1
|
Forino NM, Woo JZ, Zaug AJ, Jimenez AG, Edelson E, Cech TR, Rouskin S, Stone MD. Telomerase RNA structural heterogeneity in living human cells detected by DMS-MaPseq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560962. [PMID: 37873413 PMCID: PMC10592977 DOI: 10.1101/2023.10.04.560962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Telomerase is a specialized reverse transcriptase that uses an intrinsic RNA subunit as the template for telomeric DNA synthesis. Biogenesis of human telomerase requires its RNA subunit (hTR) to fold into a multi-domain architecture that includes the template-containing pseudoknot (t/PK) and the three-way junction (CR4/5). These two hTR domains bind the telomerase reverse transcriptase (hTERT) protein and are thus essential for telomerase catalytic activity. Here, we probe the structure of hTR in living cells using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and ensemble deconvolution analysis. Unexpectedly, approximately 15% of the steady state population of hTR has a CR4/5 conformation lacking features thought to be required for hTERT binding. The proportion of hTR CR4/5 that is folded into the primary functional conformation does not require hTERT expression and the fraction of hTR that assumes a misfolded CR4/5 domain is not refolded by overexpression of its hTERT binding partner. This result suggests a functional role for an RNA folding cofactor other than hTERT during telomerase biogenesis. Mutagenesis demonstrates that stabilization of the alternative CR4/5 conformation is detrimental to telomerase assembly and activity. Moreover, the alternative CR4/5 conformation is not found in telomerase RNP complexes purified from cells via an epitope tag on hTERT, supporting the hypothesis that only the major CR4/5 conformer is active. We propose that this misfolded portion of the cellular hTR pool is either slowly refolded or degraded. Thus, kinetic traps for RNA folding that have been so well-studied in vitro may also present barriers for assembly of ribonucleoprotein complexes in vivo.
Collapse
Affiliation(s)
- Nicholas M Forino
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Jia Zheng Woo
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | | | - Eva Edelson
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| |
Collapse
|
2
|
Sanchez SE, Gu Y, Wang Y, Golla A, Martin A, Shomali W, Hockemeyer D, Savage SA, Artandi SE. Digital telomere measurement by long-read sequencing distinguishes healthy aging from disease. Nat Commun 2024; 15:5148. [PMID: 38890274 PMCID: PMC11189511 DOI: 10.1038/s41467-024-49007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Telomere length is an important biomarker of organismal aging and cellular replicative potential, but existing measurement methods are limited in resolution and accuracy. Here, we deploy digital telomere measurement (DTM) by nanopore sequencing to understand how distributions of human telomere length change with age and disease. We measure telomere attrition and de novo elongation with up to 30 bp resolution in genetically defined populations of human cells, in blood cells from healthy donors and in blood cells from patients with genetic defects in telomere maintenance. We find that human aging is accompanied by a progressive loss of long telomeres and an accumulation of shorter telomeres. In patients with defects in telomere maintenance, the accumulation of short telomeres is more pronounced and correlates with phenotypic severity. We apply machine learning to train a binary classification model that distinguishes healthy individuals from those with telomere biology disorders. This sequencing and bioinformatic pipeline will advance our understanding of telomere maintenance mechanisms and the use of telomere length as a clinical biomarker of aging and disease.
Collapse
Affiliation(s)
- Santiago E Sanchez
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuchao Gu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yan Wang
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Anudeep Golla
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Annika Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - William Shomali
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Qin J, Garus A, Autexier C. The C-terminal extension of dyskerin is a dyskeratosis congenita mutational hotspot that modulates interaction with telomerase RNA and subcellular localization. Hum Mol Genet 2024; 33:318-332. [PMID: 37879098 PMCID: PMC10840380 DOI: 10.1093/hmg/ddad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Dyskerin is a component of the human telomerase complex and is involved in stabilizing the human telomerase RNA (hTR). Many mutations in the DKC1 gene encoding dyskerin are found in X-linked dyskeratosis congenita (X-DC), a premature aging disorder and other related diseases. The C-terminal extension (CTE) of dyskerin contributes to its interaction with the molecular chaperone SHQ1 during the early stage of telomerase biogenesis. Disease mutations in this region were proposed to disrupt dyskerin-SHQ1 interaction and destabilize dyskerin, reducing hTR levels indirectly. However, biochemical evidence supporting this hypothesis is still lacking. In addition, the effects of many CTE disease mutations on hTR have not been examined. In this study, we tested eight dyskerin CTE variants and showed that they failed to maintain hTR levels. These mutants showed slightly reduced but not abolished interaction with SHQ1, and caused defective binding to hTR. Deletion of the CTE further reduced binding to hTR, and perturbed localization of dyskerin to the Cajal bodies and the nucleolus, and the interaction with TCAB1 as well as GAR1. Our findings suggest impaired dyskerin-hTR interaction in cells as a previously overlooked mechanism through which dyskerin CTE mutations cause X-DC and related telomere syndromes.
Collapse
Affiliation(s)
- Jian Qin
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| |
Collapse
|
4
|
Ma T, Xiong ES, Lardelli RM, Lykke-Andersen J. Sm complex assembly and 5' cap trimethylation promote selective processing of snRNAs by the 3' exonuclease TOE1. Proc Natl Acad Sci U S A 2024; 121:e2315259121. [PMID: 38194449 PMCID: PMC10801842 DOI: 10.1073/pnas.2315259121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
Competing exonucleases that promote 3' end maturation or degradation direct quality control of small non-coding RNAs, but how these enzymes distinguish normal from aberrant RNAs is poorly understood. The Pontocerebellar Hypoplasia 7 (PCH7)-associated 3' exonuclease TOE1 promotes maturation of canonical small nuclear RNAs (snRNAs). Here, we demonstrate that TOE1 achieves specificity toward canonical snRNAs through their Sm complex assembly and cap trimethylation, two features that distinguish snRNAs undergoing correct biogenesis from other small non-coding RNAs. Indeed, disruption of Sm complex assembly via snRNA mutations or protein depletions obstructs snRNA processing by TOE1, and in vitro snRNA processing by TOE1 is stimulated by a trimethylated cap. An unstable snRNA variant that normally fails to undergo maturation becomes fully processed by TOE1 when its degenerate Sm binding motif is converted into a canonical one. Our findings uncover the molecular basis for how TOE1 distinguishes snRNAs from other small non-coding RNAs and explain how TOE1 promotes maturation specifically of canonical snRNAs undergoing proper processing.
Collapse
Affiliation(s)
- Tiantai Ma
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Erica S. Xiong
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Rea M. Lardelli
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Jens Lykke-Andersen
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
5
|
Dunn PL, Logeswaran D, Chen JJL. Telomerase-Mediated Anti-Ageing Interventions. Subcell Biochem 2024; 107:1-20. [PMID: 39693017 DOI: 10.1007/978-3-031-66768-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The ageing process involves a gradual decline of chromosome integrity throughout an organism's lifespan. Telomeres are protective DNA-protein complexes that cap the ends of linear chromosomes in eukaryotic organisms. Telomeric DNA consists of long stretches of short "TTAGGG" repeats that are conserved across most eukaryotes including humans. Telomeres shorten progressively with each round of DNA replication due to the inability of conventional DNA polymerase to completely replicate the chromosome ends, known as the "end-replication problem". The telomerase enzyme counteracts the telomeric DNA loss by de novo addition of telomeric repeats onto chromosomal ends. Germline and stem cells maintain significant levels of telomerase activity to maintain telomere length and can divide almost indefinitely. However, the differentiation of stem cells accompanies the inactivation of telomerase gene expression, resulting in the progressive shortening of telomeres in somatic cells over successive divisions. Critically short telomeres elicit and sustain a persistent DNA damage response leading to permanent growth arrest of cells known as cellular senescence, a hallmark of cellular ageing. The accumulation of senescent cells in tissues and organs contributes to organismal ageing. Thus, the prevention of telomere shortening is a promising means to delay or even reverse cellular ageing. In this chapter, we summarize potential anti-ageing interventions that mitigate telomere shortening through increasing telomerase level or activity and discuss these strategies' risks, benefits, and future outlooks.
Collapse
Affiliation(s)
- Phoebe L Dunn
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | | | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
6
|
Neumann H, Bartle L, Bonnell E, Wellinger RJ. Ratcheted transport and sequential assembly of the yeast telomerase RNP. Cell Rep 2023; 42:113565. [PMID: 38096049 DOI: 10.1016/j.celrep.2023.113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
The telomerase ribonucleoprotein particle (RNP) replenishes telomeric DNA and minimally requires an RNA component and a catalytic protein subunit. However, telomerase RNP maturation is an intricate process occurring in several subcellular compartments and is incompletely understood. Here, we report how the co-transcriptional association of key telomerase components and nuclear export factors leads to an export-competent, but inactive, RNP. Export is dependent on the 5' cap, the 3' extension of unprocessed telomerase RNA, and protein associations. When the RNP reaches the cytoplasm, an extensive protein swap occurs, the RNA is trimmed to its mature length, and the essential catalytic Est2 protein joins the RNP. This mature and active complex is then reimported into the nucleus as its final destination and last processing steps. The irreversible processing events on the RNA thus support a ratchet-type model of telomerase maturation, with only a single nucleo-cytoplasmic cycle that is essential for the assembly of mature telomerase.
Collapse
Affiliation(s)
- Hannah Neumann
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Louise Bartle
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada; Research Center on Aging (CdRV), 1036 rue Belvedere Sud, Sherbrooke, QC J1H 4C4, Canada
| | - Erin Bonnell
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada; Research Center on Aging (CdRV), 1036 rue Belvedere Sud, Sherbrooke, QC J1H 4C4, Canada.
| |
Collapse
|
7
|
Sanchez SE, Gu J, Golla A, Martin A, Shomali W, Hockemeyer D, Savage SA, Artandi SE. Digital telomere measurement by long-read sequencing distinguishes healthy aging from disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569263. [PMID: 38077053 PMCID: PMC10705489 DOI: 10.1101/2023.11.29.569263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Telomere length is an important biomarker of organismal aging and cellular replicative potential, but existing measurement methods are limited in resolution and accuracy. Here, we deploy digital telomere measurement by nanopore sequencing to understand how distributions of human telomere length change with age and disease. We measure telomere attrition and de novo elongation with unprecedented resolution in genetically defined populations of human cells, in blood cells from healthy donors and in blood cells from patients with genetic defects in telomere maintenance. We find that human aging is accompanied by a progressive loss of long telomeres and an accumulation of shorter telomeres. In patients with defects in telomere maintenance, the accumulation of short telomeres is more pronounced and correlates with phenotypic severity. We apply machine learning to train a binary classification model that distinguishes healthy individuals from those with telomere biology disorders. This sequencing and bioinformatic pipeline will advance our understanding of telomere maintenance mechanisms and the use of telomere length as a clinical biomarker of aging and disease.
Collapse
Affiliation(s)
- Santiago E. Sanchez
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine; Stanford, CA, USA
- Medical Scientist Training Program, Stanford University; Stanford CA, USA
| | - Jessica Gu
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine; Stanford, CA, USA
| | - Anudeep Golla
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA
| | - Annika Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - William Shomali
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
- Chan Zuckerberg Biohub, San Francisco, CA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven E. Artandi
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
8
|
Huynh TN, Parker R. The PARN, TOE1, and USB1 RNA deadenylases and their roles in non-coding RNA regulation. J Biol Chem 2023; 299:105139. [PMID: 37544646 PMCID: PMC10493513 DOI: 10.1016/j.jbc.2023.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023] Open
Abstract
The levels of non-coding RNAs (ncRNAs) are regulated by transcription, RNA processing, and RNA degradation pathways. One mechanism for the degradation of ncRNAs involves the addition of oligo(A) tails by non-canonical poly(A) polymerases, which then recruit processive sequence-independent 3' to 5' exonucleases for RNA degradation. This pathway of decay is also regulated by three 3' to 5' exoribonucleases, USB1, PARN, and TOE1, which remove oligo(A) tails and thereby can protect ncRNAs from decay in a manner analogous to the deubiquitination of proteins. Loss-of-function mutations in these genes lead to premature degradation of some ncRNAs and lead to specific human diseases such as Poikiloderma with Neutropenia (PN) for USB1, Dyskeratosis Congenita (DC) for PARN and Pontocerebellar Hypoplasia type 7 (PCH7) for TOE1. Herein, we review the biochemical properties of USB1, PARN, and TOE1, how they modulate ncRNA levels, and their roles in human diseases.
Collapse
Affiliation(s)
- Thao Ngoc Huynh
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
9
|
Ma T, Xiong ES, Lardelli RM, Lykke-Andersen J. The 3' exonuclease TOE1 selectively processes snRNAs through recognition of Sm complex assembly and 5' cap trimethylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553431. [PMID: 37645788 PMCID: PMC10462049 DOI: 10.1101/2023.08.15.553431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Competing exonucleases that promote 3' end maturation or degradation direct quality control of small non-coding RNAs, but how these enzymes distinguish normal from aberrant RNAs is poorly understood. The Pontocerebellar Hypoplasia 7 (PCH7)-associated 3' exonuclease TOE1 promotes maturation of canonical small nuclear RNAs (snRNAs). Here, we demonstrate that TOE1 achieves specificity towards canonical snRNAs by recognizing Sm complex assembly and cap trimethylation, two features that distinguish snRNAs undergoing correct biogenesis from other small non-coding RNAs. Indeed, disruption of Sm complex assembly via snRNA mutations or protein depletions obstructs snRNA processing by TOE1, and in vitro snRNA processing by TOE1 is stimulated by a trimethylated cap. An unstable snRNA variant that normally fails to undergo maturation becomes fully processed by TOE1 when its degenerate Sm binding motif is converted into a canonical one. Our findings uncover the molecular basis for how TOE1 distinguishes snRNAs from other small non-coding RNAs and explain how TOE1 promotes maturation specifically of canonical snRNAs undergoing proper processing.
Collapse
Affiliation(s)
- Tiantai Ma
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Erica S Xiong
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rea M Lardelli
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jens Lykke-Andersen
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
10
|
Huynh TN, Shukla S, Reigan P, Parker R. Identification of PARN nuclease activity inhibitors by computational-based docking and high-throughput screening. Sci Rep 2023; 13:5244. [PMID: 37002320 PMCID: PMC10066322 DOI: 10.1038/s41598-023-32039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that removes poly(A) tails from the 3' end of RNAs. PARN is known to deadenylate some ncRNAs, including hTR, Y RNAs, and some miRNAs and thereby enhance their stability by limiting the access of 3' to 5' exonucleases recruited by oligo(A) tails. Several PARN-regulated miRNAs target p53 mRNA, and PARN knockdown leads to an increase of p53 protein levels in human cells. Thus, PARN inhibitors might be used to induce p53 levels in some human tumors and act as a therapeutic strategy to treat cancers caused by repressed p53 protein. Herein, we used computational-based molecular docking and high-throughput screening (HTS) to identify small molecule inhibitors of PARN. Validation with in vitro and cell-based assays, identified 4 compounds, including 3 novel compounds and pyrimidopyrimidin-2-one GNF-7, previously shown to be a Bcr-Abl inhibitor, as PARN inhibitors. These inhibitors can be used as tool compounds and as lead compounds for the development of improved PARN inhibitors.
Collapse
Affiliation(s)
- Thao Ngoc Huynh
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Siddharth Shukla
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, 80045, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
11
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
12
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Brouze A, Krawczyk PS, Dziembowski A, Mroczek S. Measuring the tail: Methods for poly(A) tail profiling. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1737. [PMID: 35617484 PMCID: PMC10078590 DOI: 10.1002/wrna.1737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/31/2023]
Abstract
The 3'-end poly(A) tail is an important and potent feature of most mRNA molecules that affects mRNA fate and translation efficiency. Polyadenylation is a posttranscriptional process that occurs in the nucleus by canonical poly(A) polymerases (PAPs). In some specific instances, the poly(A) tail can also be extended in the cytoplasm by noncanonical poly(A) polymerases (ncPAPs). This epitranscriptomic regulation of mRNA recently became one of the most interesting aspects in the field. Advances in RNA sequencing technologies and software development have allowed the precise measurement of poly(A) tails, identification of new ncPAPs, expansion of the function of known enzymes, discovery and a better understanding of the physiological role of tail heterogeneity, and recognition of a correlation between tail length and RNA translatability. Here, we summarize the development of polyadenylation research methods, including classic low-throughput approaches, Illumina-based genome-wide analysis, and advanced state-of-art techniques that utilize long-read third-generation sequencing with Pacific Biosciences and Oxford Nanopore Technologies platforms. A boost in technical opportunities over recent decades has allowed a better understanding of the regulation of gene expression at the mRNA level. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico.
Collapse
Affiliation(s)
- Aleksandra Brouze
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Szczepan Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
14
|
Chen L, Roake CM, Maccallini P, Bavasso F, Dehghannasiri R, Santonicola P, Mendoza-Ferreira N, Scatolini L, Rizzuti L, Esposito A, Gallotta I, Francia S, Cacchione S, Galati A, Palumbo V, Kobin MA, Tartaglia G, Colantoni A, Proietti G, Wu Y, Hammerschmidt M, De Pittà C, Sales G, Salzman J, Pellizzoni L, Wirth B, Di Schiavi E, Gatti M, Artandi S, Raffa GD. TGS1 impacts snRNA 3'-end processing, ameliorates survival motor neuron-dependent neurological phenotypes in vivo and prevents neurodegeneration. Nucleic Acids Res 2022; 50:12400-12424. [PMID: 35947650 PMCID: PMC9757054 DOI: 10.1093/nar/gkac659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a highly conserved enzyme that converts the 5'-monomethylguanosine cap of small nuclear RNAs (snRNAs) to a trimethylguanosine cap. Here, we show that loss of TGS1 in Caenorhabditis elegans, Drosophila melanogaster and Danio rerio results in neurological phenotypes similar to those caused by survival motor neuron (SMN) deficiency. Importantly, expression of human TGS1 ameliorates the SMN-dependent neurological phenotypes in both flies and worms, revealing that TGS1 can partly counteract the effects of SMN deficiency. TGS1 loss in HeLa cells leads to the accumulation of immature U2 and U4atac snRNAs with long 3' tails that are often uridylated. snRNAs with defective 3' terminations also accumulate in Drosophila Tgs1 mutants. Consistent with defective snRNA maturation, TGS1 and SMN mutant cells also exhibit partially overlapping transcriptome alterations that include aberrantly spliced and readthrough transcripts. Together, these results identify a neuroprotective function for TGS1 and reinforce the view that defective snRNA maturation affects neuronal viability and function.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Caitlin M Roake
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Roozbeh Dehghannasiri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Ludovico Rizzuti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | | | - Ivan Gallotta
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Sofia Francia
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
- Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Marie A Kobin
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Gian Gaetano Tartaglia
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Alessio Colantoni
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Gabriele Proietti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Yunming Wu
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | | | - Gabriele Sales
- Department of Biology, University of Padova, Padua, Italy
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, NY 10032, USA
- Department of Neurology, Columbia University, NY 10032, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, IBBR, CNR, Naples, Italy
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
| | - Steven E Artandi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Batista LFZ, Dokal I, Parker R. Telomere biology disorders: time for moving towards the clinic? Trends Mol Med 2022; 28:882-891. [PMID: 36057525 PMCID: PMC9509473 DOI: 10.1016/j.molmed.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
Telomere biology disorders (TBDs) are a group of rare diseases caused by mutations that impair telomere maintenance. Mutations that cause reduced levels of TERC/hTR, the telomerase RNA component, are found in most TBD patients and include loss-of-function mutations in hTR itself, in hTR-binding proteins [NOP10, NHP2, NAF1, ZCCHC8, and dyskerin (DKC1)], and in proteins required for hTR processing (PARN). These patients show diverse clinical presentations that most commonly include bone marrow failure (BMF)/aplastic anemia (AA), pulmonary fibrosis, and liver cirrhosis. There are no curative therapies for TBD patients. An understanding of hTR biogenesis, maturation, and degradation has identified pathways and pharmacological agents targeting the poly(A) polymerase PAPD5, which adds 3'-oligoadenosine tails to hTR to promote hTR degradation, and TGS1, which modifies the 5'-cap structure of hTR to enhance degradation, as possible therapeutic approaches. Critical next steps will be clinical trials to establish the effectiveness and potential side effects of these compounds in TBD patients.
Collapse
Affiliation(s)
- Luis F Z Batista
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Center for Genome Integrity, Washington University in St. Louis, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Roy Parker
- Department of Biochemistry and Biofrontiers Instiute, University of Colorado, Boulder, CO, USA; Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
16
|
Nagpal N, Tai AK, Nandakumar J, Agarwal S. Domain specific mutations in dyskerin disrupt 3' end processing of scaRNA13. Nucleic Acids Res 2022; 50:9413-9425. [PMID: 36018809 PMCID: PMC9458449 DOI: 10.1093/nar/gkac706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in DKC1 (encoding dyskerin) cause telomere diseases including dyskeratosis congenita (DC) by decreasing steady-state levels of TERC, the non-coding RNA component of telomerase. How DKC1 mutations variably impact numerous other snoRNAs remains unclear, which is a barrier to understanding disease mechanisms in DC beyond impaired telomere maintenance. Here, using DC patient iPSCs, we show that mutations in the dyskerin N-terminal extension domain (NTE) dysregulate scaRNA13. In iPSCs carrying the del37L NTE mutation or engineered to carry NTE mutations via CRISPR/Cas9, but not in those with C-terminal mutations, we found scaRNA13 transcripts with aberrant 3' extensions, as seen when the exoribonuclease PARN is mutated in DC. Biogenesis of scaRNA13 was rescued by repair of the del37L DKC1 mutation by genome-editing, or genetic or pharmacological inactivation of the polymerase PAPD5, which counteracts PARN. Inspection of the human telomerase cryo-EM structure revealed that in addition to mediating intermolecular dyskerin interactions, the NTE interacts with terminal residues of the associated snoRNA, indicating a role for this domain in 3' end definition. Our results provide mechanistic insights into the interplay of dyskerin and the PARN/PAPD5 axis in the biogenesis and accumulation of snoRNAs beyond TERC, broadening our understanding of ncRNA dysregulation in human diseases.
Collapse
Affiliation(s)
- Neha Nagpal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Stem Cell Institute; Department of Pediatrics, Harvard Medical School; Manton Center for Orphan Disease Research; Harvard Initiative in RNA Medicine; Boston, MA, USA
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Data Intensive Studies Center, Tufts University, Medford, MA, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Suneet Agarwal
- To whom correspondence should be addressed. Tel: +1 617 919 4610; Fax: +1 617 919 3359;
| |
Collapse
|
17
|
Rubtsova M, Dontsova O. How Structural Features Define Biogenesis and Function of Human Telomerase RNA Primary Transcript. Biomedicines 2022; 10:biomedicines10071650. [PMID: 35884955 PMCID: PMC9313293 DOI: 10.3390/biomedicines10071650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Telomerase RNA has been uncovered as a component of the telomerase enzyme, which acts as a reverse transcriptase and maintains the length of telomeres in proliferated eukaryotic cells. Telomerase RNA is considered to have major functions as a template for telomeric repeat synthesis and as a structural scaffold for telomerase. However, investigations of its biogenesis and turnover, as well as structural data, have provided evidence of functions of telomerase RNA that are not associated with telomerase activity. The primary transcript produced from the human telomerase RNA gene encodes for the hTERP protein, which presents regulatory functions related to autophagy, cellular proliferation, and metabolism. This review focuses on the specific features relating to the biogenesis and structure of human telomerase RNA that support the existence of an isoform suitable for functioning as an mRNA. We believe that further investigation into human telomerase RNA biogenesis mechanisms will provide more levels for manipulating cellular homeostasis, survival, and transformation mechanisms, and may contribute to a deeper understanding of the mechanisms of aging.
Collapse
Affiliation(s)
- Maria Rubtsova
- Department of Chemistry, A.N. Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence:
| | - Olga Dontsova
- Department of Chemistry, A.N. Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia
| |
Collapse
|
18
|
Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers (Basel) 2022; 14:cancers14030808. [PMID: 35159075 PMCID: PMC8834434 DOI: 10.3390/cancers14030808] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cells undergoing malignant transformation must circumvent replicative senescence and eventual cell death associated with progressive telomere shortening that occurs through successive cell division. To do so, malignant cells reactivate telomerase to extend their telomeres and achieve cellular immortality, which is a “Hallmark of Cancer”. Here we review the telomere-dependent and -independent functions of telomerase in cancer, as well as its potential as a biomarker and therapeutic target to diagnose and treat cancer patients. Abstract During the process of malignant transformation, cells undergo a series of genetic, epigenetic, and phenotypic alterations, including the acquisition and propagation of genomic aberrations that impart survival and proliferative advantages. These changes are mediated in part by the induction of replicative immortality that is accompanied by active telomere elongation. Indeed, telomeres undergo dynamic changes to their lengths and higher-order structures throughout tumor formation and progression, processes overseen in most cancers by telomerase. Telomerase is a multimeric enzyme whose function is exquisitely regulated through diverse transcriptional, post-transcriptional, and post-translational mechanisms to facilitate telomere extension. In turn, telomerase function depends not only on its core components, but also on a suite of binding partners, transcription factors, and intra- and extracellular signaling effectors. Additionally, telomerase exhibits telomere-independent regulation of cancer cell growth by participating directly in cellular metabolism, signal transduction, and the regulation of gene expression in ways that are critical for tumorigenesis. In this review, we summarize the complex mechanisms underlying telomere maintenance, with a particular focus on both the telomeric and extratelomeric functions of telomerase. We also explore the clinical utility of telomeres and telomerase in the diagnosis, prognosis, and development of targeted therapies for primary, metastatic, and recurrent cancers.
Collapse
|
19
|
Galati A, Scatolini L, Micheli E, Bavasso F, Cicconi A, Maccallini P, Chen L, Roake CM, Schoeftner S, Artandi SE, Gatti M, Cacchione S, Raffa GD. The S-adenosylmethionine analog sinefungin inhibits the trimethylguanosine synthase TGS1 to promote telomerase activity and telomere lengthening. FEBS Lett 2022; 596:42-52. [PMID: 34817067 DOI: 10.1002/1873-3468.14240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/16/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Mutations in many genes that control the expression, the function, or the stability of telomerase cause telomere biology disorders (TBDs), such as dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia. Mutations in a subset of the genes associated with TBDs cause reductions of the telomerase RNA moiety hTR, thus limiting telomerase activity. We have recently found that loss of the trimethylguanosine synthase TGS1 increases both hTR abundance and telomerase activity and leads to telomere elongation. Here, we show that treatment with the S-adenosylmethionine analog sinefungin inhibits TGS1 activity, increases the hTR levels, and promotes telomere lengthening in different cell types. Our results hold promise for restoring telomere length in stem and progenitor cells from TBD patients with reduced hTR levels.
Collapse
Affiliation(s)
- Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Italy
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Italy
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Italy
| | - Alessandro Cicconi
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Italy
| | - Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Italy
| | - Lu Chen
- Cancer Signaling and Epigenetics Program-Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Caitlin M Roake
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli studi di Trieste, Italy
| | - Steven E Artandi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Roma, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Italy
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Italy
| |
Collapse
|
20
|
Stem cells at odds with telomere maintenance and protection. Trends Cell Biol 2022; 32:527-536. [DOI: 10.1016/j.tcb.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
|
21
|
Shliapina V, Koriagina M, Vasilkova D, Govorun V, Dontsova O, Rubtsova M. Human Telomerase RNA Protein Encoded by Telomerase RNA is Involved in Metabolic Responses. Front Cell Dev Biol 2021; 9:754611. [PMID: 34950657 PMCID: PMC8688989 DOI: 10.3389/fcell.2021.754611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Cell proliferation is associated with increased energy and nutrients consumption. Metabolism switch from oxidative phosphorylation to glycolysis and telomerase activity are induced during stimulation of proliferation, such as tumorigenesis, immune cell activation, and stem cell differentiation, among others. Telomerase RNA is one of the core components of the telomerase complex and participates in survival mechanisms that are activated under stress conditions. Human telomerase RNA protein (hTERP) is encoded by telomerase RNA and has been recently shown to be involved in autophagy regulation. In this study, we demonstrated the role of hTERP in the modulation of signaling pathways regulating autophagy, protein biosynthesis, and cell proliferation. The AMPK signaling pathway was affected in cells deficient of hTERP and when hTERP was overexpressed. The appearance of hTERP is important for metabolism switching associated with the accelerated proliferation of cells in healthy and pathological processes. These findings demonstrate the connection between telomerase RNA biogenesis and function and signaling pathways.
Collapse
Affiliation(s)
- Viktoriia Shliapina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Mariia Koriagina
- Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daria Vasilkova
- Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maria Rubtsova
- Department of Chemistry and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
22
|
Mammalian SIRT6 Represses Invasive Cancer Cell Phenotypes through ATP Citrate Lyase (ACLY)-Dependent Histone Acetylation. Genes (Basel) 2021; 12:genes12091460. [PMID: 34573442 PMCID: PMC8466468 DOI: 10.3390/genes12091460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
The modulation of dynamic histone acetylation states is key for organizing chromatin structure and modulating gene expression and is regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes. The mammalian SIRT6 protein, a member of the Class III HDAC Sirtuin family of NAD+-dependent enzymes, plays pivotal roles in aging, metabolism, and cancer biology. Through its site-specific histone deacetylation activity, SIRT6 promotes chromatin silencing and transcriptional regulation of aging-associated, metabolic, and tumor suppressive gene expression programs. ATP citrate lyase (ACLY) is a nucleo-cytoplasmic enzyme that produces acetyl coenzyme A (acetyl-CoA), which is the required acetyl donor for lysine acetylation by HATs. In addition to playing a central role in generating cytosolic acetyl-CoA for de novo lipogenesis, a growing body of work indicates that ACLY also functions in the nucleus where it contributes to the nutrient-sensitive regulation of nuclear acetyl-CoA availability for histone acetylation in cancer cells. In this study, we have identified a novel function of SIRT6 in controlling nuclear levels of ACLY and ACLY-dependent tumor suppressive gene regulation. The inactivation of SIRT6 in cancer cells leads to the accumulation of nuclear ACLY protein and increases nuclear acetyl-CoA pools, which in turn drive locus-specific histone acetylation and the expression of cancer cell adhesion and migration genes that promote tumor invasiveness. Our findings uncover a novel mechanism of SIRT6 in suppressing invasive cancer cell phenotypes and identify acetyl-CoA responsive cell migration and adhesion genes as downstream targets of SIRT6.
Collapse
|
23
|
Abstract
The majority of the mammalian genome is transcribed into non-coding RNAs, many of which co-evolve with RNA-binding proteins (RBPs) to function as biochemically defined and tractable ribonucleoproteins (RNPs). Here, we applied icSHAPE- a robust and versatile RNA structural probing pipeline- to endogenous RNPs purified from nuclei, providing base-resolution structural rationale for RNP activity and subcellular localization. Combining with genetic and biochemical reconstitutions, structural and functional alternations can be directly attributed to a given RBP without ambiguity. For complete details on the use and execution of this protocol, please refer to Chen et al. (2018).
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Steven E. Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Chemical inhibition of PAPD5/7 rescues telomerase function and hematopoiesis in dyskeratosis congenita. Blood Adv 2021; 4:2717-2722. [PMID: 32559291 DOI: 10.1182/bloodadvances.2020001848] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/15/2020] [Indexed: 12/24/2022] Open
Abstract
Dyskeratosis congenita (DC) is a pediatric bone marrow failure syndrome caused by germline mutations in telomere biology genes. Mutations in DKC1 (the most commonly mutated gene in DC), the 3' region of TERC, and poly(A)-specific ribonuclease (PARN) cause reduced levels of the telomerase RNA component (TERC) by reducing its stability and accelerating TERC degradation. We have previously shown that depleting wild-type DKC1 levels by RNA interference or expression of the disease-associated A353V mutation in the DKC1 gene leads to decay of TERC, modulated by 3'-end oligoadenylation by noncanonical poly(A) polymerase 5 (PAPD5) followed by 3' to 5' degradation by EXOSC10. Furthermore, the constitutive genetic silencing of PAPD5 is sufficient to rescue TERC levels, restore telomerase function, and elongate telomeres in DKC1_A353V mutant human embryonic stem cells (hESCs). Here, we tested a novel PAPD5/7 inhibitor (RG7834), which was originally discovered in screens against hepatitis B viral loads in hepatic cells. We found that treatment with RG7834 rescues TERC levels, restores correct telomerase localization in DKC1 and PARN-depleted cells, and is sufficient to elongate telomeres in DKC1_A353V hESCs. Finally, treatment with RG7834 significantly improved definitive hematopoietic potential from DKC1_A353V hESCs, indicating that the chemical inhibition of PAPD5 is a potential therapy for patients with DC and reduced TERC levels.
Collapse
|
25
|
SUMOylation- and GAR1-Dependent Regulation of Dyskerin Nuclear and Subnuclear Localization. Mol Cell Biol 2021; 41:MCB.00464-20. [PMID: 33526451 DOI: 10.1128/mcb.00464-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
The nuclear and subnuclear compartmentalization of the telomerase-associated protein and H/ACA ribonucleoprotein component dyskerin is an important although incompletely understood aspect of H/ACA ribonucleoprotein function. Four SUMOylation sites were previously identified in the C-terminal nuclear/nucleolar localization signal (N/NoLS) of dyskerin. We found that a cytoplasmic localized C-terminal truncation variant of dyskerin lacking most of the C-terminal N/NoLS represents an under-SUMOylated variant of dyskerin compared to wild-type dyskerin. We demonstrate that mimicking constitutive SUMOylation of dyskerin using a SUMO3 fusion construct can drive nuclear accumulation of this variant and that the SUMO site K467 in this N/NoLS is particularly important for the subnuclear localization of dyskerin to the nucleolus in a mature H/ACA complex assembly- and SUMO-dependent manner. We also characterize a novel SUMO-interacting motif in the mature H/ACA complex component GAR1 that mediates the interaction between dyskerin and GAR1. Mislocalization of dyskerin, either in the cytoplasm or excluded from the nucleolus, disrupts dyskerin function and leads to reduced interaction of dyskerin with the telomerase RNA. These data indicate a role for dyskerin C-terminal N/NoLS SUMOylation in regulating the nuclear and subnuclear localization of dyskerin, which is essential for dyskerin function as both a telomerase-associated protein and as an H/ACA ribonucleoprotein.
Collapse
|
26
|
Chen L, Roake CM, Galati A, Bavasso F, Micheli E, Saggio I, Schoeftner S, Cacchione S, Gatti M, Artandi SE, Raffa GD. Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation. Cell Rep 2021; 30:1358-1372.e5. [PMID: 32023455 PMCID: PMC7156301 DOI: 10.1016/j.celrep.2020.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023] Open
Abstract
Biogenesis of the human telomerase RNA (hTR) involves a complex series of posttranscriptional modifications, including hypermethylation of the 5' mono-methylguanosine cap to a tri-methylguanosine cap (TMG). How the TMG cap affects hTR maturation is unknown. Here, we show that depletion of trimethylguanosine synthase 1 (TGS1), the enzyme responsible for cap hypermethylation, increases levels of hTR and telomerase. Diminished trimethylation increases hTR association with the cap-binding complex (CBC) and with Sm chaperone proteins. Loss of TGS1 causes an increase in accumulation of mature hTR in both the nucleus and the cytoplasm compared with controls. In TGS1 mutant cells, increased hTR assembles with telomerase reverse transcriptase (TERT) protein to yield elevated active telomerase complexes and increased telomerase activity, resulting in telomere elongation in cultured human cells. Our results show that TGS1-mediated hypermethylation of the hTR cap inhibits hTR accumulation, restrains levels of assembled telomerase, and limits telomere elongation.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caitlin M Roake
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Stefan Schoeftner
- Cancer Epigenetic Group, Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy; Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy.
| |
Collapse
|
27
|
Qin J, Autexier C. Regulation of human telomerase RNA biogenesis and localization. RNA Biol 2021; 18:305-315. [PMID: 32813614 PMCID: PMC7954027 DOI: 10.1080/15476286.2020.1809196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Maintenance of telomeres is essential for genome integrity and replicative capacity in eukaryotic cells. Telomerase, the ribonucleoprotein complex that catalyses telomere synthesis is minimally composed of a reverse transcriptase and an RNA component. The sequence and structural domains of human telomerase RNA (hTR) have been extensively characterized, while the regulation of hTR transcription, maturation, and localization, is not fully understood. Here, we provide an up-to-date review of hTR, with an emphasis on current breakthroughs uncovering the mechanisms of hTR maturation and localization.
Collapse
Affiliation(s)
- Jian Qin
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Grill S, Nandakumar J. Molecular mechanisms of telomere biology disorders. J Biol Chem 2021; 296:100064. [PMID: 33482595 PMCID: PMC7948428 DOI: 10.1074/jbc.rev120.014017] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mutations that affect telomerase function or telomere maintenance result in a variety of diseases collectively called telomeropathies. This wide spectrum of disorders, which include dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia, is characterized by severely short telomeres, often resulting in hematopoietic stem cell failure in the most severe cases. Recent work has focused on understanding the molecular basis of these diseases. Mutations in the catalytic TERT and TR subunits of telomerase compromise activity, while others, such as those found in the telomeric protein TPP1, reduce the recruitment of telomerase to the telomere. Mutant telomerase-associated proteins TCAB1 and dyskerin and the telomerase RNA maturation component poly(A)-specific ribonuclease affect the maturation and stability of telomerase. In contrast, disease-associated mutations in either CTC1 or RTEL1 are more broadly associated with telomere replication defects. Yet even with the recent surge in studies decoding the mechanisms underlying these diseases, a significant proportion of dyskeratosis congenita mutations remain uncharacterized or poorly understood. Here we review the current understanding of the molecular basis of telomeropathies and highlight experimental data that illustrate how genetic mutations drive telomere shortening and dysfunction in these patients. This review connects insights from both clinical and molecular studies to create a comprehensive view of the underlying mechanisms that drive these diseases. Through this, we emphasize recent advances in therapeutics and pinpoint disease-associated variants that remain poorly defined in their mechanism of action. Finally, we suggest future avenues of research that will deepen our understanding of telomere biology and telomere-related disease.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
29
|
Nagpal N, Agarwal S. Telomerase RNA processing: Implications for human health and disease. Stem Cells 2020; 38:10.1002/stem.3270. [PMID: 32875693 PMCID: PMC7917152 DOI: 10.1002/stem.3270] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022]
Abstract
Telomeres are composed of repetitive DNA sequences that are replenished by the enzyme telomerase to maintain the self-renewal capacity of stem cells. The RNA component of human telomerase (TERC) is the essential template for repeat addition by the telomerase reverse transcriptase (TERT), and also serves as a scaffold for several factors comprising the telomerase ribonucleoprotein (RNP). Unique features of TERC regulation and function have been informed not only through biochemical studies but also through human genetics. Disease-causing mutations impact TERC biogenesis at several levels including RNA transcription, post-transcriptional processing, folding, RNP assembly, and trafficking. Defects in TERC reduce telomerase activity and impair telomere maintenance, thereby causing a spectrum of degenerative diseases called telomere biology disorders (TBDs). Deciphering mechanisms of TERC dysregulation have led to a broader understanding of noncoding RNA biology, and more recently points to new therapeutic strategies for TBDs. In this review, we summarize over two decades of work revealing mechanisms of human telomerase RNA biogenesis, and how its disruption causes human diseases.
Collapse
Affiliation(s)
- Neha Nagpal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Initiative for RNA Medicine and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| | - Suneet Agarwal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Initiative for RNA Medicine and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| |
Collapse
|
30
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
31
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Lardelli RM, Lykke-Andersen J. Competition between maturation and degradation drives human snRNA 3' end quality control. Genes Dev 2020; 34:989-1001. [PMID: 32499401 PMCID: PMC7328512 DOI: 10.1101/gad.336891.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Polymerases and exonucleases act on 3' ends of nascent RNAs to promote their maturation or degradation but how the balance between these activities is controlled to dictate the fates of cellular RNAs remains poorly understood. Here, we identify a central role for the human DEDD deadenylase TOE1 in distinguishing the fates of small nuclear (sn)RNAs of the spliceosome from unstable genome-encoded snRNA variants. We found that TOE1 promotes maturation of all regular RNA polymerase II transcribed snRNAs of the major and minor spliceosomes by removing posttranscriptional oligo(A) tails, trimming 3' ends, and preventing nuclear exosome targeting. In contrast, TOE1 promotes little to no maturation of tested U1 variant snRNAs, which are instead targeted by the nuclear exosome. These observations suggest that TOE1 is positioned at the center of a 3' end quality control pathway that selectively promotes maturation and stability of regular snRNAs while leaving snRNA variants unprocessed and exposed to degradation in what could be a widespread mechanism of RNA quality control given the large number of noncoding RNAs processed by DEDD deadenylases.
Collapse
Affiliation(s)
- Rea M Lardelli
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Jens Lykke-Andersen
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
33
|
Brenner KA, Nandakumar J. Small Molecules Restore Telomeres in Patient Stem Cells. Trends Pharmacol Sci 2020; 41:506-508. [PMID: 32482456 DOI: 10.1016/j.tips.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Abstract
Genetic defects in telomere maintenance result in stem cell exhaustion and a spectrum of telomere biology diseases. Systemic treatments beyond organ transplantation are lacking for these diseases. Nagpal and colleagues identified small molecules that restore telomere maintenance in patient-derived stem cells, offering a promising therapy for telomere biology diseases.
Collapse
Affiliation(s)
- Kirsten Ann Brenner
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
Dejene EA, Li Y, Showkatian Z, Ling H, Seto E. Regulation of poly(a)-specific ribonuclease activity by reversible lysine acetylation. J Biol Chem 2020; 295:10255-10270. [PMID: 32457045 DOI: 10.1074/jbc.ra120.012552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that plays an important role in regulating the stability and maturation of RNAs. Recently, PARN has been found to regulate the maturation of the human telomerase RNA component (hTR), a noncoding RNA required for telomere elongation. Specifically, PARN cleaves the 3'-end of immature, polyadenylated hTR to form the mature, nonpolyadenylated template. Despite PARN's critical role in mediating telomere maintenance, little is known about how PARN's function is regulated by post-translational modifications. In this study, using shRNA- and CRISPR/Cas9-mediated gene silencing and knockout approaches, along with 3'-exoribonuclease activity assays and additional biochemical methods, we examined whether PARN is post-translationally modified by acetylation and what effect acetylation has on PARN's activity. We found PARN is primarily acetylated by the acetyltransferase p300 at Lys-566 and deacetylated by sirtuin1 (SIRT1). We also revealed how acetylation of PARN can decrease its enzymatic activity both in vitro, using a synthetic RNA probe, and in vivo, by quantifying endogenous levels of adenylated hTR. Furthermore, we also found that SIRT1 can regulate levels of adenylated hTR through PARN. The findings of our study uncover a mechanism by which PARN acetylation and deacetylation regulate its enzymatic activity as well as levels of mature hTR. Thus, PARN's acetylation status may play a role in regulating telomere length.
Collapse
Affiliation(s)
- Eden A Dejene
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Yixuan Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Zahra Showkatian
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Hongbo Ling
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Edward Seto
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA .,George Washington University Cancer Center, Washington, D.C., USA
| |
Collapse
|
35
|
Bilska A, Kusio-Kobiałka M, Krawczyk PS, Gewartowska O, Tarkowski B, Kobyłecki K, Nowis D, Golab J, Gruchota J, Borsuk E, Dziembowski A, Mroczek S. Immunoglobulin expression and the humoral immune response is regulated by the non-canonical poly(A) polymerase TENT5C. Nat Commun 2020; 11:2032. [PMID: 32341344 PMCID: PMC7184606 DOI: 10.1038/s41467-020-15835-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/28/2020] [Indexed: 02/06/2023] Open
Abstract
TENT5C is a non-canonical cytoplasmic poly(A) polymerase highly expressed by activated B cells to suppress their proliferation. Here we measure the global distribution of poly(A) tail lengths in responsive B cells using a Nanopore direct RNA-sequencing approach, showing that TENT5C polyadenylates immunoglobulin mRNAs regulating their half-life and consequently steady-state levels. TENT5C is upregulated in differentiating plasma cells by innate signaling. Compared with wild-type, Tent5c−/− mice produce fewer antibodies and have diminished T-cell-independent immune response despite having more CD138high plasma cells as a consequence of accelerated differentiation. B cells from Tent5c−/− mice also have impaired capacity of the secretory pathway, with reduced ER volume and unfolded protein response. Importantly, these functions of TENT5C are dependent on its enzymatic activity as catalytic mutation knock-in mice display the same defect as Tent5c−/−. These findings define the role of the TENT5C enzyme in the humoral immune response. Regulating polyadenylation is important for mRNA stability, which can in turn affect B cell maturation and humoral immune responses. Here the authors use Nanopore poly(A) sequencing to explore the importance of the cytoplasmic poly(A) polymerase TENT5C, particularly in the production of immunoglobulins.
Collapse
Affiliation(s)
- Aleksandra Bilska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Monika Kusio-Kobiałka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Paweł S Krawczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Olga Gewartowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Bartosz Tarkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Kamil Kobyłecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Dominika Nowis
- Genomic Medicine, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.,Centre of Preclinical Research, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Jakub Gruchota
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Ewa Borsuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.,Department of Embryology, Institute of Zoology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.
| |
Collapse
|
36
|
Small-Molecule PAPD5 Inhibitors Restore Telomerase Activity in Patient Stem Cells. Cell Stem Cell 2020; 26:896-909.e8. [PMID: 32320679 DOI: 10.1016/j.stem.2020.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/21/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
Genetic lesions that reduce telomerase activity inhibit stem cell replication and cause a range of incurable diseases, including dyskeratosis congenita (DC) and pulmonary fibrosis (PF). Modalities to restore telomerase in stem cells throughout the body remain unclear. Here, we describe small-molecule PAPD5 inhibitors that demonstrate telomere restoration in vitro, in stem cell models, and in vivo. PAPD5 is a non-canonical polymerase that oligoadenylates and destabilizes telomerase RNA component (TERC). We identified BCH001, a specific PAPD5 inhibitor that restored telomerase activity and telomere length in DC patient induced pluripotent stem cells. When human blood stem cells engineered to carry DC-causing PARN mutations were xenotransplanted into immunodeficient mice, oral treatment with a repurposed PAPD5 inhibitor, the dihydroquinolizinone RG7834, rescued TERC 3' end maturation and telomere length. These findings pave the way for developing systemic telomere therapeutics to counteract stem cell exhaustion in DC, PF, and possibly other aging-related diseases.
Collapse
|
37
|
Roake CM, Artandi SE. Regulation of human telomerase in homeostasis and disease. Nat Rev Mol Cell Biol 2020; 21:384-397. [PMID: 32242127 DOI: 10.1038/s41580-020-0234-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Telomerase is a ribonucleoprotein complex, the catalytic core of which includes the telomerase reverse transcriptase (TERT) and the non-coding human telomerase RNA (hTR), which serves as a template for the addition of telomeric repeats to chromosome ends. Telomerase expression is restricted in humans to certain cell types, and telomerase levels are tightly controlled in normal conditions. Increased levels of telomerase are found in the vast majority of human cancers, and we have recently begun to understand the mechanisms by which cancer cells increase telomerase activity. Conversely, germline mutations in telomerase-relevant genes that decrease telomerase function cause a range of genetic disorders, including dyskeratosis congenita, idiopathic pulmonary fibrosis and bone marrow failure. In this Review, we discuss the transcriptional regulation of human TERT, hTR processing, assembly of the telomerase complex, the cellular localization of telomerase and its recruitment to telomeres, and the regulation of telomerase activity. We also discuss the disease relevance of each of these steps of telomerase biogenesis.
Collapse
Affiliation(s)
- Caitlin M Roake
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
38
|
A-Tail of Telomerase RNA Maturation. Mol Cell 2019; 74:635-636. [PMID: 31100243 DOI: 10.1016/j.molcel.2019.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this issue of Molecular Cell, Roake et al. (2019) define a feedforward kinetic pathway consisting of a cycle of oligoadenylation and deadenylation that regulates the production of mature human telomerase RNA.
Collapse
|
39
|
Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2019; 12:1037-1052. [PMID: 31478401 DOI: 10.1080/17474086.2019.1662720] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Telomere biology disorders (TBDs) encompass a group of illnesses caused by germline mutations in genes regulating telomere maintenance, resulting in very short telomeres. Possible TBD manifestations range from complex multisystem disorders with onset in childhood such as dyskeratosis congenita (DC), Hoyeraal-Hreidarsson syndrome, Revesz syndrome and Coats plus to adults presenting with one or two DC-related features.Areas covered: The discovery of multiple genetic causes and inheritance patterns has led to the recognition of a spectrum of clinical features affecting multiple organ systems. Patients with DC and associated TBDs are at high risk of bone marrow failure, cancer, liver and pulmonary disease. Recently, vascular diseases, including pulmonary arteriovenous malformations and gastrointestinal telangiectasias, have been recognized as additional manifestations. Diagnostics include detection of very short leukocyte telomeres and germline genetic testing. Hematopoietic cell transplantation and lung transplantation are the only current therapeutic modalities but are complicated by numerous comorbidities. This review summarizes the pathophysiology underlying TBDs, associated clinical features, management recommendations and therapeutic options.Expert opinion: Understanding TBDs as complex, multisystem disorders with a heterogenous genetic background and diverse phenotypes, highlights the importance of clinical surveillance and the urgent need to develop new therapeutic strategies to improve health outcomes.
Collapse
Affiliation(s)
- Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Gable DL, Gaysinskaya V, Atik CC, Talbot CC, Kang B, Stanley SE, Pugh EW, Amat-Codina N, Schenk KM, Arcasoy MO, Brayton C, Florea L, Armanios M. ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation. Genes Dev 2019; 33:1381-1396. [PMID: 31488579 PMCID: PMC6771387 DOI: 10.1101/gad.326785.119] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/15/2019] [Indexed: 11/25/2022]
Abstract
In this study, Gable et al. follow a family with early onset pulmonary fibrosis and report the discovery of a new genetic cause of pulmonary fibrosis. They use multidimensional analysis methods, involving molecular studies, mouse model, and transcriptome-wide studies to show that heterozygous loss-of-function of the exosomal targeting protein ZCCHC8 to identify a novel cause of telomerase insufficiency in human disease. Short telomere syndromes manifest as familial idiopathic pulmonary fibrosis; they are the most common premature aging disorders. We used genome-wide linkage to identify heterozygous loss of function of ZCCHC8, a zinc-knuckle containing protein, as a cause of autosomal dominant pulmonary fibrosis. ZCCHC8 associated with TR and was required for telomerase function. In ZCCHC8 knockout cells and in mutation carriers, genomically extended telomerase RNA (TR) accumulated at the expense of mature TR, consistent with a role for ZCCHC8 in mediating TR 3′ end targeting to the nuclear RNA exosome. We generated Zcchc8-null mice and found that heterozygotes, similar to human mutation carriers, had TR insufficiency but an otherwise preserved transcriptome. In contrast, Zcchc8−/− mice developed progressive and fatal neurodevelopmental pathology with features of a ciliopathy. The Zcchc8−/− brain transcriptome was highly dysregulated, showing accumulation and 3′ end misprocessing of other low-abundance RNAs, including those encoding cilia components as well as the intronless replication-dependent histones. Our data identify a novel cause of human short telomere syndromes-familial pulmonary fibrosis and uncover nuclear exosome targeting as an essential 3′ end maturation mechanism that vertebrate TR shares with replication-dependent histones.
Collapse
Affiliation(s)
- Dustin L Gable
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Valeriya Gaysinskaya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Christine C Atik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Byunghak Kang
- Department of Comparative and Molecular Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Susan E Stanley
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Elizabeth W Pugh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Nuria Amat-Codina
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Kara M Schenk
- Osler Medical Housestaff Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Murat O Arcasoy
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Cory Brayton
- Department of Comparative and Molecular Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Liliana Florea
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Telomere Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
41
|
Duan TL, He GJ, Hu LD, Yan YB. The Intrinsically Disordered C-Terminal Domain Triggers Nucleolar Localization and Function Switch of PARN in Response to DNA Damage. Cells 2019; 8:cells8080836. [PMID: 31387300 PMCID: PMC6721724 DOI: 10.3390/cells8080836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN), a multifunctional multi-domain deadenylase, is crucial to the regulation of mRNA turnover and the maturation of various non-coding RNAs. Despite extensive studies of the well-folding domains responsible for PARN catalysis, the structure and function of the C-terminal domain (CTD) remains elusive. PARN is a cytoplasm-nucleus shuttle protein with concentrated nucleolar distribution. Here, we identify the nuclear and nucleolar localization signals in the CTD of PARN. Spectroscopic studies indicated that PARN-CTD is intrinsically disordered with loosely packed local structures/tertiary structure. Phosphorylation-mimic mutation S557D disrupted the local structure and facilitated the binding of the CTD with the well-folded domains, with no impact on PARN deadenylase activity. Under normal conditions, the nucleolus-residing PARN recruited CBP80 into the nucleoli to repress its deadenylase activity, while DNA damage-induced phosphorylation of PARN-S557 expelled CBP80 from the nucleoli to discharge activity inhibition and attracted nucleoplasm-located CstF-50 into the nucleoli to activate deadenylation. The structure switch-induced function switch of PARN reshaped the profile of small nuclear non-coding RNAs to respond to DNA damage. Our findings highlight that the structure switch of the CTD induced by posttranslational modifications redefines the subset of binding partners, and thereby the RNA targets in the nucleoli.
Collapse
Affiliation(s)
- Tian-Li Duan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guang-Jun He
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li-Dan Hu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|