess unique functions. Given their short sequence length and high heterogeneity, mapping isomiRs can be challenging; without adequate depth and data aggregation, low frequency events are often disregarded. To address these challenges, we present the Tumor IsomiR Encyclopedia (TIE): a dynamic database of isomiRs from over 10 000 adult and pediatric tumor samples in The Cancer Genome Atlas (TCGA) and The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) projects. A key novelty of TIE is its ability to annotate heterogeneous isomiR sequences and aggregate the variants obtained across all datasets. Results can be browsed online or downloaded as spreadsheets. Here, we show analysis of isomiRs of miR-21 and miR-30a to demonstrate the utility of TIE. AVAILABILITY AND IMPLEMENTATION TIE search engine and data are freely available to use at https://isomir.ccr.cancer.gov/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA,To whom correspondence should be addressed. or
| | - Brian Luke
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert Guthridge
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA,Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Uma Mudunuri
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA,Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Michael Loss
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA,Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA,To whom correspondence should be addressed. or
| |
Collapse
|
30
|
Xu F, Li J, Ni M, Cheng J, Zhao H, Wang S, Zhou X, Wu X. FBW7 suppresses ovarian cancer development by targeting the N 6-methyladenosine binding protein YTHDF2. Mol Cancer 2021; 20:45. [PMID: 33658012 PMCID: PMC7927415 DOI: 10.1186/s12943-021-01340-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background The tumor suppressor FBW7 is the substrate recognition component of the SCF E3-ubiquitin ligase complex that mediates proteolytic degradation of various oncogenic proteins. However, the role of FBW7 in ovarian cancer progression remains inadequately understood. Methods IP-MASS, co-IP, immunohistochemistry, and western blotting were used to identify the potential substrate of FBW7 in ovarian cancer. The biological effects of FBW7 were investigated using in vitro and in vivo models. LC/MS was used to detect the m6A levels in ovarian cancer tissues. MeRIP-Seq and RNA-Seq were used to assess the downstream targets of YTHDF2. Results We unveil that FBW7 is markedly down-regulated in ovarian cancer tissues and its high expression is associated with favorable prognosis and elevated m6A modification levels. Consistently, ectopic FBW7 inhibits ovarian cancer cell survival and proliferation in vitro and in vivo, while ablation of FBW7 empowers propagation of ovarian cancer cells. In addition, the m6A reader protein, YTHDF2, is identified as a novel substrate for FBW7. FBW7 counteracts the tumor-promoting effect of YTHDF2 by inducing proteasomal degradation of the latter in ovarian cancer. Furthermore, YTHDF2 globally regulates the turnover of m6A-modified mRNAs, including the pro-apoptotic gene BMF. Conclusions Our study has demonstrated that FBW7 suppresses tumor growth and progression via antagonizing YTHDF2-mediated BMF mRNA decay in ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01340-8.
Collapse
Affiliation(s)
- Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mengdong Ni
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jingyi Cheng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Haiyun Zhao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shanshan Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiang Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Song XH, Liao XY, Zheng XY, Liu JQ, Zhang ZW, Zhang LN, Yan YB. Human Ccr4 and Caf1 Deadenylases Regulate Proliferation and Tumorigenicity of Human Gastric Cancer Cells via Modulating Cell Cycle Progression. Cancers (Basel) 2021; 13:cancers13040834. [PMID: 33671234 PMCID: PMC7922635 DOI: 10.3390/cancers13040834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cancer cells generally reprogram their gene expression profiles to satisfy continuous growth, proliferation, and metastasis. Most eukaryotic mRNAs are degraded in a deadenylation-dependent pathway, in which deadenylases are the key enzymes. We found that human Ccr4 (hCcr4a/b) and Caf1 (hCaf1a/b), the dominant cytosolic deadenylases, were dysregulated in several types of cancers including stomach adenocarcinoma. Stably knocking down hCaf1a/b or hCcr4a/b blocks cell cycle progression by enhancing the levels of cell cycle inhibitors and by inhibiting the formation of processing bodies, which are cytosolic foci involved in mRNA metabolism. More importantly, depletion of hCaf1a/b or hCcr4a/b dramatically inhibits cell proliferation and tumorigenicity. Our results suggest that perturbating global RNA metabolism may provide a potential novel strategy for cancer treatment. Abstract Cancer cells generally have reprogrammed gene expression profiles to meet the requirements of survival, continuous division, and metastasis. An interesting question is whether the cancer cells will be affected by interfering their global RNA metabolism. In this research, we found that human Ccr4a/b (hCcr4a/b) and Caf1a/b (hCaf1a/b) deadenylases, the catalytic components of the Ccr4-Not complex, were dysregulated in several types of cancers including stomach adenocarcinoma. The impacts of the four deadenylases on cancer cell growth were studied by the establishment of four stable MKN28 cell lines with the knockdown of hCcr4a/b or hCaf1a/b or transient knockdown in several cell lines. Depletion of hCcr4a/b or hCaf1a/b significantly inhibited cell proliferation and tumorigenicity. Mechanistic studies indicated that the cells were arrested at the G2/M phase by knocking down hCaf1a, while arrested at the G0/G1 phase by depleting hCaf1b or hCcr4a/b. The four enzymes did not affect the levels of CDKs and cyclins but modulated the levels of CDK–cyclin inhibitors. We identified that hCcr4a/b, but not hCaf1a/b, targeted the p21 mRNA in the MKN28 cells. Furthermore, depletion of any one of the four deadenylases dramatically impaired processing-body formation in the MKN28 and HEK-293T cells. Our results highlight that perturbating global RNA metabolism may severely affect cancer cell proliferation, which provides a potential novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hui Song
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Xiao-Yan Liao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Xu-Ying Zheng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Jia-Qian Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Zhe-Wei Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
| | - Li-Na Zhang
- College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Correspondence: (L.-N.Z.); (Y.-B.Y.); Tel.: +86-10-6739-6342 (L.-N.Z.); +86-10-6278-3477 (Y.-B.Y.)
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.-H.S.); (X.-Y.L.); (X.-Y.Z.); (J.-Q.L.); (Z.-W.Z.)
- Correspondence: (L.-N.Z.); (Y.-B.Y.); Tel.: +86-10-6739-6342 (L.-N.Z.); +86-10-6278-3477 (Y.-B.Y.)
| |
Collapse
|
32
|
Dis3L2 regulates cell proliferation and tissue growth through a conserved mechanism. PLoS Genet 2020; 16:e1009297. [PMID: 33370287 PMCID: PMC7793271 DOI: 10.1371/journal.pgen.1009297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/08/2021] [Accepted: 12/05/2020] [Indexed: 01/04/2023] Open
Abstract
Dis3L2 is a highly conserved 3’-5’ exoribonuclease which is mutated in the human overgrowth disorders Perlman syndrome and Wilms’ tumour of the kidney. Using Drosophila melanogaster as a model system, we have generated a new dis3L2 null mutant together with wild-type and nuclease-dead genetic lines in Drosophila to demonstrate that the catalytic activity of Dis3L2 is required to control cell proliferation. To understand the cellular pathways regulated by Dis3L2 to control proliferation, we used RNA-seq on dis3L2 mutant wing discs to show that the imaginal disc growth factor Idgf2 is responsible for driving the wing overgrowth. IDGFs are conserved proteins homologous to human chitinase-like proteins such as CHI3L1/YKL-40 which are implicated in tissue regeneration as well as cancers including colon cancer and non-small cell lung cancer. We also demonstrate that loss of DIS3L2 in human kidney HEK-293T cells results in cell proliferation, illustrating the conservation of this important cell proliferation pathway. Using these human cells, we show that loss of DIS3L2 results in an increase in the PI3-Kinase/AKT signalling pathway, which we subsequently show to contribute towards the proliferation phenotype in Drosophila. Our work therefore provides the first mechanistic explanation for DIS3L2-induced overgrowth in humans and flies and identifies an ancient proliferation pathway controlled by Dis3L2 to regulate cell proliferation and tissue growth. Regulation of cell proliferation is not only important during development but also required for repair of damaged tissues and during wound healing. Using human kidney cells as well as the fruit fly Drosophila we have recently discovered that cell proliferation can be regulated by a protein named Dis3L2. Depletion or removal of this protein results in excess proliferation. These results are relevant to human disease as DIS3L2 has been shown to be mutated in an overgrowth syndrome (Perlman syndrome) where affected children have abnormal enlargement of organs (e.g. kidneys) and susceptibility to Wilms’ tumour (a kidney cancer). Dis3L2 is an enzyme known to "chew up" mRNA molecules which instruct the cell to make particular proteins. Using state-of-the-art molecular methods in Drosophila, we have discovered that Dis3L2 targets a small subset of mRNAs, including an mRNA encoding a growth factor named 'imaginal disc growth factor 2' (idgf2). For human kidney cells in culture, we have found that depletion of DIS3L2 results in enhanced proliferation, and that this involves a well-known cellular pathway. Our results mean that we have discovered a new way of controlling cell proliferation, which could, in the future, be used in human therapies.
Collapse
|
33
|
Shi CY, Kingston ER, Kleaveland B, Lin DH, Stubna MW, Bartel DP. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science 2020; 370:science.abc9359. [PMID: 33184237 DOI: 10.1126/science.abc9359] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/07/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) associate with Argonaute (AGO) proteins to direct widespread posttranscriptional gene repression. Although association with AGO typically protects miRNAs from nucleases, extensive pairing to some unusual target RNAs can trigger miRNA degradation. We found that this target-directed miRNA degradation (TDMD) required the ZSWIM8 Cullin-RING E3 ubiquitin ligase. This and other findings support a mechanistic model of TDMD in which target-directed proteolysis of AGO by the ubiquitin-proteasome pathway exposes the miRNA for degradation. Moreover, loss-of-function studies indicated that the ZSWIM8 Cullin-RING ligase accelerates degradation of numerous miRNAs in cells of mammals, flies, and nematodes, thereby specifying the half-lives of most short-lived miRNAs. These results elucidate the mechanism of TDMD and expand its inferred role in shaping miRNA levels in bilaterian animals.
Collapse
Affiliation(s)
- Charlie Y Shi
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elena R Kingston
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin Kleaveland
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel H Lin
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael W Stubna
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. .,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
34
|
Zeng T, Lv G, Chen X, Yang L, Zhou L, Dou Y, Tang X, Yang J, An Y, Zhao X. CD8 + T-cell senescence and skewed lymphocyte subsets in young Dyskeratosis Congenita patients with PARN and DKC1 mutations. J Clin Lab Anal 2020; 34:e23375. [PMID: 32452087 PMCID: PMC7521304 DOI: 10.1002/jcla.23375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a syndrome resulting from defective telomere maintenance. Immunodeficiency associated with DC can cause significant morbidity and lead to premature mortality, but the immunological characteristics and molecular hallmark of DC patients, especially young patients, have not been described in detail. METHODS We summarize the clinical data of two juvenile patients with DC. Gene mutations were identified by whole-exome and direct sequencing. Swiss-PdbViewer was used to predict the pathogenicity of identified mutations. The relative telomere length was determined by QPCR, and a comprehensive analysis of lymphocyte subsets and CD57 expression was performed by flow cytometry. RESULTS Both patients showed typical features of DC without severe infection. In addition, patient 1 (P1) was diagnosed with Hoyeraal-Hreidarsson syndrome due to cerebellar hypoplasia. Gene sequencing showed P1 had a compound heterozygous mutation (c.204G > T and c.178-245del) in PARN and P2 had a novel hemizygous mutation in DKC1 (c.1051A > G). Lymphocyte subset analysis showed B and NK cytopenia, an inverted CD4:CD8 ratio, and decreased naïve CD4 and CD8 cells. A significant increase in CD21low B cells and skewed numbers of helper T cells (Th), regulatory T cells (Treg), follicular regulatory T cells (Tfr), and follicular helper T cells (Tfh) were also detected. Short telomere lengths, increased CD57 expression, and an expansion of CD8 effector memory T cells re-expressing CD45RA (TEMRA) were also found in both patients. CONCLUSION Unique immunologic abnormalities, CD8 T-cell senescence, and shortened telomere together as a hallmark occur in young DC patients before progression to severe disease.
Collapse
Affiliation(s)
- Ting Zeng
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Ge Lv
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuemei Chen
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Lu Yang
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Lina Zhou
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Ying Dou
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Hematology and OncologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuemei Tang
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Jun Yang
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyShenzhen Children's HospitalShenzhenChina
| | - Yunfei An
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaodong Zhao
- Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing)China International Science and Technology Cooperation base of Child Development and Critical DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Child Infection and ImmunityChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
35
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
36
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
37
|
Yang A, Shao TJ, Bofill-De Ros X, Lian C, Villanueva P, Dai L, Gu S. AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2. Nat Commun 2020; 11:2765. [PMID: 32488030 PMCID: PMC7265490 DOI: 10.1038/s41467-020-16533-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) associated with Argonaute proteins (AGOs) regulate gene expression in mammals. miRNA 3' ends are subject to frequent sequence modifications, which have been proposed to affect miRNA stability. However, the underlying mechanism is not well understood. Here, by genetic and biochemical studies as well as deep sequencing analyses, we find that AGO mutations disrupting miRNA 3' binding are sufficient to trigger extensive miRNA 3' modifications in HEK293T cells and in cancer patients. Comparing these modifications in TUT4, TUT7 and DIS3L2 knockout cells, we find that TUT7 is more robust than TUT4 in oligouridylating mature miRNAs, which in turn leads to their degradation by the DIS3L2 exonuclease. Our findings indicate a decay machinery removing AGO-associated miRNAs with an exposed 3' end. A set of endogenous miRNAs including miR-7, miR-222 and miR-769 are targeted by this machinery presumably due to target-directed miRNA degradation.
Collapse
Affiliation(s)
- Acong Yang
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tie-Juan Shao
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Chuanjiang Lian
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- State Key Laboratory of Veterinary Biotechnology and Heilongjiang Province Key Laboratory for Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Patricia Villanueva
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Lisheng Dai
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
38
|
A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol 2020; 21:542-556. [PMID: 32483315 DOI: 10.1038/s41580-020-0246-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
Abstract
RNA tailing, or the addition of non-templated nucleotides to the 3' end of RNA, is the most frequent and conserved type of RNA modification. The addition of tails and their composition reflect RNA maturation stages and have important roles in determining the fate of the modified RNAs. Apart from canonical poly(A) polymerases, which add poly(A) tails to mRNAs in a transcription-coupled manner, a family of terminal nucleotidyltransferases (TENTs), including terminal uridylyltransferases (TUTs), modify RNAs post-transcriptionally to control RNA stability and activity. The human genome encodes 11 different TENTs with distinct substrate specificity, intracellular localization and tissue distribution. In this Review, we discuss recent advances in our understanding of non-canonical RNA tails, with a focus on the functions of human TENTs, which include uridylation, mixed tailing and post-transcriptional polyadenylation of mRNAs, microRNAs and other types of non-coding RNA.
Collapse
|
39
|
Dejene EA, Li Y, Showkatian Z, Ling H, Seto E. Regulation of poly(a)-specific ribonuclease activity by reversible lysine acetylation. J Biol Chem 2020; 295:10255-10270. [PMID: 32457045 DOI: 10.1074/jbc.ra120.012552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that plays an important role in regulating the stability and maturation of RNAs. Recently, PARN has been found to regulate the maturation of the human telomerase RNA component (hTR), a noncoding RNA required for telomere elongation. Specifically, PARN cleaves the 3'-end of immature, polyadenylated hTR to form the mature, nonpolyadenylated template. Despite PARN's critical role in mediating telomere maintenance, little is known about how PARN's function is regulated by post-translational modifications. In this study, using shRNA- and CRISPR/Cas9-mediated gene silencing and knockout approaches, along with 3'-exoribonuclease activity assays and additional biochemical methods, we examined whether PARN is post-translationally modified by acetylation and what effect acetylation has on PARN's activity. We found PARN is primarily acetylated by the acetyltransferase p300 at Lys-566 and deacetylated by sirtuin1 (SIRT1). We also revealed how acetylation of PARN can decrease its enzymatic activity both in vitro, using a synthetic RNA probe, and in vivo, by quantifying endogenous levels of adenylated hTR. Furthermore, we also found that SIRT1 can regulate levels of adenylated hTR through PARN. The findings of our study uncover a mechanism by which PARN acetylation and deacetylation regulate its enzymatic activity as well as levels of mature hTR. Thus, PARN's acetylation status may play a role in regulating telomere length.
Collapse
Affiliation(s)
- Eden A Dejene
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Yixuan Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Zahra Showkatian
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Hongbo Ling
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Edward Seto
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA .,George Washington University Cancer Center, Washington, D.C., USA
| |
Collapse
|
40
|
The Perlman syndrome DIS3L2 exoribonuclease safeguards endoplasmic reticulum-targeted mRNA translation and calcium ion homeostasis. Nat Commun 2020; 11:2619. [PMID: 32457326 PMCID: PMC7250864 DOI: 10.1038/s41467-020-16418-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Abstract
DIS3L2-mediated decay (DMD) is a surveillance pathway for certain non-coding RNAs (ncRNAs) including ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), and RMRP. While mutations in DIS3L2 are associated with Perlman syndrome, the biological significance of impaired DMD is obscure and pathological RNAs have not been identified. Here, by ribosome profiling (Ribo-seq) we find specific dysregulation of endoplasmic reticulum (ER)-targeted mRNA translation in DIS3L2-deficient cells. Mechanistically, DMD functions in the quality control of the 7SL ncRNA component of the signal recognition particle (SRP) required for ER-targeted translation. Upon DIS3L2 loss, sustained 3’-end uridylation of aberrant 7SL RNA impacts ER-targeted translation and causes ER calcium leakage. Consequently, elevated intracellular calcium in DIS3L2-deficient cells activates calcium signaling response genes and perturbs ESC differentiation. Thus, DMD is required to safeguard ER-targeted mRNA translation, intracellular calcium homeostasis, and stem cell differentiation. The DIS3L2 exonuclease degrades aberrant 7SL RNAs tagged by an oligouridine 3′-tail. Here the authors analyze DIS3L2 knockout mouse embryonic stem cells and suggest that DIS3L2-mediated quality control of 7SL RNA is important for ER-mediated translation and calcium ion homeostasis.
Collapse
|
41
|
Small-Molecule PAPD5 Inhibitors Restore Telomerase Activity in Patient Stem Cells. Cell Stem Cell 2020; 26:896-909.e8. [PMID: 32320679 DOI: 10.1016/j.stem.2020.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/21/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
Genetic lesions that reduce telomerase activity inhibit stem cell replication and cause a range of incurable diseases, including dyskeratosis congenita (DC) and pulmonary fibrosis (PF). Modalities to restore telomerase in stem cells throughout the body remain unclear. Here, we describe small-molecule PAPD5 inhibitors that demonstrate telomere restoration in vitro, in stem cell models, and in vivo. PAPD5 is a non-canonical polymerase that oligoadenylates and destabilizes telomerase RNA component (TERC). We identified BCH001, a specific PAPD5 inhibitor that restored telomerase activity and telomere length in DC patient induced pluripotent stem cells. When human blood stem cells engineered to carry DC-causing PARN mutations were xenotransplanted into immunodeficient mice, oral treatment with a repurposed PAPD5 inhibitor, the dihydroquinolizinone RG7834, rescued TERC 3' end maturation and telomere length. These findings pave the way for developing systemic telomere therapeutics to counteract stem cell exhaustion in DC, PF, and possibly other aging-related diseases.
Collapse
|
42
|
Kretov DA, Walawalkar IA, Mora-Martin A, Shafik AM, Moxon S, Cifuentes D. Ago2-Dependent Processing Allows miR-451 to Evade the Global MicroRNA Turnover Elicited during Erythropoiesis. Mol Cell 2020; 78:317-328.e6. [PMID: 32191872 PMCID: PMC7201373 DOI: 10.1016/j.molcel.2020.02.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/02/2019] [Accepted: 02/24/2020] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are sequentially processed by two RNase III enzymes, Drosha and Dicer. miR-451 is the only known miRNA whose processing bypasses Dicer and instead relies on the slicer activity of Argonaute-2 (Ago2). miR-451 is highly conserved in vertebrates and regulates erythrocyte maturation, where it becomes the most abundant miRNA. However, the basis for the non-canonical biogenesis of miR-451 is unclear. Here, we show that Ago2 is less efficient than Dicer in processing pre-miRNAs, but this deficit is overcome when miR-144 represses Dicer in a negative-feedback loop during erythropoiesis. Loss of miR-144-mediated Dicer repression in zebrafish embryos and human cells leads to increased canonical miRNA production and impaired miR-451 maturation. Overexpression of Ago2 rescues some of the defects of miR-451 processing. Thus, the evolution of Ago2-dependent processing allows miR-451 to circumvent the global repression of canonical miRNAs elicited, in part, by the miR-144 targeting of Dicer during erythropoiesis.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Isha A Walawalkar
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | - Andrew M Shafik
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
43
|
Toufektchan E, Lejour V, Durand R, Giri N, Draskovic I, Bardot B, Laplante P, Jaber S, Alter BP, Londono-Vallejo JA, Savage SA, Toledo F. Germline mutation of MDM4, a major p53 regulator, in a familial syndrome of defective telomere maintenance. SCIENCE ADVANCES 2020; 6:eaay3511. [PMID: 32300648 PMCID: PMC7148086 DOI: 10.1126/sciadv.aay3511] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/16/2020] [Indexed: 05/08/2023]
Abstract
Dyskeratosis congenita is a cancer-prone inherited bone marrow failure syndrome caused by telomere dysfunction. A mouse model recently suggested that p53 regulates telomere metabolism, but the clinical relevance of this finding remained uncertain. Here, a germline missense mutation of MDM4, a negative regulator of p53, was found in a family with features suggestive of dyskeratosis congenita, e.g., bone marrow hypocellularity, short telomeres, tongue squamous cell carcinoma, and acute myeloid leukemia. Using a mouse model, we show that this mutation (p.T454M) leads to increased p53 activity, decreased telomere length, and bone marrow failure. Variations in p53 activity markedly altered the phenotype of Mdm4 mutant mice, suggesting an explanation for the variable expressivity of disease symptoms in the family. Our data indicate that a germline activation of the p53 pathway may cause telomere dysfunction and point to polymorphisms affecting this pathway as potential genetic modifiers of telomere biology and bone marrow function.
Collapse
Affiliation(s)
- Eléonore Toufektchan
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Romane Durand
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Irena Draskovic
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
- Telomeres and Cancer, Institut Curie, Paris, France
| | - Boris Bardot
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Pierre Laplante
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Sara Jaber
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - José-Arturo Londono-Vallejo
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
- Telomeres and Cancer, Institut Curie, Paris, France
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
- Corresponding author.
| |
Collapse
|
44
|
Zaporozhchenko IA, Rykova EY, Laktionov PP. The Fundamentals of miRNA Biology: Structure, Biogenesis, and Regulatory Functions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s106816202001015x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Kanazawa M, Ikeda Y, Nishihama R, Yamaoka S, Lee NH, Yamato KT, Kohchi T, Hirayama T. Regulation of the Poly(A) Status of Mitochondrial mRNA by Poly(A)-Specific Ribonuclease Is Conserved among Land Plants. PLANT & CELL PHYSIOLOGY 2020; 61:470-480. [PMID: 31722408 DOI: 10.1093/pcp/pcz212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Regulation of the stability and the quality of mitochondrial RNA is essential for the maintenance of mitochondrial and cellular functions in eukaryotes. We have previously reported that the eukaryotic poly(A)-specific ribonuclease (PARN) and the prokaryotic poly(A) polymerase encoded by AHG2 and AGS1, respectively, coordinately regulate the poly(A) status and the stability of mitochondrial mRNA in Arabidopsis. Mitochondrial function of PARN has not been reported in any other eukaryotes. To know how much this PARN-based mitochondrial mRNA regulation is conserved among plants, we studied the AHG2 and AGS1 counterparts of the liverwort, Marchantia polymorpha, a member of basal land plant lineage. We found that M. polymorpha has one ortholog each for AHG2 and AGS1, named MpAHG2 and MpAGS1, respectively. Their Citrine-fused proteins were detected in mitochondria of the liverwort. Molecular genetic analysis showed that MpAHG2 is essential and functionally interacts with MpAGS1 as observed in Arabidopsis. A recombinant MpAHG2 protein had a deadenylase activity in vitro. Overexpression of MpAGS1 and the reduced expression of MpAHG2 caused an accumulation of polyadenylated Mpcox1 mRNA. Furthermore, MpAHG2 suppressed Arabidopsis ahg2-1 mutant phenotype. These results suggest that the PARN-based mitochondrial mRNA regulatory system is conserved in land plants.
Collapse
Affiliation(s)
- Mai Kanazawa
- Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Yoko Ikeda
- Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Nam-Hee Lee
- Department of Life Sciences, Faculty of Science and Engineering, Sorbonne University, 4 Place Jussieu, Paris 75005, France
| | - Katsuyuki T Yamato
- Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Takashi Hirayama
- Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| |
Collapse
|
46
|
Translation Efficiency and Degradation of ER-Associated mRNAs Modulated by ER-Anchored poly(A)-Specific Ribonuclease (PARN). Cells 2020; 9:cells9010162. [PMID: 31936572 PMCID: PMC7017053 DOI: 10.3390/cells9010162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Translation is spatiotemporally regulated and endoplasmic reticulum (ER)-associated mRNAs are generally in efficient translation. It is unclear whether the ER-associated mRNAs are deadenylated or degraded on the ER surface in situ or in the cytosol. Here, we showed that ER possessed active deadenylases, particularly the poly(A)-specific ribonuclease (PARN), in common cell lines and mouse tissues. Consistently, purified recombinant PARN exhibited a strong ability to insert into the Langmuir monolayer and liposome. ER-anchored PARN was found to be able to reshape the poly(A) length profile of the ER-associated RNAs by suppressing long poly(A) tails without significantly influencing the cytosolic RNAs. The shortening of long poly(A) tails did not affect global translation efficiency, which suggests that the non-specific action of PARN towards long poly(A) tails was beyond the scope of translation regulation on the ER surface. Transcriptome sequencing analysis indicated that the ER-anchored PARN trigged the degradation of a small subset of ER-enriched transcripts. The ER-anchored PARN modulated the translation of its targets by redistributing ribosomes to heavy polysomes, which suggests that PARN might play a role in dynamic ribosome reallocation. During DNA damage response, MK2 phosphorylated PARN-Ser557 to modulate PARN translocation from the ER to cytosol. The ER-anchored PARN modulated DNA damage response and thereby cell viability by promoting the decay of ER-associated MDM2 transcripts with low ribosome occupancy. These findings revealed that highly regulated communication between mRNA degradation rate and translation efficiency is present on the ER surface in situ and PARN might contribute to this communication by modulating the dynamic ribosome reallocation between transcripts with low and high ribosome occupancies.
Collapse
|
47
|
Mironova N, Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases. Front Pharmacol 2019; 10:1019. [PMID: 31572192 PMCID: PMC6753386 DOI: 10.3389/fphar.2019.01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Tumour progression is accompanied by rapid cell proliferation, loss of differentiation, the reprogramming of energy metabolism, loss of adhesion, escape of immune surveillance, induction of angiogenesis, and metastasis. Both coding and regulatory RNAs expressed by tumour cells and circulating in the blood are involved in all stages of tumour progression. Among the important tumour-associated RNAs are intracellular coding RNAs that determine the routes of metabolic pathways, cell cycle control, angiogenesis, adhesion, apoptosis and pathways responsible for transformation, and intracellular and extracellular non-coding RNAs involved in regulation of the expression of their proto-oncogenic and oncosuppressing mRNAs. Considering the diversity/variability of biological functions of RNAs, it becomes evident that extracellular RNAs represent important regulators of cell-to-cell communication and intracellular cascades that maintain cell proliferation and differentiation. In connection with the elucidation of such an important role for RNA, a surge in interest in RNA-degrading enzymes has increased. Natural ribonucleases (RNases) participate in various cellular processes including miRNA biogenesis, RNA decay and degradation that has determined their principal role in the sustention of RNA homeostasis in cells. Findings were obtained on the contribution of some endogenous ribonucleases in the maintenance of normal cell RNA homeostasis, which thus prevents cell transformation. These findings directed attention to exogenous ribonucleases as tools to compensate for the malfunction of endogenous ones. Recently a number of proteins with ribonuclease activity were discovered whose intracellular function remains unknown. Thus, the comprehensive investigation of physiological roles of RNases is still required. In this review we focused on the control mechanisms of cell transformation by endogenous ribonucleases, and the possibility of replacing malfunctioning enzymes with exogenous ones.
Collapse
Affiliation(s)
- Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
48
|
Duan TL, He GJ, Hu LD, Yan YB. The Intrinsically Disordered C-Terminal Domain Triggers Nucleolar Localization and Function Switch of PARN in Response to DNA Damage. Cells 2019; 8:cells8080836. [PMID: 31387300 PMCID: PMC6721724 DOI: 10.3390/cells8080836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN), a multifunctional multi-domain deadenylase, is crucial to the regulation of mRNA turnover and the maturation of various non-coding RNAs. Despite extensive studies of the well-folding domains responsible for PARN catalysis, the structure and function of the C-terminal domain (CTD) remains elusive. PARN is a cytoplasm-nucleus shuttle protein with concentrated nucleolar distribution. Here, we identify the nuclear and nucleolar localization signals in the CTD of PARN. Spectroscopic studies indicated that PARN-CTD is intrinsically disordered with loosely packed local structures/tertiary structure. Phosphorylation-mimic mutation S557D disrupted the local structure and facilitated the binding of the CTD with the well-folded domains, with no impact on PARN deadenylase activity. Under normal conditions, the nucleolus-residing PARN recruited CBP80 into the nucleoli to repress its deadenylase activity, while DNA damage-induced phosphorylation of PARN-S557 expelled CBP80 from the nucleoli to discharge activity inhibition and attracted nucleoplasm-located CstF-50 into the nucleoli to activate deadenylation. The structure switch-induced function switch of PARN reshaped the profile of small nuclear non-coding RNAs to respond to DNA damage. Our findings highlight that the structure switch of the CTD induced by posttranslational modifications redefines the subset of binding partners, and thereby the RNA targets in the nucleoli.
Collapse
Affiliation(s)
- Tian-Li Duan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guang-Jun He
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li-Dan Hu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
49
|
Benyelles M, Episkopou H, O'Donohue M, Kermasson L, Frange P, Poulain F, Burcu Belen F, Polat M, Bole‐Feysot C, Langa‐Vives F, Gleizes P, de Villartay J, Callebaut I, Decottignies A, Revy P. Impaired telomere integrity and rRNA biogenesis in PARN-deficient patients and knock-out models. EMBO Mol Med 2019; 11:e10201. [PMID: 31273937 PMCID: PMC6609912 DOI: 10.15252/emmm.201810201] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
PARN, poly(A)-specific ribonuclease, regulates the turnover of mRNAs and the maturation and stabilization of the hTR RNA component of telomerase. Biallelic PARN mutations were associated with Høyeraal-Hreidarsson (HH) syndrome, a rare telomere biology disorder that, because of its severity, is likely not exclusively due to hTR down-regulation. Whether PARN deficiency was affecting the expression of telomere-related genes was still unclear. Using cells from two unrelated HH individuals carrying novel PARN mutations and a human PARN knock-out (KO) cell line with inducible PARN complementation, we found that PARN deficiency affects both telomere length and stability and down-regulates the expression of TRF1, TRF2, TPP1, RAP1, and POT1 shelterin transcripts. Down-regulation of dyskerin-encoding DKC1 mRNA was also observed and found to result from p53 activation in PARN-deficient cells. We further showed that PARN deficiency compromises ribosomal RNA biogenesis in patients' fibroblasts and cells from heterozygous Parn KO mice. Homozygous Parn KO however resulted in early embryonic lethality that was not overcome by p53 KO. Our results refine our knowledge on the pleiotropic cellular consequences of PARN deficiency.
Collapse
Affiliation(s)
- Maname Benyelles
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| | | | - Marie‐Françoise O'Donohue
- Laboratoire de Biologie Moléculaire EucaryoteCentre de Biologie Intégrative (CBI)CNRS, UPSUniversité de ToulouseToulouseFrance
| | - Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| | - Pierre Frange
- EA 7327, Université Paris Descartes, Sorbonne Paris‐CitéParisFrance
- Laboratoire de Microbiologie clinique & Unité d'ImmunologieHématologie et Rhumatologie PédiatriquesAP‐HP, Hôpital Necker, Enfants MaladesParisFrance
| | - Florian Poulain
- de Duve InstituteUniversité catholique de LouvainBrusselsBelgium
| | - Fatma Burcu Belen
- Pediatric HematologyFaculty of MedicineBaskent UniversityAnkaraTurkey
| | - Meltem Polat
- Pediatric Infectious DiseasesDepartment of Pediatric Infectious DiseasesPamukkale University Medical FacultyDenizliTurkey
| | - Christine Bole‐Feysot
- INSERM, UMR 1163Genomics platform, Imagine InstituteParis Descartes–Sorbonne Paris Cité UniversityParisFrance
- Genomic Core FacilityImagine Institute‐Structure Fédérative de Recherche NeckerINSERM U1163ParisFrance
| | | | - Pierre‐Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire EucaryoteCentre de Biologie Intégrative (CBI)CNRS, UPSUniversité de ToulouseToulouseFrance
| | - Jean‐Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| | - Isabelle Callebaut
- Muséum National d'Histoire NaturelleUMR CNRS 7590Institut de Minéralogiede Physique des Matériaux et de Cosmochimie, IMPMCSorbonne UniversitéParisFrance
| | | | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune SystemINSERM, UMR 1163ParisFrance
- Laboratoire labellisé LigueImagine InstituteParis Descartes–Sorbonne Paris Cite UniversityParisFrance
| |
Collapse
|
50
|
Saramago M, da Costa PJ, Viegas SC, Arraiano CM. The Implication of mRNA Degradation Disorders on Human DISease: Focus on DIS3 and DIS3-Like Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:85-98. [PMID: 31342438 DOI: 10.1007/978-3-030-19966-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA degradation is considered a critical posttranscriptional regulatory checkpoint, maintaining the correct functioning of organisms. When a specific RNA transcript is no longer required in the cell, it is signaled for degradation through a number of highly regulated steps. Ribonucleases (or simply RNases) are key enzymes involved in the control of RNA stability. These enzymes can perform the RNA degradation alone or cooperate with other proteins in RNA degradation complexes. Important findings over the last years have shed light into eukaryotic RNA degradation by members of the RNase II/RNB family of enzymes. DIS3 enzyme belongs to this family and represents one of the catalytic subunits of the multiprotein complex exosome. This RNase has a diverse range of functions, mainly within nuclear RNA metabolism. Humans encode two other DIS3-like enzymes: DIS3L (DIS3L1) and DIS3L2. DIS3L1 also acts in association with the exosome but is strictly cytoplasmic. In contrast, DIS3L2 acts independently of the exosome and shows a distinctive preference for uridylated RNAs. These enzymes have been shown to be involved in important cellular processes, such as mitotic control, and associated with human disorders like cancer. This review shows how the impairment of function of each of these enzymes is implicated in human disease.
Collapse
Affiliation(s)
- Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paulo J da Costa
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisboa, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|