1
|
Alfonso-Gonzalez C, Hilgers V. (Alternative) transcription start sites as regulators of RNA processing. Trends Cell Biol 2024; 34:1018-1028. [PMID: 38531762 DOI: 10.1016/j.tcb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Alternative transcription start site usage (ATSS) is a widespread regulatory strategy that enables genes to choose between multiple genomic loci for initiating transcription. This mechanism is tightly controlled during development and is often altered in disease states. In this review, we examine the growing evidence highlighting a role for transcription start sites (TSSs) in the regulation of mRNA isoform selection during and after transcription. We discuss how the choice of transcription initiation sites influences RNA processing and the importance of this crosstalk for cell identity and organism function. We also speculate on possible mechanisms underlying the integration of transcriptional and post-transcriptional processes.
Collapse
Affiliation(s)
- Carlos Alfonso-Gonzalez
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwigs University, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS- MCB), 79108 Freiburg, Germany
| | - Valérie Hilgers
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
2
|
Nakamura M, Matsumoto Y, Yasuda K, Nagata M, Nakaki R, Okumura M, Yamazaki J. Unraveling the DNA methylation landscape in dog blood across breeds. BMC Genomics 2024; 25:1089. [PMID: 39548380 PMCID: PMC11566899 DOI: 10.1186/s12864-024-10963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND DNA methylation is a covalent bond modification that is observed mainly at cytosine bases in the context of CG pairs. DNA methylation patterns reflect the status of individual tissues, such as cell composition, age, and the local environment, in mammals. Genetic factors also impact DNA methylation, and the genetic diversity among various dog breeds provides a valuable platform for exploring this topic. Compared to those in the human genome, studies on the profiling of methylation in the dog genome have been less comprehensive. RESULTS Our study provides extensive profiling of DNA methylation in the whole blood of three dog breeds using whole-genome bisulfite sequencing. The difference in DNA methylation between breeds was moderate after removing CpGs overlapping with potential genetic variation. However, variance in methylation between individuals was common and often occurred in promoters and CpG islands (CGIs). Moreover, we adopted contextual awareness methodology to characterize DNA primary sequences using natural language processing (NLP). This method could be used to effectively separate unmethylated CGIs from highly methylated CGIs in the sequences that are identified by the conventional criteria. CONCLUSIONS This study presents a comprehensive DNA methylation landscape in the dog blood. Our observations reveal the similar methylation patterns across dog breeds, while CGI regions showed high variations in DNA methylation level between individuals. Our study also highlights the potential of NLP approach for analyzing low-complexity DNA sequences, such as CGIs.
Collapse
Affiliation(s)
- Miyuki Nakamura
- KDDI Research Inc., Ohara 2-1-15, Fujimino, Saitama, 356-0003, Japan.
| | - Yuki Matsumoto
- Research and Development Section, Anicom Specialty Medical Institute Inc., Kanagawa, Japan
- Data Science Center, Azabu University, Kanagawa, Japan
| | - Keiji Yasuda
- KDDI Research Inc., Ohara 2-1-15, Fujimino, Saitama, 356-0003, Japan
| | - Masatoshi Nagata
- KDDI Research Inc., Ohara 2-1-15, Fujimino, Saitama, 356-0003, Japan
| | | | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Jumpei Yamazaki
- Graduate School of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan.
- Translational Research Unit, Graduate School of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Kita 19 Nishi 10, Sapporo, Hokkaido, 060-0819, Japan.
- One Health Research Center, Cancer Research Unit, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Qin S, Chen H, Tian C, Chen Z, Zuo L, Zhang X, Hao H, Huang F, Liu H, Sun X, Guan W. NS1-mediated DNMT1 degradation regulates human bocavirus 1 replication and RNA processing. PLoS Pathog 2024; 20:e1012682. [PMID: 39541416 PMCID: PMC11594422 DOI: 10.1371/journal.ppat.1012682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/26/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Methylation of the DNA genome plays an important role in viral gene inactivation. However, the role of DNA methylation in human bocavirus (HBoV) remains unclear. In this study, the HBoV1 genomic DNA was found extensively methylated at the CHG and CHH sites. Inhibiting DNA methylation with 5-aza-2'-deoxycytidine (DAC) altered the methylation status and reduced viral DNA production, while enhanced the RNA splicing at D1 and D3 sites and the polyadenylation at the proximal polyadenylation site, (pA)p. Knockdown of DNA methyltransferase 1 (DNMT1) had the same effect on viral DNA synthesis and RNA processing as the DAC treatment, indicating that DNMT1 is the major host methyltransferase involved in viral DNA methylation. In addition, the nonstructural protein NS1 promoted DNMT1 degradation through the ubiquitin-proteasome pathway to regulate viral replication and RNA processing. Collectively, the results suggest that DNA methylation and DNMT1 facilitate HBoV replication and are essential for appropriate NS1 localization in the nucleus. DNMT1 degradation through NS1 promotes the virus RNA processing, leading to viral protein expression.
Collapse
Affiliation(s)
- Shuangkang Qin
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Honghe Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chuchu Tian
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Li Zuo
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Fang Huang
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Xiulian Sun
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| |
Collapse
|
4
|
Herbert A. A Compendium of G-Flipon Biological Functions That Have Experimental Validation. Int J Mol Sci 2024; 25:10299. [PMID: 39408629 PMCID: PMC11477331 DOI: 10.3390/ijms251910299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
As with all new fields of discovery, work on the biological role of G-quadruplexes (GQs) has produced a number of results that at first glance are quite baffling, sometimes because they do not fit well together, but mostly because they are different from commonly held expectations. Like other classes of flipons, those that form G-quadruplexes have a repeat sequence motif that enables the fold. The canonical DNA motif (G3N1-7)3G3, where N is any nucleotide and G is guanine, is a feature that is under active selection in avian and mammalian genomes. The involvement of G-flipons in genome maintenance traces back to the invertebrate Caenorhabditis elegans and to ancient DNA repair pathways. The role of GQs in transcription is supported by the observation that yeast Rap1 protein binds both B-DNA, in a sequence-specific manner, and GQs, in a structure-specific manner, through the same helix. Other sequence-specific transcription factors (TFs) also engage both conformations to actuate cellular transactions. Noncoding RNAs can also modulate GQ formation in a sequence-specific manner and engage the same cellular machinery as localized by TFs, linking the ancient RNA world with the modern protein world. The coevolution of noncoding RNAs and sequence-specific proteins is supported by studies of early embryonic development, where the transient formation of G-quadruplexes coordinates the epigenetic specification of cell fate.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Unit 3412, Charlestown, MA 02129, USA
| |
Collapse
|
5
|
Saferali A, Kim W, Xu Z, Chase RP, Cho MH, Laederach A, Castaldi PJ, Hersh CP. Colocalization analysis of 3' UTR alternative polyadenylation quantitative trait loci reveals novel mechanisms underlying associations with lung function. Hum Mol Genet 2024; 33:1164-1175. [PMID: 38569558 DOI: 10.1093/hmg/ddae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/02/2024] [Indexed: 04/05/2024] Open
Abstract
While many disease-associated single nucleotide polymorphisms (SNPs) are expression quantitative trait loci (eQTLs), a large proportion of genome-wide association study (GWAS) variants are of unknown function. Alternative polyadenylation (APA) plays an important role in posttranscriptional regulation by allowing genes to shorten or extend 3' untranslated regions (UTRs). We hypothesized that genetic variants that affect APA in lung tissue may lend insight into the function of respiratory associated GWAS loci. We generated alternative polyadenylation (apa) QTLs using RNA sequencing and whole genome sequencing on 1241 subjects from the Lung Tissue Research Consortium (LTRC) as part of the NHLBI TOPMed project. We identified 56 179 APA sites corresponding to 13 582 unique genes after filtering out APA sites with low usage. We found that a total of 8831 APA sites were associated with at least one SNP with q-value < 0.05. The genomic distribution of lead APA SNPs indicated that the majority are intronic variants (33%), followed by downstream gene variants (26%), 3' UTR variants (17%), and upstream gene variants (within 1 kb region upstream of transcriptional start site, 10%). APA sites in 193 genes colocalized with GWAS data for at least one phenotype. Genes containing the top APA sites associated with GWAS variants include membrane associated ring-CH-type finger 2 (MARCHF2), nectin cell adhesion molecule 2 (NECTIN2), and butyrophilin subfamily 3 member A2 (BTN3A2). Overall, these findings suggest that APA may be an important mechanism for genetic variants in lung function and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
| | - Wonji Kim
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
| | - Zhonghui Xu
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
| | - Robert P Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, United States
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, 120 South Road, Chapel Hill, NC 27599, United States
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
- Division of General Medicine and Primary Care, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, United States
| |
Collapse
|
6
|
Gimeno-Valiente F, López-Rodas G, Castillo J, Franco L. The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers (Basel) 2024; 16:2123. [PMID: 38893242 PMCID: PMC11171328 DOI: 10.3390/cancers16112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer driver genes are either oncogenes or tumour suppressor genes that are classically activated or inactivated, respectively, by driver mutations. Alternative splicing-which produces various mature mRNAs and, eventually, protein variants from a single gene-may also result in driving neoplastic transformation because of the different and often opposed functions of the variants of driver genes. The present review analyses the different alternative splicing events that result in driving neoplastic transformation, with an emphasis on their molecular mechanisms. To do this, we collected a list of 568 gene drivers of cancer and revised the literature to select those involved in the alternative splicing of other genes as well as those in which its pre-mRNA is subject to alternative splicing, with the result, in both cases, of producing an oncogenic isoform. Thirty-one genes fall into the first category, which includes splicing factors and components of the spliceosome and splicing regulators. In the second category, namely that comprising driver genes in which alternative splicing produces the oncogenic isoform, 168 genes were found. Then, we grouped them according to the molecular mechanisms responsible for alternative splicing yielding oncogenic isoforms, namely, mutations in cis splicing-determining elements, other causes involving non-mutated cis elements, changes in splicing factors, and epigenetic and chromatin-related changes. The data given in the present review substantiate the idea that aberrant splicing may regulate the activation of proto-oncogenes or inactivation of tumour suppressor genes and details on the mechanisms involved are given for more than 40 driver genes.
Collapse
Affiliation(s)
- Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London WC1E 6DD, UK;
| | - Gerardo López-Rodas
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| | - Josefa Castillo
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis Franco
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
7
|
Fansler MM, Mitschka S, Mayr C. Quantifying 3'UTR length from scRNA-seq data reveals changes independent of gene expression. Nat Commun 2024; 15:4050. [PMID: 38744866 PMCID: PMC11094166 DOI: 10.1038/s41467-024-48254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Although more than half of all genes generate transcripts that differ in 3'UTR length, current analysis pipelines only quantify the amount but not the length of mRNA transcripts. 3'UTR length is determined by 3' end cleavage sites (CS). We map CS in more than 200 primary human and mouse cell types and increase CS annotations relative to the GENCODE database by 40%. Approximately half of all CS are used in few cell types, revealing that most genes only have one or two major 3' ends. We incorporate the CS annotations into a computational pipeline, called scUTRquant, for rapid, accurate, and simultaneous quantification of gene and 3'UTR isoform expression from single-cell RNA sequencing (scRNA-seq) data. When applying scUTRquant to data from 474 cell types and 2134 perturbations, we discover extensive 3'UTR length changes across cell types that are as widespread and coordinately regulated as gene expression changes but affect mostly different genes. Our data indicate that mRNA abundance and mRNA length are two largely independent axes of gene regulation that together determine the amount and spatial organization of protein synthesis.
Collapse
Affiliation(s)
- Mervin M Fansler
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christine Mayr
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA.
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Tibben BM, Rothbart SB. Mechanisms of DNA Methylation Regulatory Function and Crosstalk with Histone Lysine Methylation. J Mol Biol 2024; 436:168394. [PMID: 38092287 PMCID: PMC10957332 DOI: 10.1016/j.jmb.2023.168394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
DNA methylation is a well-studied epigenetic modification that has key roles in regulating gene expression, maintaining genome integrity, and determining cell fate. Precisely how DNA methylation patterns are established and maintained in specific cell types at key developmental stages is still being elucidated. However, research over the last two decades has contributed to our understanding of DNA methylation regulation by other epigenetic processes. Specifically, lysine methylation on key residues of histone proteins has been shown to contribute to the allosteric regulation of DNA methyltransferase (DNMT) activities. In this review, we discuss the dynamic interplay between DNA methylation and histone lysine methylation as epigenetic regulators of genome function by synthesizing key recent studies in the field. With a focus on DNMT3 enzymes, we discuss mechanisms of DNA methylation and histone lysine methylation crosstalk in the regulation of gene expression and the maintenance of genome integrity. Further, we discuss how alterations to the balance of various sites of histone lysine methylation and DNA methylation contribute to human developmental disorders and cancers. Finally, we provide perspectives on the current direction of the field and highlight areas for continued research and development.
Collapse
Affiliation(s)
- Bailey M Tibben
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
9
|
Li Y, Gong J, Sun Q, Vong EG, Cheng X, Wang B, Yuan Y, Jin L, Gamazon ER, Zhou D, Lai M, Zhang D. Alternative polyadenylation quantitative trait methylation mapping in human cancers provides clues into the molecular mechanisms of APA. Am J Hum Genet 2024; 111:562-583. [PMID: 38367620 PMCID: PMC10940021 DOI: 10.1016/j.ajhg.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/19/2024] Open
Abstract
Genetic variants are involved in the orchestration of alternative polyadenylation (APA) events, while the role of DNA methylation in regulating APA remains unclear. We generated a comprehensive atlas of APA quantitative trait methylation sites (apaQTMs) across 21 different types of cancer (1,612 to 60,219 acting in cis and 4,448 to 142,349 in trans). Potential causal apaQTMs in non-cancer samples were also identified. Mechanistically, we observed a strong enrichment of cis-apaQTMs near polyadenylation sites (PASs) and both cis- and trans-apaQTMs in proximity to transcription factor (TF) binding regions. Through the integration of ChIP-signals and RNA-seq data from cell lines, we have identified several regulators of APA events, acting either directly or indirectly, implicating novel functions of some important genes, such as TCF7L2, which is known for its involvement in type 2 diabetes and cancers. Furthermore, we have identified a vast number of QTMs that share the same putative causal CpG sites with five different cancer types, underscoring the roles of QTMs, including apaQTMs, in the process of tumorigenesis. DNA methylation is extensively involved in the regulation of APA events in human cancers. In an attempt to elucidate the potential underlying molecular mechanisms of APA by DNA methylation, our study paves the way for subsequent experimental validations into the intricate biological functions of DNA methylation in APA regulation and the pathogenesis of human cancers. To present a comprehensive catalog of apaQTM patterns, we introduce the Pancan-apaQTM database, available at https://pancan-apaqtm-zju.shinyapps.io/pancanaQTM/.
Collapse
Affiliation(s)
- Yige Li
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jingwen Gong
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China
| | - Qingrong Sun
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang Province, China; College of Information Science and Technology, ZheJiang Shuren University, Hangzhou 310015, ZheJiang, China
| | - Eu Gene Vong
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaoqing Cheng
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Binghong Wang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ying Yuan
- Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Data Science Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan Zhou
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China; Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| | - Dandan Zhang
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China; Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
10
|
Lorzadeh A, Ye G, Sharma S, Jadhav U. DNA methylation-dependent and -independent binding of CDX2 directs activation of distinct developmental and homeostatic genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579850. [PMID: 38405700 PMCID: PMC10888781 DOI: 10.1101/2024.02.11.579850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Precise spatiotemporal and cell type-specific gene expression is essential for proper tissue development and function. Transcription factors (TFs) guide this process by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of TFs. However, how TFs navigate various chromatin features and selectively bind a small portion of the millions of possible genomic target loci is still not well understood. Here we show that Cdx2 - a pioneer TF that binds distinct targets in developing versus adult intestinal epithelial cells - has a preferential affinity for a non-canonical CpG-containing motif in vivo. A higher frequency of this motif at embryonic and fetal Cdx2 target loci and the specifically methylated state of the CpG during development allows selective Cdx2 binding and activation of developmental enhancers and linked genes. Conversely, demethylation at these enhancers prohibits ectopic Cdx2 binding in adult cells, where Cdx2 binds its canonical motif without a CpG. This differential Cdx2 binding allows for corecruitment of Ctcf and Hnf4, facilitating the establishment of intestinal superenhancers during development and enhancers mediating adult homeostatic functions, respectively. Induced gain of DNA methylation in the adult mouse epithelium or cultured cells causes ectopic recruitment of Cdx2 to the developmental target loci and facilitates cobinding of the partner TFs. Together, our results demonstrate that the differential CpG motif requirements for Cdx2 binding to developmental versus adult target sites allow it to navigate different DNA methylation profiles and activate cell type-specific genes at appropriate times.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - George Ye
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - Sweta Sharma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| |
Collapse
|
11
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Li G, Pu P, Pan M, Weng X, Qiu S, Li Y, Abbas SJ, Zou L, Liu K, Wang Z, Shao Z, Jiang L, Wu W, Liu Y, Shao R, Liu F, Liu Y. Topological reorganization and functional alteration of distinct genomic components in gallbladder cancer. Front Med 2024; 18:109-127. [PMID: 37721643 DOI: 10.1007/s11684-023-1008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/05/2023] [Indexed: 09/19/2023]
Abstract
Altered three-dimensional architecture of chromatin influences various genomic regulators and subsequent gene expression in human cancer. However, knowledge of the topological rearrangement of genomic hierarchical layers in cancer is largely limited. Here, by taking advantage of in situ Hi-C, RNA-sequencing, and chromatin immunoprecipitation sequencing (ChIP-seq), we investigated structural reorganization and functional changes in chromosomal compartments, topologically associated domains (TADs), and CCCTC binding factor (CTCF)-mediated loops in gallbladder cancer (GBC) tissues and cell lines. We observed that the chromosomal compartment A/B switch was correlated with CTCF binding levels and gene expression changes. Increased inter-TAD interactions with weaker TAD boundaries were identified in cancer cell lines relative to normal controls. Furthermore, the chromatin short loops and cancer unique loops associated with chromatin remodeling and epithelial-mesenchymal transition activation were enriched in cancer compared with their control counterparts. Cancer-specific enhancer-promoter loops, which contain multiple transcription factor binding motifs, acted as a central element to regulate aberrant gene expression. Depletion of individual enhancers in each loop anchor that connects with promoters led to the inhibition of their corresponding gene expressions. Collectively, our data offer the landscape of hierarchical layers of cancer genome and functional alterations that contribute to the development of GBC.
Collapse
Affiliation(s)
- Guoqiang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Peng Pu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Mengqiao Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Xiaoling Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Shimei Qiu
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200082, China
| | - Yiming Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Sk Jahir Abbas
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Lu Zou
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Zheng Wang
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Ziyu Shao
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200082, China
| | - Lin Jiang
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200082, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China.
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Fatao Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China.
| |
Collapse
|
13
|
Caudai C, Salerno E. Complementing Hi-C information for 3D chromatin reconstruction by ChromStruct. FRONTIERS IN BIOINFORMATICS 2024; 3:1287168. [PMID: 38318534 PMCID: PMC10840501 DOI: 10.3389/fbinf.2023.1287168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
A multiscale method proposed elsewhere for reconstructing plausible 3D configurations of the chromatin in cell nuclei is recalled, based on the integration of contact data from Hi-C experiments and additional information coming from ChIP-seq, RNA-seq and ChIA-PET experiments. Provided that the additional data come from independent experiments, this kind of approach is supposed to leverage them to complement possibly noisy, biased or missing Hi-C records. When the different data sources are mutually concurrent, the resulting solutions are corroborated; otherwise, their validity would be weakened. Here, a problem of reliability arises, entailing an appropriate choice of the relative weights to be assigned to the different informational contributions. A series of experiments is presented that help to quantify the advantages and the limitations offered by this strategy. Whereas the advantages in accuracy are not always significant, the case of missing Hi-C data demonstrates the effectiveness of additional information in reconstructing the highly packed segments of the structure.
Collapse
Affiliation(s)
- Claudia Caudai
- Institute of Information Science and Technologies, National Research Council of Italy, Pisa, Italy
| | | |
Collapse
|
14
|
Hou M, Wang Q, Zhao R, Cao Y, Zhang J, Sun X, Yu S, Wang K, Chen Y, Zhang Y, Li J. Analysis of Chromatin Accessibility and DNA Methylation to Reveal the Functions of Epigenetic Modifications in Cyprinus carpio Gonads. Int J Mol Sci 2023; 25:321. [PMID: 38203492 PMCID: PMC10778764 DOI: 10.3390/ijms25010321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Epigenetic modifications are critical in precisely regulating gene expression. The common carp (Cyprinus carpio) is an economically important fish species, and females exhibit faster growth rates than males. However, the studies related to epigenetic modifications in the common carp gonads are limited. In this study, we conducted the Assay for Transposase Accessible Chromatin sequencing (ATAC-seq) and Bisulfite sequencing (BS-seq) to explore the roles of epigenetic modifications in the common carp gonads. We identified 84,207 more accessible regions and 77,922 less accessible regions in ovaries compared to testes, and some sex-biased genes showed differential chromatin accessibility in their promoter regions, such as sox9a and zp3. Motif enrichment analysis showed that transcription factors (TFs) associated with embryonic development and cell proliferation were heavily enriched in ovaries, and the TFs Foxl2 and SF1 were only identified in ovaries. We also analyzed the possible regulations between chromatin accessibility and gene expression. By BS-seq, we identified 2087 promoter differentially methylated genes (promoter-DMGs) and 5264 gene body differentially methylated genes (genebody-DMGs) in CG contexts. These genebody-DMGs were significantly enriched in the Wnt signaling pathway, TGF-beta signaling pathway, and GnRH signaling pathway, indicating that methylation in gene body regions could play an essential role in sex maintenance, just like methylation in promoter regions. Combined with transcriptomes, we revealed that the expression of dmrtb1-like, spag6, and fels was negatively correlated with their methylation levels in promoter regions. Our study on the epigenetic modifications of gonads contributes to elucidating the molecular mechanism of sex differentiation and sex maintenance in the common carp.
Collapse
Affiliation(s)
- Mingxi Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Yiming Cao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Jin Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Xiaoqing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Shuangting Yu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaikuo Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (K.W.); (Y.C.)
| | - Yingjie Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (K.W.); (Y.C.)
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| | - Jiongtang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (M.H.); (Q.W.); (R.Z.); (Y.C.); (J.Z.); (X.S.); (S.Y.); (Y.Z.)
| |
Collapse
|
15
|
Yang C, Deng L, Bao F, Jiang H, Zhang L. Sevoflurane with Low Concentration Decrease DNA Methylation on Chronic Obstructive Pulmonary Disease (COPD)-Related Gene Promoter in COPD Rat. COPD 2023; 20:348-356. [PMID: 38010369 DOI: 10.1080/15412555.2023.2278282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a difficult-to-cure disease that mainly affects the respiratory system. Inhaled anesthetic drug such as sevoflurane plays a controversial role in COPD by different concentration, but the underlying epigenetic mechanism remains unclear. Here, we prepared lipopolysaccharide (LPS)-induced COPD rat model, and isolated Alveolar type II (ATII) cells. We mainly focused DNA methylation on the promoter of COPD-related genes including Sftpa1, Napsa, Ca2, Sfta2, Lamp3, Wif1, Pgc, and Etv5. We observed COPD rat treated by sevoflurane with low (0.5%) and high (2%) concentrations displayed an opposite DNA methylation pattern. These six genes' promoter were all hypomethylated by 0.5% sevoflurane whereas hypermethylated by 2% sevoflurane, accompanied with the opposite transcriptional activity. We further verified that the DNMT1 binding ability contributed to DNA methylation these six genes' promoter. Moreover, we also captured DNMT1 and identified REC8 meiotic recombination protein (REC8) as the specific binding protein only existed in ATII cells treated with 0.5% sevoflurane rather than 2% and control. The binding ability of REC8 on these target genes' promoter showed highly positive correlation with DNMT1. In summary, we uncovered a potential epigenetic role of sevoflurane with low concentration in ATII cells of COPD that may help us deeply understand the pathogenesis and treatment mechanism of inhaled anesthesia drugs in COPD via a dose-dependent manner.
Collapse
Affiliation(s)
- Chuanxin Yang
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| | - Libing Deng
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| | - Fang Bao
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| | - Hui Jiang
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| | - Long Zhang
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Preston-Alp S, Caruso LB, Su C, Keith K, Soldan SS, Maestri D, Madzo J, Kossenkov A, Napoletani G, Gewurz B, Lieberman PM, Tempera I. Decitabine disrupts EBV genomic epiallele DNA methylation patterns around CTCF binding sites to increase chromatin accessibility and lytic transcription in gastric cancer. mBio 2023; 14:e0039623. [PMID: 37606370 PMCID: PMC10653948 DOI: 10.1128/mbio.00396-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/30/2023] [Indexed: 08/23/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus (EBV) latency is controlled by epigenetic silencing by DNA methylation [5-methyl cytosine (5mC)], histone modifications, and chromatin looping. However, how they dictate the transcriptional program in EBV-associated gastric cancers remains incompletely understood. EBV-associated gastric cancer displays a 5mC hypermethylated phenotype. A potential treatment for this cancer subtype is the DNA hypomethylating agent, which induces EBV lytic reactivation and targets hypermethylation of the cellular DNA. In this study, we identified a heterogeneous pool of EBV epialleles within two tumor-derived gastric cancer cell lines that are disrupted with a hypomethylating agent. Stochastic DNA methylation patterning at critical regulatory regions may be an underlying mechanism for spontaneous reactivation. Our results highlight the critical role of epigenetic modulation on EBV latency and life cycle, which is maintained through the interaction between 5mC and the host protein CCCTC-binding factor.
Collapse
Affiliation(s)
| | | | - Chenhe Su
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kelsey Keith
- The Coriell Institute for Medical Research, Camden, New Jersey, USA
| | | | | | - Jozef Madzo
- The Coriell Institute for Medical Research, Camden, New Jersey, USA
| | | | | | - Benjamin Gewurz
- Division of Infectious Diseases, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Tan Y, Zheng T, Su Z, Chen M, Chen S, Zhang R, Wang R, Li K, Na N. Alternative polyadenylation reprogramming of MORC2 induced by NUDT21 loss promotes KIRC carcinogenesis. JCI Insight 2023; 8:e162893. [PMID: 37737260 PMCID: PMC10561724 DOI: 10.1172/jci.insight.162893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
Alternative polyadenylation (APA), a posttranscriptional mechanism of gene expression via determination of 3'UTR length, has an emerging role in carcinogenesis. Although abundant APA reprogramming is found in kidney renal clear cell carcinoma (KIRC), which is one of the major malignancies, whether APA functions in KIRC remains unknown. Herein, we found that chromatin modifier MORC2 gained oncogenic potential in KIRC among the genes with APA reprogramming, and moreover, its oncogenic potential was enhanced by 3'UTR shortening through stabilization of MORC2 mRNA. MORC2 was found to function in KIRC by downregulating tumor suppressor DAPK1 via DNA methylation. Mechanistically, MORC2 recruited DNMT3A to facilitate hypermethylation of the DAPK1 promoter, which was strengthened by 3'UTR shortening of MORC2. Furthermore, loss of APA regulator NUDT21, which was induced by DNMT3B-mediated promoter methylation, was identified as responsible for 3'UTR shortening of MORC2 in KIRC. Additionally, NUDT21 was confirmed to act as a tumor suppressor mainly depending on downregulation of MORC2. Finally, we designed an antisense oligonucleotide (ASO) to enhance NUDT21 expression and validated its antitumor effect in vivo and in vitro. This study uncovers the DNMT3B/NUDT21/APA/MORC2/DAPK1 regulatory axis in KIRC, disclosing the role of APA in KIRC and the crosstalk between DNA methylation and APA.
Collapse
Affiliation(s)
- Yuqin Tan
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tong Zheng
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zijun Su
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Min Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Rui Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruojiao Wang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ke Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Zhang Z, Bae B, Cuddleston WH, Miura P. Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing. Nat Commun 2023; 14:5506. [PMID: 37679364 PMCID: PMC10484994 DOI: 10.1038/s41467-023-41207-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nervous system development is associated with extensive regulation of alternative splicing (AS) and alternative polyadenylation (APA). AS and APA have been extensively studied in isolation, but little is known about how these processes are coordinated. Here, the coordination of cassette exon (CE) splicing and APA in Drosophila was investigated using a targeted long-read sequencing approach we call Pull-a-Long-Seq (PL-Seq). This cost-effective method uses cDNA pulldown and Nanopore sequencing combined with an analysis pipeline to quantify inclusion of alternative exons in connection with alternative 3' ends. Using PL-Seq, we identified genes that exhibit significant differences in CE splicing depending on connectivity to short versus long 3'UTRs. Genomic long 3'UTR deletion was found to alter upstream CE splicing in short 3'UTR isoforms and ELAV loss differentially affected CE splicing depending on connectivity to alternative 3'UTRs. This work highlights the importance of considering connectivity to alternative 3'UTRs when monitoring AS events.
Collapse
Affiliation(s)
- Zhiping Zhang
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Bongmin Bae
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | | | - Pedro Miura
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
- Institute for System Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
19
|
Fink EE, Nanavaty V, Lee BH, Ting AH. Heat shock induces alternative polyadenylation through dynamic DNA methylation-regulated chromatin looping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554792. [PMID: 37662379 PMCID: PMC10473739 DOI: 10.1101/2023.08.25.554792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alternative cleavage and polyadenylation (APA) is a gene regulatory mechanism used by cells under stress to upregulate proteostasis-promoting transcripts, but how cells achieve this remains poorly understood. Previously, we elucidated a DNA methylation-regulated APA mechanism, in which gene body DNA methylation enhances distal poly(A) isoform expression by blocking CTCF binding and chromatin loop formation at APA control regions. We hypothesized that DNA methylation-regulated APA is one mechanism cells employ to induce proteostasis-promoting poly(A) isoforms. At the DNAJB6 co-chaperone gene locus, acute heat shock resulted in binding of stress response transcription factors HSF1, ATF6, and YY1 at the APA control region and an increase in the expression of the proximal poly(A) isoform known to prevent protein aggregation. Furthermore, TET1 was recruited to rapidly demethylate DNA, facilitating CTCF binding and chromatin loop formation, thereby reinforcing preferential proximal poly(A) isoform expression. As cells recovered, the transcription factors vacated the APA control region, and DNMT1 was recruited to remethylate the region. This process resolved chromatin looping and reset the poly(A) isoform expression pattern. Our findings unveil an epigenetic mechanism enabling cells to dynamically modulate poly(A) isoforms in response to stress while shedding light on the interplay between DNA methylation, transcription factors, and chromatin looping.
Collapse
|
20
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
21
|
Hu F, Chen B, Wang Q, Yang Z, Chu M. Multi-omics data analysis reveals the biological implications of alternative splicing events in lung adenocarcinoma. J Bioinform Comput Biol 2023; 21:2350020. [PMID: 37694487 DOI: 10.1142/s0219720023500208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cancer is characterized by the dysregulation of alternative splicing (AS). However, the comprehensive regulatory mechanisms of AS in lung adenocarcinoma (LUAD) are poorly understood. Here, we displayed the AS landscape in LUAD based on the integrated analyses of LUAD's multi-omics data. We identified 13,995 AS events in 6309 genes as differentially expressed alternative splicing events (DEASEs) mainly covering protein-coding genes. These DEASEs were strongly linked to "cancer hallmarks", such as apoptosis, DNA repair, cell cycle, cell proliferation, angiogenesis, immune response, generation of precursor metabolites and energy, p53 signaling pathway and PI3K-AKT signaling pathway. We further built a regulatory network connecting splicing factors (SFs) and DEASEs. In addition, RNA-binding protein (RBP) mutations that can affect DEASEs were investigated to find some potential cancer drivers. Further association analysis demonstrated that DNA methylation levels were highly correlated with DEASEs. In summary, our results can bring new insight into understanding the mechanism of AS and provide novel biomarkers for personalized medicine of LUAD.
Collapse
Affiliation(s)
- Fuyan Hu
- Department of Statistics, School of Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, P. R. China
| | - Bifeng Chen
- Department of Biological Science and Technology, School of Chemistry Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan, Hubei, P. R. China
| | - Qing Wang
- Department of Traditional Chinese Medicine of Wuhan Puren Hospital, Affiliated Hospital of Wuhan University of Science and Technology, 1# Benxi Street, Qingshan District, Wuhan, Hubei, P. R. China
| | - Zhiyuan Yang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, Zhejiang, P. R. China
| | - Man Chu
- The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P. R. China
| |
Collapse
|
22
|
Cao J, Kuyumcu-Martinez MN. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc Res 2023; 119:1324-1335. [PMID: 36657944 PMCID: PMC10262186 DOI: 10.1093/cvr/cvad014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Cleavage and polyadenylation of pre-mRNAs is a necessary step for gene expression and function. Majority of human genes exhibit multiple polyadenylation sites, which can be alternatively used to generate different mRNA isoforms from a single gene. Alternative polyadenylation (APA) of pre-mRNAs is important for the proteome and transcriptome landscape. APA is tightly regulated during development and contributes to tissue-specific gene regulation. Mis-regulation of APA is linked to a wide range of pathological conditions. APA-mediated gene regulation in the heart is emerging as a new area of research. Here, we will discuss the impact of APA on gene regulation during heart development and in cardiovascular diseases. First, we will briefly review how APA impacts gene regulation and discuss molecular mechanisms that control APA. Then, we will address APA regulation during heart development and its dysregulation in cardiovascular diseases. Finally, we will discuss pre-mRNA targeting strategies to correct aberrant APA patterns of essential genes for the treatment or prevention of cardiovascular diseases. The RNA field is blooming due to advancements in RNA-based technologies. RNA-based vaccines and therapies are becoming the new line of effective and safe approaches for the treatment and prevention of human diseases. Overall, this review will be influential for understanding gene regulation at the RNA level via APA in the heart and will help design RNA-based tools for the treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jun Cao
- Faculty of Environment and Life, Beijing University of Technology, Xueyuan Road, Haidian District, Beijing 100124, PR China
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
| |
Collapse
|
23
|
Alfonso-Gonzalez C, Legnini I, Holec S, Arrigoni L, Ozbulut HC, Mateos F, Koppstein D, Rybak-Wolf A, Bönisch U, Rajewsky N, Hilgers V. Sites of transcription initiation drive mRNA isoform selection. Cell 2023; 186:2438-2455.e22. [PMID: 37178687 PMCID: PMC10228280 DOI: 10.1016/j.cell.2023.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/16/2022] [Accepted: 04/06/2023] [Indexed: 05/15/2023]
Abstract
The generation of distinct messenger RNA isoforms through alternative RNA processing modulates the expression and function of genes, often in a cell-type-specific manner. Here, we assess the regulatory relationships between transcription initiation, alternative splicing, and 3' end site selection. Applying long-read sequencing to accurately represent even the longest transcripts from end to end, we quantify mRNA isoforms in Drosophila tissues, including the transcriptionally complex nervous system. We find that in Drosophila heads, as well as in human cerebral organoids, 3' end site choice is globally influenced by the site of transcription initiation (TSS). "Dominant promoters," characterized by specific epigenetic signatures including p300/CBP binding, impose a transcriptional constraint to define splice and polyadenylation variants. In vivo deletion or overexpression of dominant promoters as well as p300/CBP loss disrupted the 3' end expression landscape. Our study demonstrates the crucial impact of TSS choice on the regulation of transcript diversity and tissue identity.
Collapse
Affiliation(s)
- Carlos Alfonso-Gonzalez
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), 79108 Freiburg, Germany
| | - Ivano Legnini
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Sarah Holec
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Laura Arrigoni
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Hasan Can Ozbulut
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg, Germany
| | - Fernando Mateos
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - David Koppstein
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Agnieszka Rybak-Wolf
- Organoid Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Ulrike Bönisch
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; Charité - Universitätsmedizin, Charitépl. 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Berlin, Germany; German Cancer Consortium (DKTK); National Center for Tumor Diseases (NCT), Site Berlin, Berlin, Germany
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Signalling Research Centre CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany.
| |
Collapse
|
24
|
Huang K, Wu S, Yang X, Wang T, Liu X, Zhou X, Huang L. CAFuncAPA: a knowledgebase for systematic functional annotations of APA events in human cancers. NAR Cancer 2023; 5:zcad004. [PMID: 36694725 PMCID: PMC9869079 DOI: 10.1093/narcan/zcad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Alternative polyadenylation (APA) is a widespread posttranscriptional regulation process. APA generates diverse mRNA isoforms with different 3' UTR lengths, affecting mRNA expression, miRNA binding regulation and alternative splicing events. Previous studies have demonstrated the important roles of APA in tumorigenesis and cancer progression through diverse aspects. Thus, a comprehensive functional landscape of diverse APA events would aid in a better understanding of the underlying mechanisms related to APA in human cancers. Here, we built CAFuncAPA (https://relab.xidian.edu.cn/CAFuncAPA/) to systematically annotate the functions of 15478 APA events in human pan-cancers. Specifically, we first identified APA events associated with cancer survival and tumor progression. We annotated the potential downstream effects of APA on genes/isoforms expression, regulation of miRNAs, RNA binding proteins (RBPs) and alternative splicing events. Moreover, we also identified up-regulators of APA events, including the effects of genetic variants on poly(A) sites and RBPs, as well as the effect of methylation phenotypes on APA events. These findings suggested that CAFuncAPA can be a helpful resource for a better understanding of APA regulators and potential functions in cancer biology.
Collapse
Affiliation(s)
- Kexin Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
- West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Sijia Wu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Xiaotong Yang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Tiangang Wang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Xi Liu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
25
|
Hao Y, Cai T, Liu C, Zhang X, Fu XD. Sequential Polyadenylation to Enable Alternative mRNA 3' End Formation. Mol Cells 2023; 46:57-64. [PMID: 36697238 PMCID: PMC9880608 DOI: 10.14348/molcells.2023.2176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/27/2023] Open
Abstract
In eukaryotic cells, a key RNA processing step to generate mature mRNA is the coupled reaction for cleavage and polyadenylation (CPA) at the 3' end of individual transcripts. Many transcripts are alternatively polyadenylated (APA) to produce mRNAs with different 3' ends that may either alter protein coding sequence (CDS-APA) or create different lengths of 3'UTR (tandem-APA). As the CPA reaction is intimately associated with transcriptional termination, it has been widely assumed that APA is regulated cotranscriptionally. Isoforms terminated at different regions may have distinct RNA stability under different conditions, thus altering the ratio of APA isoforms. Such differential impacts on different isoforms have been considered as post-transcriptional APA, but strictly speaking, this can only be considered "apparent" APA, as the choice is not made during the CPA reaction. Interestingly, a recent study reveals sequential APA as a new mechanism for post-transcriptional APA. This minireview will focus on this new mechanism to provide insights into various documented regulatory paradigms.
Collapse
Affiliation(s)
- Yajing Hao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ting Cai
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Chang Liu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xuan Zhang
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Present address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
26
|
Murphy MR, Ramadei A, Doymaz A, Varriano S, Natelson D, Yu A, Aktas S, Mazzeo M, Mazzeo M, Zakusilo G, Kleiman FE. Long Non-Coding RNA Generated from CDKN1A Gene by Alternative Polyadenylation Regulates p21 Expression during DNA Damage Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523318. [PMID: 36711808 PMCID: PMC9882041 DOI: 10.1101/2023.01.10.523318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alternative Polyadenylation (APA) is an emerging mechanism for dynamic changes in gene expression. Previously, we described widespread APA occurrence in introns during the DNA damage response (DDR). Here, we show that a DNA damage activated APA event occurs in the first intron of CDKN1A , inducing an alternate last exon (ALE)-containing lncRNA. We named this lncRNA SPUD (Selective Polyadenylation Upon Damage). SPUD localizes to polysomes in the cytoplasm and is detectable as multiple isoforms in available high throughput studies. SPUD has low abundance compared to the CDKN1A full-length isoform and is induced in cancer and normal cells under a variety of DNA damaging conditions in part through p53 transcriptional activation. RNA binding protein (RBP) HuR and the transcriptional repressor CTCF regulate SPUD levels. SPUD induction increases p21 protein, but not CDKN1A full-length levels, affecting p21 functions in cell-cycle, CDK2 expression, and cell viability. Like CDKN1A full-length isoform, SPUD can bind two competitive p21 translational regulators, the inhibitor calreticulin and the activator CUGBP1; SPUD can change their association with CDKN1A full-length in a DDR-dependent manner. Together, these results show a new regulatory mechanism by which a lncRNA controls p21 expression post-transcriptionally, highlighting lncRNA relevance in DDR progression and cellcycle.
Collapse
|
27
|
Gallicchio L, Olivares GH, Berry CW, Fuller MT. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol 2023; 20:908-925. [PMID: 37906624 PMCID: PMC10730144 DOI: 10.1080/15476286.2023.2275109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
| | - Gonzalo H. Olivares
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Center for Integrative Biology (CIB), Universidad Mayor, Chile and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
28
|
Cao R, Xie J, Zhang L. Abnormal methylation caused by folic acid deficiency in neural tube defects. Open Life Sci 2022; 17:1679-1688. [PMID: 36589786 PMCID: PMC9784971 DOI: 10.1515/biol-2022-0504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022] Open
Abstract
Neural tube closure disorders, including anencephaly, spina bifida, and encephalocele, cause neural tube defects (NTDs). This congenital disability remained not only a major contributor to the prevalence of stillbirths and neonatal deaths but also a significant cause of lifelong physical disability in surviving infants. NTDs are complex diseases caused by multiple etiologies, levels, and mechanisms. Currently, the pathogenesis of NTDs is considered to be associated with both genetic and environmental factors. Here, we aimed to review the research progress on the etiology and mechanism of NTDs induced by methylation modification caused by folic acid deficiency. Folic acid supplementation in the diet is reported to be beneficial in preventing NTDs. Methylation modification is one of the most important epigenetic modifications crucial for brain neurodevelopment. Disturbances in folic acid metabolism and decreased S-adenosylmethionine levels lead to reduced methyl donors and methylation modification disorders. In this review, we summarized the relationship between NTDs, folic acid metabolism, and related methylation of DNA, imprinted genes, cytoskeletal protein, histone, RNA, and non-coding RNA, so as to clarify the role of folic acid and methylation in NTDs and to better understand the various pathogenesis mechanisms of NTDs and the effective prevention.
Collapse
Affiliation(s)
- Rui Cao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China,Shanxi Key Laboratory of Pharmaceutical Biotechnology, Shanxi Biological Research Institute Co., Ltd, Taiyuan, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China
| | - Li Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China,Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China
| |
Collapse
|
29
|
A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes. Nat Commun 2022; 13:7430. [PMID: 36473860 PMCID: PMC9726889 DOI: 10.1038/s41467-022-35158-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The breakdown of toll-like receptor (TLR) tolerance results in tissue damage, and hyperactivation of the TLRs and subsequent inflammatory consequences have been implicated as risk factors for more severe forms of disease and poor outcomes from various diseases including COVID-19 and metabolic (dysfunction) associated fatty liver disease (MAFLD). Here we provide evidence that membrane bound O-acyltransferase domain containing 7 (MBOAT7) is a negative regulator of TLR signalling. MBOAT7 deficiency in macrophages as observed in patients with MAFLD and in COVID-19, alters membrane phospholipid composition. We demonstrate that this is associated with a redistribution of arachidonic acid toward proinflammatory eicosanoids, induction of endoplasmic reticulum stress, mitochondrial dysfunction, and remodelling of the accessible inflammatory-related chromatin landscape culminating in macrophage inflammatory responses to TLRs. Activation of MBOAT7 reverses these effects. These outcomes are further modulated by the MBOAT7 rs8736 (T) MAFLD risk variant. Our findings suggest that MBOAT7 can potentially be explored as a therapeutic target for diseases associated with dysregulation of the TLR signalling cascade.
Collapse
|
30
|
Mitschka S, Mayr C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat Rev Mol Cell Biol 2022; 23:779-796. [PMID: 35798852 PMCID: PMC9261900 DOI: 10.1038/s41580-022-00507-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
Alternative cleavage and polyadenylation (APA) is a widespread mechanism to generate mRNA isoforms with alternative 3' untranslated regions (UTRs). The expression of alternative 3' UTR isoforms is highly cell type specific and is further controlled in a gene-specific manner by environmental cues. In this Review, we discuss how the dynamic, fine-grained regulation of APA is accomplished by several mechanisms, including cis-regulatory elements in RNA and DNA and factors that control transcription, pre-mRNA cleavage and post-transcriptional processes. Furthermore, signalling pathways modulate the activity of these factors and integrate APA into gene regulatory programmes. Dysregulation of APA can reprogramme the outcome of signalling pathways and thus can control cellular responses to environmental changes. In addition to the regulation of protein abundance, APA has emerged as a major regulator of mRNA localization and the spatial organization of protein synthesis. This role enables the regulation of protein function through the addition of post-translational modifications or the formation of protein-protein interactions. We further discuss recent transformative advances in single-cell RNA sequencing and CRISPR-Cas technologies, which enable the mapping and functional characterization of alternative 3' UTRs in any biological context. Finally, we discuss new APA-based RNA therapeutics, including compounds that target APA in cancer and therapeutic genome editing of degenerative diseases.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
31
|
Valton AL, Venev SV, Mair B, Khokhar ES, Tong AHY, Usaj M, Chan K, Pai AA, Moffat J, Dekker J. A cohesin traffic pattern genetically linked to gene regulation. Nat Struct Mol Biol 2022; 29:1239-1251. [PMID: 36482254 PMCID: PMC10228515 DOI: 10.1038/s41594-022-00890-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 11/01/2022] [Indexed: 12/13/2022]
Abstract
Cohesin-mediated loop extrusion has been shown to be blocked at specific cis-elements, including CTCF sites, producing patterns of loops and domain boundaries along chromosomes. Here we explore such cis-elements, and their role in gene regulation. We find that transcription termination sites of active genes form cohesin- and RNA polymerase II-dependent domain boundaries that do not accumulate cohesin. At these sites, cohesin is first stalled and then rapidly unloaded. Start sites of transcriptionally active genes form cohesin-bound boundaries, as shown before, but are cohesin-independent. Together with cohesin loading, possibly at enhancers, these sites create a pattern of cohesin traffic that guides enhancer-promoter interactions. Disrupting this traffic pattern, by removing CTCF, renders cells sensitive to knockout of genes involved in transcription initiation, such as the SAGA complexes, and RNA processing such DEAD/H-Box RNA helicases. Without CTCF, these factors are less efficiently recruited to active promoters.
Collapse
Affiliation(s)
- Anne-Laure Valton
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sergey V Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Barbara Mair
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eraj Shafiq Khokhar
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Amy H Y Tong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matej Usaj
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Chan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
32
|
Sugimachi K, Araki H, Saito H, Masuda T, Miura F, Inoue K, Shimagaki T, Mano Y, Iguchi T, Morita M, Toh Y, Yoshizumi T, Ito T, Mimori K. Persistent epigenetic alterations in transcription factors after a sustained virological response in hepatocellular carcinoma. JGH Open 2022; 6:854-863. [PMID: 36514506 PMCID: PMC9730721 DOI: 10.1002/jgh3.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Background and Aim The risk of hepatocellular carcinoma (HCC) persists in a condition of sustained virologic response (SVR) after hepatitis C virus (HCV) eradication. Comprehensive molecular analyses were performed to test the hypothesis that epigenetic abnormalities present after an SVR play a role in hepatocarcinogenesis. Methods Whole-genome methylome and RNA sequencing were performed on HCV, SVR, and healthy liver tissue. Integrated analysis of the sequencing data focused on expression changes in transcription factors and their target genes, commonly found in HCV and SVR. Identified expression changes were validated in demethylated cultured HCC cell lines and an independent validation cohort. Results The coincidence rates of the differentially methylated regions between the HCV and SVR groups were 91% in the hypomethylated and 71% in the hypermethylated regions in tumorous tissues, and 37% in the hypomethylated and 36% in the hypermethylated regions in non-tumorous tissues. These results indicate that many epigenomic abnormalities persist even after an SVR was achieved. Integrated analysis identified 61 transcription factors and 379 other genes that had methylation abnormalities and gene expression changes in both groups. Validation cohort specified gene expression changes for 14 genes, and gene ontology pathway analysis revealed apoptotic signaling and inflammatory response were associated with these genes. Conclusion This study demonstrates that DNA methylation abnormalities, retained after HCV eradication, affect the expression of transcription factors and their target genes. These findings suggest that DNA methylation in SVR patients may be functionally important in carcinogenesis, and could serve as biomarkers to predict HCC occurrence.
Collapse
Affiliation(s)
- Keishi Sugimachi
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Hiromitsu Araki
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Business and Technology Management, Faculty of EconomicsKyushu UniversityFukuokaJapan
| | - Hideyuki Saito
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Takaaki Masuda
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kentaro Inoue
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomonari Shimagaki
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Yohei Mano
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Tomohiro Iguchi
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Masaru Morita
- Department of Gastroenterological SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Yasushi Toh
- Department of Gastroenterological SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Koshi Mimori
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| |
Collapse
|
33
|
3′UTR heterogeneity and cancer progression. Trends Cell Biol 2022:S0962-8924(22)00232-X. [DOI: 10.1016/j.tcb.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
|
34
|
Ren H, Taylor RB, Downing TL, Read EL. Locally correlated kinetics of post-replication DNA methylation reveals processivity and region specificity in DNA methylation maintenance. J R Soc Interface 2022; 19:20220415. [PMID: 36285438 PMCID: PMC9597173 DOI: 10.1098/rsif.2022.0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA methylation occurs predominantly on cytosine-phosphate-guanine (CpG) dinucleotides in the mammalian genome, and the methylation landscape is maintained over mitotic cell division. It has been posited that coupling of maintenance methylation activity among neighbouring CpGs is critical to stability over cellular generations; however, the mechanism is unclear. We used mathematical models and stochastic simulation to analyse data from experiments that probe genome-wide methylation of nascent DNA post-replication in cells. We find that DNA methylation maintenance rates on individual CpGs are locally correlated, and the degree of this correlation varies by genomic regional context. By using theory of protein diffusion along DNA, we show that exponential decay of methylation rate correlation with genomic distance is consistent with enzyme processivity. Our results provide quantitative evidence of genome-wide methyltransferase processivity in vivo. We further developed a method to disentangle different mechanistic sources of kinetic correlations. From the experimental data, we estimate that an individual methyltransferase methylates neighbour CpGs processively if they are 36 basepairs apart, on average. But other mechanisms of coupling dominate for longer inter-CpG distances. Our study demonstrates that quantitative insights into enzymatic mechanisms can be obtained from replication-associated, cell-based genome-wide measurements, by combining data-driven statistical analyses with hypothesis-driven mathematical modelling.
Collapse
Affiliation(s)
- Honglei Ren
- NSF-Simons Center for Multiscale Cell Fate, University of California, Irvine, CA 92697, USA,Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Robert B. Taylor
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA,Department of Physics, University of California, Irvine, CA 92697, USA
| | - Timothy L. Downing
- NSF-Simons Center for Multiscale Cell Fate, University of California, Irvine, CA 92697, USA,Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA,Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA,Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
| | - Elizabeth L. Read
- NSF-Simons Center for Multiscale Cell Fate, University of California, Irvine, CA 92697, USA,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA,Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| |
Collapse
|
35
|
Chronic stress-driven glucocorticoid receptor activation programs key cell phenotypes and functional epigenomic patterns in human fibroblasts. iScience 2022; 25:104960. [PMID: 36065188 PMCID: PMC9440308 DOI: 10.1016/j.isci.2022.104960] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic environmental stress can profoundly impact cell and body function. Although the underlying mechanisms are poorly understood, epigenetics has emerged as a key link between environment and health. The genomic effects of stress are thought to be mediated by the action of glucocorticoid stress hormones, primarily cortisol in humans, which act via the glucocorticoid receptor (GR). To dissect how chronic stress-driven GR activation influences epigenetic and cell states, human fibroblasts underwent prolonged exposure to physiological stress levels of cortisol and/or a selective GR antagonist. Cortisol was found to drive robust changes in cell proliferation, migration, and morphology, which were abrogated by concomitant GR blockade. The GR-driven cell phenotypes were accompanied by widespread, yet genomic context-dependent, changes in DNA methylation and mRNA expression, including gene loci with known roles in cell proliferation and migration. These findings provide insights into how chronic stress-driven functional epigenomic patterns become established to shape key cell phenotypes. Physiological stress levels of cortisol drive robust changes in key cell phenotypes Stress-driven changes in cell phenotypes are abrogated by concomitant GR blockade GR activation induces functional and phenotypically relevant epigenomic changes
Collapse
|
36
|
Terrone S, Valat J, Fontrodona N, Giraud G, Claude JB, Combe E, Lapendry A, Polvèche H, Ameur LB, Duvermy A, Modolo L, Bernard P, Mortreux F, Auboeuf D, Bourgeois C. RNA helicase-dependent gene looping impacts messenger RNA processing. Nucleic Acids Res 2022; 50:9226-9246. [PMID: 36039747 PMCID: PMC9458439 DOI: 10.1093/nar/gkac717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
DDX5 and DDX17 are DEAD-box RNA helicase paralogs which regulate several aspects of gene expression, especially transcription and splicing, through incompletely understood mechanisms. A transcriptome analysis of DDX5/DDX17-depleted human cells confirmed the large impact of these RNA helicases on splicing and revealed a widespread deregulation of 3' end processing. In silico analyses and experiments in cultured cells showed the binding and functional contribution of the genome organizing factor CTCF to chromatin sites at or near a subset of DDX5/DDX17-dependent exons that are characterized by a high GC content and a high density of RNA Polymerase II. We propose the existence of an RNA helicase-dependent relationship between CTCF and the dynamics of transcription across DNA and/or RNA structured regions, that contributes to the processing of internal and terminal exons. Moreover, local DDX5/DDX17-dependent chromatin loops spatially connect RNA helicase-regulated exons with their cognate promoter, and we provide the first direct evidence that de novo gene looping modifies alternative splicing and polyadenylation. Overall our findings uncover the impact of DDX5/DDX17-dependent chromatin folding on pre-messenger RNA processing.
Collapse
Affiliation(s)
| | | | - Nicolas Fontrodona
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | | | - Jean-Baptiste Claude
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | | | - Audrey Lapendry
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Hélène Polvèche
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France,CECS/AFM, I-STEM, 28 rue Henri Desbruères, F-91100, Corbeil-Essonnes, France
| | - Lamya Ben Ameur
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Arnaud Duvermy
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Laurent Modolo
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Pascal Bernard
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Franck Mortreux
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Didier Auboeuf
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364 Lyon, France
| | - Cyril F Bourgeois
- To whom correspondence should be addressed. Tel: +33 47272 8663; Fax: +33 47272 8674;
| |
Collapse
|
37
|
Tang P, Zhou Y. Alternative polyadenylation regulation: insights from sequential polyadenylation. Transcription 2022; 13:89-95. [PMID: 36004392 PMCID: PMC9715272 DOI: 10.1080/21541264.2022.2114776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
Abstract
The processing of the proximal and distal poly(A) sites in alternative polyadenylation (APA) has long been thought to independently occur on pre-mRNAs during transcription. However, a recent study by our groups demonstrated that the proximal sites for many genes could be activated sequentially following the distal ones, suggesting a multi-cleavage-same-transcript mode beyond the canonical one-cleavage-per-transcript view. Here, we review the established mechanisms for APA regulation and then discuss the additional insights into APA regulation from the perspective of sequential polyadenylation, resulting in a unified leverage model for understanding the mechanisms of regulated APA.
Collapse
Affiliation(s)
- Peng Tang
- State Key Laboratory of Virology, College of Life Sciences, RNA Institute, Wuhan University, Wuhan, P. R. China
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, RNA Institute, Wuhan University, Wuhan, P. R. China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
38
|
Song J, Nabeel-Shah S, Pu S, Lee H, Braunschweig U, Ni Z, Ahmed N, Marcon E, Zhong G, Ray D, Ha KCH, Guo X, Zhang Z, Hughes TR, Blencowe BJ, Greenblatt JF. Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1. Mol Cell 2022; 82:3135-3150.e9. [PMID: 35914531 DOI: 10.1016/j.molcel.2022.06.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/09/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.
Collapse
Affiliation(s)
- Jingwen Song
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Syed Nabeel-Shah
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Shuye Pu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Hyunmin Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4, Canada
| | - Ulrich Braunschweig
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Zuyao Ni
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Nujhat Ahmed
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Edyta Marcon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Guoqing Zhong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Debashish Ray
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Kevin C H Ha
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Xinghua Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Zhaolei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada; Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Jack F Greenblatt
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada.
| |
Collapse
|
39
|
Rosenberg T, Marco A, Kisliouk T, Haron A, Shinder D, Druyan S, Meiri N. Embryonic heat conditioning in chicks induces transgenerational heat/immunological resilience via methylation on regulatory elements. FASEB J 2022; 36:e22406. [PMID: 35713935 DOI: 10.1096/fj.202101948r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 11/11/2022]
Abstract
The question of whether behavioral traits are heritable is under debate. An obstacle in demonstrating transgenerational inheritance in mammals originates from the maternal environment's effect on offspring phenotype. Here, we used in ovo embryonic heat conditioning (EHC) of first-generation chicks, demonstrating heredity of both heat and immunological resilience, confirmed by a reduced fibril response in their untreated offspring to either heat or LPS challenge. Concordantly, transcriptome analysis confirmed that EHC induces changes in gene expression in the anterior preoptic hypothalamus (APH) that contribute to these phenotypes in the offspring. To study the association between epigenetic mechanisms and trait heritability, DNA-methylation patterns in the APH of offspring of control versus EHC fathers were evaluated. Genome-wide analysis revealed thousands of differentially methylated sites (DMSs), which were highly enriched in enhancers and CCCTC-binding factor (CTCF) sites. Overlap analysis revealed 110 differentially expressed genes that were associated with altered methylation, predominantly on enhancers. Gene-ontology analysis shows pathways associated with immune response, chaperone-mediated protein folding, and stress response. For the proof of concept, we focused on HSP25 and SOCS3, modulators of heat and immune responses, respectively. Chromosome conformational capture (3C) assay identified interactions between their promoters and methylated enhancers, with the strongest frequency on CTCF binding sites. Furthermore, gene expression corresponded with the differential methylation patterns, and presented increased CTCF binding in both hyper- and hypomethylated DMSs. Collectively, we demonstrate that EHC induces transgenerational thermal and immunological resilience traits. We propose that one of the mechanisms underlying inheritance depends on three-dimensional (3D) chromatin reorganization.
Collapse
Affiliation(s)
- Tali Rosenberg
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Asaf Marco
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Amit Haron
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dmitry Shinder
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Shelly Druyan
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
40
|
Kwon B, Fansler MM, Patel ND, Lee J, Ma W, Mayr C. Enhancers regulate 3' end processing activity to control expression of alternative 3'UTR isoforms. Nat Commun 2022; 13:2709. [PMID: 35581194 PMCID: PMC9114392 DOI: 10.1038/s41467-022-30525-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multi-UTR genes are widely transcribed and express their alternative 3'UTR isoforms in a cell type-specific manner. As transcriptional enhancers regulate mRNA expression, we investigated if they also regulate 3'UTR isoform expression. Endogenous enhancer deletion of the multi-UTR gene PTEN did not impair transcript production but prevented 3'UTR isoform switching which was recapitulated by silencing of an enhancer-bound transcription factor. In reporter assays, enhancers increase transcript production when paired with single-UTR gene promoters. However, when combined with multi-UTR gene promoters, they change 3'UTR isoform expression by increasing 3' end processing activity of polyadenylation sites. Processing activity of polyadenylation sites is affected by transcription factors, including NF-κB and MYC, transcription elongation factors, chromatin remodelers, and histone acetyltransferases. As endogenous cell type-specific enhancers are associated with genes that increase their short 3'UTRs in a cell type-specific manner, our data suggest that transcriptional enhancers integrate cellular signals to regulate cell type-and condition-specific 3'UTR isoform expression.
Collapse
Affiliation(s)
- Buki Kwon
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA
| | - Neil D Patel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jihye Lee
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Weirui Ma
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA.
| |
Collapse
|
41
|
Cain JA, Montibus B, Oakey RJ. Intragenic CpG Islands and Their Impact on Gene Regulation. Front Cell Dev Biol 2022; 10:832348. [PMID: 35223855 PMCID: PMC8873577 DOI: 10.3389/fcell.2022.832348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
The mammalian genome is depleted in CG dinucleotides, except at protected regions where they cluster as CpG islands (CGIs). CGIs are gene regulatory hubs and serve as transcription initiation sites and are as expected, associated with gene promoters. Advances in genomic annotations demonstrate that a quarter of CGIs are found within genes. Such intragenic regions are repressive environments, so it is surprising that CGIs reside here and even more surprising that some resist repression and are transcriptionally active within a gene. Hence, intragenic CGI positioning within genes is not arbitrary and is instead, selected for. As a wealth of recent studies demonstrate, intragenic CGIs are embedded within genes and consequently, influence ‘host’ gene mRNA isoform length and expand transcriptome diversity.
Collapse
|
42
|
Li Z, Zhou X, Cai S, Fan J, Wei Z, Chen Y, Cao G. Key roles of CCCTC-binding factor in cancer evolution and development. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The processes of cancer and embryonic development have a partially overlapping effect. Several transcription factor families, which are highly conserved in the evolutionary history of biology, play a key role in the development of cancer and are often responsible for the pivotal developmental processes such as cell survival, expansion, senescence, and differentiation. As an evolutionary conserved and ubiquitously expression protein, CCCTC-binding factor (CTCF) has diverse regulatory functions, including gene regulation, imprinting, insulation, X chromosome inactivation, and the establishment of three-dimensional (3D) chromatin structure during human embryogenesis. In various cancers, CTCF is considered as a tumor suppressor gene and plays homeostatic roles in maintaining genome function and integrity. However, the mechanisms of CTCF in tumor development have not been fully elucidated. Here, this review will focus on the key roles of CTCF in cancer evolution and development (Cancer Evo-Dev) and embryogenesis.
Collapse
Affiliation(s)
- Zishuai Li
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Xinyu Zhou
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Shiliang Cai
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Junyan Fan
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Zhimin Wei
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Yifan Chen
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Guangwen Cao
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
43
|
Alternative polyadenylation: An untapped source for prostate cancer biomarkers and therapeutic targets? Asian J Urol 2021; 8:407-415. [PMID: 34765448 PMCID: PMC8566364 DOI: 10.1016/j.ajur.2021.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/20/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Objective To review alternative polyadenylation (APA) as a mechanism of gene regulation and consider potential roles for APA in prostate cancer (PCa) biology and treatment. Methods An extensive review of mRNA polyadenylation, APA, and PCa literature was performed. This review article introduces APA and its association with human disease, outlines the mechanisms and components of APA, reviews APA in cancer biology, and considers whether APA may contribute to PCa progression and/or produce novel biomarkers and therapeutic targets for PCa. Results Eukaryotic mRNA 3′-end cleavage and polyadenylation play a critical role in gene expression. Most human genes encode more than one polyadenylation signal, and produce more than one transcript isoform, through APA. Polyadenylation can occur throughout the gene body to generate transcripts with differing 3′-termini and coding sequence. Differences in 3′-untranslated regions length can modify post-transcriptional gene regulation by microRNAs and RNA binding proteins, and alter mRNA stability, translation efficiency, and subcellular localization. Distinctive APA patterns are associated with human diseases, tissue origins, and changes in cellular proliferation rate and differentiation state. APA events may therefore generate unique mRNA biomarkers or therapeutic targets in certain cancer types or phenotypic states. Conclusions The full extent of cancer-associated and tissue-specific APA events have yet to be defined, and the mechanisms and functional consequences of APA in cancer remain incompletely understood. There is evidence that APA is active in PCa, and that it may be an untapped resource for PCa biomarkers or therapeutic targets.
Collapse
|
44
|
The Cohesin Complex and Its Interplay with Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040067. [PMID: 34707078 PMCID: PMC8552073 DOI: 10.3390/ncrna7040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
The cohesin complex is a multi-subunit protein complex initially discovered for its role in sister chromatid cohesion. However, cohesin also has several other functions and plays important roles in transcriptional regulation, DNA double strand break repair, and chromosome architecture thereby influencing gene expression and development in organisms from yeast to man. While most of these functions rely on protein–protein interactions, post-translational protein, as well as DNA modifications, non-coding RNAs are emerging as additional players that facilitate and modulate the function or expression of cohesin and its individual components. This review provides a condensed overview about the architecture as well as the function of the cohesin complex and highlights its multifaceted interplay with both short and long non-coding RNAs.
Collapse
|
45
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
46
|
Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:342-354. [PMID: 34484861 PMCID: PMC8399085 DOI: 10.1016/j.omtn.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by chromatin relaxation of the D4Z4 repeat resulting in misexpression of the D4Z4-encoded DUX4 gene in skeletal muscle. One of the key genetic requirements for the stable production of full-length DUX4 mRNA in skeletal muscle is a functional polyadenylation signal (ATTAAA) in exon three of DUX4 that is used in somatic cells. Base editors hold great promise to treat DNA lesions underlying genetic diseases through their ability to carry out specific and rapid nucleotide mutagenesis even in postmitotic cells such as skeletal muscle. In this study, we present a simple and straightforward strategy for mutagenesis of the somatic DUX4 polyadenylation signal by adenine base editing in immortalized myoblasts derived from independent FSHD-affected individuals. We show that mutating this critical cis-regulatory element results in downregulation of DUX4 mRNA and its direct transcriptional target genes. Our findings identify the somatic DUX4 polyadenylation signal as a therapeutic target and represent the first step toward clinical application of the CRISPR-Cas9 base editing platform for FSHD gene therapy.
Collapse
|
47
|
Perea-Resa C, Wattendorf L, Marzouk S, Blower MD. Cohesin: behind dynamic genome topology and gene expression reprogramming. Trends Cell Biol 2021; 31:760-773. [PMID: 33766521 PMCID: PMC8364472 DOI: 10.1016/j.tcb.2021.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023]
Abstract
Beyond its originally discovered role tethering replicated sister chromatids, cohesin has emerged as a master regulator of gene expression. Recent advances in chromatin topology resolution and single-cell studies have revealed that cohesin has a pivotal role regulating highly dynamic chromatin interactions linked to transcription control. The dynamic association of cohesin with chromatin and its capacity to perform loop extrusion contribute to the heterogeneity of chromatin contacts. Additionally, different cohesin subcomplexes, with specific properties and regulation, control gene expression across the cell cycle and during developmental cell commitment. Here, we discuss the most recent literature in the field to highlight the role of cohesin in gene expression regulation during transcriptional shifts and its relationship with human diseases.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Lauren Wattendorf
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Sammer Marzouk
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Michael D Blower
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
48
|
Alharbi AB, Schmitz U, Bailey CG, Rasko JEJ. CTCF as a regulator of alternative splicing: new tricks for an old player. Nucleic Acids Res 2021; 49:7825-7838. [PMID: 34181707 PMCID: PMC8373115 DOI: 10.1093/nar/gkab520] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Three decades of research have established the CCCTC-binding factor (CTCF) as a ubiquitously expressed chromatin organizing factor and master regulator of gene expression. A new role for CTCF as a regulator of alternative splicing (AS) has now emerged. CTCF has been directly and indirectly linked to the modulation of AS at the individual transcript and at the transcriptome-wide level. The emerging role of CTCF-mediated regulation of AS involves diverse mechanisms; including transcriptional elongation, DNA methylation, chromatin architecture, histone modifications, and regulation of splicing factor expression and assembly. CTCF thereby appears to not only co-ordinate gene expression regulation but contributes to the modulation of transcriptomic complexity. In this review, we highlight previous discoveries regarding the role of CTCF in AS. In addition, we summarize detailed mechanisms by which CTCF mediates AS regulation. We propose opportunities for further research designed to examine the possible fate of CTCF-mediated alternatively spliced genes and associated biological consequences. CTCF has been widely acknowledged as the 'master weaver of the genome'. Given its multiple connections, further characterization of CTCF's emerging role in splicing regulation might extend its functional repertoire towards a 'conductor of the splicing orchestra'.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
49
|
Xiao Z, Locasale JW. Epigenomic links from metabolism-methionine and chromatin architecture. Curr Opin Chem Biol 2021; 63:11-18. [PMID: 33667809 PMCID: PMC9889272 DOI: 10.1016/j.cbpa.2021.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 02/03/2023]
Abstract
Chromatin and associated epigenetic marks provide important platforms for gene regulation in response to metabolic changes associated with environmental exposures, including physiological stress, nutritional deprivation, and starvation. Numerous studies have shown that fluctuations of key metabolites can influence chromatin modifications, but their effects on chromatin structure (e.g. chromatin compaction, nucleosome arrangement, and chromatin loops) and how they appropriately deposit specific chemical modification on chromatin are largely unknown. Here, focusing on methionine metabolism, we discuss recent developments of metabolic effects on chromatin modifications and structure, as well as consequences on gene regulation.
Collapse
Affiliation(s)
- Zhengtao Xiao
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
50
|
Devailly G, Joshi A. Comprehensive analysis of epigenetic signatures of human transcription control. Mol Omics 2021; 17:692-705. [PMID: 34291238 DOI: 10.1039/d0mo00130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advances in sequencing technologies have enabled exploration of epigenetic and transcriptional profiles at a genome-wide level. The epigenetic and transcriptional landscapes are now available in hundreds of mammalian cell and tissue contexts. Many studies have performed multi-omics analyses using these datasets to enhance our understanding of relationships between epigenetic modifications and transcription regulation. Nevertheless, most studies so far have focused on the promoters/enhancers and transcription start sites, and other features of transcription control including exons, introns and transcription termination remain underexplored. We investigated the interplay between epigenetic modifications and diverse transcription features using the data generated by the Roadmap Epigenomics project. A comprehensive analysis of histone modifications, DNA methylation, and RNA-seq data of thirty-three human cell lines and tissue types allowed us to confirm the generality of previously described relationships, as well as to generate new hypotheses about the interplay between epigenetic modifications and transcription features. Importantly, our analysis included previously under-explored features of transcription control, namely, transcription termination sites, exon-intron boundaries, and the exon inclusion ratio. We have made the analyses freely available to the scientific community at joshiapps.cbu.uib.no/perepigenomics_app/ for easy exploration, validation and hypothesis generation.
Collapse
Affiliation(s)
- Guillaume Devailly
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France.
| | - Anagha Joshi
- Computational Biology Unit, Department of Clinical Science, University of Bergen, 5021, Bergen, Norway.
| |
Collapse
|