1
|
Ibrahim F, Mourelatos Z. Defining the True Native Ends of RNAs at Single-Molecule Level with TERA-Seq. Methods Mol Biol 2025; 2863:359-372. [PMID: 39535720 DOI: 10.1007/978-1-0716-4176-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Turnover of messenger RNAs (mRNAs) is a highly regulated process and serves to control expression of RNA molecules and to eliminate aberrant transcripts. Profiling mRNA decay using short-read sequencing methods that target either the 5' or 3' ends of RNAs, overlooks valuable information about the other end, which could provide significant insights into biological aspects and mechanisms of RNA decay. Oxford Nanopore Technology (ONT) is rapidly emerging as a powerful platform for direct sequencing of native, single-RNA molecules. However, as currently designed, the existing ONT platform is unable to sequence the very 5' ends of RNAs and is limited to polyadenylated molecules. Here, we present a detailed step-by-step experimental protocol for True End-to-end RNA Sequencing (TERA-Seq), a new method that addresses ONT's limitations, allowing accurate representation and characterization of RNAs at the level of single molecules. TERA-Seq describes both poly- and non-polyadenylated RNA molecules and accurately identifies their native ends by ligating uniquely designed adapters to the 5' ends (5TERA), the 3' ends (TERA3), or both ends (5TERA3) that are sequenced along with the transcripts.
Collapse
Affiliation(s)
- Fadia Ibrahim
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Herrera-Moyano E, Porreca RM, Ranjha L, Skourti E, Gonzalez-Franco R, Stylianakis E, Sun Y, Li R, Saleh A, Montoya A, Kramer H, Vannier JB. Human SKI component SKIV2L regulates telomeric DNA-RNA hybrids and prevents telomere fragility. iScience 2024; 27:111096. [PMID: 39493885 PMCID: PMC11530851 DOI: 10.1016/j.isci.2024.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Super killer (SKI) complex is a well-known cytoplasmic 3'-5' mRNA decay complex that functions with the exosome to degrade excessive and aberrant mRNAs, is implicated with the extraction of mRNA at stalled ribosomes, tackling aberrant translation. Here, we show that SKIV2L and TTC37 of the hSKI complex are present within the nucleus, localize on chromatin and at some telomeres during the G2 cell cycle phase. In cells, SKIV2L prevents telomere replication stress, independently of its helicase domain, and increases the stability of telomere DNA-RNA hybrids in G2. We further demonstrate that purified hSKI complex binds telomeric DNA and RNA substrates in vitro and SKIV2L association with telomeres is dependent on DNA-RNA hybrids. Taken together, our results provide a nuclear function for SKIV2L of the hSKI complex in overcoming replication stress at telomeres mediated by its recruitment to DNA-RNA hybrid structures in G2 and thus maintaining telomere stability.
Collapse
Affiliation(s)
- Emilia Herrera-Moyano
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Rosa Maria Porreca
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Lepakshi Ranjha
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Eleni Skourti
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Roser Gonzalez-Franco
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Emmanouil Stylianakis
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Ying Sun
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Ruihan Li
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Almutasem Saleh
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Alex Montoya
- Biological Mass Spectrometry & Proteomics, MRC-LMS, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Holger Kramer
- Biological Mass Spectrometry & Proteomics, MRC-LMS, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Jean-Baptiste Vannier
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
3
|
Kögel A, Keidel A, Loukeri MJ, Kuhn CC, Langer LM, Schäfer IB, Conti E. Structural basis of mRNA decay by the human exosome-ribosome supercomplex. Nature 2024; 635:237-242. [PMID: 39385025 PMCID: PMC11540850 DOI: 10.1038/s41586-024-08015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
The interplay between translation and mRNA decay is widespread in human cells1-3. In quality-control pathways, exonucleolytic degradation of mRNA associated with translating ribosomes is mediated largely by the cytoplasmic exosome4-9, which includes the exoribonuclease complex EXO10 and the helicase complex SKI238 (refs. 10-16). The helicase can extract mRNA from the ribosome and is expected to transfer it to the exoribonuclease core through a bridging factor, HBS1L3 (also known as SKI7), but the mechanisms of this molecular handover remain unclear7,17,18. Here we reveal how human EXO10 is recruited by HBS1L3 (SKI7) to an active ribosome-bound SKI238 complex. We show that rather than a sequential handover, a direct physical coupling mechanism takes place, which culminates in the formation of a cytoplasmic exosome-ribosome supercomplex. Capturing the structure during active decay reveals a continuous path in which an RNA substrate threads from the 80S ribosome through the SKI2 helicase into the exoribonuclease active site of the cytoplasmic exosome complex. The SKI3 subunit of the complex directly binds to HBS1L3 (SKI7) and also engages a surface of the 40S subunit, establishing a recognition platform in collided disomes. Exosome and ribosome thus work together as a single structural and functional unit in co-translational mRNA decay, coordinating their activities in a transient supercomplex.
Collapse
Affiliation(s)
- Alexander Kögel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Achim Keidel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matina-Jasemi Loukeri
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christopher C Kuhn
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lukas M Langer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Paul Langerhans Institute Dresden and Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
4
|
Sobhy H, De Rovere M, Ait-Ammar A, Kashif M, Wallet C, Daouad F, Loustau T, Van Lint C, Schwartz C, Rohr O. BCL11b interacts with RNA and proteins involved in RNA processing and developmental diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195065. [PMID: 39455000 DOI: 10.1016/j.bbagrm.2024.195065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
BCL11b is a transcription regulator and a tumor suppressor involved in lymphomagenesis, central nervous system (CNS) and immune system developments. BCL11b favors persistence of HIV latency and contributes to control cell cycle, differentiation and apoptosis in multiple organisms and cell models. Although BCL11b recruits the non-coding RNA 7SK and epigenetic enzymes to regulate gene expression, BCL11b-associated ribonucleoprotein complexes are unknown. Thanks to CLIP-seq and quantitative LC-MS/MS mass spectrometry approaches complemented with systems biology validations, we show that BCL11b interacts with RNA splicing and non-sense-mediated decay proteins, including FUS, SMN1, UPF1 and Drosha, which may contribute in isoform selection of protein-coding RNA isoforms from noncoding-RNAs isoforms (retained introns or nonsense mediated RNA). Interestingly, BCL11b binds to RNA transcripts and proteins encoded by the same genes (FUS, ESWR1, CHD and Tubulin). Our study highlights that BCL11b targets RNA processing and splicing proteins, and RNAs that implicate cell cycle, development, neurodegenerative, and cancer pathways. These findings will help future mechanistic understanding of developmental disorders. IMPORTANCE: BCL11b-protein and RNA interactomes reveal BLC11b association with specific nucleoprotein complexes involved in the regulation of genes expression. BCL11b interacts with RNA processing and splicing proteins.
Collapse
Affiliation(s)
- Haitham Sobhy
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| | - Marco De Rovere
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Amina Ait-Ammar
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France; Université Libre de Bruxelles, ULB, Gosselies, Belgium
| | - Muhammad Kashif
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Clementine Wallet
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | | | - Christian Schwartz
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
5
|
Modic M, Kuret K, Steinhauser S, Faraway R, van Genderen E, Ruiz de Los Mozos I, Novljan J, Vičič Ž, Lee FCY, Ten Berge D, Luscombe NM, Ule J. Poised PABP-RNA hubs implement signal-dependent mRNA decay in development. Nat Struct Mol Biol 2024; 31:1439-1447. [PMID: 39054355 PMCID: PMC11402784 DOI: 10.1038/s41594-024-01363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Signaling pathways drive cell fate transitions largely by changing gene expression. However, the mechanisms for rapid and selective transcriptome rewiring in response to signaling cues remain elusive. Here we use deep learning to deconvolve both the sequence determinants and the trans-acting regulators that trigger extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase kinase (MEK)-induced decay of the naive pluripotency mRNAs. Timing of decay is coupled to embryo implantation through ERK-MEK phosphorylation of LIN28A, which repositions pLIN28A to the highly A+U-rich 3' untranslated region (3'UTR) termini of naive pluripotency mRNAs. Interestingly, these A+U-rich 3'UTR termini serve as poly(A)-binding protein (PABP)-binding hubs, poised for signal-induced convergence with LIN28A. The multivalency of AUU motifs determines the efficacy of pLIN28A-PABP convergence, which enhances PABP 3'UTR binding, decreases the protection of poly(A) tails and activates mRNA decay to enable progression toward primed pluripotency. Thus, the signal-induced convergence of LIN28A with PABP-RNA hubs drives the rapid selection of naive mRNAs for decay, enabling the transcriptome remodeling that ensures swift developmental progression.
Collapse
Affiliation(s)
- Miha Modic
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| | - Klara Kuret
- The Francis Crick Institute, London, UK
- National Institute of Chemistry, Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | | - Rupert Faraway
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
| | - Emiel van Genderen
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Igor Ruiz de Los Mozos
- The Francis Crick Institute, London, UK
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Jona Novljan
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Žiga Vičič
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Flora C Y Lee
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Derk Ten Berge
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Nicholas M Luscombe
- The Francis Crick Institute, London, UK
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Carpentier MC, Receveur AE, Boubegtitene A, Cadoudal A, Bousquet-Antonelli C, Merret R. Genome-wide analysis of mRNA decay in Arabidopsis shoot and root reveals the importance of co-translational mRNA decay in the general mRNA turnover. Nucleic Acids Res 2024; 52:7910-7924. [PMID: 38721772 PMCID: PMC11260455 DOI: 10.1093/nar/gkae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 07/23/2024] Open
Abstract
Until recently, the general 5'-3' mRNA decay was placed in the cytosol after the mRNA was released from ribosomes. However, the discovery of an additional 5' to 3' pathway, the Co-Translational mRNA Decay (CTRD), changed this paradigm. Up to date, defining the real contribution of CTRD in the general mRNA turnover has been hardly possible as the enzyme involved in this pathway is also involved in cytosolic decay. Here we overcame this obstacle and created an Arabidopsis line specifically impaired for CTRD called XRN4ΔCTRD. Through a genome-wide analysis of mRNA decay rate in shoot and root, we tested the importance of CTRD in mRNA turnover. First, we observed that mRNAs tend to be more stable in root than in shoot. Next, using XRN4ΔCTRD line, we demonstrated that CTRD is a major determinant in mRNA turnover. In shoot, the absence of CTRD leads to the stabilization of thousands of transcripts while in root its absence is highly compensated resulting in faster decay rates. We demonstrated that this faster decay rate is partially due to the XRN4-dependent cytosolic decay. Finally, we correlated this organ-specific effect with XRN4ΔCTRD line phenotypes revealing a crucial role of CTRD in mRNA homeostasis and proper organ development.
Collapse
Affiliation(s)
- Marie-Christine Carpentier
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Anne-Elodie Receveur
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Alexandre Boubegtitene
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Adrien Cadoudal
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Rémy Merret
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
7
|
Chen KY, Park H, Subramaniam AR. Massively parallel identification of sequence motifs triggering ribosome-associated mRNA quality control. Nucleic Acids Res 2024; 52:7171-7187. [PMID: 38647082 PMCID: PMC11229359 DOI: 10.1093/nar/gkae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/28/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Decay of mRNAs can be triggered by ribosome slowdown at stretches of rare codons or positively charged amino acids. However, the full diversity of sequences that trigger co-translational mRNA decay is poorly understood. To comprehensively identify sequence motifs that trigger mRNA decay, we use a massively parallel reporter assay to measure the effect of all possible combinations of codon pairs on mRNA levels in S. cerevisiae. In addition to known mRNA-destabilizing sequences, we identify several dipeptide repeats whose translation reduces mRNA levels. These include combinations of positively charged and bulky residues, as well as proline-glycine and proline-aspartate dipeptide repeats. Genetic deletion of the ribosome collision sensor Hel2 rescues the mRNA effects of these motifs, suggesting that they trigger ribosome slowdown and activate the ribosome-associated quality control (RQC) pathway. Deep mutational scanning of an mRNA-destabilizing dipeptide repeat reveals a complex interplay between the charge, bulkiness, and location of amino acid residues in conferring mRNA instability. Finally, we show that the mRNA effects of codon pairs are predictive of the effects of endogenous sequences. Our work highlights the complexity of sequence motifs driving co-translational mRNA decay in eukaryotes, and presents a high throughput approach to dissect their requirements at the codon level.
Collapse
Affiliation(s)
- Katharine Y Chen
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
8
|
Lin L, Kubota N, Kaneshiro N, Zheng S. Long live the RNAs: The guardians of neuronal longevity? Mol Cell 2024; 84:2014-2016. [PMID: 38848690 DOI: 10.1016/j.molcel.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
In a recent publication in Science, Zocher et al.1 identify and characterize long-lived nuclear RNA in the mouse brain, suggesting their potential roles as guardians of neuronal longevity.
Collapse
Affiliation(s)
- Lin Lin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Nanaka Kaneshiro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
9
|
Elder JJH, Papadopoulos R, Hayne CK, Stanley RE. The making and breaking of tRNAs by ribonucleases. Trends Genet 2024; 40:511-525. [PMID: 38641471 PMCID: PMC11152995 DOI: 10.1016/j.tig.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Ribonucleases (RNases) play important roles in supporting canonical and non-canonical roles of tRNAs by catalyzing the cleavage of the tRNA phosphodiester backbone. Here, we highlight how recent advances in cryo-electron microscopy (cryo-EM), protein structure prediction, reconstitution experiments, tRNA sequencing, and other studies have revealed new insight into the nucleases that process tRNA. This represents a very diverse group of nucleases that utilize distinct mechanisms to recognize and cleave tRNA during different stages of a tRNA's life cycle including biogenesis, fragmentation, surveillance, and decay. In this review, we provide a synthesis of the structure, mechanism, regulation, and modes of tRNA recognition by tRNA nucleases, along with open questions for future investigation.
Collapse
Affiliation(s)
- Jessica J H Elder
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ry Papadopoulos
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA; Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Cassandra K Hayne
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
10
|
Mercier BC, Labaronne E, Cluet D, Guiguettaz L, Fontrodona N, Bicknell A, Corbin A, Wencker M, Aube F, Modolo L, Jouravleva K, Auboeuf D, Moore MJ, Ricci EP. Translation-dependent and -independent mRNA decay occur through mutually exclusive pathways defined by ribosome density during T cell activation. Genome Res 2024; 34:394-409. [PMID: 38508694 PMCID: PMC11067875 DOI: 10.1101/gr.277863.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
mRNA translation and decay are tightly interconnected processes both in the context of mRNA quality-control pathways and for the degradation of functional mRNAs. Cotranslational mRNA degradation through codon usage, ribosome collisions, and the recruitment of specific proteins to ribosomes is an important determinant of mRNA turnover. However, the extent to which translation-dependent mRNA decay (TDD) and translation-independent mRNA decay (TID) pathways participate in the degradation of mRNAs has not been studied yet. Here we describe a comprehensive analysis of basal and signal-induced TDD and TID in mouse primary CD4+ T cells. Our results indicate that most cellular transcripts are decayed to some extent in a translation-dependent manner. Our analysis further identifies the length of untranslated regions, the density of ribosomes, and GC3 content as important determinants of TDD magnitude. Consistently, all transcripts that undergo changes in ribosome density within their coding sequence upon T cell activation display a corresponding change in their TDD level. Moreover, we reveal a dynamic modulation in the relationship between GC3 content and TDD upon T cell activation, with a reversal in the impact of GC3- and AU3-rich codons. Altogether, our data show a strong and dynamic interconnection between mRNA translation and decay in mammalian primary cells.
Collapse
Affiliation(s)
- Blandine C Mercier
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Emmanuel Labaronne
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
- ADLIN Science, 9100 Evry-Courcouronnes, France
| | - David Cluet
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Laura Guiguettaz
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Nicolas Fontrodona
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Alicia Bicknell
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Antoine Corbin
- Centre International de Recherche en Infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Fabien Aube
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Laurent Modolo
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Karina Jouravleva
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| | - Emiliano P Ricci
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France;
| |
Collapse
|
11
|
Bicknell AA, Reid DW, Licata MC, Jones AK, Cheng YM, Li M, Hsiao CJ, Pepin CS, Metkar M, Levdansky Y, Fritz BR, Andrianova EA, Jain R, Valkov E, Köhrer C, Moore MJ. Attenuating ribosome load improves protein output from mRNA by limiting translation-dependent mRNA decay. Cell Rep 2024; 43:114098. [PMID: 38625793 DOI: 10.1016/j.celrep.2024.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/24/2024] [Accepted: 03/27/2024] [Indexed: 04/18/2024] Open
Abstract
Developing an effective mRNA therapeutic often requires maximizing protein output per delivered mRNA molecule. We previously found that coding sequence (CDS) design can substantially affect protein output, with mRNA variants containing more optimal codons and higher secondary structure yielding the highest protein outputs due to their slow rates of mRNA decay. Here, we demonstrate that CDS-dependent differences in translation initiation and elongation rates lead to differences in translation- and deadenylation-dependent mRNA decay rates, thus explaining the effect of CDS on mRNA half-life. Surprisingly, the most stable and highest-expressing mRNAs in our test set have modest initiation/elongation rates and ribosome loads, leading to minimal translation-dependent mRNA decay. These findings are of potential interest for optimization of protein output from therapeutic mRNAs, which may be achieved by attenuating rather than maximizing ribosome load.
Collapse
Affiliation(s)
| | - David W Reid
- Moderna, Inc, 325 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Yi Min Cheng
- Moderna, Inc, 325 Binney Street, Cambridge, MA 02142, USA
| | - Mengying Li
- Moderna, Inc, 325 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Mihir Metkar
- Moderna, Inc, 325 Binney Street, Cambridge, MA 02142, USA
| | - Yevgen Levdansky
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Brian R Fritz
- Moderna, Inc, 325 Binney Street, Cambridge, MA 02142, USA
| | | | - Ruchi Jain
- Moderna, Inc, 325 Binney Street, Cambridge, MA 02142, USA
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | | |
Collapse
|
12
|
Yang K, Jeltema D, Yan N. Innate immune sensing of macromolecule homeostasis. Adv Immunol 2024; 161:17-51. [PMID: 38763701 DOI: 10.1016/bs.ai.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors to recognize molecular patterns initially thought to be unique to microbial invaders, named pathogen-associated molecular patterns. The concept was later further developed to include similar molecular patterns originating from host cells during tissue damage, known as damage-associated molecular patterns. However, recent advances in the mechanism of monogenic inflammatory diseases have highlighted a much more expansive repertoire of cellular functions that are monitored by innate immunity. Here, we summarize several examples in which an innate immune response is triggered when homeostasis of macromolecule in the cell is disrupted in non-infectious or sterile settings. These ever-growing sensing mechanisms expand the repertoire of innate immune recognition, positioning it not only as a key player in host defense but also as a gatekeeper of cellular homeostasis. Therapeutics inspired by these advances to restore cellular homeostasis and correct the immune system could have far-reaching implications.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
13
|
Lee KY, Bremner R, Hartley J, Protheroe S, Haller W, Johnson T, Whyte L. Long term outcomes in children with trichohepatoenteric syndrome. Am J Med Genet A 2024; 194:141-149. [PMID: 37753667 DOI: 10.1002/ajmg.a.63409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
Trichohepatoenteric syndrome (THES) is a rare autosomal recessive disorder caused by mutations in either TTC37 or SKIV2L, usually leading to congenital diarrhea as part of a multisystem disease. Here, we report on the natural history of the disease for the largest UK cohort of patients with THES from 1996 to 2020. We systematically reviewed the clinical records and pathological specimens of patients diagnosed with THES managed in a single tertiary pediatric gastroenterology unit. Between 1996 and 2020, 13 patients (7 female and 6 male) were diagnosed with THES either by mutation analysis or by clinical phenotype. Two patients died from complications of infection. All patients received parenteral nutrition (PN) of which six patients were weaned off PN. All patients had gastrointestinal tract inflammation on endoscopy. Almost half of the cohort were diagnosed with monogenic inflammatory bowel disease (IBD) by the age of 11 years, confirmed by endoscopic and histological findings. Protracted diarrhea causing intestinal failure improves with time in all patients with THES, but monogenic IBD develops in later childhood that is refractory to conventional IBD treatments. Respiratory issues contribute to significant morbidity and mortality, and good respiratory care is crucial to prevent comorbidity.
Collapse
Affiliation(s)
- Kwang Yang Lee
- Department of Paediatric Gastroenterology and Nutrition, Birmingham Children's Hospital, Birmingham, UK
- Department of Paediatric Gastroenterology and Nutrition, Bristol Royal Hospital for Children, Bristol, UK
| | - Ronald Bremner
- Department of Paediatric Gastroenterology and Nutrition, Birmingham Children's Hospital, Birmingham, UK
| | - Jane Hartley
- Liver Unit, Birmingham Children's Hospital, Birmingham, UK
| | - Sue Protheroe
- Department of Paediatric Gastroenterology and Nutrition, Birmingham Children's Hospital, Birmingham, UK
| | - Wolfram Haller
- Department of Paediatric Gastroenterology and Nutrition, Birmingham Children's Hospital, Birmingham, UK
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Tracey Johnson
- Department of Nutrition and Dietetics, Birmingham Children's Hospital, Birmingham, UK
| | - Lisa Whyte
- Department of Paediatric Gastroenterology and Nutrition, Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
14
|
Smith AB, Ganguly DR, Moore M, Bowerman AF, Janapala Y, Shirokikh NE, Pogson BJ, Crisp PA. Dynamics of mRNA fate during light stress and recovery: from transcription to stability and translation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:818-839. [PMID: 37947266 PMCID: PMC10952913 DOI: 10.1111/tpj.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Transcript stability is an important determinant of its abundance and, consequently, translational output. Transcript destabilisation can be rapid and is well suited for modulating the cellular response. However, it is unclear the extent to which RNA stability is altered under changing environmental conditions in plants. We previously hypothesised that recovery-induced transcript destabilisation facilitated a phenomenon of rapid recovery gene downregulation (RRGD) in Arabidopsis thaliana (Arabidopsis) following light stress, based on mathematical calculations to account for ongoing transcription. Here, we test this hypothesis and investigate processes regulating transcript abundance and fate by quantifying changes in transcription, stability and translation before, during and after light stress. We adapt syringe infiltration to apply a transcriptional inhibitor to soil-grown plants in combination with stress treatments. Compared with measurements in juvenile plants and cell culture, we find reduced stability across a range of transcripts encoding proteins involved in RNA binding and processing. We also observe light-induced destabilisation of transcripts, followed by their stabilisation during recovery. We propose that this destabilisation facilitates RRGD, possibly in combination with transcriptional shut-off that was confirmed for HSP101, ROF1 and GOLS1. We also show that translation remains highly dynamic over the course of light stress and recovery, with a bias towards transcript-specific increases in ribosome association, independent of changes in total transcript abundance, after 30 min of light stress. Taken together, we provide evidence for the combinatorial regulation of transcription and stability that occurs to coordinate translation during light stress and recovery in Arabidopsis.
Collapse
Affiliation(s)
- Aaron B. Smith
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Diep R. Ganguly
- CSIRO Synthetic Biology Future Science PlatformCanberraAustralian Capital Territory2601Australia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marten Moore
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Andrew F. Bowerman
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Yoshika Janapala
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Shine‐Dalgarno Centre for RNA InnovationThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Barry J. Pogson
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Peter A. Crisp
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
15
|
Lorenzo-Orts L, Strobl M, Steinmetz B, Leesch F, Pribitzer C, Roehsner J, Schutzbier M, Dürnberger G, Pauli A. eIF4E1b is a non-canonical eIF4E protecting maternal dormant mRNAs. EMBO Rep 2024; 25:404-427. [PMID: 38177902 PMCID: PMC10883267 DOI: 10.1038/s44319-023-00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
Maternal mRNAs are essential for protein synthesis during oogenesis and early embryogenesis. To adapt translation to specific needs during development, maternal mRNAs are translationally repressed by shortening the polyA tails. While mRNA deadenylation is associated with decapping and degradation in somatic cells, maternal mRNAs with short polyA tails are stable. Here we report that the germline-specific eIF4E paralog, eIF4E1b, is essential for zebrafish oogenesis. eIF4E1b localizes to P-bodies in zebrafish embryos and binds to mRNAs with reported short or no polyA tails, including histone mRNAs. Loss of eIF4E1b results in reduced histone mRNA levels in early gonads, consistent with a role in mRNA storage. Using mouse and human eIF4E1Bs (in vitro) and zebrafish eIF4E1b (in vivo), we show that unlike canonical eIF4Es, eIF4E1b does not interact with eIF4G to initiate translation. Instead, eIF4E1b interacts with the translational repressor eIF4ENIF1, which is required for eIF4E1b localization to P-bodies. Our study is consistent with an important role of eIF4E1b in regulating mRNA dormancy and provides new insights into fundamental post-transcriptional regulatory principles governing early vertebrate development.
Collapse
Affiliation(s)
- Laura Lorenzo-Orts
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria.
| | - Marcus Strobl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Benjamin Steinmetz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zurich, Switzerland
| | - Friederike Leesch
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Carina Pribitzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Josef Roehsner
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Michael Schutzbier
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
16
|
Keidel A, Kögel A, Reichelt P, Kowalinski E, Schäfer IB, Conti E. Concerted structural rearrangements enable RNA channeling into the cytoplasmic Ski238-Ski7-exosome assembly. Mol Cell 2023; 83:4093-4105.e7. [PMID: 37879335 PMCID: PMC10659929 DOI: 10.1016/j.molcel.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
The Ski2-Ski3-Ski8 (Ski238) helicase complex directs cytoplasmic mRNAs toward the nucleolytic exosome complex for degradation. In yeast, the interaction between Ski238 and exosome requires the adaptor protein Ski7. We determined different cryo-EM structures of the Ski238 complex depicting the transition from a rigid autoinhibited closed conformation to a flexible active open conformation in which the Ski2 helicase module has detached from the rest of Ski238. The open conformation favors the interaction of the Ski3 subunit with exosome-bound Ski7, leading to the recruitment of the exosome. In the Ski238-Ski7-exosome holocomplex, the Ski2 helicase module binds the exosome cap, enabling the RNA to traverse from the helicase through the internal exosome channel to the Rrp44 exoribonuclease. Our study pinpoints how conformational changes within the Ski238 complex regulate exosome recruitment for RNA degradation. We also reveal the remarkable conservation of helicase-exosome RNA channeling mechanisms throughout eukaryotic nuclear and cytoplasmic exosome complexes.
Collapse
Affiliation(s)
- Achim Keidel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Munich, Germany
| | - Alexander Kögel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Munich, Germany
| | - Peter Reichelt
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Munich, Germany
| | - Eva Kowalinski
- EMBL Grenoble, 71 Avenue des Martyrs, 38072 Grenoble, France
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Munich, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Munich, Germany.
| |
Collapse
|
17
|
Alagar Boopathy LR, Beadle E, Garcia-Bueno Rico A, Vera M. Proteostasis regulation through ribosome quality control and no-go-decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1809. [PMID: 37488089 DOI: 10.1002/wrna.1809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Cell functionality relies on the existing pool of proteins and their folding into functional conformations. This is achieved through the regulation of protein synthesis, which requires error-free mRNAs and ribosomes. Ribosomes are quality control hubs for mRNAs and proteins. Problems during translation elongation slow down the decoding rate, leading to ribosome halting and the eventual collision with the next ribosome. Collided ribosomes form a specific disome structure recognized and solved by ribosome quality control (RQC) mechanisms. RQC pathways orchestrate the degradation of the problematic mRNA by no-go decay and the truncated nascent peptide, the repression of translation initiation, and the recycling of the stalled ribosomes. All these events maintain protein homeostasis and return valuable ribosomes to translation. As such, cell homeostasis and function are maintained at the mRNA level by preventing the production of aberrant or unnecessary proteins. It is becoming evident that the crosstalk between RQC and the protein homeostasis network is vital for cell function, as the absence of RQC components leads to the activation of stress response and neurodegenerative diseases. Here, we review the molecular events of RQC discovered through well-designed stalling reporters. Given the impact of RQC in proteostasis, we discuss the relevance of identifying endogenous mRNA regulated by RQC and their preservation in stress conditions. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
18
|
Tomecki R, Drazkowska K, Kobylecki K, Tudek A. SKI complex: A multifaceted cytoplasmic RNA exosome cofactor in mRNA metabolism with links to disease, developmental processes, and antiviral responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1795. [PMID: 37384835 DOI: 10.1002/wrna.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Kobylecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Monaghan L, Longman D, Cáceres JF. Translation-coupled mRNA quality control mechanisms. EMBO J 2023; 42:e114378. [PMID: 37605642 PMCID: PMC10548175 DOI: 10.15252/embj.2023114378] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
mRNA surveillance pathways are essential for accurate gene expression and to maintain translation homeostasis, ensuring the production of fully functional proteins. Future insights into mRNA quality control pathways will enable us to understand how cellular mRNA levels are controlled, how defective or unwanted mRNAs can be eliminated, and how dysregulation of these can contribute to human disease. Here we review translation-coupled mRNA quality control mechanisms, including the non-stop and no-go mRNA decay pathways, describing their mechanisms, shared trans-acting factors, and differences. We also describe advances in our understanding of the nonsense-mediated mRNA decay (NMD) pathway, highlighting recent mechanistic findings, the discovery of novel factors, as well as the role of NMD in cellular physiology and its impact on human disease.
Collapse
Affiliation(s)
- Laura Monaghan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
20
|
Chen KY, Park H, Subramaniam AR. Massively parallel identification of sequence motifs triggering ribosome-associated mRNA quality control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559793. [PMID: 37808677 PMCID: PMC10557687 DOI: 10.1101/2023.09.27.559793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Decay of mRNAs can be triggered by ribosome slowdown at stretches of rare codons or positively charged amino acids. However, the full diversity of sequences that trigger co-translational mRNA decay is poorly understood. To comprehensively identify sequence motifs that trigger mRNA decay, we use a massively parallel reporter assay to measure the effect of all possible combinations of codon pairs on mRNA levels in S. cerevisiae. In addition to known mRNA-destabilizing sequences, we identify several dipeptide repeats whose translation reduces mRNA levels. These include combinations of positively charged and bulky residues, as well as proline-glycine and proline-aspartate dipeptide repeats. Genetic deletion of the ribosome collision sensor Hel2 rescues the mRNA effects of these motifs, suggesting that they trigger ribosome slowdown and activate the ribosome-associated quality control (RQC) pathway. Deep mutational scanning of an mRNA-destabilizing dipeptide repeat reveals a complex interplay between the charge, bulkiness, and location of amino acid residues in conferring mRNA instability. Finally, we show that the mRNA effects of codon pairs are predictive of the effects of endogenous sequences. Our work highlights the complexity of sequence motifs driving co-translational mRNA decay in eukaryotes, and presents a high throughput approach to dissect their requirements at the codon level.
Collapse
Affiliation(s)
- Katharine Y. Chen
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
21
|
Höpfler M, Hegde RS. Control of mRNA fate by its encoded nascent polypeptide. Mol Cell 2023; 83:2840-2855. [PMID: 37595554 PMCID: PMC10501990 DOI: 10.1016/j.molcel.2023.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Cells tightly regulate mRNA processing, localization, and stability to ensure accurate gene expression in diverse cellular states and conditions. Most of these regulatory steps have traditionally been thought to occur before translation by the action of RNA-binding proteins. Several recent discoveries highlight multiple co-translational mechanisms that modulate mRNA translation, localization, processing, and stability. These mechanisms operate by recognition of the nascent protein, which is necessarily coupled to its encoding mRNA during translation. Hence, the distinctive sequence or structure of a particular nascent chain can recruit recognition factors with privileged access to the corresponding mRNA in an otherwise crowded cellular environment. Here, we draw on both well-established and recent examples to provide a conceptual framework for how cells exploit nascent protein recognition to direct mRNA fate. These mechanisms allow cells to dynamically and specifically regulate their transcriptomes in response to changes in cellular states to maintain protein homeostasis.
Collapse
|
22
|
Flemr M, Schwaiger M, Hess D, Iesmantavicius V, Ahel J, Tuck AC, Mohn F, Bühler M. Mouse nuclear RNAi-defective 2 promotes splicing of weak 5' splice sites. RNA (NEW YORK, N.Y.) 2023; 29:1140-1165. [PMID: 37137667 PMCID: PMC10351895 DOI: 10.1261/rna.079465.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Removal of introns during pre-mRNA splicing, which is central to gene expression, initiates by base pairing of U1 snRNA with a 5' splice site (5'SS). In mammals, many introns contain weak 5'SSs that are not efficiently recognized by the canonical U1 snRNP, suggesting alternative mechanisms exist. Here, we develop a cross-linking immunoprecipitation coupled to a high-throughput sequencing method, BCLIP-seq, to identify NRDE2 (nuclear RNAi-defective 2), and CCDC174 (coiled-coil domain-containing 174) as novel RNA-binding proteins in mouse ES cells that associate with U1 snRNA and 5'SSs. Both proteins bind directly to U1 snRNA independently of canonical U1 snRNP-specific proteins, and they are required for the selection and effective processing of weak 5'SSs. Our results reveal that mammalian cells use noncanonical splicing factors bound directly to U1 snRNA to effectively select suboptimal 5'SS sequences in hundreds of genes, promoting proper splice site choice, and accurate pre-mRNA splicing.
Collapse
Affiliation(s)
- Matyas Flemr
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | - Josip Ahel
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Alex Charles Tuck
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| |
Collapse
|
23
|
Khan D, Terenzi F, Liu G, Ghosh PK, Ye F, Nguyen K, China A, Ramachandiran I, Chakraborty S, Stefan J, Khan K, Vasu K, Dong F, Willard B, Karn J, Gack MU, Fox PL. A viral pan-end RNA element and host complex define a SARS-CoV-2 regulon. Nat Commun 2023; 14:3385. [PMID: 37296097 PMCID: PMC10250186 DOI: 10.1038/s41467-023-39091-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, generates multiple protein-coding, subgenomic RNAs (sgRNAs) from a longer genomic RNA, all bearing identical termini with poorly understood roles in regulating viral gene expression. Insulin and interferon-gamma, two host-derived, stress-related agents, and virus spike protein, induce binding of glutamyl-prolyl-tRNA synthetase (EPRS1), within an unconventional, tetra-aminoacyl-tRNA synthetase complex, to the sgRNA 3'-end thereby enhancing sgRNA expression. We identify an EPRS1-binding sarbecoviral pan-end activating RNA (SPEAR) element in the 3'-end of viral RNAs driving agonist-induction. Translation of another co-terminal 3'-end feature, ORF10, is necessary for SPEAR-mediated induction, independent of Orf10 protein expression. The SPEAR element enhances viral programmed ribosomal frameshifting, thereby expanding its functionality. By co-opting noncanonical activities of a family of essential host proteins, the virus establishes a post-transcriptional regulon stimulating global viral RNA translation. A SPEAR-targeting strategy markedly reduces SARS-CoV-2 titer, suggesting a pan-sarbecoviral therapeutic modality.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Fulvia Terenzi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic Foundation, Port St. Lucie, FL, 34987, USA
| | - Prabar K Ghosh
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kien Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Arnab China
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Shruti Chakraborty
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Jennifer Stefan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Franklin Dong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Belinda Willard
- Lerner Research Institute Proteomics and Metabolomics Core, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic Foundation, Port St. Lucie, FL, 34987, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA.
| |
Collapse
|
24
|
Nagarajan VK, Stuart CJ, DiBattista AT, Accerbi M, Caplan JL, Green PJ. RNA degradome analysis reveals DNE1 endoribonuclease is required for the turnover of diverse mRNA substrates in Arabidopsis. THE PLANT CELL 2023; 35:1936-1955. [PMID: 37070465 PMCID: PMC10226599 DOI: 10.1093/plcell/koad085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 05/30/2023]
Abstract
In plants, cytoplasmic mRNA decay is critical for posttranscriptionally controlling gene expression and for maintaining cellular RNA homeostasis. Arabidopsis DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1) is a cytoplasmic mRNA decay factor that interacts with proteins involved in mRNA decapping and nonsense-mediated mRNA decay (NMD). There is limited information on the functional role of DNE1 in RNA turnover, and the identities of its endogenous targets are unknown. In this study, we utilized RNA degradome approaches to globally investigate DNE1 substrates. Monophosphorylated 5' ends, produced by DNE1, should accumulate in mutants lacking the cytoplasmic exoribonuclease XRN4, but be absent from DNE1 and XRN4 double mutants. In seedlings, we identified over 200 such transcripts, most of which reflect cleavage within coding regions. While most DNE1 targets were NMD-insensitive, some were upstream ORF (uORF)-containing and NMD-sensitive transcripts, indicating that this endoribonuclease is required for turnover of a diverse set of mRNAs. Transgenic plants expressing DNE1 cDNA with an active-site mutation in the endoribonuclease domain abolished the in planta cleavage of transcripts, demonstrating that DNE1 endoribonuclease activity is required for cleavage. Our work provides key insights into the identity of DNE1 substrates and enhances our understanding of DNE1-mediated mRNA decay.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Catherine J Stuart
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Anna T DiBattista
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Monica Accerbi
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Jeffrey L Caplan
- Bio-Imaging Center, Delaware Biotechnology Institute, University of
Delaware, Newark, DE 19713-1316, USA
| | - Pamela J Green
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| |
Collapse
|
25
|
Haluck-Kangas A, Fink M, Bartom ET, Peter ME. CD95/Fas ligand mRNA is toxic to cells through more than one mechanism. MOLECULAR BIOMEDICINE 2023; 4:11. [PMID: 37059938 PMCID: PMC10105004 DOI: 10.1186/s43556-023-00119-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/03/2023] [Indexed: 04/16/2023] Open
Abstract
CD95/Fas ligand (CD95L) induces apoptosis through protein binding to the CD95 receptor. However, CD95L mRNA also induces toxicity in the absence of CD95 through induction of DISE (Death Induced by Survival Gene Elimination), a form of cell death mediated by RNA interference (RNAi). We now report that CD95L mRNA processing generates a short (s)RNA nearly identical to shL3, a commercial CD95L-targeting shRNA that led to the discovery of DISE. Neither of the miRNA biogenesis proteins Drosha nor Dicer are required for this processing. Interestingly, CD95L toxicity depends on the core component of the RISC, Ago2, in some cell lines, but not in others. In the HCT116 colon cancer cell line, Ago 1-4 appear to function redundantly in RNAi. In fact, Ago 1/2/3 knockout cells retain sensitivity to CD95L mRNA toxicity. Toxicity was only blocked by mutation of all in-frame start codons in the CD95L ORF. Dying cells exhibited an enrichment of RISC bound (R)-sRNAs with toxic 6mer seed sequences, while expression of the non-toxic CD95L mutant enriched for loading of R-sRNAs with nontoxic 6mer seeds. However, CD95L is not the only source of these R-sRNAs. We find that CD95L mRNA may induce DISE directly and indirectly, and that alternate mechanisms may underlie CD95L mRNA processing and toxicity.
Collapse
Affiliation(s)
- Ashley Haluck-Kangas
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA
| | - Madelaine Fink
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Chicago, IL, USA
- Department of Preventive Medicine/Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marcus E Peter
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Chicago, IL, USA.
| |
Collapse
|
26
|
Hettinger ZR, Hu S, Mamiya H, Sahu A, Iijima H, Wang K, Gilmer G, Miller A, Nasello G, Dâ Amore A, Vorp DA, Rando TA, Xing J, Ambrosio F. Dynamical modeling reveals RNA decay mediates the effect of matrix stiffness on aged muscle stem cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529950. [PMID: 36865124 PMCID: PMC9980169 DOI: 10.1101/2023.02.24.529950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Loss of muscle stem cell (MuSC) self-renewal with aging reflects a combination of influences from the intracellular (e.g., post-transcriptional modifications) and extracellular (e.g., matrix stiffness) environment. Whereas conventional single cell analyses have revealed valuable insights into factors contributing to impaired self-renewal with age, most are limited by static measurements that fail to capture nonlinear dynamics. Using bioengineered matrices mimicking the stiffness of young and old muscle, we showed that while young MuSCs were unaffected by aged matrices, old MuSCs were phenotypically rejuvenated by young matrices. Dynamical modeling of RNA velocity vector fields in silico revealed that soft matrices promoted a self-renewing state in old MuSCs by attenuating RNA decay. Vector field perturbations demonstrated that the effects of matrix stiffness on MuSC self-renewal could be circumvented by fine-tuning the expression of the RNA decay machinery. These results demonstrate that post-transcriptional dynamics dictate the negative effect of aged matrices on MuSC self-renewal.
Collapse
|
27
|
Dave P, Roth G, Griesbach E, Mateju D, Hochstoeger T, Chao JA. Single-molecule imaging reveals translation-dependent destabilization of mRNAs. Mol Cell 2023; 83:589-606.e6. [PMID: 36731471 PMCID: PMC9957601 DOI: 10.1016/j.molcel.2023.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
The relationship between mRNA translation and decay is incompletely understood, with conflicting reports suggesting that translation can either promote decay or stabilize mRNAs. The effect of translation on mRNA decay has mainly been studied using ensemble measurements and global transcription and translation inhibitors, which can have pleiotropic effects. We developed a single-molecule imaging approach to control the translation of a specific transcript that enabled simultaneous measurement of translation and mRNA decay. Our results demonstrate that mRNA translation reduces mRNA stability, and mathematical modeling suggests that this process is dependent on ribosome flux. Furthermore, our results indicate that miRNAs mediate efficient degradation of both translating and non-translating target mRNAs and reveal a predominant role for mRNA degradation in miRNA-mediated regulation. Simultaneous observation of translation and decay of single mRNAs provides a framework to directly study how these processes are interconnected in cells.
Collapse
Affiliation(s)
- Pratik Dave
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Daniel Mateju
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
28
|
RBP-RNA interactions in the control of autoimmunity and autoinflammation. Cell Res 2023; 33:97-115. [PMID: 36599968 PMCID: PMC9892603 DOI: 10.1038/s41422-022-00752-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023] Open
Abstract
Autoimmunity and autoinflammation arise from aberrant immunological and inflammatory responses toward self-components, contributing to various autoimmune diseases and autoinflammatory diseases. RNA-binding proteins (RBPs) are essential for immune cell development and function, mainly via exerting post-transcriptional regulation of RNA metabolism and function. Functional dysregulation of RBPs and abnormities in RNA metabolism are closely associated with multiple autoimmune or autoinflammatory disorders. Distinct RBPs play critical roles in aberrant autoreactive inflammatory responses via orchestrating a complex regulatory network consisting of DNAs, RNAs and proteins within immune cells. In-depth characterizations of RBP-RNA interactomes during autoimmunity and autoinflammation will lead to a better understanding of autoimmune pathogenesis and facilitate the development of effective therapeutic strategies. In this review, we summarize and discuss the functions of RBP-RNA interactions in controlling aberrant autoimmune inflammation and their potential as biomarkers and therapeutic targets.
Collapse
|
29
|
Su J, Gassmann W. Cytoplasmic regulation of chloroplast ROS accumulation during effector-triggered immunity. FRONTIERS IN PLANT SCIENCE 2023; 14:1127833. [PMID: 36794218 PMCID: PMC9922995 DOI: 10.3389/fpls.2023.1127833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Accumulating evidence suggests that chloroplasts are an important battleground during various microbe-host interactions. Plants have evolved layered strategies to reprogram chloroplasts to promote de novo biosynthesis of defense-related phytohormones and the accumulation of reactive oxygen species (ROS). In this minireview, we will discuss how the host controls chloroplast ROS accumulation during effector-triggered immunity (ETI) at the level of selective mRNA decay, translational regulation, and autophagy-dependent formation of Rubisco-containing bodies (RCBs). We hypothesize that regulation at the level of cytoplasmic mRNA decay impairs the repair cycle of photosystem II (PSII) and thus facilitates ROS generation at PSII. Meanwhile, removing Rubisco from chloroplasts potentially reduces both O2 and NADPH consumption. As a consequence, an over-reduced stroma would further exacerbate PSII excitation pressure and enhance ROS production at photosystem I.
Collapse
|
30
|
Burke PC, Park H, Subramaniam AR. A nascent peptide code for translational control of mRNA stability in human cells. Nat Commun 2022; 13:6829. [PMID: 36369503 PMCID: PMC9652226 DOI: 10.1038/s41467-022-34664-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stability of eukaryotic mRNAs is associated with their codon, amino acid, and GC content. Yet, coding sequence motifs that predictably alter mRNA stability in human cells remain poorly defined. Here, we develop a massively parallel assay to measure mRNA effects of thousands of synthetic and endogenous coding sequence motifs in human cells. We identify several families of simple dipeptide repeats whose translation triggers mRNA destabilization. Rather than individual amino acids, specific combinations of bulky and positively charged amino acids are critical for the destabilizing effects of dipeptide repeats. Remarkably, dipeptide sequences that form extended β strands in silico and in vitro slowdown ribosomes and reduce mRNA levels in vivo. The resulting nascent peptide code underlies the mRNA effects of hundreds of endogenous peptide sequences in the human proteome. Our work suggests an intrinsic role for the ribosome as a selectivity filter against the synthesis of bulky and aggregation-prone peptides.
Collapse
Affiliation(s)
- Phillip C Burke
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
31
|
Holmquist CE, He W, Meganck RM, Marzluff WF. Knockouts of TUT7 and 3'hExo show that they cooperate in histone mRNA maintenance and degradation. RNA (NEW YORK, N.Y.) 2022; 28:1519-1533. [PMID: 36041871 PMCID: PMC9745837 DOI: 10.1261/rna.079233.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/12/2022] [Indexed: 05/18/2023]
Abstract
Metazoan histone mRNAs are the only cellular eukaryotic mRNAs that are not polyadenylated, ending instead in a conserved stem-loop. SLBP is bound to the 3' end of histone mRNAs and is required for translation of histone mRNA. The expression of histone mRNAs is tightly cell-cycle regulated. A major regulatory step is rapid degradation of histone mRNA at the end of S-phase or when DNA synthesis is inhibited in S-phase. 3'hExo, a 3' to 5' exonuclease, binds to the SLBP/SL complex and trims histone mRNA to 3 nt after the stem-loop. Together with a terminal uridyl transferase, 3'hExo maintains the length of the histone mRNA during S-phase. 3'hExo is essential for initiating histone mRNA degradation on polyribosomes, initiating degradation into the 3' side of the stem-loop. There is extensive uridylation of degradation intermediates in the 3' side of the stem when histone mRNA is degraded. Here, we knocked out TUT7 and 3'hExo and we show that both modification of histone mRNA during S-phase and degradation of histone mRNA involve the interaction of 3'hExo, and a specific TUTase, TENT3B (TUT7, ZCCHC6). Knockout of 3'hExo prevents the initiation of 3' to 5' degradation, stabilizing histone mRNA, whereas knockout of TUT7 prevents uridylation of the mRNA degradation intermediates, slowing the rate of degradation. In synchronized 3'hExo KO cells, histone mRNA degradation is delayed, but the histone mRNA is degraded prior to mitosis by a different pathway.
Collapse
Affiliation(s)
- Chris E Holmquist
- Division of Medicinal Chemistry and Chemical Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Integrated Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Wenxia He
- Integrated Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Rita M Meganck
- Integrated Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - William F Marzluff
- Integrated Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
32
|
Boubegtitene A, Merret R. Monitoring mRNA Half-Life in Arabidopsis Using Droplet Digital PCR. PLANTS (BASEL, SWITZERLAND) 2022; 11:2616. [PMID: 36235485 PMCID: PMC9571659 DOI: 10.3390/plants11192616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
mRNA decay is an important process in post-transcriptional regulation; in addition, it plays a crucial role in plant development and response to stress. The development of new tools to quantify mRNA decay intermediates is thus important to better characterize the dynamic of mRNA decay in various conditions. Here, we applied droplet digital PCR (ddPCR), a recent and precise PCR technology, to determine mRNA half-life in Arabidopsis seedlings. We demonstrated that ddPCR can correctly assess mRNA half-life from a wide variety of transcripts in a reproducible manner. We also demonstrated that thanks to multiplexing mRNA, the half-life of multiple transcripts can be followed in the same reaction. As ddPCR allows precise quantification, we proposed that this approach is highly suitable when a low amount of RNA is available; for the detection of many targets or for the analysis of lowly expressed transcripts.
Collapse
Affiliation(s)
- Alexandre Boubegtitene
- CNRS-LGDP UMR 5096, 58 Avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR 5096, 58 Avenue Paul Alduy, 66860 Perpignan, France
| | - Rémy Merret
- CNRS-LGDP UMR 5096, 58 Avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR 5096, 58 Avenue Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
33
|
Bottorff TA, Park H, Geballe AP, Subramaniam AR. Translational buffering by ribosome stalling in upstream open reading frames. PLoS Genet 2022; 18:e1010460. [PMID: 36315596 PMCID: PMC9648851 DOI: 10.1371/journal.pgen.1010460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Upstream open reading frames (uORFs) are present in over half of all human mRNAs. uORFs can potently regulate the translation of downstream open reading frames through several mechanisms: siphoning away scanning ribosomes, regulating re-initiation, and allowing interactions between scanning and elongating ribosomes. However, the consequences of these different mechanisms for the regulation of protein expression remain incompletely understood. Here, we performed systematic measurements on the uORF-containing 5' UTR of the cytomegaloviral UL4 mRNA to test alternative models of uORF-mediated regulation in human cells. We find that a terminal diproline-dependent elongating ribosome stall in the UL4 uORF prevents decreases in main ORF protein expression when ribosome loading onto the mRNA is reduced. This uORF-mediated buffering is insensitive to the location of the ribosome stall along the uORF. Computational kinetic modeling based on our measurements suggests that scanning ribosomes dissociate rather than queue when they collide with stalled elongating ribosomes within the UL4 uORF. We identify several human uORFs that repress main ORF protein expression via a similar terminal diproline motif. We propose that ribosome stalls in uORFs provide a general mechanism for buffering against reductions in main ORF translation during stress and developmental transitions.
Collapse
Affiliation(s)
- Ty A. Bottorff
- Basic Sciences Division and Computational Biology Program of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Program of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Adam P. Geballe
- Human Biology and Clinical Research Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Program of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
34
|
Post-Transcriptional Control of mRNA Metabolism and Protein Secretion: The Third Level of Regulation within the NF-κB System. Biomedicines 2022; 10:biomedicines10092108. [PMID: 36140209 PMCID: PMC9495616 DOI: 10.3390/biomedicines10092108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
The NF-κB system is a key transcriptional pathway that regulates innate and adaptive immunity because it triggers the activation and differentiation processes of lymphocytes and myeloid cells during immune responses. In most instances, binding to cytoplasmic inhibitory IκB proteins sequesters NF-κB into an inactive state, while a plethora of external triggers activate three complex signaling cascades that mediate the release and nuclear translocation of the NF-κB DNA-binding subunits. In addition to these cytosolic steps (level 1 of NF-κB regulation), NF-κB activity is also controlled in the nucleus by signaling events, cofactors and the chromatin environment to precisely determine chromatin recruitment and the specificity and timing of target gene transcription (level 2 of NF-κB regulation). Here, we discuss an additional layer of the NF-κB system that manifests in various steps of post-transcriptional gene expression and protein secretion. This less-studied regulatory level allows reduction of (transcriptional) noise and signal integration and endows time-shifted control of the secretion of inflammatory mediators. Detailed knowledge of these steps is important, as dysregulated post-transcriptional NF-κB signaling circuits are likely to foster chronic inflammation and contribute to the formation and maintenance of a tumor-promoting microenvironment.
Collapse
|
35
|
Brown LG, Haack AJ, Kennedy DS, Adams KN, Stolarczuk JE, Takezawa MG, Berthier E, Thongpang S, Lim FY, Chaussabel D, Garand M, Theberge AB. At-home blood collection and stabilization in high temperature climates using homeRNA. Front Digit Health 2022; 4:903153. [PMID: 36033636 PMCID: PMC9405416 DOI: 10.3389/fdgth.2022.903153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Expanding whole blood sample collection for transcriptome analysis beyond traditional phlebotomy clinics will open new frontiers for remote immune research and telemedicine. Determining the stability of RNA in blood samples exposed to high ambient temperatures (>30°C) is necessary for deploying home-sampling in settings with elevated temperatures (e.g., studying physiological response to natural disasters that occur in warm locations or in the summer). Recently, we have developed homeRNA, a technology that allows for self-blood sampling and RNA stabilization remotely. homeRNA consists of a lancet-based blood collection device, the Tasso-SST™ which collects up to 0.5 ml of blood from the upper arm, and a custom-built stabilization transfer tube containing RNAlater™. In this study, we investigated the robustness of our homeRNA kit in high temperature settings via two small pilot studies in Doha, Qatar (no. participants = 8), and the Western and South Central USA during the summer of 2021, which included a heatwave of unusually high temperatures in some locations (no. participants = 11). Samples collected from participants in Doha were subjected to rapid external temperature fluctuations from being moved to and from air-conditioned areas and extreme heat environments (up to 41°C external temperature during brief temperature spikes). In the USA pilot study, regions varied in outdoor temperature highs (between 25°C and 43.4°C). All samples that returned a RNA integrity number (RIN) value from the Doha, Qatar group had a RIN ≥7.0, a typical integrity threshold for downstream transcriptomics analysis. RIN values for the Western and South Central USA samples (n = 12 samples) ranged from 6.9-8.7 with 9 out of 12 samples reporting RINs ≥7.0. Overall, our pilot data suggest that homeRNA can be used in some regions that experience elevated temperatures, opening up new geographical frontiers in disseminated transcriptome analysis for applications critical to telemedicine, global health, and expanded clinical research. Further studies, including our ongoing work in Qatar, USA, and Thailand, will continue to test the robustness of homeRNA.
Collapse
Affiliation(s)
- Lauren G. Brown
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, United States
- School of Medicine, University of Washington, Seattle, WA, United States
| | - Dakota S. Kennedy
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Karen N. Adams
- Institute of Translational Health Sciences, School of Medicine, University of Washington, Seattle, WA, United States
| | | | - Meg G. Takezawa
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Sanitta Thongpang
- Department of Chemistry, University of Washington, Seattle, WA, United States
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, Thailand
| | - Fang Yun Lim
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Damien Chaussabel
- Research Branch, Sidra Medicine, Doha, Qatar
- Computer Sciences Department, The Jackson Laboratory, Farmington, CT, United States
| | - Mathieu Garand
- Research Branch, Sidra Medicine, Doha, Qatar
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Seattle, WA, United States
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
36
|
Moreno Traspas R, Teoh TS, Wong PM, Maier M, Chia CY, Lay K, Ali NA, Larson A, Al Mutairi F, Al-Sannaa NA, Faqeih EA, Alfadhel M, Cheema HA, Dupont J, Bézieau S, Isidor B, Low DY, Wang Y, Tan G, Lai PS, Piloquet H, Joubert M, Kayserili H, Kripps KA, Nahas SA, Wartchow EP, Warren M, Bhavani GS, Dasouki M, Sandoval R, Carvalho E, Ramos L, Porta G, Wu B, Lashkari HP, AlSaleem B, BaAbbad RM, Abreu Ferrão AN, Karageorgou V, Ordonez-Herrera N, Khan S, Bauer P, Cogne B, Bertoli-Avella AM, Vincent M, Girisha KM, Reversade B. Loss of FOCAD, operating via the SKI messenger RNA surveillance pathway, causes a pediatric syndrome with liver cirrhosis. Nat Genet 2022; 54:1214-1226. [PMID: 35864190 PMCID: PMC7615854 DOI: 10.1038/s41588-022-01120-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
Cirrhosis is usually a late-onset and life-threatening disease characterized by fibrotic scarring and inflammation that disrupts liver architecture and function. While it is typically the result of alcoholism or hepatitis viral infection in adults, its etiology in infants is much less understood. In this study, we report 14 children from ten unrelated families presenting with a syndromic form of pediatric liver cirrhosis. By genome/exome sequencing, we found recessive variants in FOCAD segregating with the disease. Zebrafish lacking focad phenocopied the human disease, revealing a signature of altered messenger RNA (mRNA) degradation processes in the liver. Using patient's primary cells and CRISPR-Cas9-mediated inactivation in human hepatic cell lines, we found that FOCAD deficiency compromises the SKI mRNA surveillance pathway by reducing the levels of the RNA helicase SKIC2 and its cofactor SKIC3. FOCAD knockout hepatocytes exhibited lowered albumin expression and signs of persistent injury accompanied by CCL2 overproduction. Our results reveal the importance of FOCAD in maintaining liver homeostasis and disclose a possible therapeutic intervention point via inhibition of the CCL2/CCR2 signaling axis.
Collapse
Affiliation(s)
- Ricardo Moreno Traspas
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Tze Shin Teoh
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pui-Mun Wong
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Michael Maier
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Crystal Y Chia
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Kenneth Lay
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Nur Ain Ali
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Austin Larson
- Section of Pediatrics-Clinical Genetics and Metabolism, Children's Hospital Colorado, Aurora, CO, USA
| | - Fuad Al Mutairi
- Department of Genetics and Precision Medicine, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | | | - Eissa Ali Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Department of Genetics and Precision Medicine, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Medical Genomic Research, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Huma Arshad Cheema
- Division of Pediatric Gastroenterology-Hepatology and Nutrition, The Children's Hospital and The Institute of Child Health, Lahore, Pakistan
| | - Juliette Dupont
- Department of Pediatrics, Genetic Services, Lisbon North University Hospital Center, Lisbon, Portugal
| | - Stéphane Bézieau
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Bertrand Isidor
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Dorrain Yanwen Low
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Grace Tan
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poh San Lai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hugues Piloquet
- Gastropediatrics Department, Nantes University Hospital Center, Nantes, France
| | - Madeleine Joubert
- Anatomopathology Department, Nantes University Hospital Center, Nantes, France
| | - Hulya Kayserili
- Medical Genetics Department, School of Medicine, Koç University, Istanbul, Turkey
| | - Kimberly A Kripps
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Shareef A Nahas
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Eric P Wartchow
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - Mikako Warren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Majed Dasouki
- Department of Pediatric Genetics, AdventHealth Medical Group, Orlando, FL, USA
| | - Renata Sandoval
- Department of Oncogenetics, Hospital Sírio-Libanês, Brasília, Brazil
| | - Elisa Carvalho
- Department of Pediatric Gastroenterology and Hepatology, Hospital da Criança de Brasília José Alencar, UniCEUB, Brasília, Brazil
| | - Luiza Ramos
- Mendelics Genomic Analysis, São Paulo, Brazil
| | - Gilda Porta
- Department of Pediatric Hepatology, Transplant Unit, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Harsha Prasada Lashkari
- Department of Pediatrics, Kasturba Medical College, Mangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Badr AlSaleem
- Section of Pediatric Gastroenterology-Hepatology, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Raeda M BaAbbad
- Section of Pediatric Gastroenterology-Hepatology, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | | | | | | | | | - Benjamin Cogne
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | | | - Marie Vincent
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Bruno Reversade
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Medical Genetics Department, School of Medicine, Koç University, Istanbul, Turkey.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- Smart-Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
37
|
Thieffry A, López-Márquez D, Bornholdt J, Malekroudi MG, Bressendorff S, Barghetti A, Sandelin A, Brodersen P. PAMP-triggered genetic reprogramming involves widespread alternative transcription initiation and an immediate transcription factor wave. THE PLANT CELL 2022; 34:2615-2637. [PMID: 35404429 PMCID: PMC9252474 DOI: 10.1093/plcell/koac108] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/07/2022] [Indexed: 05/13/2023]
Abstract
Immune responses triggered by pathogen-associated molecular patterns (PAMPs) are key to pathogen defense, but drivers and stabilizers of the growth-to-defense genetic reprogramming remain incompletely understood in plants. Here, we report a time-course study of the establishment of PAMP-triggered immunity (PTI) using cap analysis of gene expression. We show that around 15% of all transcription start sites (TSSs) rapidly induced during PTI define alternative transcription initiation events. From these, we identify clear examples of regulatory TSS change via alternative inclusion of target peptides or domains in encoded proteins, or of upstream open reading frames in mRNA leader sequences. We also find that 60% of PAMP response genes respond earlier than previously thought. In particular, a cluster of rapidly and transiently PAMP-induced genes is enriched in transcription factors (TFs) whose functions, previously associated with biological processes as diverse as abiotic stress adaptation and stem cell activity, appear to converge on growth restriction. Furthermore, examples of known potentiators of PTI, in one case under direct mitogen-activated protein kinase control, support the notion that the rapidly induced TFs could constitute direct links to PTI signaling pathways and drive gene expression changes underlying establishment of the immune state.
Collapse
Affiliation(s)
- Axel Thieffry
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Jette Bornholdt
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | - Simon Bressendorff
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Andrea Barghetti
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | | |
Collapse
|
38
|
Laffleur B, Batista CR, Zhang W, Lim J, Yang B, Rossille D, Wu L, Estrella J, Rothschild G, Pefanis E, Basu U. RNA exosome drives early B cell development via noncoding RNA processing mechanisms. Sci Immunol 2022; 7:eabn2738. [PMID: 35658015 DOI: 10.1126/sciimmunol.abn2738] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
B cell development is linked to successful V(D)J recombination, allowing B cell receptor expression and ultimately antibody secretion for adaptive immunity. Germline noncoding RNAs (ncRNAs) are produced at immunoglobulin (Ig) loci during V(D)J recombination, but their function and posttranscriptional regulation are incompletely understood. Patients with trichohepatoenteric syndrome, characterized by RNA exosome pathway component mutations, exhibit lymphopenia, thus demonstrating the importance of ncRNA surveillance in B cell development in humans. To understand the role of RNA exosome in early B cell development in greater detail, we generated mouse models harboring a B cell-specific cre allele (Mb1cre), coupled to conditional inversion-deletion alleles of one RNA exosome core component (Exosc3) or RNase catalytic subunits (Exosc10 or Dis3). We noticed increased expression of RNA exosome subunits during V(D)J recombination, whereas a B cell developmental blockade at the pro-B cell stage was observed in the different knockout mice, overlapping with a lack of productive rearrangements of VDJ genes at the Ig heavy chain (Igh). This unsuccessful recombination prevented differentiation into pre-B cells, with accumulation of ncRNAs and up-regulation of the p53 pathway. Introduction of a prearranged Igh VDJ allele partly rescued the pre-B cell population in Dis3-deficient cells, although V-J recombination defects were observed at Ig light chain kappa (Igκ), preventing subsequent B cell development. These observations demonstrated that the RNA exosome complex is important for Igh and Igκ recombination and establish the relevance of RNA processing for optimal diversification at these loci during B cell development.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carolina R Batista
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Junghyun Lim
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Biao Yang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Delphine Rossille
- Universite of Rennes, INSERM, EFS Bretagne, CHU Rennes, UMR 1236, Rennes, France
| | - Lijing Wu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jerson Estrella
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
39
|
Lange H, Gagliardi D. Catalytic activities, molecular connections, and biological functions of plant RNA exosome complexes. THE PLANT CELL 2022; 34:967-988. [PMID: 34954803 PMCID: PMC8894942 DOI: 10.1093/plcell/koab310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 05/08/2023]
Abstract
RNA exosome complexes provide the main 3'-5'-exoribonuclease activities in eukaryotic cells and contribute to the maturation and degradation of virtually all types of RNA. RNA exosomes consist of a conserved core complex that associates with exoribonucleases and with multimeric cofactors that recruit the enzyme to its RNA targets. Despite an overall high level of structural and functional conservation, the enzymatic activities and compositions of exosome complexes and their cofactor modules differ among eukaryotes. This review highlights unique features of plant exosome complexes, such as the phosphorolytic activity of the core complex, and discusses the exosome cofactors that operate in plants and are dedicated to the maturation of ribosomal RNA, the elimination of spurious, misprocessed, and superfluous transcripts, or the removal of mRNAs cleaved by the RNA-induced silencing complex and other mRNAs prone to undergo silencing.
Collapse
Affiliation(s)
- Heike Lange
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Author for correspondence:
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
40
|
Fujita T, Yokoyama T, Shirouzu M, Taguchi H, Ito T, Iwasaki S. The landscape of translational stall sites in bacteria revealed by monosome and disome profiling. RNA (NEW YORK, N.Y.) 2022; 28:290-302. [PMID: 34906996 PMCID: PMC8848927 DOI: 10.1261/rna.078188.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/24/2021] [Indexed: 05/29/2023]
Abstract
Ribosome pauses are associated with various cotranslational events and determine the fate of mRNAs and proteins. Thus, the identification of precise pause sites across the transcriptome is desirable; however, the landscape of ribosome pauses in bacteria remains ambiguous. Here, we harness monosome and disome (or collided ribosome) profiling strategies to survey ribosome pause sites in Escherichia coli Compared to eukaryotes, ribosome collisions in bacteria showed remarkable differences: a low frequency of disomes at stop codons, collisions occurring immediately after 70S assembly on start codons, and shorter queues of ribosomes trailing upstream. The pause sites corresponded with the biochemical validation by integrated nascent chain profiling (iNP) to detect polypeptidyl-tRNA, an elongation intermediate. Moreover, the subset of those sites showed puromycin resistance, presenting slow peptidyl transfer. Among the identified sites, the ribosome pause at Asn586 of ycbZ was validated by biochemical reporter assay, tRNA sequencing (tRNA-seq), and cryo-electron microscopy (cryo-EM) experiments. Our results provide a useful resource for ribosome stalling sites in bacteria.
Collapse
Affiliation(s)
- Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Midori-ku, Yokohama 226-8503, Japan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
41
|
Schiaffini M, Chicois C, Pouclet A, Chartier T, Ubrig E, Gobert A, Zuber H, Mutterer J, Chicher J, Kuhn L, Hammann P, Gagliardi D, Garcia D. A NYN domain protein directly interacts with DECAPPING1 and is required for phyllotactic pattern. PLANT PHYSIOLOGY 2022; 188:1174-1188. [PMID: 34791434 PMCID: PMC8825452 DOI: 10.1093/plphys/kiab529] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 06/01/2023]
Abstract
In eukaryotes, general mRNA decay requires the decapping complex. The activity of this complex depends on its catalytic subunit, DECAPPING2 (DCP2), and its interaction with decapping enhancers, including its main partner DECAPPING1 (DCP1). Here, we report that in Arabidopsis thaliana, DCP1 also interacts with a NYN domain endoribonuclease, hence named DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1). Interestingly, we found DNE1 predominantly associated with DCP1, but not with DCP2, and reciprocally, suggesting the existence of two distinct protein complexes. We also showed that the catalytic residues of DNE1 are required to repress the expression of mRNAs in planta upon transient expression. The overexpression of DNE1 in transgenic lines led to growth defects and a similar gene deregulation signature than inactivation of the decapping complex. Finally, the combination of dne1 and dcp2 mutations revealed a functional redundancy between DNE1 and DCP2 in controlling phyllotactic pattern formation. Our work identifies DNE1, a hitherto unknown DCP1 protein partner highly conserved in the plant kingdom and identifies its importance for developmental robustness.
Collapse
Affiliation(s)
- Marlene Schiaffini
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Clara Chicois
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Aude Pouclet
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Tiphaine Chartier
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Elodie Ubrig
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anthony Gobert
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jérôme Mutterer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
42
|
Kögel A, Keidel A, Bonneau F, Schäfer IB, Conti E. The human SKI complex regulates channeling of ribosome-bound RNA to the exosome via an intrinsic gatekeeping mechanism. Mol Cell 2022; 82:756-769.e8. [PMID: 35120588 PMCID: PMC8860381 DOI: 10.1016/j.molcel.2022.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 12/31/2022]
Abstract
The superkiller (SKI) complex is the cytoplasmic co-factor and regulator of the RNA-degrading exosome. In human cells, the SKI complex functions mainly in co-translational surveillance-decay pathways, and its malfunction is linked to a severe congenital disorder, the trichohepatoenteric syndrome. To obtain insights into the molecular mechanisms regulating the human SKI (hSKI) complex, we structurally characterized several of its functional states in the context of 80S ribosomes and substrate RNA. In a prehydrolytic ATP form, the hSKI complex exhibits a closed conformation with an inherent gating system that effectively traps the 80S-bound RNA into the hSKI2 helicase subunit. When active, hSKI switches to an open conformation in which the gating is released and the RNA 3′ end exits the helicase. The emerging picture is that the gatekeeping mechanism and architectural remodeling of hSKI underpin a regulated RNA channeling system that is mechanistically conserved among the cytoplasmic and nuclear helicase-exosome complexes. hSKI has closed and open states connected to different helicase conformations The intrinsic closed state traps the RNA 3′ end and blocks the RNA exit path ATP induces the open state of hSKI, allowing 80S ribosome-bound RNA extraction The hSKI open state primes hSKI2 for channeling RNA to the cytosolic exosome
Collapse
Affiliation(s)
- Alexander Kögel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Munich, Germany
| | - Achim Keidel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Munich, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Munich, Germany
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Munich, Germany.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Munich, Germany.
| |
Collapse
|
43
|
Yang K, Han J, Asada M, Gill JG, Park JY, Sathe MN, Gattineni J, Wright T, Wysocki CA, de la Morena MT, Garza LA, Yan N. Cytoplasmic RNA quality control failure engages mTORC1-mediated autoinflammatory disease. J Clin Invest 2022; 132:e146176. [PMID: 35040435 PMCID: PMC8759780 DOI: 10.1172/jci146176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
Inborn errors of nucleic acid metabolism often cause aberrant activation of nucleic acid sensing pathways, leading to autoimmune or autoinflammatory diseases. The SKIV2L RNA exosome is cytoplasmic RNA degradation machinery that was thought to be essential for preventing the self-RNA-mediated interferon (IFN) response. Here, we demonstrate the physiological function of SKIV2L in mammals. We found that Skiv2l deficiency in mice disrupted epidermal and T cell homeostasis in a cell-intrinsic manner independently of IFN. Skiv2l-deficient mice developed skin inflammation and hair abnormality, which were also observed in a SKIV2L-deficient patient. Epidermis-specific deletion of Skiv2l caused hyperproliferation of keratinocytes and disrupted epidermal stratification, leading to impaired skin barrier with no appreciable IFN activation. Moreover, Skiv2l-deficient T cells were chronically hyperactivated and these T cells attacked lesional skin as well as hair follicles. Mechanistically, SKIV2L loss activated the mTORC1 pathway in both keratinocytes and T cells. Both systemic and topical rapamycin treatment of Skiv2l-deficient mice ameliorated epidermal hyperplasia and skin inflammation. Together, we demonstrate that mTORC1, a classical nutrient sensor, also senses cytoplasmic RNA quality control failure and drives autoinflammatory disease. We also propose SKIV2L-associated trichohepatoenteric syndrome (THES) as a new mTORopathy for which sirolimus may be a promising therapy.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology and
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jie Han
- Department of Immunology and
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mayumi Asada
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Jason Y. Park
- Department of Pathology and the Eugene McDermott Center for Human Growth and Development
| | | | | | | | - Christian A. Wysocki
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - M. Teresa de la Morena
- Department of Pediatrics, University of Washington and
- Seattle Children’s Hospital, Seattle, Washington, USA
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nan Yan
- Department of Immunology and
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
44
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
45
|
Brümmer A, Dreos R, Marques AC, Bergmann S. Analysis of eukaryotic lincRNA sequences indicates signatures of hindered translation linked to selection pressure. Mol Biol Evol 2021; 39:6460347. [PMID: 34897509 PMCID: PMC8826458 DOI: 10.1093/molbev/msab356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Long intergenic noncoding RNAs (lincRNAs) represent a large fraction of transcribed loci in eukaryotic genomes. Although classified as noncoding, most lincRNAs contain open reading frames (ORFs), and it remains unclear why cytoplasmic lincRNAs are not or very inefficiently translated. Here, we analyzed signatures of hindered translation in lincRNA sequences from five eukaryotes, covering a range of natural selection pressures. In fission yeast and Caenorhabditis elegans, that is, species under strong selection, we detected significantly shorter ORFs, a suboptimal sequence context around start codons for translation initiation, and trinucleotides (“codons”) corresponding to less abundant tRNAs than for neutrally evolving control sequences, likely impeding translation elongation. For human, we detected signatures for cell-type-specific hindrance of lincRNA translation, in particular codons in abundant cytoplasmic lincRNAs corresponding to lower expressed tRNAs than control codons, in three out of five human cell lines. We verified that varying tRNA expression levels between cell lines are reflected in the amount of ribosomes bound to cytoplasmic lincRNAs in each cell line. We further propose that codons at ORF starts are particularly important for reducing ribosome-binding to cytoplasmic lincRNA ORFs. Altogether, our analyses indicate that in species under stronger selection lincRNAs evolved sequence features generally hindering translation and support cell-type-specific hindrance of translation efficiency in human lincRNAs. The sequence signatures we have identified may improve predicting peptide-coding and genuine noncoding lincRNAs in a cell type.
Collapse
Affiliation(s)
- Anneke Brümmer
- Department of Computational Biology (DBC), University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Rene Dreos
- Center for Integrative Genomics (CIG), University of Lausanne, Lausanne, Switzerland
| | - Ana Claudia Marques
- Department of Computational Biology (DBC), University of Lausanne, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Computational Biology (DBC), University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
46
|
Morris C, Cluet D, Ricci EP. Ribosome dynamics and mRNA turnover, a complex relationship under constant cellular scrutiny. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1658. [PMID: 33949788 PMCID: PMC8519046 DOI: 10.1002/wrna.1658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/01/2022]
Abstract
Eukaryotic gene expression is closely regulated by translation and turnover of mRNAs. Recent advances highlight the importance of translation in the control of mRNA degradation, both for aberrant and apparently normal mRNAs. During translation, the information contained in mRNAs is decoded by ribosomes, one codon at a time, and tRNAs, by specifically recognizing codons, translate the nucleotide code into amino acids. Such a decoding step does not process regularly, with various obstacles that can hinder ribosome progression, then leading to ribosome stalling or collisions. The progression of ribosomes is constantly monitored by the cell which has evolved several translation-dependent mRNA surveillance pathways, including nonsense-mediated decay (NMD), no-go decay (NGD), and non-stop decay (NSD), to degrade certain problematic mRNAs and the incomplete protein products. Recent progress in sequencing and ribosome profiling has made it possible to discover new mechanisms controlling ribosome dynamics, with numerous crosstalks between translation and mRNA decay. We discuss here various translation features critical for mRNA decay, with particular focus on current insights from the complexity of the genetic code and also the emerging role for the ribosome as a regulatory hub orchestrating mRNA decay, quality control, and stress signaling. Even if the interplay between mRNA translation and degradation is no longer to be demonstrated, a better understanding of their precise coordination is worthy of further investigation. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Christelle Morris
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - David Cluet
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - Emiliano P. Ricci
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| |
Collapse
|
47
|
Nicolet BP, Zandhuis ND, Lattanzio VM, Wolkers MC. Sequence determinants as key regulators in gene expression of T cells. Immunol Rev 2021; 304:10-29. [PMID: 34486113 PMCID: PMC9292449 DOI: 10.1111/imr.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
T cell homeostasis, T cell differentiation, and T cell effector function rely on the constant fine-tuning of gene expression. To alter the T cell state, substantial remodeling of the proteome is required. This remodeling depends on the intricate interplay of regulatory mechanisms, including post-transcriptional gene regulation. In this review, we discuss how the sequence of a transcript influences these post-transcriptional events. In particular, we review how sequence determinants such as sequence conservation, GC content, and chemical modifications define the levels of the mRNA and the protein in a T cell. We describe the effect of different forms of alternative splicing on mRNA expression and protein production, and their effect on subcellular localization. In addition, we discuss the role of sequences and structures as binding hubs for miRNAs and RNA-binding proteins in T cells. The review thus highlights how the intimate interplay of post-transcriptional mechanisms dictate cellular fate decisions in T cells.
Collapse
Affiliation(s)
- Benoit P. Nicolet
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Nordin D. Zandhuis
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - V. Maria Lattanzio
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
48
|
Pashler AL, Towler BP, Jones CI, Haime HJ, Burgess T, Newbury SF. Genome-wide analyses of XRN1-sensitive targets in osteosarcoma cells identify disease-relevant transcripts containing G-rich motifs. RNA (NEW YORK, N.Y.) 2021; 27:1265-1280. [PMID: 34266995 PMCID: PMC8457002 DOI: 10.1261/rna.078872.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
XRN1 is a highly conserved exoribonuclease which degrades uncapped RNAs in a 5'-3' direction. Degradation of RNAs by XRN1 is important in many cellular and developmental processes and is relevant to human disease. Studies in D. melanogaster demonstrate that XRN1 can target specific RNAs, which have important consequences for developmental pathways. Osteosarcoma is a malignancy of the bone and accounts for 2% of all pediatric cancers worldwide. Five-year survival of patients has remained static since the 1970s and therefore furthering our molecular understanding of this disease is crucial. Previous work has shown a down-regulation of XRN1 in osteosarcoma cells; however, the transcripts regulated by XRN1 which might promote osteosarcoma remain elusive. Here, we confirm reduced levels of XRN1 in osteosarcoma cell lines and patient samples and identify XRN1-sensitive transcripts in human osteosarcoma cells. Using RNA-seq in XRN1-knockdown SAOS-2 cells, we show that 1178 genes are differentially regulated. Using a novel bioinformatic approach, we demonstrate that 134 transcripts show characteristics of direct post-transcriptional regulation by XRN1. Long noncoding RNAs (lncRNAs) are enriched in this group, suggesting that XRN1 normally plays an important role in controlling lncRNA expression in these cells. Among potential lncRNAs targeted by XRN1 is HOTAIR, which is known to be up-regulated in osteosarcoma and contributes to disease progression. We have also identified G-rich and GU motifs in post-transcriptionally regulated transcripts which appear to sensitize them to XRN1 degradation. Our results therefore provide significant insights into the specificity of XRN1 in human cells which are relevant to disease.
Collapse
Affiliation(s)
- Amy L Pashler
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Benjamin P Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Christopher I Jones
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Hope J Haime
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Tom Burgess
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| |
Collapse
|
49
|
Andreev DE, Smirnova VV, Shatsky IN. Modifications of Ribosome Profiling that Provide New Data on the Translation Regulation. BIOCHEMISTRY (MOSCOW) 2021; 86:1095-1106. [PMID: 34565313 DOI: 10.1134/s0006297921090054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribosome profiling (riboseq) has opened the possibilities for the genome-wide studies of translation in all living organisms. This method is based on deep sequencing of mRNA fragments protected by the ribosomes from hydrolysis by ribonucleases, the so-called ribosomal footprints (RFPs). Ribosomal profiling together with RNA sequencing allows not only to identify with a reasonable accuracy translated reading frames in the transcriptome, but also to track changes in gene expression in response to various stimuli. Notably, ribosomal profiling in its classical version has certain limitations. The size of the selected mRNA fragments is 25-35 nts, while RFPs of other sizes are usually omitted from analysis. Also, ribosomal profiling "averages" the data from all ribosomes and does not allow to study specific ribosomal complexes associated with particular translation factors. However, recently developed modifications of ribosomal profiling provide answers to a number of questions. Thus, it has become possible to analyze not only elongating, but also scanning and reinitiating ribosomes, to study events associated with the collision of ribosomes during mRNA translation, to discover new ways of cotranslational assembly of multisubunit protein complexes during translation, and to selectively isolate ribosomal complexes associated with certain protein factors. New data obtained using these modified approaches provide a better understanding of the mechanisms of translation regulation and the functional roles of translational apparatus components.
Collapse
Affiliation(s)
- Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Viktoriya V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
50
|
Hojka-Osinska A, Chlebowski A, Grochowska J, Owczarek EP, Affek K, Kłosowska-Kosicka K, Szczesny RJ, Dziembowski A. Landscape of functional interactions of human processive ribonucleases revealed by high-throughput siRNA screenings. iScience 2021; 24:103036. [PMID: 34541468 PMCID: PMC8437785 DOI: 10.1016/j.isci.2021.103036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Processive exoribonucleases are executors of RNA decay. In humans, their physical but not functional interactions were thoughtfully investigated. Here we have screened cells deficient in DIS3, XRN2, EXOSC10, DIS3L, and DIS3L2 with a custom siRNA library and determined their genetic interactions (GIs) with diverse pathways of RNA metabolism. We uncovered a complex network of positive interactions that buffer alterations in RNA degradation and reveal reciprocal cooperation with genes involved in transcription, RNA export, and splicing. Further, we evaluated the functional distinctness of nuclear DIS3 and cytoplasmic DIS3L using a library of all known genes associated with RNA metabolism. Our analysis revealed that DIS3 mutation suppresses RNA splicing deficiency, while DIS3L GIs disclose the interplay of cytoplasmic RNA degradation with nuclear RNA processing. Finally, genome-wide DIS3 GI map uncovered relations with genes not directly involved in RNA metabolism, like microtubule organization or regulation of telomerase activity.
Collapse
Affiliation(s)
- Anna Hojka-Osinska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Aleksander Chlebowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joanna Grochowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewelina P. Owczarek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Kamila Affek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | - Roman J. Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| |
Collapse
|