1
|
Fan CX, Liu XR, Mei DQ, Li BM, Li WB, Xie HC, Wang J, Shen NX, Ye ZL, You QL, Li LY, Qu XC, Chen LZ, Liang JJ, Zhang MR, He N, Li J, Gao JY, Deng WY, Liu WZ, Wang WT, Liao WP, Chen Q, Shi YW. Heterozygous variants in USP25 cause genetic generalized epilepsy. Brain 2024; 147:3442-3457. [PMID: 38875478 DOI: 10.1093/brain/awae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
USP25 encodes ubiquitin-specific protease 25, a key member of the deubiquitinating enzyme family that is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown aetiology. Five heterozygous USP25 variants, including two de novo and three co-segregated variants, were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared with the East Asian population and all populations in the gnomAD database. The mean age at onset of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom, except that one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was expressed ubiquitously in mouse brain with two peaks, on embryonic Days 14-16 and postnatal Day 21, respectively. In human brain, likewise, USP25 is expressed in the fetus/early childhood stage and with a second peak at ∼12-20 years old, consistent with the seizure onset age in patients during infancy and in juveniles. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knockout mice, which showed increased seizure susceptibility compared with wild-type mice in a pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we used multiple functional detections. In HEK293 T cells, the variant associated with a severe phenotype (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed stable truncated dimers with an increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del variants increased neuronal excitability in mouse brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating that USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play an epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have a profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.
Collapse
Affiliation(s)
- Cui-Xia Fan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Dao-Qi Mei
- Department of Neurology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Huan-Cheng Xie
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Nan-Xiang Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zi-Long Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiang-Long You
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Ling-Ying Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Li-Zhi Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jin-Jie Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Ming-Rui Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jia Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jun-Ying Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wei-Yi Deng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Zhe Liu
- Department of Stomatology of the second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Ting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qian Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
2
|
Caba C, Black M, Liu Y, DaDalt AA, Mallare J, Fan L, Harding RJ, Wang YX, Vacratsis PO, Huang R, Zhuang Z, Tong Y. Autoinhibition of ubiquitin-specific protease 8: Insights into domain interactions and mechanisms of regulation. J Biol Chem 2024; 300:107727. [PMID: 39214302 PMCID: PMC11467669 DOI: 10.1016/j.jbc.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitin-specific proteases (USPs) are a family of multi-domain deubiquitinases (DUBs) with variable architectures, some containing regulatory auxiliary domains. Among the USP family, all occurrences of intramolecular regulation presently known are autoactivating. USP8 remains the sole exception as its putative WW-like domain, conserved only in vertebrate orthologs, is autoinhibitory. Here, we present a comprehensive structure-function analysis describing the autoinhibition of USP8 and provide evidence of the physical interaction between the WW-like and catalytic domains. The solution structure of full-length USP8 reveals an extended, monomeric conformation. Coupled with DUB assays, the WW-like domain is confirmed to be the minimal autoinhibitory unit. Strikingly, autoinhibition is only observed with the WW-like domain in cis and depends on the length of the linker tethering it to the catalytic domain. Modeling of the WW:CD complex structure and mutagenesis of interface residues suggests a novel binding site in the S1 pocket. To investigate the interplay between phosphorylation and USP8 autoinhibition, we identify AMP-activated protein kinase as a highly selective modifier of S718 in the 14-3-3 binding motif. We show that 14-3-3γ binding to phosphorylated USP8 potentiates autoinhibition in a WW-like domain-dependent manner by stabilizing an autoinhibited conformation. These findings provide mechanistic details on the autoregulation of USP8 and shed light on its evolutionary significance.
Collapse
Affiliation(s)
- Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Megan Black
- Department of Chemistry, University of Guelph, Guelph, Canada
| | - Yujue Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Ashley A DaDalt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada; Department of Biology, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Josh Mallare
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-ray Scattering Core Facility, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Yun-Xing Wang
- Center for Structural Biology, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA
| | | | - Rui Huang
- Department of Chemistry, University of Guelph, Guelph, Canada
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada.
| |
Collapse
|
3
|
Zimmermann T, Feng J, de Campos LJ, Knight LA, Schlötzer J, Ramirez YA, Schwickert K, Zehe M, Adler TB, Schirmeister T, Kisker C, Sotriffer C, Conda-Sheridan M, Decker M. Structure-Based Design and Synthesis of Covalent Inhibitors for Deubiquitinase and Acetyltransferase ChlaDUB1 of Chlamydia trachomatis. J Med Chem 2024; 67:10710-10742. [PMID: 38897928 DOI: 10.1021/acs.jmedchem.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Upon infection by an intracellular pathogen, host cells activate apoptotic pathways to limit pathogen replication. Consequently, efficient proliferation of the obligate intracellular pathogen Chlamydia trachomatis, a major cause of trachoma and sexually transmitted diseases, depends on the suppression of host cell apoptosis. C. trachomatis secretes deubiquitinase ChlaDUB1 into the host cell, leading among other interactions to the stabilization of antiapoptotic proteins and, thus, suppression of host cell apoptosis. Targeting the bacterial effector protein may, therefore, lead to new therapeutic possibilities. To explore the active site of ChlaDUB1, an iterative cycle of computational docking, synthesis, and enzymatic screening was applied with the aim of lead structure development. Hereby, covalent inhibitors were developed, which show enhanced inhibition with a 22-fold increase in IC50 values compared to previous work. Comprehensive insights into the binding prerequisites to ChlaDUB1 are provided, establishing the foundation for an additional specific antichlamydial therapy by small molecules.
Collapse
Affiliation(s)
- Thomas Zimmermann
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Jiachen Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Luana Janaína de Campos
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Lindsey A Knight
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jan Schlötzer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-Universität Würzburg (JMU), 97080 Wurzburg, Germany
| | - Yesid A Ramirez
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Markus Zehe
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Thomas B Adler
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-Universität Würzburg (JMU), 97080 Wurzburg, Germany
| | - Christoph Sotriffer
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Patzke JV, Sauer F, Nair RK, Endres E, Proschak E, Hernandez-Olmos V, Sotriffer C, Kisker C. Structural basis for the bi-specificity of USP25 and USP28 inhibitors. EMBO Rep 2024; 25:2950-2973. [PMID: 38816515 PMCID: PMC11239673 DOI: 10.1038/s44319-024-00167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
The development of cancer therapeutics is often hindered by the fact that specific oncogenes cannot be directly pharmaceutically addressed. Targeting deubiquitylases that stabilize these oncogenes provides a promising alternative. USP28 and USP25 have been identified as such target deubiquitylases, and several small-molecule inhibitors indiscriminately inhibiting both enzymes have been developed. To obtain insights into their mode of inhibition, we structurally and functionally characterized USP28 in the presence of the three different inhibitors AZ1, Vismodegib and FT206. The compounds bind into a common pocket acting as a molecular sink. Our analysis provides an explanation why the two enzymes are inhibited with similar potency while other deubiquitylases are not affected. Furthermore, a key glutamate residue at position 366/373 in USP28/USP25 plays a central structural role for pocket stability and thereby for inhibition and activity. Obstructing the inhibitor-binding pocket by mutation of this glutamate may provide a tool to accelerate future drug development efforts for selective inhibitors of either USP28 or USP25 targeting distinct binding pockets.
Collapse
Affiliation(s)
- Jonathan Vincent Patzke
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Florian Sauer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Radhika Karal Nair
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Erik Endres
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Jin C, Einig E, Xu W, Kollampally RB, Schlosser A, Flentje M, Popov N. The dimeric deubiquitinase USP28 integrates 53BP1 and MYC functions to limit DNA damage. Nucleic Acids Res 2024; 52:3011-3030. [PMID: 38227944 PMCID: PMC11024517 DOI: 10.1093/nar/gkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
DNA replication is a major source of endogenous DNA damage in tumor cells and a key target of cellular response to genotoxic stress. DNA replication can be deregulated by oncoproteins, such as transcription factor MYC, aberrantly activated in many human cancers. MYC is stringently regulated by the ubiquitin system - for example, ubiquitination controls recruitment of the elongation factor PAF1c, instrumental in MYC activity. Curiously, a key MYC-targeting deubiquitinase USP28 also controls cellular response to DNA damage via the mediator protein 53BP1. USP28 forms stable dimers, but the biological role of USP28 dimerization is unknown. We show here that dimerization limits USP28 activity and restricts recruitment of PAF1c by MYC. Expression of monomeric USP28 stabilizes MYC and promotes PAF1c recruitment, leading to ectopic DNA synthesis and replication-associated DNA damage. USP28 dimerization is stimulated by 53BP1, which selectively binds USP28 dimers. Genotoxic stress diminishes 53BP1-USP28 interaction, promotes disassembly of USP28 dimers and stimulates PAF1c recruitment by MYC. This triggers firing of DNA replication origins during early response to genotoxins and exacerbates DNA damage. We propose that dimerization of USP28 prevents ectopic DNA replication at transcriptionally active chromatin to maintain genome stability.
Collapse
Affiliation(s)
- Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Wenshan Xu
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ravi Babu Kollampally
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str 2, 97080 Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Davis GJ, Omole AO, Jung Y, Rut W, Holewinski R, Suazo KF, Kim HR, Yang M, Andresson T, Drag M, Yoo E. Chemical tools to define and manipulate interferon-inducible Ubl protease USP18. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588544. [PMID: 38645224 PMCID: PMC11030383 DOI: 10.1101/2024.04.08.588544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Ubiquitin-specific protease 18 (USP18) is a multifunctional cysteine protease primarily responsible for deconjugating interferon-inducible ubiquitin-like (Ubl) modifier ISG15 from protein substrates. Here, we report the design and synthesis of activity-based probes (ABPs) capable of selectively detecting USP18 activity over other ISG15 cross-reactive deubiquitinases (DUBs) by incorporating unnatural amino acids into the C-terminal tail of ISG15. Combining with a ubiquitin-based DUB ABP, the selective USP18 ABP is employed in a chemoproteomic screening platform to identify and assess inhibitors of DUBs including USP18. We further demonstrate that USP18 ABPs can be utilized to profile differential activities of USP18 in lung cancer cell lines, providing a strategy that will help define the activity-related landscape of USP18 in different disease states and unravel important (de)ISGylation-dependent biological processes.
Collapse
Affiliation(s)
- Griffin J. Davis
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Anthony O. Omole
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Yejin Jung
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Ronald Holewinski
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Kiall F. Suazo
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Hong-Rae Kim
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
- Present address: Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02708, Korea
| | - Mo Yang
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Euna Yoo
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
7
|
Song X, Xia B, Gao X, Liu X, Lv H, Wang S, Xiao Q, Luo H. Related cellular signaling and consequent pathophysiological outcomes of ubiquitin specific protease 24. Life Sci 2024; 342:122512. [PMID: 38395384 DOI: 10.1016/j.lfs.2024.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Ubiquitin-specific protease 24 (USP24) is an essential member of the deubiquitinating protease family found in eukaryotes. It engages in interactions with multiple proteins, including p53, MCL-1, E2F4, and FTH1, among others. Through these interactions, USP24 plays a critical role in regulating vital cellular processes such as cell cycle control, DNA damage response, cellular iron autophagy, and apoptosis. Increased levels of USP24 have been observed in various cancer types, including bladder cancer, lung cancer, myeloma, hepatocellular carcinoma, and gastric cancer. However, in certain tumors like kidney cancer, USP24 is significantly downregulated, and the specific mechanism behind this remains unclear. Currently, there are no officially approved USP24 inhibitors available for clinical use. Some existing inhibitors targeting USP24 have shown promising effects in treating malignancies; however, their precise mode of action and information regarding binding sites are not well understood. Moreover, further optimization is required to enhance the selectivity and efficacy of these inhibitors. This review aims to provide a comprehensive overview of recent advancements in understanding the cellular functions of USP24, its association with various diseases, and the development of small-molecule inhibitors that target this protein. In conclusion, USP24 represents a promising therapeutic target for various diseases, and ongoing research will contribute to validating its role and facilitating the development of effective treatments.
Collapse
Affiliation(s)
- Xiaoyang Song
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Boyu Xia
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinrong Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinying Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hongyuan Lv
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Shiwei Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Qinpei Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hao Luo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
8
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Teo QW, Wong HH, Heunis T, Stancheva V, Hachim A, Lv H, Siu L, Ho J, Lan Y, Mok CKP, Ulferts R, Sanyal S. Usp25-Erlin1/2 activity limits cholesterol flux to restrict virus infection. Dev Cell 2023; 58:2495-2509.e6. [PMID: 37683630 PMCID: PMC10914638 DOI: 10.1016/j.devcel.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/20/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Reprogramming lipid metabolic pathways is a critical feature of activating immune responses to infection. However, how these reconfigurations occur is poorly understood. Our previous screen to identify cellular deubiquitylases (DUBs) activated during influenza virus infection revealed Usp25 as a prominent hit. Here, we show that Usp25-deleted human lung epithelial A549 cells display a >10-fold increase in pathogenic influenza virus production, which was rescued upon reconstitution with the wild type but not the catalytically deficient (C178S) variant. Proteomic analysis of Usp25 interactors revealed a strong association with Erlin1/2, which we confirmed as its substrate. Newly synthesized Erlin1/2 were degraded in Usp25-/- or Usp25C178S cells, activating Srebp2, with increased cholesterol flux and attenuated TLR3-dependent responses. Our study therefore defines the function of a deubiquitylase that serves to restrict a range of viruses by reprogramming lipid biosynthetic flux to install appropriate inflammatory responses.
Collapse
Affiliation(s)
- Qi Wen Teo
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ho Him Wong
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | - Viktoriya Stancheva
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | - Asmaa Hachim
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | - Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lewis Siu
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Julian Ho
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yun Lan
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris Ka Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | - Sumana Sanyal
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
10
|
Maurer SK, Mayer MP, Ward SJ, Boudjema S, Halawa M, Zhang J, Caulton SG, Emsley J, Dreveny I. Ubiquitin-specific protease 11 structure in complex with an engineered substrate mimetic reveals a molecular feature for deubiquitination selectivity. J Biol Chem 2023; 299:105300. [PMID: 37777157 PMCID: PMC10637973 DOI: 10.1016/j.jbc.2023.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Ubiquitin-specific proteases (USPs) are crucial for controlling cellular proteostasis and signaling pathways but how deubiquitination is selective remains poorly understood, in particular between paralogues. Here, we developed a fusion tag method by mining the Protein Data Bank and trapped USP11, a key regulator of DNA double-strand break repair, in complex with a novel engineered substrate mimetic. Together, this enabled structure determination of USP11 as a Michaelis-like complex that revealed key S1 and S1' binding site interactions with a substrate. Combined mutational, enzymatic, and binding experiments identified Met77 in linear diubiquitin as a significant residue that leads to substrate discrimination. We identified an aspartate "gatekeeper" residue in the S1' site of USP11 as a contributing feature for discriminating against linear diubiquitin. When mutated to a glycine, the corresponding residue in paralog USP15, USP11 acquired elevated activity toward linear diubiquitin in-gel shift assays, but not controls. The reverse mutation in USP15 confirmed that this position confers paralog-specific differences impacting diubiquitin cleavage rates. The results advance our understanding of the molecular basis for the higher selectivity of USP11 compared to USP15 and may aid targeted inhibitor development. Moreover, the reported carrier-based crystallization strategy may be applicable to other challenging targets.
Collapse
Affiliation(s)
- Sigrun K Maurer
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Matthias P Mayer
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie J Ward
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Sana Boudjema
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Mohamed Halawa
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jiatong Zhang
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Simon G Caulton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Ingrid Dreveny
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
11
|
Shin SC, Park J, Kim KH, Yoon JM, Cho J, Ha BH, Oh Y, Choo H, Song EJ, Kim EE. Structural and functional characterization of USP47 reveals a hot spot for inhibitor design. Commun Biol 2023; 6:970. [PMID: 37740002 PMCID: PMC10516900 DOI: 10.1038/s42003-023-05345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
USP47 is widely involved in tumor development, metastasis, and other processes while performing a more regulatory role in inflammatory responses, myocardial infarction, and neuronal development. In this study, we investigate the functional and biochemical properties of USP47, whereby depleting USP47 inhibited cancer cell growth in a p53-dependent manner-a phenomenon that enhances during the simultaneous knockdown of USP7. Full-length USP47 shows higher deubiquitinase activity than the catalytic domain. The crystal structures of the catalytic domain, in its free and ubiquitin-bound states, reveal that the misaligned catalytic triads, ultimately, become aligned upon ubiquitin-binding, similar to USP7, thereby becoming ready for catalysis. Yet, the composition and lengths of BL1, BL2, and BL3 of USP47 differ from those for USP7, and they contribute to the observed selectivity. Our study provides molecular details of USP47 regulation, substrate recognition, and the hotspots for drug discovery by targeting USP47.
Collapse
Affiliation(s)
- Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Research Resources Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jinyoung Park
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Kyung Hee Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Min Yoon
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jinhong Cho
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Byung Hak Ha
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yeonji Oh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyunah Choo
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
12
|
Liu Y, Ma J, Lu S, He P, Dong W. USP25 promotes hepatocellular carcinoma progression by interacting with TRIM21 via the Wnt/β-catenin signaling pathway. Chin Med J (Engl) 2023; 136:2229-2242. [PMID: 37439386 PMCID: PMC10508383 DOI: 10.1097/cm9.0000000000002714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The ubiquitin-specific peptidase 25 (USP25) protein has been reported to participate in the development of several cancers. However, few studies have reported its association with HCC. In this study, we aimed to investigate the function and mechanism of USP25 in the progression of HCC. METHODS We analyzed USP25 protein expression in HCC based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database cohorts. Then, we constructed USP25-overexpressing and USP25-knockdown HepG2, MHCC97H, and L-O2 cells. We detected the biological function of USP25 by performing a series of assays, such as Cell Counting Kit-8 (CCK-8), colony formation, transwell, and wound healing assays. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed to detect the interaction between USP25 and the Wnt/β-catenin signaling pathway. The relationship between USP25 and tripartite motif-containing 21 (TRIM21) was assessed through mass spectrometry and co-immunoprecipitation (Co-IP) analysis. Finally, we constructed a mouse liver cancer model with the USP25 gene deletion to verify in vivo role of USP25. RESULTS USP25 was highly expressed in HCC tissue and HCC cell lines. Importantly, high expression of USP25 in tissues was closely related to a poor prognosis. USP25 knockdown markedly reduced the proliferation, migration, and invasion of HepG2 and MHCC97H cells, whereas USP25 overexpression led to the opposite effects. In addition, we demonstrated that USP25 interacts with TRIM21 to regulate the expression of proteins related to epithelial-mesenchymal transition (EMT; E-cadherin, N-cadherin, and Snail) and the Wnt/β-catenin pathway (β-catenin, Adenomatous polyposis coli, Axin2 and Glycogen synthase kinase 3 beta) and those of their downstream proteins (C-myc and Cyclin D1). Finally, we verified that knocking out USP25 inhibited tumor growth and distant metastasis in vivo . CONCLUSIONS In summary, our data showed that USP25 was overexpressed in HCC. USP25 promoted the proliferation, migration, invasion, and EMT of HCC cells by interacting with TRIM21 to activate the β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Central Laboratory of Renmin Hospital, Wuhan, Hubei 430060, China
| | - Jingjing Ma
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shimin Lu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Central Laboratory of Renmin Hospital, Wuhan, Hubei 430060, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
13
|
Zhou L, Qin B, Yassine DM, Luo M, Liu X, Wang F, Wang Y. Structure and function of the highly homologous deubiquitinases ubiquitin specific peptidase 25 and 28: Insights into their pathophysiological and therapeutic roles. Biochem Pharmacol 2023; 213:115624. [PMID: 37245535 DOI: 10.1016/j.bcp.2023.115624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Deubiquitination is the reverse process of ubiquitination, an important protein post-translational modification. Deubiquitination is assisted by deubiquitinating enzymes (DUBs), which catalyze the hydrolysis and removal of ubiquitin chains from targeted proteins and play an important role in regulating protein stability, cell signaling transduction, and programmed cell death. Ubiquitin-specific peptidases 25 and 28 (USP25 and USP28), important members of the USP subfamily of DUBs, are highly homologous, strictly regulated, and closely associated with various diseases, such as cancer and neurodegenerative diseases. Recently, the development of inhibitors targeting USP25 and USP28 for disease treatment has garnered extreme attention. Several non-selective and selective inhibitors have shown potential inhibitory effects. However, the specificity, potency, and action mechanism of these inhibitors remain to be further improved and clarified. Herein, we summarize the structure, regulation, emerging physiological roles, and target inhibition of USP25 and USP28 to provide a basis for the development of highly potent and specific inhibitors for the treatment of diseases, such as colorectal cancer, breast cancer and so on.
Collapse
Affiliation(s)
- Lihui Zhou
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Biying Qin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Demna Mohamed Yassine
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Maoguo Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoling Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
14
|
Maier CR, Hartmann O, Prieto-Garcia C, Al-Shami KM, Schlicker L, Vogel FCE, Haid S, Klann K, Buck V, Münch C, Schmitz W, Einig E, Krenz B, Calzado MA, Eilers M, Popov N, Rosenfeldt MT, Diefenbacher ME, Schulze A. USP28 controls SREBP2 and the mevalonate pathway to drive tumour growth in squamous cancer. Cell Death Differ 2023:10.1038/s41418-023-01173-6. [PMID: 37202505 DOI: 10.1038/s41418-023-01173-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
SREBP2 is a master regulator of the mevalonate pathway (MVP), a biosynthetic process that drives the synthesis of dolichol, heme A, ubiquinone and cholesterol and also provides substrates for protein prenylation. Here, we identify SREBP2 as a novel substrate for USP28, a deubiquitinating enzyme that is frequently upregulated in squamous cancers. Our results show that silencing of USP28 reduces expression of MVP enzymes and lowers metabolic flux into this pathway. We also show that USP28 binds to mature SREBP2, leading to its deubiquitination and stabilisation. USP28 depletion rendered cancer cells highly sensitive to MVP inhibition by statins, which was rescued by the addition of geranyl-geranyl pyrophosphate. Analysis of human tissue microarrays revealed elevated expression of USP28, SREBP2 and MVP enzymes in lung squamous cell carcinoma (LSCC) compared to lung adenocarcinoma (LADC). Moreover, CRISPR/Cas-mediated deletion of SREBP2 selectively attenuated tumour growth in a KRas/p53/LKB1 mutant mouse model of lung cancer. Finally, we demonstrate that statins synergise with a dual USP28/25 inhibitor to reduce viability of SCC cells. Our findings suggest that combinatorial targeting of MVP and USP28 could be a therapeutic strategy for the treatment of squamous cell carcinomas.
Collapse
Affiliation(s)
- Carina R Maier
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Oliver Hartmann
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Cristian Prieto-Garcia
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590, Frankfurt am Main, Germany
| | - Kamal M Al-Shami
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Lisa Schlicker
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Felix C E Vogel
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Silke Haid
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Kevin Klann
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590, Frankfurt am Main, Germany
| | - Viktoria Buck
- Institute of Pathology, Julius Maximilians University and Comprehensive Cancer Center (CCC) Mainfranken, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590, Frankfurt am Main, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Elias Einig
- Internal Medicine VIII-Clinical Tumor Biology, University of Tübingen, Otfried-Müller-Straße 14, 72076, Tübingen, Germany
| | - Bastian Krenz
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Nikita Popov
- Internal Medicine VIII-Clinical Tumor Biology, University of Tübingen, Otfried-Müller-Straße 14, 72076, Tübingen, Germany
| | - Mathias T Rosenfeldt
- Institute of Pathology, Julius Maximilians University and Comprehensive Cancer Center (CCC) Mainfranken, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Markus E Diefenbacher
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany.
| | - Almut Schulze
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Park J, Shin SC, Jin KS, Lim MJ, Kim Y, Kim EE, Song EJ. USP35 dimer prevents its degradation by E3 ligase CHIP through auto-deubiquitinating activity. Cell Mol Life Sci 2023; 80:112. [PMID: 37004621 PMCID: PMC11073304 DOI: 10.1007/s00018-023-04740-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 04/04/2023]
Abstract
Recently, a number of reports on the importance of USP35 in cancer have been published. However, very little is known about the exact mechanism by which USP35 activity is regulated. Here, we show the possible regulation of USP35 activity and the structural specificity affecting its function by analyzing various fragments of USP35. Interestingly, the catalytic domain of USP35 alone does not exhibit deubiquitinating activity; in contrast, the C-terminal domain and insertion region in the catalytic domain is required for full USP35 activity. Additionally, through its C-terminal domain, USP35 forms a homodimer that prevents USP35 degradation. CHIP bound to HSP90 interacts with and ubiquitinates USP35. However, when fully functional USP35 undergoes auto-deubiquitination, which attenuates CHIP-mediated ubiquitination. Finally, USP35 dimer is required for deubiquitination of the substrate Aurora B and regulation of faithful mitotic progression. The properties of USP35 identified in this study are a unique homodimer structure, regulation of deubiquitinating activity through this, and utilization of a novel E3 ligase involved in USP35 auto-deubiquitination, which adds another complexity to the regulation of deubiquitinating enzymes.
Collapse
Affiliation(s)
- Jinyoung Park
- Biomedical Research Division, Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Sang Chul Shin
- Research Resources Division, Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Kyungbuk, Korea
| | - Min Joon Lim
- Biomedical Research Division, Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Yeojin Kim
- Biomedical Research Division, Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Division, Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
16
|
Ren X, Jiang M, Ding P, Zhang X, Zhou X, Shen J, Liu D, Yan X, Ma Z. Ubiquitin-specific protease 28: the decipherment of its dual roles in cancer development. Exp Hematol Oncol 2023; 12:27. [PMID: 36879346 PMCID: PMC9990303 DOI: 10.1186/s40164-023-00389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
As significant posttranslational modifications, ubiquitination and deubiquitination, whose balance is modulated by ubiquitin-conjugating enzymes and deubiquitinating enzymes (DUBs), can regulate many biological processes, such as controlling cell cycle progression, signal transduction and transcriptional regulation. Belonging to DUBs, ubiquitin-specific protease 28 (USP28) plays an essential role in turning over ubiquitination and then contributing to the stabilization of quantities of substrates, including several cancer-related proteins. In previous studies, USP28 has been demonstrated to participate in the progression of various cancers. Nevertheless, several reports have recently shown that in addition to promoting cancers, USP28 can also play an oncostatic role in some cancers. In this review, we summarize the correlation between USP28 and tumor behaviors. We initially give a brief introduction of the structure and related biological functions of USP28, and we then introduce some concrete substrates of USP28 and the underlying molecular mechanisms. In addition, the regulation of the actions and expression of USP28 is also discussed. Moreover, we concentrate on the impacts of USP28 on diverse hallmarks of cancer and discuss whether USP28 can accelerate or inhibit tumor progression. Furthermore, clinical relevance, including impacting clinical prognosis, influencing therapy resistance and being the therapy target in some cancers, is depicted systematically. Thus, assistance may be given to future experimental designs by the information provided here, and the potential of targeting USP28 for cancer therapy is emphasized.
Collapse
Affiliation(s)
- Xiaoya Ren
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.,Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei City, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiaoyan Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xin Zhou
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Jian Shen
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China.
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
17
|
Qin X, Wang R, Xu H, Tu L, Chen H, Li H, Liu N, Wang J, Li S, Yin F, Xu N, Li Z. Identification of an autoinhibitory, mitophagy-inducing peptide derived from the transmembrane domain of USP30. Autophagy 2022; 18:2178-2197. [PMID: 34989313 PMCID: PMC9397470 DOI: 10.1080/15548627.2021.2022360] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mitochondrial-anchored deubiquitinating enzyme USP30 (ubiquitin specific peptidase 30) antagonizes PRKN/parkin-mediated mitophagy, making it a potential target for treating Parkinson disease. However, few inhibitors targeting USP30 have been reported. Here, we report a novel peptide (Q14) derived from the transmembrane (TM) domain of USP30 that can target mitochondrial-anchored USP30 directly and increase mitophagy through two intriguing and distinct mechanisms: a novel autoinhibition mechanism in USP30 and accelerated autophagosome formation via the LC3-interacting region (LIR) of the Q14 peptide. We identified the potential binding sites between the Q14 peptide and USP30 and postulated that an allosteric autoinhibition mechanism regulates USP30 activity. Furthermore, the LIR motif in the Q14 peptide offers additional binding with LC3 and accelerated autophagosome formation. The two mechanisms synergistically enhance mitophagy. Our work provides novel insight and direction to the design of inhibitors for USP30 or other deubiquitinating enzymes (DUBs).Abbreviations: 3-MA: 3-methyladenine; ATTEC: autophagosome-tethering compound; BafA1: bafilomycin A1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; FP: fluorescence polarization; FUNDC1: FUN14 domain containing 1; HCQ: hydroxychloroquine; LIR: LC3-interacting region; MST: microscale thermophoresis; mtDNA: mitochondrial DNA; mtPA-GFP: mitochondria-targeted photoactive fluorescence protein; OMM: outer mitochondrial membrane; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; Rap: rapamycin; SA: streptavidin; TM: transmembrane; Ub: ubiquitin; Ub-AMC: Ub-7-amido-4-methylcoumarin; UPS: ubiquitin-protease system; USP: ubiquitin specific peptidase; USP30: ubiquitin specific peptidase 30.
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hongkun Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Licheng Tu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hailing Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Heng Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Na Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jinpeng Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China,CONTACT Feng Yin Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Naihan Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China,Naihan Xu Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China,Zigang Li State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
18
|
Yang Y, Feng L, Wang R, Ma H, He S, Fang J. Integrated analysis of lncRNA-associated ceRNA network in p16-positive and p16-negative head and neck squamous cell carcinoma. Medicine (Baltimore) 2022; 101:e26120. [PMID: 35984201 PMCID: PMC9388012 DOI: 10.1097/md.0000000000026120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Determination of human papillomavirus (HPV) status has become clinically relevant for head and neck squamous cell carcinoma (HNSCC) patients. p16 immunohistochemistry is one of the recommended methods for classifying HPV status. However, long noncoding RNAs (lncRNAs) and related competing endogenous RNA (ceRNA) networks linked to different p16-status HNSCC are still absent. In the present study, The Cancer Genome Atlas database provided RNA profiles as well as clinical information from 26 p16-positive HNSCC samples, 71 p16-negative HNSCC samples, and 44 adjacent normal control samples. Differentially expressed RNAs (DERNAs) between HNSCC samples and normal samples were identified by limma package in R. Functional enrichment analysis of differentially expressed mRNAs was performed using Clusterprofiler package in R. Survival analysis of DERNAs was carried out by survival package in R. The ceRNA network was constructed using GDCRNATools package in R. A total of 102 lncRNAs, 196 microRNAs (miRNAs), and 2282 mRNAs were identified as p16-positive-specific DERNAs. There were 90 lncRNAs, 153 miRNAs, and 2038 mRNAs were identified as p16-negative-specific DERNAs. Functional enrichment analysis revealed that the differentially expressed mRNAs in the p16-positive and the p16-negative group were mainly enriched in the "DNA replication" and "extracellular matrix -receptor interaction" pathway, respectively. Among the top 25 DERNAs, there were 1 key lncRNA, 1 key miRNA, and 1 key messenger RNA in the p16-positive group and 2 key lncRNAs, 1 key miRNA, and 2 key mRNAs in the p16-negative group were significantly related to the overall survival. Then the ceRNA network in the p16-positive and p16-negative group was constructed. There were 5 lncRNAs, 16 miRNAs, and 66 mRNAs included in the p16-positive group ceRNA network and 1 lncRNA, 4 miRNAs, and 28 mRNAs included in the p16-negative group ceRNA network. Among the RNAs in the ceRNA network, 5 mRNAs were significantly related to the overall survival. Taken together, we revealed the differential RNA expression profiling and the differential ceRNA network in the p16-positive and p16-negative group of HNSCC. Our findings provided a novel insight into this HPV-related cancer and potential biomarkers and therapeutic targets for HNSCC based on p16 status.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, People's Republic of China
| | - Ling Feng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, People's Republic of China
| | - Ru Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, People's Republic of China
| | - Hongzhi Ma
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, People's Republic of China
| | - Shizhi He
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, People's Republic of China
| | - Jugao Fang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, People's Republic of China
- Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing, People's Republic of China
- *Correspondence: Jugao Fang, Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, NO.1 Dongjiaominxiang Street, Dongcheng District, Beijing 100730, People's Republic of China (e-mail: )
| |
Collapse
|
19
|
Zhu H, Mellors JS, Chan WC, Thompson JW, Ficarro SB, Tavares I, Bratt AS, Decker J, Krause M, Kruppa G, Buhrlage SJ, Marto JA. On-Chip Preconcentration Microchip Capillary Electrophoresis Based CE-PRM-LIVE for High-Throughput Selectivity Profiling of Deubiquitinase Inhibitors. Anal Chem 2022; 94:9508-9513. [PMID: 35729701 PMCID: PMC10654755 DOI: 10.1021/acs.analchem.2c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The family of deubiquitinases (DUBs) comprises ∼100 enzymes that cleave ubiquitin from substrate proteins and thereby regulate key aspects of human physiology. DUBs have recently emerged as disease-relevant and chemically tractable, although currently there are no approved DUB-targeting drugs and most preclinical small molecules are low-potency and/or multitargeted. We paired a novel capillary electrophoresis microchip containing an integrated, "on-chip" C18 bed (SPE-ZipChip) with a TMT version of our recently described PRM-LIVE acquisition scheme on a timsTOF Pro mass spectrometer to facilitate rapid activity-based protein profiling of DUB inhibitors. We demonstrate the ability of the SPE-ZipChip to improve proteome coverage of complex samples as well as the quantitation integrity of CE-PRM-LIVE for TMT labeled samples. These technologies provide a platform to accurately quantify competitive binding of covalent and reversible inhibitors in a multiplexed assay that spans 49 endogenous DUBs in less than 15 min.
Collapse
Affiliation(s)
- He Zhu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - J Scott Mellors
- 908 Devices Inc., Boston, Massachusetts 02210, United States
| | - Wai Cheung Chan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - J Will Thompson
- 908 Devices Inc., Boston, Massachusetts 02210, United States
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Isidoro Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Ariana S Bratt
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jens Decker
- Bruker Daltonics GmbH & Co. KG, Bremen 28359, Germany
| | | | - Gary Kruppa
- Bruker S.R.O., District Brno-City 61900 Czech Republic
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| |
Collapse
|
20
|
Estavoyer B, Messmer C, Echbicheb M, Rudd CE, Milot E, Affar EB. Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases. J Biol Chem 2022; 298:102198. [PMID: 35764170 PMCID: PMC9356280 DOI: 10.1016/j.jbc.2022.102198] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting and to prevent the adverse consequences of promiscuous deubiquitination. The importance of DUB regulation is highlighted by disease-associated mutations that inhibit or activate DUBs, deregulating their ability to coordinate cellular processes. Here, we describe the diverse mechanisms governing protein stability, enzymatic activity, and function of DUBs. In particular, we outline how DUBs are regulated by their protein domains and interacting partners. Intramolecular interactions can promote protein stability of DUBs, influence their subcellular localization, and/or modulate their enzymatic activity. Remarkably, these intramolecular interactions can induce self-deubiquitination to counteract DUB ubiquitination by cognate E3 ubiquitin ligases. In addition to intramolecular interactions, DUBs can also oligomerize and interact with a wide variety of cellular proteins, thereby forming obligate or facultative complexes that regulate their enzymatic activity and function. The importance of signaling and post-translational modifications in the integrated control of DUB function will also be discussed. While several DUBs are described with respect to the multiple layers of their regulation, the tumor suppressor BAP1 will be outlined as a model enzyme whose localization, stability, enzymatic activity, and substrate recognition are highly orchestrated by interacting partners and post-translational modifications.
Collapse
Affiliation(s)
- Benjamin Estavoyer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Clémence Messmer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Mohamed Echbicheb
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Christopher E Rudd
- Laboratory for Cell Signaling in Immunotherapy, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - Eric Milot
- Laboratory for Malignant Hematopoiesis and Epigenetic Regulation of Gene Expression, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - El Bachir Affar
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
21
|
Xu G, Su H, Lu L, Liu X, Zhao L, Tang B, Ming Z. Structural insights into the catalytic mechanism and ubiquitin recognition of USP34. J Mol Biol 2022; 434:167634. [PMID: 35588869 DOI: 10.1016/j.jmb.2022.167634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
Ubiquitination, an important posttranslational modification, participates in virtually all aspects of cellular functions and is reversed by deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 34 (USP34) plays an essential role in cancer, neurodegenerative diseases, and osteogenesis. Despite its functional importance, how USP34 recognizes ubiquitin and catalyzes deubiquitination remains structurally uncharacterized. Here, we report the crystal structures of the USP34 catalytic domain in free state and after binding with ubiquitin. In the free state, USP34 adopts an inactive conformation, which contains a misaligned catalytic histidine in the triad. Comparison of USP34 structures before and after ubiquitin binding reveals a structural basis for ubiquitin recognition and elucidates a mechanism by which the catalytic triad is realigned. Transition from an open inactive state to a relatively closed active state is coupled to a process by which the "fingertips" of USP34 intimately grip ubiquitin, and this has not been reported before. Our structural and biochemical analyses provide important insights into the catalytic mechanism and ubiquitin recognition of USP34.
Collapse
Affiliation(s)
- Guolyu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China
| | - Huizhao Su
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Lining Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China
| | - Xiaomeng Liu
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Liang Zhao
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China.
| |
Collapse
|
22
|
Nelson JK, Thin MZ, Evan T, Howell S, Wu M, Almeida B, Legrave N, Koenis DS, Koifman G, Sugimoto Y, Llorian Sopena M, MacRae J, Nye E, Howell M, Snijders AP, Prachalias A, Zen Y, Sarker D, Behrens A. USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer. Nat Commun 2022; 13:2070. [PMID: 35440539 PMCID: PMC9018856 DOI: 10.1038/s41467-022-29684-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) play an essential role in targeted protein degradation and represent an emerging therapeutic paradigm in cancer. However, their therapeutic potential in pancreatic ductal adenocarcinoma (PDAC) has not been explored. Here, we develop a DUB discovery pipeline, combining activity-based proteomics with a loss-of-function genetic screen in patient-derived PDAC organoids and murine genetic models. This approach identifies USP25 as a master regulator of PDAC growth and maintenance. Genetic and pharmacological USP25 inhibition results in potent growth impairment in PDAC organoids, while normal pancreatic organoids are insensitive, and causes dramatic regression of patient-derived xenografts. Mechanistically, USP25 deubiquitinates and stabilizes the HIF-1α transcription factor. PDAC is characterized by a severely hypoxic microenvironment, and USP25 depletion abrogates HIF-1α transcriptional activity and impairs glycolysis, inducing PDAC cell death in the tumor hypoxic core. Thus, the USP25/HIF-1α axis is an essential mechanism of metabolic reprogramming and survival in PDAC, which can be therapeutically exploited.
Collapse
Affiliation(s)
- Jessica K Nelson
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - May Zaw Thin
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Theodore Evan
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Steven Howell
- Proteomics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mary Wu
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Bruna Almeida
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nathalie Legrave
- Metabolomics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Duco S Koenis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Gabriela Koifman
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Yoichiro Sugimoto
- Hypoxia Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Miriam Llorian Sopena
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - James MacRae
- Metabolomics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Andreas Prachalias
- Hepatobiliary and Pancreatic Surgery, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Debashis Sarker
- School of Cancer and Pharmaceutical Sciences, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
- Imperial College, Division of Cancer, Department of Surgery and Cancer, Imperial College, Exhibition Road, London, SW7 2AZ, UK.
- Convergence Science Centre, Imperial College, Exhibition Road, London, SW7 2BU, UK.
| |
Collapse
|
23
|
Zheng Q, Song B, Li G, Cai F, Wu M, Zhao Y, Jiang L, Guo T, Shen M, Hou H, Zhou Y, Zhao Y, Di A, Zhang L, Zeng F, Zhang XF, Luo H, Zhang X, Zhang H, Zeng Z, Huang TY, Dong C, Qing H, Zhang Y, Zhang Q, Wang X, Wu Y, Xu H, Song W, Wang X. USP25 inhibition ameliorates Alzheimer's pathology through the regulation of APP processing and Aβ generation. J Clin Invest 2022; 132:152170. [PMID: 35229730 PMCID: PMC8884900 DOI: 10.1172/jci152170] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/11/2022] [Indexed: 02/02/2023] Open
Abstract
Down syndrome (DS), or trisomy 21, is one of the critical risk factors for early-onset Alzheimer’s disease (AD), implicating key roles for chromosome 21–encoded genes in the pathogenesis of AD. We previously identified a role for the deubiquitinase USP25, encoded on chromosome 21, in regulating microglial homeostasis in the AD brain; however, whether USP25 affects amyloid pathology remains unknown. Here, by crossing 5×FAD AD and Dp16 DS mice, we observed that trisomy 21 exacerbated amyloid pathology in the 5×FAD brain. Moreover, bacterial artificial chromosome (BAC) transgene–mediated USP25 overexpression increased amyloid deposition in the 5×FAD mouse brain, whereas genetic deletion of Usp25 reduced amyloid deposition. Furthermore, our results demonstrate that USP25 promoted β cleavage of APP and Aβ generation by reducing the ubiquitination and lysosomal degradation of both APP and BACE1. Importantly, pharmacological inhibition of USP25 ameliorated amyloid pathology in the 5×FAD mouse brain. In summary, we identified the DS-related gene USP25 as a critical regulator of AD pathology, and our data suggest that USP25 serves as a potential pharmacological target for AD drug development.
Collapse
Affiliation(s)
- Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Beibei Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guilin Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meiling Wu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yingjun Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - LuLin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tiantian Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingyu Shen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huan Hou
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Translational Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Anjie Di
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lishan Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fanwei Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiu-Fang Zhang
- Department of Pediatrics, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Chen Dong
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qing Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xu Wang
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
Bogan JS. Ubiquitin-like processing of TUG proteins as a mechanism to regulate glucose uptake and energy metabolism in fat and muscle. Front Endocrinol (Lausanne) 2022; 13:1019405. [PMID: 36246906 PMCID: PMC9556833 DOI: 10.3389/fendo.2022.1019405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
In response to insulin stimulation, fat and muscle cells mobilize GLUT4 glucose transporters to the cell surface to enhance glucose uptake. Ubiquitin-like processing of TUG (Aspscr1, UBXD9) proteins is a central mechanism to regulate this process. Here, recent advances in this area are reviewed. The data support a model in which intact TUG traps insulin-responsive "GLUT4 storage vesicles" at the Golgi matrix by binding vesicle cargoes with its N-terminus and matrix proteins with its C-terminus. Insulin stimulation liberates these vesicles by triggering endoproteolytic cleavage of TUG, mediated by the Usp25m protease. Cleavage occurs in fat and muscle cells, but not in fibroblasts or other cell types. Proteolytic processing of intact TUG generates TUGUL, a ubiquitin-like protein modifier, as the N-terminal cleavage product. In adipocytes, TUGUL modifies a single protein, the KIF5B kinesin motor, which carries GLUT4 and other vesicle cargoes to the cell surface. In muscle, this or another motor may be modified. After cleavage of intact TUG, the TUG C-terminal product is extracted from the Golgi matrix by the p97 (VCP) ATPase. In both muscle and fat, this cleavage product enters the nucleus, binds PPARγ and PGC-1α, and regulates gene expression to promote fatty acid oxidation and thermogenesis. The stability of the TUG C-terminal product is regulated by an Ate1 arginyltransferase-dependent N-degron pathway, which may create a feedback mechanism to control oxidative metabolism. Although it is now clear that TUG processing coordinates glucose uptake with other aspects of physiology and metabolism, many questions remain about how this pathway is regulated and how it is altered in metabolic disease in humans.
Collapse
Affiliation(s)
- Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Jonathan S. Bogan,
| |
Collapse
|
25
|
Varca AC, Casalena D, Chan WC, Hu B, Magin RS, Roberts RM, Liu X, Zhu H, Seo HS, Dhe-Paganon S, Marto JA, Auld D, Buhrlage SJ. Identification and validation of selective deubiquitinase inhibitors. Cell Chem Biol 2021; 28:1758-1771.e13. [PMID: 34129829 PMCID: PMC9473745 DOI: 10.1016/j.chembiol.2021.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/11/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
Deubiquitinating enzymes (DUBs) are a class of isopeptidases that regulate ubiquitin dynamics through catalytic cleavage of ubiquitin from protein substrates and ubiquitin precursors. Despite growing interest in DUB biological function and potential as therapeutic targets, few selective small-molecule inhibitors and no approved drugs currently exist. To identify chemical scaffolds targeting specific DUBs and establish a broader framework for future inhibitor development across the gene family, we performed high-throughput screening of a chemically diverse small-molecule library against eight different DUBs, spanning three well-characterized DUB families. Promising hit compounds were validated in a series of counter-screens and orthogonal assays, as well as further assessed for selectivity across expanded panels of DUBs. Through these efforts, we have identified multiple highly selective DUB inhibitors and developed a roadmap for rapidly identifying and validating selective inhibitors of related enzymes.
Collapse
Affiliation(s)
- Anthony C Varca
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Dominick Casalena
- FAST Lab, Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Wai Cheung Chan
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bin Hu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert S Magin
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Rebekka M Roberts
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoxi Liu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - He Zhu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jarrod A Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Douglas Auld
- FAST Lab, Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Sara J Buhrlage
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: From mechanisms to their inhibition by small molecules. Mol Cell 2021; 82:15-29. [PMID: 34813758 DOI: 10.1016/j.molcel.2021.10.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lee A Armstrong
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
27
|
Molecular basis of ubiquitin-specific protease 8 autoinhibition by the WW-like domain. Commun Biol 2021; 4:1272. [PMID: 34750505 PMCID: PMC8576004 DOI: 10.1038/s42003-021-02802-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Ubiquitin-specific protease 8 (USP8) is a deubiquitinating enzyme involved in multiple membrane trafficking pathways. The enzyme activity is inhibited by binding to 14-3-3 proteins. Mutations in the 14-3-3-binding motif in USP8 are related to Cushing’s disease. However, the molecular basis of USP8 activity regulation remains unclear. This study identified amino acids 645–684 of USP8 as an autoinhibitory region, which might interact with the catalytic USP domain, as per the results of pull-down and single-molecule FRET assays performed in this study. In silico modelling indicated that the region forms a WW-like domain structure, plugs the catalytic cleft, and narrows the entrance to the ubiquitin-binding pocket. Furthermore, 14-3-3 inhibited USP8 activity partly by enhancing the interaction between the WW-like and USP domains. These findings provide the molecular basis of USP8 autoinhibition via the WW-like domain. Moreover, they suggest that the release of autoinhibition may underlie Cushing’s disease due to USP8 mutations. In order to advance our understanding of the regulation of Ubiquitin-specific protease 8 (USP8), which is known to play a role in Cushing’s Disease, Kakihara et al identify and characterise amino acids 645–684 of USP8, which serve as an autoinhibitory region. Their pull-down and single-molecule FRET analysis, as well as in silico modelling, suggest that the release of USP8 autoinhibition may underlie Cushing’s disease.
Collapse
|
28
|
Prieto-Garcia C, Tomašković I, Shah VJ, Dikic I, Diefenbacher M. USP28: Oncogene or Tumor Suppressor? A Unifying Paradigm for Squamous Cell Carcinoma. Cells 2021; 10:2652. [PMID: 34685632 PMCID: PMC8534253 DOI: 10.3390/cells10102652] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: (1) The emerging role of USP28 in cancer. (2) The complexity and mutational landscape of squamous tumors. (3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. (4) The development and current state of novel USP28 inhibitors.
Collapse
Affiliation(s)
- Cristian Prieto-Garcia
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, 97074 Würzburg, Germany
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Ines Tomašković
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Varun Jayeshkumar Shah
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Ivan Dikic
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Markus Diefenbacher
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, 97074 Würzburg, Germany
- Mildred Scheel Early Career Center, 97074 Würzburg, Germany
| |
Collapse
|
29
|
Snyder NA, Silva GM. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem 2021; 297:101077. [PMID: 34391779 PMCID: PMC8424594 DOI: 10.1016/j.jbc.2021.101077] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin signaling is a conserved, widespread, and dynamic process in which protein substrates are rapidly modified by ubiquitin to impact protein activity, localization, or stability. To regulate this process, deubiquitinating enzymes (DUBs) counter the signal induced by ubiquitin conjugases and ligases by removing ubiquitin from these substrates. Many DUBs selectively regulate physiological pathways employing conserved mechanisms of ubiquitin bond cleavage. DUB activity is highly regulated in dynamic environments through protein-protein interaction, posttranslational modification, and relocalization. The largest family of DUBs, cysteine proteases, are also sensitive to regulation by oxidative stress, as reactive oxygen species (ROS) directly modify the catalytic cysteine required for their enzymatic activity. Current research has implicated DUB activity in human diseases, including various cancers and neurodegenerative disorders. Due to their selectivity and functional roles, DUBs have become important targets for therapeutic development to treat these conditions. This review will discuss the main classes of DUBs and their regulatory mechanisms with a particular focus on DUB redox regulation and its physiological impact during oxidative stress.
Collapse
Affiliation(s)
- Nathan A Snyder
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
30
|
Zhu W, Zheng D, Wang D, Yang L, Zhao C, Huang X. Emerging Roles of Ubiquitin-Specific Protease 25 in Diseases. Front Cell Dev Biol 2021; 9:698751. [PMID: 34249948 PMCID: PMC8262611 DOI: 10.3389/fcell.2021.698751] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
The balance of ubiquitination and deubiquitination plays diverse roles in regulating protein stability and cellular homeostasis. Deubiquitinating enzymes catalyze the hydrolysis and removal of ubiquitin chains from target proteins and play critical roles in various disease processes, including cancer, immune responses to viral infections and neurodegeneration. This article aims to summarize roles of the deubiquitinating enzyme ubiquitin-specific protease 25 (USP25) in disease onset and progression. Previous studies have focused on the role of USP25 in antiviral immunity and neurodegenerative diseases. Recently, however, as the structural similarities and differences between USP25 and its homolog USP28 have become clear, mechanisms of action of USP25 in cancer and other diseases have been gradually revealed.
Collapse
Affiliation(s)
- Wenjing Zhu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dandan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dandan Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Basar MA, Beck DB, Werner A. Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ 2021; 28:538-556. [PMID: 33335288 PMCID: PMC7862630 DOI: 10.1038/s41418-020-00697-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Metazoan development from a one-cell zygote to a fully formed organism requires complex cellular differentiation and communication pathways. To coordinate these processes, embryos frequently encode signaling information with the small protein modifier ubiquitin, which is typically attached to lysine residues within substrates. During ubiquitin signaling, a three-step enzymatic cascade modifies specific substrates with topologically unique ubiquitin modifications, which mediate changes in the substrate's stability, activity, localization, or interacting proteins. Ubiquitin signaling is critically regulated by deubiquitylases (DUBs), a class of ~100 human enzymes that oppose the conjugation of ubiquitin. DUBs control many essential cellular functions and various aspects of human physiology and development. Recent genetic studies have identified mutations in several DUBs that cause developmental disorders. Here we review principles controlling DUB activity and substrate recruitment that allow these enzymes to regulate ubiquitin signaling during development. We summarize key mechanisms of how DUBs control embryonic and postnatal differentiation processes, highlight developmental disorders that are caused by mutations in particular DUB members, and describe our current understanding of how these mutations disrupt development. Finally, we discuss how emerging tools from human disease genetics will enable the identification and study of novel congenital disease-causing DUBs.
Collapse
Affiliation(s)
- Mohammed A Basar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Beck
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
32
|
Molecular Mechanisms of DUBs Regulation in Signaling and Disease. Int J Mol Sci 2021; 22:ijms22030986. [PMID: 33498168 PMCID: PMC7863924 DOI: 10.3390/ijms22030986] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The large family of deubiquitinating enzymes (DUBs) are involved in the regulation of a plethora of processes carried out inside the cell by protein ubiquitination. Ubiquitination is a basic pathway responsible for the correct protein homeostasis in the cell, which could regulate the fate of proteins through the ubiquitin–proteasome system (UPS). In this review we will focus on recent advances on the molecular mechanisms and specificities found for some types of DUBs enzymes, highlighting illustrative examples in which the regulatory mechanism for DUBs has been understood in depth at the molecular level by structural biology. DUB proteases are responsible for cleavage and regulation of the multiple types of ubiquitin linkages that can be synthesized inside the cell, known as the ubiquitin-code, which are tightly connected to specific substrate functions. We will display some strategies carried out by members of different DUB families to provide specificity on the cleavage of particular ubiquitin linkages. Finally, we will also discuss recent progress made for the development of drug compounds targeting DUB proteases, which are usually correlated to the progress of many pathologies such as cancer and neurodegenerative diseases.
Collapse
|
33
|
Liu Z, Zhao T, Li Z, Sun K, Fu Y, Cheng T, Guo J, Yu B, Shi X, Liu H. Discovery of [1,2,3]triazolo[4,5- d]pyrimidine derivatives as highly potent, selective, and cellularly active USP28 inhibitors. Acta Pharm Sin B 2020; 10:1476-1491. [PMID: 32963944 PMCID: PMC7488365 DOI: 10.1016/j.apsb.2019.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/20/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin specific peptidase 28 (USP28) is closely associated to the occurrence and development of various malignancies, and thus has been validated as a promising therapeutic target for cancer therapy. To date, only few USP28 inhibitors with moderate inhibitory activity have been reported, highly potent and selective USP28 inhibitors with new chemotypes remain to be discovered for pathologically investigating the roles of deubiquitinase. In this current study, we reported the synthesis and biological evaluation of new [1,2,3]triazolo[4,5-d]pyrimidine derivatives as potent USP28 inhibitors. Especially, compound 19 potently inhibited USP28 (IC50 = 1.10 ± 0.02 μmol/L, Kd = 40 nmol/L), showing selectivity over USP7 and LSD1 (IC50 > 100 μmol/L). Compound 19 was cellularly engaged to USP28 in gastric cancer cells. Compound 19 reversibly bound to USP28 and directly affected its protein levels, thus inhibiting the proliferation, cell cycle at S phase, and epithelial-mesenchymal transition (EMT) progression in gastric cancer cell lines. Docking studies were performed to rationalize the potency of compound 19. Collectively, compound 19 could serve as a new tool compound for the development of new USP28 inhibitors for exploring the roles of deubiquitinase in cancers.
Collapse
Key Words
- BLI, biolayer interferometry technology
- CHX, cycloheximide
- DUBs, deubiquitinating enzymes
- Deubiquitination
- EMT, epithelial-mesenchymal transition
- EdU, 5-ethynyl-2′-deoxyuridine
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- Gastric cancer
- IC50, half maximal inhibitory concentration
- Kd, dissociation constant
- LSD1, lysine specific demethylase 1
- MG132, proteasome inhibitor
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazoliumbromide
- NSCLC, non-small cell lung cancer
- Tris, 2-amino-2-(hydroxymethyl)-1,3-propanediol
- USP28 inhibitors
- USP28, ubiquitin specific peptidase 28
- USP7, ubiquitin specific peptidase 7
- Ub, ubiquitin
- Ub-AMC, ubiquitin-7-amido-4-methylcoumarin
- [1,2,3]Triazolo[4,5-d]pyrimidine derivatives
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Yu
- Corresponding authors. Tel./fax: +86 371 67781908.
| | - Xiaojing Shi
- Corresponding authors. Tel./fax: +86 371 67781908.
| | - Hongmin Liu
- Corresponding authors. Tel./fax: +86 371 67781908.
| |
Collapse
|
34
|
Wang H, Meng Q, Ding Y, Xiong M, Zhu M, Yang Y, Su H, Gu L, Xu Y, Shi L, Zhou H, Zhang N. USP28 and USP25 are downregulated by Vismodegib in vitro and in colorectal cancer cell lines. FEBS J 2020; 288:1325-1342. [PMID: 32578360 DOI: 10.1111/febs.15461] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/23/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022]
Abstract
Deubiquitinase USP28 plays a crucial role in tumorigenesis by enhancing the stabilities of multiple cancer-related proteins including c-Myc, Notch1, and LSD1, and has become an attractive target for anticancer drug development. However, to date, only a few of USP28-targeted active compounds have been developed, and the active compound-binding pocket in USP28 has not been experimentally revealed yet. In this study, bioassay-based high-throughput screening was applied to discover USP28-targeted inhibitors from the commercially available drug library. Vismodegib, an inhibitor of Hedgehog signaling pathway and FDA-approved drug for the treatment of basal cell carcinoma, was found to exhibit inhibition activity against USP28 (IC50 : 4.41 ± 1.08 μm). Multiple biophysical and biochemical techniques including NMR, ITC, thermal shift assay, HDX-MS, and site-directed mutagenesis analysis were then used to characterize the interaction between Vismodegib and USP28. The binding pocket in USP28 for Vismodegib, which is mainly composed of two helical structures spanning D255-N278 and N286-Y293, was revealed. According to the possible binding pose generated by HDX-MS data-defined molecular docking, the binding cavity occupied by Vismodegib in USP28 aligns well with one of the reported-binding pockets in USP7 for its inhibitors. Furthermore, cellular assays were conducted to confirm that Vismodegib could interact with the evolutionarily related deubiquitinases USP28 and USP25 and downregulate the levels of the two enzymes' substrate proteins c-Myc, Notch1, and Tankyrase-1/2.
Collapse
Affiliation(s)
- Hui Wang
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qian Meng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yiluan Ding
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Muya Xiong
- University of the Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mengying Zhu
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Yang
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Haixia Su
- University of the Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lei Gu
- University of the Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yechun Xu
- University of the Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Shi
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hu Zhou
- University of the Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Naixia Zhang
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Regulation of Deubiquitinating Enzymes by Post-Translational Modifications. Int J Mol Sci 2020; 21:ijms21114028. [PMID: 32512887 PMCID: PMC7312083 DOI: 10.3390/ijms21114028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023] Open
Abstract
Ubiquitination and deubiquitination play a critical role in all aspects of cellular processes, and the enzymes involved are tightly regulated by multiple factors including posttranslational modifications like most other proteins. Dysfunction or misregulation of these enzymes could have dramatic physiological consequences, sometimes leading to diseases. Therefore, it is important to have a clear understanding of these regulatory processes. Here, we have reviewed the posttranslational modifications of deubiquitinating enzymes and their consequences on the catalytic activity, stability, abundance, localization, and interaction with the partner proteins.
Collapse
|
36
|
Shibata N, Ohoka N, Tsuji G, Demizu Y, Miyawaza K, Ui-Tei K, Akiyama T, Naito M. Deubiquitylase USP25 prevents degradation of BCR-ABL protein and ensures proliferation of Ph-positive leukemia cells. Oncogene 2020; 39:3867-3878. [PMID: 32203161 DOI: 10.1038/s41388-020-1253-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Fusion genes resulting from chromosomal rearrangements are frequently found in a variety of cancer cells. Some of these are known to be driver oncogenes, such as BCR-ABL in chronic myelogenous leukemia (CML). The products of such fusion genes are abnormal proteins that are ordinarily degraded in cells by a mechanism known as protein quality control. This suggests that the degradation of BCR-ABL protein is suppressed in CML cells to ensure their proliferative activity. Here, we show that ubiquitin-specific protease 25 (USP25) suppresses the degradation of BCR-ABL protein in cells harboring Philadelphia chromosome (Ph). USP25 was found proximal to BCR-ABL protein in cells. Depletion of USP25 using shRNA-mediated gene silencing increased the ubiquitylated BCR-ABL, and reduced the level of BCR-ABL protein. Accordingly, BCR-ABL-mediated signaling and cell proliferation were suppressed in BCR-ABL-positive leukemia cells by the depletion of USP25. We further found that pharmacological inhibition of USP25 induced rapid degradation of BCR-ABL protein in Ph-positive leukemia cells, regardless of their sensitivity to tyrosine kinase inhibitors. These results indicate that USP25 is a novel target for inducing the degradation of oncogenic BCR-ABL protein in Ph-positive leukemia cells. This could be an effective approach to overcome resistance to kinase inhibitors.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Deubiquitinating Enzymes/genetics
- Drug Resistance, Neoplasm/genetics
- Gene Silencing/drug effects
- Genes, abl/genetics
- Humans
- Jurkat Cells
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Philadelphia Chromosome
- Protein Kinase Inhibitors/pharmacology
- Proteolysis/drug effects
- RNA, Small Interfering/genetics
- Ubiquitin Thiolesterase/genetics
Collapse
Affiliation(s)
- Norihito Shibata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Genichiro Tsuji
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Keiji Miyawaza
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, 210-9501, Japan.
| |
Collapse
|
37
|
Prieto‐Garcia C, Hartmann O, Reissland M, Braun F, Fischer T, Walz S, Schülein‐Völk C, Eilers U, Ade CP, Calzado MA, Orian A, Maric HM, Münch C, Rosenfeldt M, Eilers M, Diefenbacher ME. Maintaining protein stability of ∆Np63 via USP28 is required by squamous cancer cells. EMBO Mol Med 2020; 12:e11101. [PMID: 32128997 PMCID: PMC7136964 DOI: 10.15252/emmm.201911101] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/27/2022] Open
Abstract
The transcription factor ∆Np63 is a master regulator of epithelial cell identity and essential for the survival of squamous cell carcinoma (SCC) of lung, head and neck, oesophagus, cervix and skin. Here, we report that the deubiquitylase USP28 stabilizes ∆Np63 and maintains elevated ∆NP63 levels in SCC by counteracting its proteasome-mediated degradation. Impaired USP28 activity, either genetically or pharmacologically, abrogates the transcriptional identity and suppresses growth and survival of human SCC cells. CRISPR/Cas9-engineered in vivo mouse models establish that endogenous USP28 is strictly required for both induction and maintenance of lung SCC. Our data strongly suggest that targeting ∆Np63 abundance via inhibition of USP28 is a promising strategy for the treatment of SCC tumours.
Collapse
Affiliation(s)
- Cristian Prieto‐Garcia
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| | - Oliver Hartmann
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| | - Michaela Reissland
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| | - Fabian Braun
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| | - Thomas Fischer
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Department for RadiotherapyUniversity Hospital WürzburgWürzburgGermany
| | - Susanne Walz
- Core Unit BioinformaticsComprehensive Cancer Centre MainfrankenUniversity of WürzburgWürzburgGermany
| | | | - Ursula Eilers
- Core Unit High‐Content MicroscopyBiocenterUniversity of WürzburgWürzburgGermany
| | - Carsten P Ade
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
- Department of Biochemistry and Molecular BiologyUniversity of WürzburgWürzburgGermany
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)CórdobaSpain
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de CórdobaCórdobaSpain
- Hospital Universitario Reina SofíaCórdobaSpain
| | - Amir Orian
- Faculty of MedicineTICCTechnion HaifaIsrael
| | - Hans M Maric
- Rudolf‐Virchow‐Center for Experimental BiomedicineWürzburgGermany
| | - Christian Münch
- Institute of Biochemistry IIGoethe UniversityFrankfurtGermany
| | - Mathias Rosenfeldt
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
- Institute for PathologyUniversity of WürzburgWürzburgGermany
| | - Martin Eilers
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
- Department of Biochemistry and Molecular BiologyUniversity of WürzburgWürzburgGermany
| | - Markus E Diefenbacher
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| |
Collapse
|
38
|
Beckwitt EC, Jang S, Carnaval Detweiler I, Kuper J, Sauer F, Simon N, Bretzler J, Watkins SC, Carell T, Kisker C, Van Houten B. Single molecule analysis reveals monomeric XPA bends DNA and undergoes episodic linear diffusion during damage search. Nat Commun 2020; 11:1356. [PMID: 32170071 PMCID: PMC7069974 DOI: 10.1038/s41467-020-15168-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/16/2020] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) removes a wide range of DNA lesions, including UV-induced photoproducts and bulky base adducts. XPA is an essential protein in eukaryotic NER, although reports about its stoichiometry and role in damage recognition are controversial. Here, by PeakForce Tapping atomic force microscopy, we show that human XPA binds and bends DNA by ∼60° as a monomer. Furthermore, we observe XPA specificity for the helix-distorting base adduct N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene over non-damaged dsDNA. Moreover, single molecule fluorescence microscopy reveals that DNA-bound XPA exhibits multiple modes of linear diffusion between paused phases. The presence of DNA damage increases the frequency of pausing. Truncated XPA, lacking the intrinsically disordered N- and C-termini, loses specificity for DNA lesions and shows less pausing on damaged DNA. Our data are consistent with a working model in which monomeric XPA bends DNA, displays episodic phases of linear diffusion along DNA, and pauses in response to DNA damage.
Collapse
Affiliation(s)
- Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Sunbok Jang
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Florian Sauer
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Nina Simon
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig Maximillian University of Munich, 81377, Munich, Germany
| | - Johanna Bretzler
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig Maximillian University of Munich, 81377, Munich, Germany
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig Maximillian University of Munich, 81377, Munich, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
39
|
Chakravorty D, Ghosh A, Saha S. Computational approach to target USP28 for regulating Myc. Comput Biol Chem 2020; 85:107208. [PMID: 32028107 DOI: 10.1016/j.compbiolchem.2020.107208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
Myc is a crucial player in cellular proliferation and a known regulator of cancer pathobiology. Modulation of Myc expression targeting the Myc Protein-Protein Interactors (PPIs) like Myc-Max has till now been the most explored approach. However, this approach threatens the normal cells where Myc expression is required for proliferation. This demands the need for a new strategy to indirectly modulate Myc expression. Indirect modulation can be achieved by regulating Myc turnover. FBXW7 mediates the ubiquitination and subsequent degradation of Myc which is reversed by USP28. In this study, the interaction of USP28 with FBXW7 as well as with its substrate, Ubiquitin (Ub) were used as targets. Computation based high-throughput screening of bioactive small chemicals using molecular docking method was implemented to predict USP28 inhibitors. For the two regions, docking study with AutoDock Vina gave top 10 best scoring drugs which were identified and tabulated. The two regions defined in the study as FBXW7 binding and Ub binding also encompass the areas in which USP28 differed from USP25, a homologue with a different role. Out of these the best scoring drugs were explored for their role in cancer, if any. This study was performed keeping in mind re-purposing of these known drugs for possible alternative anti-Myc cancer therapy.
Collapse
Affiliation(s)
| | - Abhirupa Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India.
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, India.
| |
Collapse
|
40
|
Zhang H, Huang H, Feng X, Song H, Zhang Z, Shen A, Qiu X. Deubiquitinase USP28 inhibits ubiquitin ligase KLHL2-mediated uridine-cytidine kinase 1 degradation and confers sensitivity to 5'-azacytidine-resistant human leukemia cells. Theranostics 2020; 10:1046-1059. [PMID: 31938050 PMCID: PMC6956814 DOI: 10.7150/thno.36503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Resistance to the chemotherapeutic drug 5'-azacytidine (5'-AZA) is a major obstacle in the treatment of patients with acute myeloid leukemia (AML). The uridine-cytidine kinase 1 (UCK1) has an established role in activating 5'-AZA and its protein level is significantly downregulated in patients resistant to the drug. However, the underlying molecular mechanism for the reduced UCK1 expression remains to be elucidated. Methods: Using mass spectrometry and molecular biochemistry analyses, we identified specific enzymes mediating UCK1 degradation. Human AML cell lines and murine AML model were used to characterize the effects of these enzymes on 5'-AZA resistance. Results: We demonstrated that the ubiquitin E3 ligase KLHL2 interacted with UCK1 and mediated its polyubiquitination at the K81 residue and degradation. We showed that deubiquitinase USP28 antagonized KLHL2-mediated polyubiquitylation of UCK1. We also provided evidence that ATM-mediated phosphorylation of USP28 resulted in its disassociation from KLHL2 and UCK1 destabilization. Conversely, UCK1 phosphorylation by 5'-AZA-activated ATM enhanced the KLHL2-UCK1 complex formation. Importantly, silencing KLHL2 or USP28 overexpression not only inhibited AML cell proliferation but also sensitized AML cells to 5'-AZA-induced apoptosis in vitro and in vivo. These results were no longer observed in USP28-deficient cells. Conclusions: Our study revealed a novel mechanism by which the KLHL2/USP28/ATM axis mediates resistance of AML cells to 5'-AZA by regulating UCK1 ubiquitination and phosphorylation. These results have direct clinical implications and provide a rationale for the combination drug treatment of AML patients.
Collapse
|
41
|
The role of DUBs in the post-translational control of cell migration. Essays Biochem 2019; 63:579-594. [DOI: 10.1042/ebc20190022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
AbstractCell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.
Collapse
|