1
|
Jangid AK, Kim K. Phenylboronic acid-functionalized biomaterials for improved cancer immunotherapy via sialic acid targeting. Adv Colloid Interface Sci 2024; 333:103301. [PMID: 39260104 DOI: 10.1016/j.cis.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Phenylboronic acid (PBA) is recognized as one of the most promising cancer cell binding modules attributed to its potential to form reversible and dynamic boronic ester covalent bonds. Exploring the advanced chemical versatility of PBA is crucial for developing new anticancer therapeutics. The presence of a specific Lewis acidic boron atom-based functional group and a Π-ring-connected ring has garnered increasing interest in the field of cancer immunotherapy. PBA-derivatized functional biomaterials can form reversible bonds with diols containing cell surface markers and proteins. This review primarily focuses on the following topics: (1) the importance and versatility of PBA, (2) different PBA derivatives with pKa values, (3) specific key features of PBA-mediated biomaterials, and (4) cell surface activity for cancer immunotherapy applications. Specific key features of PBA-mediated materials, including sensing, bioadhesion, and gelation, along with important synthesis strategies, are highlighted. The utilization of PBA-mediated biomaterials for cancer immunotherapy, especially the role of PBA-based nanoparticles and PBA-mediated cell-based therapeutics, is also discussed. Finally, a perspective on future research based on PBA-biomaterials for immunotherapy applications is presented.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
2
|
Bakar-Ates F, Ozkan E. Synergistic ferroptosis in triple-negative breast cancer cells: Paclitaxel in combination with Erastin induced oxidative stress and Ferroportin-1 modulation in MDA-MB-231 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03523-8. [PMID: 39392483 DOI: 10.1007/s00210-024-03523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ferroptosis is an important regulated cell death mechanism characterized by iron-dependent lipid peroxidation and oxidative stress. In this study, we examined the ferroptosis-inducing effect of the combined use of Paclitaxel, a microtubule-stabilizing agent, and Erastin, a ferroptosis inducer, in breast cancer cells. In this context, the combination of the compounds in question was applied to the cells and the presence of a synergistic effect was determined by calculating the combination index. Glutathione (GSH) levels and glutathione peroxidase (GPX) activity were determined by commercial assay kits, and the effect of the compounds on lipid peroxidation was determined by measurement of malondialdehyde (MDA) levels. Additionally, the effect of combination treatment on ferroptotic protein expression was determined by western blot. Our findings revealed that the combination treatment caused a significant change in mitochondrial function by causing an increase in the depolarized/viable cell population. Additionally, there was a significant increase in intracellular reactive oxygen species (ROS) levels compared to single applications of the compounds. The significant increase observed in malondialdehyde (MDA) levels revealed that the combination treatment increased lipid peroxidation. Moreover, intracellular GSH levels and glutathione peroxidase (GPX) activity significantly decreased by Paclitaxel-Erastin combination. The expression of ferroptosis-regulating proteins was significantly downregulated. The findings showed that the Paclitaxel-Erastin combination synergistically contributed to the accumulation of lipid reactive oxygen species and induced the ferroptotic cell death pathway in breast cancer cells.
Collapse
Affiliation(s)
- Filiz Bakar-Ates
- Faculty of Pharmacy, Department of Biochemistry, Ankara University, Anadolu, Ankara, 06560, Turkey.
| | - Erva Ozkan
- Faculty of Pharmacy, Department of Biochemistry, Ankara Medipol University, Altindag, Ankara, 06050, Turkey
| |
Collapse
|
3
|
Huang T, Bei C, Hu Z, Li Y. CAR-macrophage: Breaking new ground in cellular immunotherapy. Front Cell Dev Biol 2024; 12:1464218. [PMID: 39421021 PMCID: PMC11484238 DOI: 10.3389/fcell.2024.1464218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Chimeric Antigen Receptor (CAR) technology has revolutionized cellular immunotherapy, particularly with the success of CAR-T cells in treating hematologic malignancies. However, CAR-T cells have the limited efficacy of against solid tumors. To address these limitations, CAR-macrophages (CAR-Ms) leverage the innate properties of macrophages with the specificity and potency of CAR technology, offering a novel and promising approach to cancer immunotherapy. Preclinical studies have shown that CAR-Ms can effectively target and destroy tumor cells, even within challenging microenvironments, by exhibiting direct cytotoxicity and enhancing the recruitment and activation of other immune cells. Additionally, the favorable safety profile of macrophages and their persistence within solid tumors position CAR-Ms as potentially safer and more durable therapeutic options compared to CAR-T cells. This review explores recent advancements in CAR-Ms technology, including engineering strategies to optimize their anti-tumor efficacy and preclinical evidence supporting their use. We also discuss the challenges and future directions in developing CAR-Ms therapies, emphasizing their potential to revolutionize cellular immunotherapy. By harnessing the unique properties of macrophages, CAR-Ms offer a groundbreaking approach to overcoming the current limitations of CAR-T cell therapies, paving the way for more effective and sustainable cancer treatments.
Collapse
Affiliation(s)
- Ting Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenqi Bei
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yuanyuan Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Guan L, Wu S, Zhu Q, He X, Li X, Song G, Zhang L, Yin X. GPC3-targeted CAR-M cells exhibit potent antitumor activity against hepatocellular carcinoma. Biochem Biophys Rep 2024; 39:101741. [PMID: 38881757 PMCID: PMC11176667 DOI: 10.1016/j.bbrep.2024.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Chimeric antigen receptor (CAR)-modified macrophages are a promising treatment for solid tumor. So far the potential effects of CAR-M cell therapy have rarely been investigated in hepatocellular carcinoma (HCC). Glypican-3 (GPC3) is a biomarker for a variety of malignancies, including liver cancer, which is not expressed in most adult tissues. Thus, it is an ideal target for the treatment of HCC. In this study, we engineered mouse macrophage cells with CAR targeting GPC3 and explored its therapeutic potential in HCC. First, we generated a chimeric adenoviral vector (Ad5f35) delivering an anti-GPC3 CAR, Ad5f35-anti-GPC3-CAR, which using the CAR construct containing the scFv targeting GPC3 and CD3ζ intracellular domain. Phagocytosis and killing effect indicated that macrophages transduced with Ad5f35-anti-GPC3-CAR (GPC3 CAR-Ms) exhibited antigen-specific phagocytosis and tumor cell clearance in vitro, and GPC3 CAR-Ms showed significant tumor-killing effects and promoted expression of pro-inflammatory (M1) cytokines and chemokines. In 3D NACs-origami spheroid model of HCC, CAR-Ms were further demonstrated to have a significant tumor killing effect. Together, our study provides a new strategy for the treatment of HCC through CAR-M cells targeting GPC3, which provides a basis for the research and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lili Guan
- Applied Biology Laboratory, College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Shanshan Wu
- Applied Biology Laboratory, College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Qinyao Zhu
- Applied Biology Laboratory, College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xiaofang He
- PuHeng Biotechnology (Suzhou) Co., Ltd, Suzhou, 215000, China
| | - Xuelong Li
- Applied Biology Laboratory, College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Guangqi Song
- PuHeng Biotechnology (Suzhou) Co., Ltd, Suzhou, 215000, China
| | - Luo Zhang
- Research Center of Bioengineering, The Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiushan Yin
- Applied Biology Laboratory, College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
- Suzhou RocRock No.1 Biotechnology Co., Ltd, Suzhou, 215000, China
| |
Collapse
|
5
|
Flores-Cruz RD, Espinoza-Guillén A, Reséndiz-Acevedo K, Mendoza-Rodríguez V, López-Casillas F, Jiménez-Sánchez A, Méndez FJ, Ruiz-Azuara L. Doble synergetic anticancer activity through a combined chemo-photodynamic therapy and bioimaging of a novel Cas-ZnONPs all-in-one system. J Inorg Biochem 2024; 258:112623. [PMID: 38823065 DOI: 10.1016/j.jinorgbio.2024.112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
A strategy for cancer treatment was implemented, based on chemo-photodynamic therapy, utilizing a novel formulation, low-cost system called Cas-ZnONPs. This system consisted of the incorporation of Casiopeina III-ia (CasIII-ia), a hydrophilic copper coordination compound with well-documented anti-neoplastic activity, on Zinc oxide nanoparticles (ZnONPs) with apoptotic activity and lipophilicity, allowing them to permeate biological barriers. Additionally, ZnONPs exhibited fluorescence, with emission at different wavelengths depending on their agglomeration and enabling real-time tracking biodistribution. Also, ZnONPs served as a sensitizer, generating reactive oxygen species (ROS) in situ. In in vitro studies on HeLa and MDA-MB-231 cell lines, a synergistic effect was observed with the impregnated CasIII-ia on ZnONPs. The anticancer activity had an increase in cellular inhibition, depending on the dose of exposure to UV-vis irradiation. In in vivo studies utilized zebrafish models for xenotransplanting stained MDA-MB-231 cells and testing the effectiveness of Cas-ZnONPs treatment. The treatment successfully eliminated cancer cells, both when combined with Photodynamic Therapy (PDT) and when used alone. However, a significantly higher concentration (50 times) of Cas-ZnONPs was required in the absence of PDT. This demonstrates the potential of Cas-ZnONPs in cancer treatment, especially when combined with PDT.
Collapse
Affiliation(s)
- Ricardo David Flores-Cruz
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico.
| | - Adrián Espinoza-Guillén
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Karen Reséndiz-Acevedo
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Valentín Mendoza-Rodríguez
- Instituto de Fisiología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Fernando López-Casillas
- Instituto de Fisiología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Arturo Jiménez-Sánchez
- Departamento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Franklin J Méndez
- Departamento de Materia Condensada, Instituto de Física, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Lena Ruiz-Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico.
| |
Collapse
|
6
|
Dalavaye N, Nicholas M, Pillai M, Erridge S, Sodergren MH. The Clinical Translation of α-humulene - A Scoping Review. PLANTA MEDICA 2024; 90:664-674. [PMID: 38626911 PMCID: PMC11254484 DOI: 10.1055/a-2307-8183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/16/2024] [Indexed: 07/19/2024]
Abstract
α-humulene, a sesquiterpene found in essential oils of various plant species, has garnered interest due to its potential therapeutic applications. This scoping review aims to consolidate α-humulene's evidence base, informing clinical translation, and guiding future research directions. A scoping review was conducted of EMBASE, MEDLINE, and PubMed databases up to 14th July 2023. All studies describing original research on α-humulene extraction, as well as pre-clinical and clinical research, were included for review. Three hundred and forty articles were analysed. α-humulene yields ranged from negligible to 60.90% across plant species. In vitro experiments demonstrated cytotoxicity against adenocarcinomas (such as colorectal, pulmonary, breast, prostatic, lung, and ovarian), with varying responses in other cell models. Mechanistic insights revealed its involvement in mitochondrial dysfunction, diminished intracellular glutathione levels, and the induction of oxidative stress. In rodent studies, oral administration of α-humulene at 50 mg/kg reduced inflammation markers in paw oedema and ovalbumin-induced airway inflammation. Intraperitoneal administration of α-humulene (50 - 200 mg/kg) exhibited cannabimimetic properties through cannabinoid 1 and adenosine A2a receptors. α-humulene also exhibited a multitude of properties with potential scope for therapeutic utilisation. However, there is a paucity of studies that have successfully translated this research into clinical populations with the associated disease. Potential barriers to clinical translation were identified, including yield variability, limited isolation studies, and challenges associated with terpene bioavailability. Consequently, rigorous pharmacokinetic studies and further mechanistic investigations are warranted to effectively uncover the potential of α-humulene.
Collapse
Affiliation(s)
- Nishaanth Dalavaye
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, UK
| | - Martha Nicholas
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, UK
| | - Manaswini Pillai
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, UK
| | - Simon Erridge
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, UK
- Curaleaf Clinic, London, UK
| | - Mikael H. Sodergren
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, UK
- Curaleaf International, London, UK
| |
Collapse
|
7
|
Battat R, Chang JT, Loftus EV, Sands BE. IBD Matchmaking - Rational Combination Therapy. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00633-5. [PMID: 39025253 DOI: 10.1016/j.cgh.2024.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
A growing number of patients with Crohn's disease and ulcerative colitis have disease that is refractory to multiple advanced therapies, have undergone multiple surgeries, and require further treatment options. For this reason, there has been increasing use of multiple simultaneous advanced targeted therapies. Although the knowledge on combined advanced targeted therapy (CATT) in inflammatory bowel disease (IBD) has been largely limited to observational data and early-phase randomized controlled trials, combination of therapies is commonplace in many other diseases. This review discusses conceptual frameworks of CATT in IBD, provides context of combined therapies in other diseases, provides current evidence for CATT in IBD, and projects future applications and positioning of CATT using existing, novel, and orthogonal mechanisms of action. CATT aims to address the need to overcome low efficacy rates and frequent loss of response of current individual therapies. Both treatment exposure and disease duration are major determinants of response to therapy. Identification of safe and effective CATT may impact positioning of this strategy to apply to a broader IBD population.
Collapse
Affiliation(s)
- Robert Battat
- Division of Gastroenterology, Centre Hospitalier de l'Université de Montreal, Montreal, Quebec, Canada
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, Veteran Affairs San Diego Healthcare System, San Diego, California
| | - Edward V Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Bruce E Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
8
|
Baldwin D, Carmichael J, Cook G, Navani N, Peach J, Slater R, Wheatstone P, Wilkins J, Allen-Delingpole N, Kerr CEP, Siddiqui K. UK Stakeholder Perspectives on Surrogate Endpoints in Cancer, and the Potential for UK Real-World Datasets to Validate Their Use in Decision-Making. Cancer Manag Res 2024; 16:791-810. [PMID: 39044745 PMCID: PMC11264281 DOI: 10.2147/cmar.s441359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Duration of overall survival in patients with cancer has lengthened due to earlier detection and improved treatments. However, these improvements have created challenges in assessing the impact of newer treatments, particularly those used early in the treatment pathway. As overall survival remains most decision-makers' preferred primary endpoint, therapeutic innovations may take a long time to be introduced into clinical practice. Moreover, it is difficult to extrapolate findings to heterogeneous populations and address the concerns of patients wishing to evaluate everyday quality and extension of life. There is growing interest in the use of surrogate or interim endpoints to demonstrate robust treatment effects sooner than is possible with measurement of overall survival. It is hoped that they could speed up patients' access to new drugs, combinations, and sequences, and inform treatment decision-making. However, while surrogate endpoints have been used by regulators for drug approvals, this has occurred on a case-by-case basis. Evidence standards are yet to be clearly defined for acceptability in health technology appraisals or to shape clinical practice. This article considers the relevance of the use of surrogate endpoints in cancer in the UK context, and explores whether collection and analysis of real-world UK data and evidence might contribute to validation.
Collapse
Affiliation(s)
- David Baldwin
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Jonathan Carmichael
- Department of Oncology, The National Institute for Health Research Leeds In Vitro Diagnostics Co-Operative (NIHR Leeds MIC), Leeds, UK
| | - Gordon Cook
- Cancer Research UK Trials Unit, LICTR, University of Leeds & NIHR (Leeds) IVD MIC, Leeds, UK
| | - Neal Navani
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospital, London, UK
| | - James Peach
- Human Centric Drug Discovery, Wood Centre for Innovation, Oxford, UK
| | | | - Pete Wheatstone
- Patient and Public Involvement and Engagement Group, DATA-CAN, London, UK
| | | | | | | | | |
Collapse
|
9
|
Kucinska M, Pospieszna J, Tang J, Lisiak N, Toton E, Rubis B, Murias M. The combination therapy using tyrosine kinase receptors inhibitors and repurposed drugs to target patient-derived glioblastoma stem cells. Biomed Pharmacother 2024; 176:116892. [PMID: 38876048 DOI: 10.1016/j.biopha.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
The lesson from many studies investigating the efficacy of targeted therapy in glioblastoma (GBM) showed that a future perspective should be focused on combining multiple target treatments. Our research aimed to assess the efficacy of drug combinations against glioblastoma stem cells (GSCs). Patient-derived cells U3042, U3009, and U3039 were obtained from the Human Glioblastoma Cell Culture resource. Additionally, the study was conducted on a GBM commercial U251 cell line. Gene expression analysis related to receptor tyrosine kinases (RTKs), stem cell markers and genes associated with significant molecular targets was performed, and selected proteins encoded by these genes were assessed using the immunofluorescence and flow cytometry methods. The cytotoxicity studies were preceded by analyzing the expression of specific proteins that serve as targets for selected drugs. The cytotoxicity study using the MTS assay was conducted to evaluate the effects of selected drugs/candidates in monotherapy and combinations. The most cytotoxic compounds for U3042 cells were Disulfiram combined with Copper gluconate (DSF/Cu), Dacomitinib, and Foretinib with IC50 values of 52.37 nM, 4.38 µM, and 4.54 µM after 24 h incubation, respectively. Interactions were assessed using SynergyFinder Plus software. The analysis enabled the identification of the most effective drug combinations against patient-derived GSCs. Our findings indicate that the most promising drug combinations are Dacomitinib and Foretinib, Dacomitinib and DSF/Cu, and Foretinib and AZD3759. Since most tested combinations have not been previously examined against glioblastoma stem-like cells, these results can shed new light on designing the therapeutic approach to target the GSC population.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Julia Pospieszna
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| |
Collapse
|
10
|
Ren T, Zheng Y, Liu F, Liu C, Zhang B, Ren H, Gao X, Wei Y, Sun Q, Huang H. Identification and Validation of JAM-A as a Novel Prognostic and Immune Factor in Human Tumors. Biomedicines 2024; 12:1423. [PMID: 39061997 PMCID: PMC11275048 DOI: 10.3390/biomedicines12071423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Junctional adhesion molecule-A (JAM-A), also known as F11 receptor (F11R), is a transmembrane glycoprotein that is involved in various biological processes, including cancer initiation and progression. However, the functional characteristics and significance of JAM-A in pan-cancer remain unexplored. In this study, we used multiple databases to gain a comprehensive understanding of JAM-A in human cancers. JAM-A was widely expressed in various tissues, mainly located on the microtubules and cell junctions. Aberrant expression of JAM-A was detected in multiple cancers at both mRNA and protein levels, which can be correlated with poorer prognosis and may be attributed to genetic alterations and down-regulated DNA methylation. JAM-A expression was also associated with immune infiltration and may affect immunotherapy responses in several cancers. Functional enrichment analysis indicated that JAM-A participated in tight junction and cancer-related pathways. In vitro experiments verified that JAM-A knockdown suppressed the proliferation and migration abilities of breast cancer cells and liver cancer cells. Overall, our study suggests that JAM-A is a pan-cancer regulator and a potential biomarker for predicting prognosis and immune-therapeutic responses for different tumors.
Collapse
Affiliation(s)
- Tianyi Ren
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China; (T.R.); (C.L.); (H.R.)
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - You Zheng
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - Feichang Liu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chenyu Liu
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China; (T.R.); (C.L.); (H.R.)
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - Bo Zhang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - He Ren
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China; (T.R.); (C.L.); (H.R.)
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - Xinyue Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - Yuexian Wei
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China; (T.R.); (C.L.); (H.R.)
| |
Collapse
|
11
|
Adebayo AK, Bhat-Nakshatri P, Davis C, Angus SP, Erdogan C, Gao H, Green N, Kumar B, Liu Y, Nakshatri H. Oxygen tension-dependent variability in the cancer cell kinome impacts signaling pathways and response to targeted therapies. iScience 2024; 27:110068. [PMID: 38872973 PMCID: PMC11170190 DOI: 10.1016/j.isci.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Most cells in solid tumors are exposed to oxygen levels between 0.5% and 5%. We developed an approach that allows collection, processing, and evaluation of cancer and non-cancer cells under physioxia, while preventing exposure to ambient air. This aided comparison of baseline and drug-induced changes in signaling pathways under physioxia and ambient oxygen. Using tumor cells from transgenic models of breast cancer and cells from breast tissues of clinically breast cancer-free women, we demonstrate oxygen-dependent differences in cell preference for epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor beta (PDGFRβ) signaling. Physioxia caused PDGFRβ-mediated activation of AKT and extracellular regulated kinase (ERK) that reduced sensitivity to EGFR and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) inhibition and maintained PDGFRβ+ epithelial-mesenchymal hybrid cells with potential cancer stem cell (CSC) properties. Cells in ambient air displayed differential EGFR activation and were more sensitive to targeted therapies. Our data emphasize the importance of oxygen considerations in preclinical cancer research to identify effective drug targets and develop combination therapy regimens.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Christopher Davis
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven P. Angus
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cihat Erdogan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nick Green
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Yang W, Sun Q, Zhang X, Zheng L, Yang X, He N, Pang Y, Wang X, Lai Z, Zheng W, Zheng S, Wang W. A novel doxorubicin/CTLA-4 blocker co-loaded drug delivery system improves efficacy and safety in antitumor therapy. Cell Death Dis 2024; 15:386. [PMID: 38824143 PMCID: PMC11144200 DOI: 10.1038/s41419-024-06776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Doxorubicin's antitumor effectiveness may be constrained with ineffective tumor penetration, systemic adverse effects, as well as drug resistance. The co-loading of immune checkpoint inhibitors and doxorubicin into liposomes can produce synergistic benefits and address problems, including quick drug clearance, toxicity, and low drug penetration efficiency. In our previous study, we modified a nanobody targeting CTLA-4 onto liposomes (LPS-Nb36) to be an extremely potent CTLA-4 signal blocker which improve the CD8+ T-cell activity against tumors under physiological conditions. In this study, we designed a drug delivery system (LPS-RGD-Nb36-DOX) based on LPS-Nb36 that realized the doxorubicin and anti-CTLA-4 Nb co-loaded and RGD modification, and was applied to antitumor therapy. We tested whether LPS-RGD-Nb36-DOX could targets the tumor by in vivo animal photography, and more importantly, promote cytotoxic T cells proliferation, pro-inflammatory cytokine production, and cytotoxicity. Our findings demonstrated that the combination of activated CD8+ T cells with doxorubicin/anti-CTLA-4 Nb co-loaded liposomes can effectively eradicate tumor cells both in vivo and in vitro. This combination therapy is anticipated to have synergistic antitumor effects. More importantly, it has the potential to reduce the dose of chemotherapeutic drugs and improve safety.
Collapse
Affiliation(s)
- Wenli Yang
- Public Research Center, Hainan Medical University, Haikou, China
- Department of Anatomy, Zunyi Medical University, Zunyi, China
| | - Qinghui Sun
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Tropical Medicine, Hainan MedicalUniversity, Haikou, China
| | - Xiaodian Zhang
- Hainan Cancer Medical Center of The First Affiliated Hospital, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Haikou, China
| | - Liping Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiaomei Yang
- Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Na He
- School of Tropical Medicine, Hainan MedicalUniversity, Haikou, China
| | - Yanyang Pang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| | - Xi Wang
- Department of Anesthesiology, Haikou Third People's Hospital, Haikou, China
| | - Zhiheng Lai
- Department of Anorectal, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
| | - Wuping Zheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Shaoping Zheng
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wu Wang
- Public Research Center, Hainan Medical University, Haikou, China.
| |
Collapse
|
13
|
Thompson PE, Shortt J. Defeating MYC with drug combinations or dual-targeting drugs. Trends Pharmacol Sci 2024; 45:490-502. [PMID: 38782688 DOI: 10.1016/j.tips.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Members of the MYC family of proteins are a major target for cancer drug discovery, but the development of drugs that block MYC-driven cancers has not yet been successful. Approaches to achieve success may include the development of combination therapies or dual-acting drugs that target MYC at multiple nodes. Such treatments hold the possibility of additive or synergistic activity, potentially reducing side effect profiles and the emergence of resistance. In this review, we examine the prominent MYC-related targets and highlight those that have been targeted in combination and/or dual-target approaches. Finally, we explore the challenges of combination and dual-target approaches from a drug development perspective.
Collapse
Affiliation(s)
- Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Jake Shortt
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria 3168, Australia; Monash Hematology, Monash Health, Melbourne, Victoria 3168, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
14
|
Lee KJ, Choi D, Tae N, Song HW, Kang YW, Lee M, Moon D, Oh Y, Park S, Kim JH, Jeong S, Yang J, Park U, Hong DH, Byun MS, Park SH, Sohn J, Park Y, Im SK, Choi SS, Kim DH, Lee SW. IL-7-primed bystander CD8 tumor-infiltrating lymphocytes optimize the antitumor efficacy of T cell engager immunotherapy. Cell Rep Med 2024; 5:101567. [PMID: 38744277 PMCID: PMC11148861 DOI: 10.1016/j.xcrm.2024.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Bispecific T cell engagers (TCEs) show promising clinical efficacy in blood tumors, but their application to solid tumors remains challenging. Here, we show that Fc-fused IL-7 (rhIL-7-hyFc) changes the intratumoral CD8 T cell landscape, enhancing the efficacy of TCE immunotherapy. rhIL-7-hyFc induces a dramatic increase in CD8 tumor-infiltrating lymphocytes (TILs) in various solid tumors, but the majority of these cells are PD-1-negative tumor non-responsive bystander T cells. However, they are non-exhausted and central memory-phenotype CD8 T cells with high T cell receptor (TCR)-recall capacity that can be triggered by tumor antigen-specific TCEs to acquire tumoricidal activity. Single-cell transcriptome analysis reveals that rhIL-7-hyFc-induced bystander CD8 TILs transform into cycling transitional T cells by TCE redirection with decreased memory markers and increased cytotoxic molecules. Notably, TCE treatment has no major effect on tumor-reactive CD8 TILs. Our results suggest that rhIL-7-hyFc treatment promotes the antitumor efficacy of TCE immunotherapy by increasing TCE-sensitive bystander CD8 TILs in solid tumors.
Collapse
Affiliation(s)
- Kun-Joo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Donghoon Choi
- Research Institute of NeoImmuneTech, Inc., Pohang 37673, Republic of Korea
| | - Nara Tae
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ha Won Song
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yeon-Woo Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Minji Lee
- Research Institute of NeoImmuneTech, Inc., Pohang 37673, Republic of Korea
| | - Dain Moon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Youngsik Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sujeong Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ji-Hae Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Siheon Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jaehyuk Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Uni Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Da Hee Hong
- Genexine Inc., Seoul 07789, Republic of Korea
| | - Mi-Sun Byun
- Genexine Inc., Seoul 07789, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yunji Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sun-Kyoung Im
- Research Institute of NeoImmuneTech, Inc., Pohang 37673, Republic of Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Dae Hee Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
15
|
De Carli A, Kapelyukh Y, Kursawe J, Chaplain MAJ, Wolf CR, Hamis S. Simulating BRAFV600E-MEK-ERK signalling dynamics in response to vertical inhibition treatment strategies. NPJ Syst Biol Appl 2024; 10:51. [PMID: 38750040 PMCID: PMC11096323 DOI: 10.1038/s41540-024-00379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
In vertical inhibition treatment strategies, multiple components of an intracellular pathway are simultaneously inhibited. Vertical inhibition of the BRAFV600E-MEK-ERK signalling pathway is a standard of care for treating BRAFV600E-mutated melanoma where two targeted cancer drugs, a BRAFV600E-inhibitor, and a MEK inhibitor, are administered in combination. Targeted therapies have been linked to early onsets of drug resistance, and thus treatment strategies of higher complexities and lower doses have been proposed as alternatives to current clinical strategies. However, finding optimal complex, low-dose treatment strategies is a challenge, as it is possible to design more treatment strategies than are feasibly testable in experimental settings. To quantitatively address this challenge, we develop a mathematical model of BRAFV600E-MEK-ERK signalling dynamics in response to combinations of the BRAFV600E-inhibitor dabrafenib (DBF), the MEK inhibitor trametinib (TMT), and the ERK-inhibitor SCH772984 (SCH). From a model of the BRAFV600E-MEK-ERK pathway, and a set of molecular-level drug-protein interactions, we extract a system of chemical reactions that is parameterised by in vitro data and converted to a system of ordinary differential equations (ODEs) using the law of mass action. The ODEs are solved numerically to produce simulations of how pathway-component concentrations change over time in response to different treatment strategies, i.e., inhibitor combinations and doses. The model can thus be used to limit the search space for effective treatment strategies that target the BRAFV600E-MEK-ERK pathway and warrant further experimental investigation. The results demonstrate that DBF and DBF-TMT-SCH therapies show marked sensitivity to BRAFV600E concentrations in silico, whilst TMT and SCH monotherapies do not.
Collapse
Affiliation(s)
- Alice De Carli
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland, UK
| | - Yury Kapelyukh
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | - Jochen Kursawe
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland, UK
| | - Mark A J Chaplain
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland, UK
| | - C Roland Wolf
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | - Sara Hamis
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland, UK.
- Tampere Institute for Advanced Study, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Department of Information Technology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Landman N, Hulsman D, Badhai J, Kopparam J, Puppe J, Pandey GK, van Lohuizen M. Combination of EZH2 and ATM inhibition in BAP1-deficient mesothelioma. Br J Cancer 2024; 130:1855-1865. [PMID: 38519707 PMCID: PMC11130181 DOI: 10.1038/s41416-024-02661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND More than half of mesothelioma tumours show alterations in the tumour suppressor gene BAP1. BAP1-deficient mesothelioma is shown to be sensitive to EZH2 inhibition in preclinical settings but only showed modest efficacy in clinical trial. Adding a second inhibitor could potentially elevate EZH2i treatment efficacy while preventing acquired resistance at the same time. METHODS A focused drug synergy screen consisting of 20 drugs was performed by combining EZH2 inhibition with a panel of anti-cancer compounds in mesothelioma cell lines. The compounds used are under preclinical investigation or already used in the clinic. The synergistic potential of the combinations was assessed by using the Bliss model. To validate our findings, in vivo xenograft experiments were performed. RESULTS Combining EZH2i with ATMi was found to have synergistic potential against BAP1-deficient mesothelioma in our drug screen, which was validated in clonogenicity assays. Tumour growth inhibition potential was significantly increased in BAP1-deficient xenografts. In addition, we observe lower ATM levels upon depletion of BAP1 and hypothesise that this might be mediated by E2F1. CONCLUSIONS We demonstrated the efficacy of the combination of ATM and EZH2 inhibition against BAP1-deficient mesothelioma in preclinical models, indicating the potential of this combination as a novel treatment modality using BAP1 as a biomarker.
Collapse
Affiliation(s)
- Nick Landman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands
| | - Danielle Hulsman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands
| | - Jitendra Badhai
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands
| | - Jawahar Kopparam
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands
| | - Julian Puppe
- Department of Obstetrics and Gynaecology, University Hospital of Cologne, Kerpener Str. 34, Cologne, Germany
| | - Gaurav Kumar Pandey
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands.
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands.
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| | - Maarten van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands.
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Bashi AC, Coker EA, Bulusu KC, Jaaks P, Crafter C, Lightfoot H, Milo M, McCarten K, Jenkins DF, van der Meer D, Lynch JT, Barthorpe S, Andersen CL, Barry ST, Beck A, Cidado J, Gordon JA, Hall C, Hall J, Mali I, Mironenko T, Mongeon K, Morris J, Richardson L, Smith PD, Tavana O, Tolley C, Thomas F, Willis BS, Yang W, O'Connor MJ, McDermott U, Critchlow SE, Drew L, Fawell SE, Mettetal JT, Garnett MJ. Large-scale Pan-cancer Cell Line Screening Identifies Actionable and Effective Drug Combinations. Cancer Discov 2024; 14:846-865. [PMID: 38456804 PMCID: PMC11061612 DOI: 10.1158/2159-8290.cd-23-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/01/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific "emergent" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets. SIGNIFICANCE We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of "emergent" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marta Milo
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | | | - Syd Barthorpe
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | | | | | | | - Caitlin Hall
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - James Hall
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Iman Mali
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | - James Morris
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Paul D. Smith
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Omid Tavana
- Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | | | | | | | - Wanjuan Yang
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | | | - Lisa Drew
- Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | | | | | | |
Collapse
|
18
|
Qiang Y, Fan J, Xie C, Yan L, Song X, Zhang N, Lin Y, Xiong J, Zhang W, Liu Y, Wei L, Li Y, Chen S, Liang K, Li F. KDM5C-Mediated Recruitment of BRD4 to Chromatin Regulates Enhancer Activation and BET Inhibitor Sensitivity. Cancer Res 2024; 84:1252-1269. [PMID: 38285760 DOI: 10.1158/0008-5472.can-23-2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
The BET family member BRD4 is a bromodomain-containing protein that plays a vital role in driving oncogene expression. Given their pivotal role in regulating oncogenic networks in various cancer types, BET inhibitors (BETi) have been developed, but the clinical application has been impeded by dose-limiting toxicity and resistance. Understanding the mechanisms of BRD4 activity and identifying predictive biomarkers could facilitate the successful clinical use of BETis. Herein, we show that KDM5C and BRD4 cooperate to sustain tumor cell growth. Mechanistically, KDM5C interacted with BRD4 and stimulated BRD4 enhancer recruitment. Moreover, binding of the BRD4 C-terminus to KDM5C stimulated the H3K4 demethylase activity of KDM5C. The abundance of both KDM5C-associated BRD4 and H3K4me1/3 determined the transcriptional activation of many oncogenes. Notably, depletion or pharmacologic degradation of KDM5C dramatically reduced BRD4 chromatin enrichment and significantly increased BETi efficacy across multiple cancer types in both tumor cell lines and patient-derived organoid models. Furthermore, targeting KDM5C in combination with BETi suppressed tumor growth in vivo in a xenograft mouse model. Collectively, this work reveals a KDM5C-mediated mechanism by which BRD4 regulates transcription, providing a rationale for incorporating BETi into combination therapies with KDM5C inhibitors to enhance treatment efficacy. SIGNIFICANCE BRD4 is recruited to enhancers in a bromodomain-independent manner by binding KDM5C and stimulates KDM5C H3K4 demethylase activity, leading to synergistic effects of BET and KDM5C inhibitor combinations in cancer.
Collapse
Affiliation(s)
- Yulong Qiang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Jiachen Fan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Chuanshuai Xie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Leilei Yan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Xiaofei Song
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Yan Lin
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wei Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lei Wei
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Kaiwei Liang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Feng Li
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Wang B, Zhou B, Chen J, Sun X, Yang W, Yang T, Yu H, Chen P, Chen K, Huang X, Fan X, He W, Huang J, Lin T. Type III interferon inhibits bladder cancer progression by reprogramming macrophage-mediated phagocytosis and orchestrating effective immune responses. J Immunother Cancer 2024; 12:e007808. [PMID: 38589249 PMCID: PMC11015199 DOI: 10.1136/jitc-2023-007808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Interferons (IFNs) are essential for activating an effective immune response and play a central role in immunotherapy-mediated immune cell reactivation for tumor regression. Type III IFN (λ), related to type I IFN (α), plays a crucial role in infections, autoimmunity, and cancer. However, the direct effects of IFN-λ on the tumor immune microenvironment have not been thoroughly investigated. METHODS We used mouse MB49 bladder tumor models, constructed a retroviral vector expressing mouse IFN-λ3, and transduced tumor cells to evaluate the antitumor action of IFN-λ3 in immune-proficient tumors and T cell-deficient tumors. Furthermore, human bladder cancer samples (cohort 1, n=15) were used for immunohistochemistry and multiplex immunoflurescence analysis to assess the expression pattern of IFN-λ3 in human bladder cancer and correlate it with immune cells' infiltration. Immunohistochemistry analysis was performed in neoadjuvant immunotherapy cohort (cohort 2, n=20) to assess the correlation between IFN-λ3 expression and the pathological complete response rate. RESULTS In immune-proficient tumors, ectopic Ifnl3 expression in tumor cells significantly increased the infiltration of cytotoxic CD8+ T cells, Th1 cells, natural killer cells, proinflammatory macrophages, and dendritic cells, but reduced neutrophil infiltration. Transcriptomic analyses revealed significant upregulation of many genes associated with effective immune response, including lymphocyte recruitment, activation, and phagocytosis, consistent with increased antitumor immune infiltrates and tumor inhibition. Furthermore, IFN-λ3 activity sensitized immune-proficient tumors to anti-PD-1/PD-L1 blockade. In T cell-deficient tumors, increased Ly6G-Ly6C+I-A/I-E+ macrophages still enhanced tumor cell phagocytosis in Ifnl3 overexpressing tumors. IFN-λ3 is expressed by tumor and stromal cells in human bladder cancer, and high IFN-λ3 expression was positively associated with effector immune infiltrates and the efficacy of immune checkpoint blockade therapy. CONCLUSIONS Our study indicated that IFN-λ3 enables macrophage-mediated phagocytosis and antitumor immune responses and suggests a rationale for using Type III IFN as a predictive biomarker and potential immunotherapeutic candidate for bladder cancer.
Collapse
Affiliation(s)
- Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Bingkun Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Junyu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Xi Sun
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Wenjuan Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Tenghao Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Hao Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Peng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Ke Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Xiaodong Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Xinxiang Fan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| |
Collapse
|
20
|
Kim BH, Park HC, Kim TH, Koh YH, Hong JY, Cho Y, Sinn DH, Park B, Park JW. Concurrent nivolumab and external beam radiation therapy for hepatocellular carcinoma with macrovascular invasion: A phase II study. JHEP Rep 2024; 6:100991. [PMID: 38463541 PMCID: PMC10920711 DOI: 10.1016/j.jhepr.2023.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 03/12/2024] Open
Abstract
Background and Aims Nivolumab was the first immune checkpoint inhibitor approved for hepatocellular carcinoma (HCC). External beam radiation therapy (EBRT) is locally effective and may enhance the effectiveness of immunotherapy. This study investigated the efficacy and safety of concurrent nivolumab and EBRT in HCC with macrovascular invasion. Methods In this phase II multicenter trial, patients with HCC and macrovascular invasion were concurrently treated with intravenous nivolumab (3 mg/kg every 2 weeks) and EBRT, followed by maintenance nivolumab until progression or unacceptable toxicity. Primary endpoints were progression-free survival (PFS) and safety, and secondary endpoints were overall survival, time-to-progression, objective response rate, and disease control rate. Results Between January 2020 and June 2021, 50 patients (male 84%, median age 62.5) were enrolled; 47 (94.0%) and 13 (26.0%) with portal (Vp1/2, n = 21; Vp3, n = 23; Vp4, n = 3) and hepatic vein invasion, respectively. Patients received EBRT (median dose: 50 [IQR 43-50] Gy) after the first nivolumab dose. The median number of nivolumab doses was 8.5. Median PFS was 5.6 (90% CI 3.6-9.9) months. Median overall survival and time-to-progression were 15.2 (90% CI 10.8-19.6) and 5.6 (90% CI 3.6-9.9) months, respectively. The objective response rate and disease control rate were 36.0% and 74.0%, respectively. The median duration of response was 9.9 months. Of 35 patients with follow-up data, 23 received subsequent systemic treatment, including atezolizumab-bevacizumab, sorafenib, lenvatinib, and regorafenib. Treatment-related any grade adverse events (AEs) and grade 3/4 AEs occurred in 40 (80.0%) and 6 (12.0%) patients, respectively. Common treatment-related AEs included pruritus (38.0%) and rash (16.0%), with no treatment-related deaths. Conclusion Concurrent nivolumab therapy and EBRT showed encouraging PFS with acceptable safety in patients with advanced HCC and macrovascular invasion. Impact and implications Immune checkpoint inhibitors, the standard care for advanced hepatocellular carcinoma (HCC), show relatively poor therapeutic effects in patients with advanced HCC and macrovascular invasion. In this investigator-initiated phase II study, we, for the first time, show that concurrent external beam radiation therapy with nivolumab, an immune checkpoint inhibitor, led to encouraging progression-free survival in patients with HCC and macrovascular invasion. The concurrent treatment was tolerable without significant safety concerns. Further randomized studies investigating the combination of immunotherapy and external beam radiation therapy are required. ClinicalTrialsgov identifier NCT04611165.
Collapse
Affiliation(s)
- Bo Hyun Kim
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae Hyun Kim
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
- Center for Proton Therapy, National Cancer Center, Goyang, Republic of Korea
| | - Young-Hwan Koh
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
- Department of Radiology, National Cancer Center, Goyang, Republic of Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Dong Hyun Sinn
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Boram Park
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Joong-Won Park
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
21
|
Ma K, Chen KZ, Qiao SL. Advances of Layered Double Hydroxide-Based Materials for Tumor Imaging and Therapy. CHEM REC 2024; 24:e202400010. [PMID: 38501833 DOI: 10.1002/tcr.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ke Ma
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| |
Collapse
|
22
|
Noorani I, Luebeck J, Rowan A, Grönroos E, Barbe V, Fabian M, Nicoll JAR, Boche D, Bafna V, Mischel PS, Swanton C. Oncogenic extrachromosomal DNA identification using whole-genome sequencing from formalin-fixed glioblastomas. Ann Oncol 2024:S0923-7534(24)00085-1. [PMID: 38555024 DOI: 10.1016/j.annonc.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Affiliation(s)
- I Noorani
- The Francis Crick Institute, London, UK; Department of Neuromuscular Diseases, Institute of Neurology, University College London; National Hospital for Neurology and Neurosurgery, London, UK
| | - J Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - A Rowan
- The Francis Crick Institute, London, UK
| | | | - V Barbe
- The Francis Crick Institute, London, UK
| | - M Fabian
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - J A R Nicoll
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - D Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - V Bafna
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - P S Mischel
- Department of Pathology, Stanford University School of Medicine and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - C Swanton
- The Francis Crick Institute, London, UK
| |
Collapse
|
23
|
Han H, Sun Y, Wei W, Huang Z, Cheng M, Qiu H, Wang J, Zheng S, Liu L, Zhang Q, Zhang C, Ma J, Guo S, Wang Z, Li Z, Jiang X, Lin S, Liu Q, Zhang S. RNA modification-related genes illuminate prognostic signature and mechanism in esophageal squamous cell carcinoma. iScience 2024; 27:109327. [PMID: 38487015 PMCID: PMC10937836 DOI: 10.1016/j.isci.2024.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/06/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Emerging studies have demonstrated the link between RNA modifications and various cancers, while the predictive value and functional mechanisms of RNA modification-related genes (RMGs) in esophageal squamous cell carcinoma (ESCC) remain unclear. Here we established a prognostic signature for ESCC based on five RMGs. The analysis of ESCC clinical samples further verified the prognostic power of the prognostic signature. Moreover, we found that the knockdown of NSUN6 promotes ESCC progression in vitro and in vivo, whereas the overexpression of NSUN6 inhibits the malignant phenotype of ESCC cells. Mechanically, NSUN6 mediated tRNA m5C modifications selectively enhance the translation efficiency of CDH1 mRNA in a codon dependent manner. Rescue assays revealed that E-cadherin is an essential downstream target that mediates NSUN6's function in the regulation of ESCC progression. These findings offer additional insights into the link between ESCC and RMGs, as well as provide potential strategies for ESCC management and therapy.
Collapse
Affiliation(s)
- Hui Han
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yucong Sun
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Wei
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Maosheng Cheng
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongshen Qiu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Wang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyi Zheng
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Lianlian Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiang Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Canfeng Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jieyi Ma
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyao Guo
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyu Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenpeng Li
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xu Jiang
- School of basic medical sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qianwen Liu
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510080, China
- Guangdong Esophageal Cancer Institute, Guangzhou 510080, China
| | - Shuishen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
24
|
Veth TS, Kannegieter NM, de Graaf EL, Ruijtenbeek R, Joore J, Ressa A, Altelaar M. Innovative strategies for measuring kinase activity to accelerate the next wave of novel kinase inhibitors. Drug Discov Today 2024; 29:103907. [PMID: 38301799 DOI: 10.1016/j.drudis.2024.103907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The development of protein kinase inhibitors (PKIs) has gained significance owing to their therapeutic potential for diseases like cancer. In addition, there has been a rise in refining kinase activity assays, each possessing unique biological and analytical characteristics crucial for PKI development. However, the PKI development pipeline experiences high attrition rates and approved PKIs exhibit unexploited potential because of variable patient responses. Enhancing PKI development efficiency involves addressing challenges related to understanding the PKI mechanism of action and employing biomarkers for precision medicine. Selecting appropriate kinase activity assays for these challenges can overcome these attrition rate issues. This review delves into the current obstacles in kinase inhibitor development and elucidates kinase activity assays that can provide solutions.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | | | - Erik L de Graaf
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | | | - Jos Joore
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Anna Ressa
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
25
|
Weth FR, Hoggarth GB, Weth AF, Paterson E, White MPJ, Tan ST, Peng L, Gray C. Unlocking hidden potential: advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br J Cancer 2024; 130:703-715. [PMID: 38012383 PMCID: PMC10912636 DOI: 10.1038/s41416-023-02502-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
High rates of failure, exorbitant costs, and the sluggish pace of new drug discovery and development have led to a growing interest in repurposing "old" drugs to treat both common and rare diseases, particularly cancer. Cancer, a complex and heterogeneous disease, often necessitates a combination of different treatment modalities to achieve optimal outcomes. The intrinsic polygenicity of cancer, intricate biological signalling networks, and feedback loops make the inhibition of a single target frequently insufficient for achieving the desired therapeutic impact. As a result, addressing these complex or "smart" malignancies demands equally sophisticated treatment strategies. Combinatory treatments that target the multifaceted oncogenic signalling network hold immense promise. Repurposed drugs offer a potential solution to this challenge, harnessing known compounds for new indications. By avoiding the prohibitive costs and long development timelines associated with novel cancer drugs, this approach holds the potential to usher in more effective, efficient, and cost-effective cancer treatments. The pursuit of combinatory therapies through drug repurposing may hold the key to achieving superior outcomes for cancer patients. However, drug repurposing faces significant commercial, technological and regulatory challenges that need to be addressed. This review explores the diverse approaches employed in drug repurposing, delves into the challenges faced by the drug repurposing community, and presents innovative solutions to overcome these obstacles. By emphasising the significance of combinatory treatments within the context of drug repurposing, we aim to unlock the full potential of this approach for enhancing cancer therapy. The positive aspects of drug repurposing in oncology are underscored here; encompassing personalized treatment, accelerated development, market opportunities for shelved drugs, cancer prevention, expanded patient reach, improved patient access, multi-partner collaborations, increased likelihood of approval, reduced costs, and enhanced combination therapy.
Collapse
Affiliation(s)
- Freya R Weth
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | - Georgia B Hoggarth
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
| | - Anya F Weth
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
| | - Erin Paterson
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
| | | | - Swee T Tan
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, 5040, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| |
Collapse
|
26
|
Ali KA, Shah RD, Dhar A, Myers NM, Nguyen C, Paul A, Mancuso JE, Scott Patterson A, Brody JP, Heiser D. Ex vivo discovery of synergistic drug combinations for hematologic malignancies. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100129. [PMID: 38101570 DOI: 10.1016/j.slasd.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Combination therapies have improved outcomes for patients with acute myeloid leukemia (AML). However, these patients still have poor overall survival. Although many combination therapies are identified with high-throughput screening (HTS), these approaches are constrained to disease models that can be grown in large volumes (e.g., immortalized cell lines), which have limited translational utility. To identify more effective and personalized treatments, we need better strategies for screening and exploring potential combination therapies. Our objective was to develop an HTS platform for identifying effective combination therapies with highly translatable ex vivo disease models that use size-limited, primary samples from patients with leukemia (AML and myelodysplastic syndrome). We developed a system, ComboFlow, that comprises three main components: MiniFlow, ComboPooler, and AutoGater. MiniFlow conducts ex vivo drug screening with a miniaturized flow-cytometry assay that uses minimal amounts of patient sample to maximize throughput. ComboPooler incorporates computational methods to design efficient screens of pooled drug combinations. AutoGater is an automated gating classifier for flow cytometry that uses machine learning to rapidly analyze the large datasets generated by the assay. We used ComboFlow to efficiently screen more than 3000 drug combinations across 20 patient samples using only 6 million cells per patient sample. In this screen, ComboFlow identified the known synergistic combination of bortezomib and panobinostat. ComboFlow also identified a novel drug combination, dactinomycin and fludarabine, that synergistically killed leukemic cells in 35 % of AML samples. This combination also had limited effects in normal, hematopoietic progenitors. In conclusion, ComboFlow enables exploration of massive landscapes of drug combinations that were previously inaccessible in ex vivo models. We envision that ComboFlow can be used to discover more effective and personalized combination therapies for cancers amenable to ex vivo models.
Collapse
Affiliation(s)
- Kamran A Ali
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA; Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA.
| | - Reecha D Shah
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | - Anukriti Dhar
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | - Nina M Myers
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | | | - Arisa Paul
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| | | | | | - James P Brody
- Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Diane Heiser
- Notable Labs, 320 Hatch Dr, Foster City, CA, 94404, USA
| |
Collapse
|
27
|
Aputen AD, Elias MG, Gilbert J, Sakoff JA, Gordon CP, Scott KF, Aldrich-Wright JR. Platinum(IV) Prodrugs Incorporating an Indole-Based Derivative, 5-Benzyloxyindole-3-Acetic Acid in the Axial Position Exhibit Prominent Anticancer Activity. Int J Mol Sci 2024; 25:2181. [PMID: 38396859 PMCID: PMC10888562 DOI: 10.3390/ijms25042181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Kinetically inert platinum(IV) complexes are a chemical strategy to overcome the impediments of standard platinum(II) antineoplastic drugs like cisplatin, oxaliplatin and carboplatin. In this study, we reported the syntheses and structural characterisation of three platinum(IV) complexes that incorporate 5-benzyloxyindole-3-acetic acid, a bioactive ligand that integrates an indole pharmacophore. The purity and chemical structures of the resultant complexes, P-5B3A, 5-5B3A and 56-5B3A were confirmed via spectroscopic means. The complexes were evaluated for anticancer activity against multiple human cell lines. All complexes proved to be considerably more active than cisplatin, oxaliplatin and carboplatin in most cell lines tested. Remarkably, 56-5B3A demonstrated the greatest anticancer activity, displaying GI50 values between 1.2 and 150 nM. Enhanced production of reactive oxygen species paired with the decline in mitochondrial activity as well as inhibition of histone deacetylase were also demonstrated by the complexes in HT29 colon cells.
Collapse
Affiliation(s)
- Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| | - Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
- Ingham Institute, Sydney, NSW 2170, Australia;
| | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia; (J.G.); (J.A.S.)
| | - Jennette A. Sakoff
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia; (J.G.); (J.A.S.)
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| | - Kieran F. Scott
- Ingham Institute, Sydney, NSW 2170, Australia;
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| |
Collapse
|
28
|
Liu Z, Yang Y, Sun X, Ma R, Zhang W, Wang W, Yang G, Wang H, Zhang J, Wang Y, Tian J. Discovery of Novel Antitumor Small-Molecule Agent with Dual Action of CDK2/p-RB and MDM2/p53. Molecules 2024; 29:725. [PMID: 38338471 PMCID: PMC10856454 DOI: 10.3390/molecules29030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Cell cycle-dependent kinase 2 (CDK2) is located downstream of CDK4/6 in the cell cycle and regulates cell entry into S-phase by binding to Cyclin E and hyper-phosphorylating Rb. Proto-oncogene murine double minute 2 (MDM2) is a key negative regulator of p53, which is highly expressed in tumors and plays an important role in tumorigenesis and progression. In this study, we identified a dual inhibitor of CDK2 and MDM2, III-13, which had good selectivity for inhibiting CDK2 activity and significantly reduced MDM2 expression. In vitro results showed that III-13 inhibited proliferation of a wide range of tumor cells, regardless of whether Cyclin E1 (CCNE1) was overexpressed or not. The results of in vivo experiments showed that III-13 significantly inhibited proliferation of tumor cells and did not affect body weight of mice. The results of the druggability evaluation showed that III-13 was characterized by low bioavailability and poor membrane permeability when orally administered, suggesting the necessity of further structural modifications. Therefore, this study provided a lead compound for antitumor drugs, especially those against CCNE1-amplified tumor proliferation.
Collapse
Affiliation(s)
- Zhaofeng Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Yifei Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Runchen Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Wenjing Zhang
- R & D Center, Luye Pharma Group Ltd., Yantai 264003, China;
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Gangqiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Jianzhao Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| |
Collapse
|
29
|
He Z, Feng D, Zhang C, Chen Z, Wang H, Hou J, Li S, Wei X. Recent strategies for evoking immunogenic Pyroptosis in antitumor immunotherapy. J Control Release 2024; 366:375-394. [PMID: 38142962 DOI: 10.1016/j.jconrel.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Pyroptosis is a specific type of programmed cell death (PCD) characterized by distinct morphological changes, including cell swelling, membrane blebbing, DNA fragmentation, and eventual cell lysis. Pyroptosis is closely associated with human-related diseases, such as inflammation and malignancies. Since the initial observation of pyroptosis in Shigella flexneri-infected macrophages more than 20 years ago, various pyroptosis-inducing agents, including ions, small molecules, and biological nanomaterials, have been developed for tumor treatment. Given that pyroptosis can activate the body's robust immune response against tumor and promote the formation of the body's long-term immune memory in tumor treatment, its status as a type of immunogenic cell death is self-evident. Therefore, pyroptosis should be used as a powerful anti-tumor strategy. However, there still is a lack of a comprehensive summary of the most recent advances in pyroptosis-based cancer therapy. Therefore, it is vital to fill this gap and inspire future drug design to better induce tumor cells to undergo pyroptosis to achieve advanced anti-tumor effects. In this review, we summarize in detail the most recent advances in triggering tumor cell immunogenic pyroptosis for adequate tumor clearance based on various treatment modalities, and highlight material design and therapeutic advantages. Besides, we also provide an outlook on the prospects of this emerging field in the next development.
Collapse
Affiliation(s)
- Zhangxin He
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, China
| | - Dexiang Feng
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Chaoji Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhiqian Chen
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - He Wang
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China.
| | - Jianquan Hou
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, China.
| | - Xuedong Wei
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
30
|
Huang Y, Wang S, Zhang X, Yang C, Wang S, Cheng H, Ke A, Gao C, Guo K. Identification of Fasudil as a collaborator to promote the anti-tumor effect of lenvatinib in hepatocellular carcinoma by inhibiting GLI2-mediated hedgehog signaling pathway. Pharmacol Res 2024; 200:107082. [PMID: 38280440 DOI: 10.1016/j.phrs.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Lenvatinib is a frontline tyrosine kinase inhibitor for patients with advanced hepatocellular carcinoma (HCC). However, just 25% of patients benefit from the treatment, and acquired resistance always develops. To date, there are neither effective medications to combat lenvatinib resistance nor accurate markers that might predict how well a patient would respond to the lenvatinib treatment. Thus, novel strategies to recognize and deal with lenvatinib resistance are desperately needed. In the current study, a robust Lenvatinib Resistance index (LRi) model to predict lenvatinib response status in HCC was first established. Subsequently, five candidate drugs (Mercaptopurine, AACOCF3, NU1025, Fasudil, and Exisulind) that were capable of reversing lenvatinib resistance signature were initially selected by performing the connectivity map (CMap) analysis, and fasudil finally stood out by conducting a series of cellular functional assays in vitro and xenograft mouse model. Transcriptomics revealed that the co-administration of lenvatinib and fasudil overcame lenvatinib resistance by remodeling the hedgehog signaling pathway. Mechanistically, the feedback activation of EGFR by lenvatinib led to the activation of the GLI2-ABCC1 pathway, which supported the HCC cell's survival and proliferation. Notably, co-administration of lenvatinib and fasudil significantly inhibited IHH, the upstream switch of the hedgehog pathway, to counteract GLI2 activation and finally enhance the effectiveness of lenvatinib. These findings elucidated a novel EGFR-mediated mechanism of lenvatinib resistance and provided a practical approach to overcoming drug resistance in HCC through meaningful drug repurposing strategies.
Collapse
Affiliation(s)
- Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China
| | - Siwei Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China; Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaojun Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China
| | - Hongxia Cheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China
| | - Aiwu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China.
| | - Chao Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China.
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China.
| |
Collapse
|
31
|
Hussain S, Hussain S, Zafar MN, Hussain I, Khan F, Mughal EU, Tahir MN. Preliminary anticancer evaluation of new Pd(II) complexes bearing NNO donor ligands. Saudi Pharm J 2024; 32:101915. [PMID: 38178853 PMCID: PMC10764271 DOI: 10.1016/j.jsps.2023.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
In this study we presented a novel series of NNO tridentate ligands generating imino, amido and oxo donor pocket for Pd(II) coordination. All the compounds were meticulously characterized by elemental analysis and advanced spectroscopic techniques, including FTIR, proton and carbon NMR. The synthesized compounds underwent rigorous evaluation for their potential as anti-cancer agents, utilizing the aggressive breast cancer cell lines MDA-MB (ATCC) and MCF-7 as a crucial model for assessing growth inhibition in cancer cells. Remarkably, the MTT assay unveiled the robust anti-cancer activity for all palladium complexes against MDA-MB-231 and MCF-7 cells. Particularly, complex [Pd(L1)(CH3CN)] exhibited exceptional potency with an IC50 value of 25.50 ± 0.30 µM (MDA-MB-231) and 20.76 ± 0.30 µM (MCF-7), compared to respective 27.00 ± 0.80 µM and 24.10 ± 0.80 µM for cisplatin, underscoring its promising therapeutic potential. Furthermore, to elucidate the mechanistic basis for the anti-cancer effects, molecular docking studies on tyrosine kinases, an integral target in cancer research, were carried out. The outcome of these investigations further substantiated the remarkable anticancer properties inherent to these innovative compounds. This research offers a compelling perspective on the development of potent anti-cancer agents rooted in the synergy between ligands and Pd(II) complexes and presenting a promising avenue for future cancer therapy endeavors.
Collapse
Affiliation(s)
- Shazia Hussain
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shabeeb Hussain
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - M. Naveed Zafar
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Irfan Hussain
- Center of Regenerative Medicine and Stem Cell Research, Aga Khan 74800, University Karachi, Pakistan
| | - Faizullah Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman and Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | | | | |
Collapse
|
32
|
Pereira IF, Santos Oliveira AM, Santos AM, de Melo Soares D, Serafini MR, Almeida Alves I. A Descriptive Review of Cannabis sativa Patents for Cancer Treatment. Recent Pat Anticancer Drug Discov 2024; 19:137-145. [PMID: 36788702 DOI: 10.2174/1574892818666230213095717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 02/16/2023]
Abstract
BACKGROUND Cannabis use for tumor treatment has been explored in several areas, and its potential for tumor remission is currently being studied after the discovery of the endogenous cannabinoid. OBJECTIVE The study aimed to conduct a critical patent review to identify and explore the latest advances and therapeutic strategies using Cannabis to treat cancer. METHODS The research was carried out in the free and online database Espacenet, using the descriptors "cancer" and "Cannabis or cannabidiol" in the title or abstract. A total of 95 patents were identified for preliminary evaluation in the database. Six duplicate patents were excluded, 12 referring to traditional Chinese medicine and 36 with a title in disagreement with the scope of this review. In addition the final selection involved 21 patents that were in line with the objective of the study. RESULTS As observed in the reading of patents, the interest of pharmaceutical industries and researchers and the development of new products to fight cancer have increased in recent years. The main cannabinoids present in the patents are tetrahydrocannabinol, cannabidiol, and hemp. Moreover, the patents were classified and the main applicant countries were the United States followed by Japan, with a higher filing rate in 2019 and, mainly by the industry. CONCLUSION In conclusion we can say that, the importance of parliamentary approval in the cultivation and investments that, in addition to bringing innovation to the industrial sector, enriches research in the area, contributing to the creation of new medicines.
Collapse
Affiliation(s)
| | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Anamaria Mendonça Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Denis de Melo Soares
- Faculty of Pharmacy, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
- Postgraduate Program in Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Izabel Almeida Alves
- Faculty of Pharmacy, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
- Postgraduate Program in Pharmaceutical Sciences, University of the State of Bahia, Salvador, BA, Brazil
| |
Collapse
|
33
|
Derbal Y. Adaptive Cancer Therapy in the Age of Generative Artificial Intelligence. Cancer Control 2024; 31:10732748241264704. [PMID: 38897721 PMCID: PMC11189021 DOI: 10.1177/10732748241264704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Therapeutic resistance is a major challenge facing the design of effective cancer treatments. Adaptive cancer therapy is in principle the most viable approach to manage cancer's adaptive dynamics through drug combinations with dose timing and modulation. However, there are numerous open issues facing the clinical success of adaptive therapy. Chief among these issues is the feasibility of real-time predictions of treatment response which represent a bedrock requirement of adaptive therapy. Generative artificial intelligence has the potential to learn prediction models of treatment response from clinical, molecular, and radiomics data about patients and their treatments. The article explores this potential through a proposed integration model of Generative Pre-Trained Transformers (GPTs) in a closed loop with adaptive treatments to predict the trajectories of disease progression. The conceptual model and the challenges facing its realization are discussed in the broader context of artificial intelligence integration in oncology.
Collapse
Affiliation(s)
- Youcef Derbal
- Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON, Canada
| |
Collapse
|
34
|
Hwangbo H, Patterson SC, Dai A, Plana D, Palmer AC. Additivity predicts the efficacy of most approved combination therapies for advanced cancer. NATURE CANCER 2023; 4:1693-1704. [PMID: 37974028 DOI: 10.1038/s43018-023-00667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
Most advanced cancers are treated with drug combinations. Rational design aims to identify synergistic combinations, but existing synergy metrics apply to preclinical, not clinical data. Here we propose a model of drug additivity for progression-free survival (PFS) to assess whether clinical efficacies of approved drug combinations are additive or synergistic. This model includes patient-to-patient variability in best single-drug response plus the weaker drug per patient. Among US Food and Drug Administration approvals of drug combinations for advanced cancers (1995-2020), 95% exhibited additive or less than additive effects on PFS times. Among positive or negative phase 3 trials published between 2014-2018, every combination that improved PFS was expected to succeed by additivity (100% sensitivity) and most failures were expected to fail (78% specificity). This study shows synergy is neither a necessary nor common property of clinically effective drug combinations. The predictable efficacy of approved combinations suggests that additivity can be a design principle for combination therapies.
Collapse
Affiliation(s)
- Haeun Hwangbo
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah C Patterson
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andy Dai
- North Carolina School of Science and Mathematics, Durham, NC, USA
| | - Deborah Plana
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School and MIT, Cambridge, MA, USA
| | - Adam C Palmer
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Chen W, Li X, Jiang Y, Ni D, Yang L, Wu J, Gao M, Wang J, Song J, Shi W. Pancancer analysis of the correlations of HS6ST2 with prognosis, tumor immunity, and drug resistance. Sci Rep 2023; 13:19209. [PMID: 37932473 PMCID: PMC10628205 DOI: 10.1038/s41598-023-46525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
HS6ST2 has ability to encodes a member of the heparan sulfate (HS) sulfotransferase gene family, which catalyze the transfer of sulfate to HS and a crucial regulator of cell growth, differentiation, adhesion, and migration. Although mounting evidence supports a vital role for HS6ST2 in tumorigenesis of some cancers, no pan-cancer analysis of HS6ST2 has been reported. Therefore, we aimed to explore the prognostic value of HS6ST2 in 33 cancer types and investigate its potential immune function. Based on data from The Cancer Genome Atlas, Cancer Cell Lines Encyclopedia, Genotype Tissue Expression, and GSCA, we used a range of bioinformatics approaches to explore the potential carcinogenic role of HS6ST2, analysis of HS6ST2 and prognosis, DNA methylation, RNA methylation, microsatellite instability (MSI), tumor mutation burden (TMB), and immune cell infiltration in different tumors. The results show that HS6ST2 was highly expressed in most cancers but lower in Breast invasive carcinoma, Kidney Chromophobe, Kidney renal clear cell carcinoma, Kidney renal papillary cell carcinoma, and Uterine Corpus Endometrial Carcinoma. Moreover, HS6ST2 is positively or negatively associated with prognosis in different cancers. HS6ST2 expression was not only associated with MSI in 5 cancer types and associated with TMB in 10 cancer types, and it's significantly correlated with DNA methylation in 13 types of cancer, but it's correlated with RNA methylation related genes in most cancer. HS6ST2 expression was correlated with immune cell infiltration, immune-related genes, tumor immune microenvironment, and drug resistance in various cancers. Eventually, HS6ST2 was validated in human lung adenocarcinoma tissues. Our study reveals that HS6ST2 can function as a prognostic marker in various malignant tumors because of its role in tumorigenesis and tumor immunity.
Collapse
Affiliation(s)
- Weiwei Chen
- Medical School of Nantong University, Nantong, 226007, China
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Department of Radiotherapy, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China
| | - Xia Li
- Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China
| | - Youqin Jiang
- Department of Radiotherapy, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China
| | - Daguang Ni
- Department of Radiotherapy, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China
| | - Longfei Yang
- Medical School of Nantong University, Nantong, 226007, China
| | - Jixiang Wu
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China
| | - Mingcheng Gao
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China
| | - Jin Wang
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China.
| | - Jianxiang Song
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China.
| | - Wenyu Shi
- Medical School of Nantong University, Nantong, 226007, China.
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
36
|
Macaya I, Roman M, Welch C, Entrialgo-Cadierno R, Salmon M, Santos A, Feliu I, Kovalski J, Lopez I, Rodriguez-Remirez M, Palomino-Echeverria S, Lonfgren SM, Ferrero M, Calabuig S, Ludwig IA, Lara-Astiaso D, Jantus-Lewintre E, Guruceaga E, Narayanan S, Ponz-Sarvise M, Pineda-Lucena A, Lecanda F, Ruggero D, Khatri P, Santamaria E, Fernandez-Irigoyen J, Ferrer I, Paz-Ares L, Drosten M, Barbacid M, Gil-Bazo I, Vicent S. Signature-driven repurposing of Midostaurin for combination with MEK1/2 and KRASG12C inhibitors in lung cancer. Nat Commun 2023; 14:6332. [PMID: 37816716 PMCID: PMC10564741 DOI: 10.1038/s41467-023-41828-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Drug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer.
Collapse
Affiliation(s)
- Irati Macaya
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Marta Roman
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Connor Welch
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | | | - Marina Salmon
- Experimental Oncology Group, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alba Santos
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Iker Feliu
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Joanna Kovalski
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Ines Lopez
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Maria Rodriguez-Remirez
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Sara Palomino-Echeverria
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra, Pamplona, Spain
| | - Shane M Lonfgren
- Stanford Institute for Immunity, Transplantation and Infection, Stanford, CA, USA
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Macarena Ferrero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario de Valencia, Valencia, Spain
- Mixed Unit TRIAL (Principe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain
| | - Silvia Calabuig
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario de Valencia, Valencia, Spain
- Mixed Unit TRIAL (Principe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain
- Department of Pathology, Universitat de Valencia, Valencia, Spain
| | - Iziar A Ludwig
- University of Navarra, Center for Applied Medical Research, Molecular Therapies Program, Pamplona, Spain
| | - David Lara-Astiaso
- University of Navarra, Center for Applied Medical Research, Genomics Platform, Pamplona, Spain
| | - Eloisa Jantus-Lewintre
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario de Valencia, Valencia, Spain
- Mixed Unit TRIAL (Principe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain
- Department of Pathology, Universitat de Valencia, Valencia, Spain
| | - Elizabeth Guruceaga
- University of Navarra, Center for Applied Medical Research, Bioinformatics Platform, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- ProteoRed-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Shruthi Narayanan
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Clinica Universidad de Navarra, Department of Medical Oncology, Pamplona, Spain
| | - Mariano Ponz-Sarvise
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Clinica Universidad de Navarra, Department of Medical Oncology, Pamplona, Spain
| | - Antonio Pineda-Lucena
- University of Navarra, Center for Applied Medical Research, Molecular Therapies Program, Pamplona, Spain
| | - Fernando Lecanda
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Purvesh Khatri
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra, Pamplona, Spain
| | - Enrique Santamaria
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- ProteoRed-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joaquin Fernandez-Irigoyen
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- ProteoRed-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Irene Ferrer
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Luis Paz-Ares
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Medical School, Universidad Complutense, Madrid, Spain
| | - Matthias Drosten
- Experimental Oncology Group, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Gil-Bazo
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Clinica Universidad de Navarra, Department of Medical Oncology, Pamplona, Spain
- Department of Oncology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Silve Vicent
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain.
| |
Collapse
|
37
|
Rudd SG. Targeting pan-essential pathways in cancer with cytotoxic chemotherapy: challenges and opportunities. Cancer Chemother Pharmacol 2023; 92:241-251. [PMID: 37452860 PMCID: PMC10435635 DOI: 10.1007/s00280-023-04562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Cytotoxic chemotherapy remains a key modality in cancer treatment. These therapies, successfully used for decades, continue to transform the lives of cancer patients daily. With the high attrition rate of current oncology drug development, combined with the knowledge that most new therapies do not displace standard-of-care treatments and that many healthcare systems cannot afford these new therapies; cytotoxic chemotherapies will remain an important component of cancer therapy for many years to come. The clinical value of these therapies is often under-appreciated within the pre-clinical cancer research community, where this diverse class of agents are often grouped together as non-specific cellular poisons killing tumor cells based solely upon proliferation rate; however, this is inaccurate. This review article seeks to reaffirm the importance of focusing research efforts upon improving our basic understanding of how these drugs work, discussing their ability to target pan-essential pathways in cancer cells, the relationship of this to the chemotherapeutic window, and highlighting basic science approaches that can be employed towards refining their use.
Collapse
Affiliation(s)
- Sean G Rudd
- Science For Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
38
|
Yang J, Kang H, Lyu L, Xiong W, Hu Y. A target map of clinical combination therapies in oncology: an analysis of clinicaltrials.gov. Discov Oncol 2023; 14:151. [PMID: 37603124 PMCID: PMC10441974 DOI: 10.1007/s12672-023-00758-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Combination therapies have taken center stage for cancer treatment, however, there is a lack of a comprehensive portrait to quantitatively map the current clinical combination progress. This study aims to capture clinical combination therapies of the validated FDA-approved new oncology drugs by a macro data analysis and to summarize combination mechanisms and strategies in the context of the existing literature. A total of 72 new molecular entities or new therapeutic biological products for cancer treatment approved by the FDA from 2017 to 2021 were identified, and the data on their related 3334 trials were retrieved from the database of ClinicalTrials.gov. Moreover, these sampled clinical trials were refined by activity status and combination relevance and labeled with the relevant clinical arms and drug combinations, as well as drug targets and target pairs. Combination therapies are increasingly prevalent in clinical trials of new oncology drugs. From retrospective work, existing clinical combination therapies in oncology are driven by different patterns (i.e., rational design and industry trends). The former can be represented by mechanism-based or structure-based combinations, such as targeting different domains of HER2 protein or in-series co-targeting in RAF plus MEK inhibitors. The latter is an empirically driven strategy, including redundant combinations in hot targets, such as PD-1/PD-L1, PI3K, CDK4/6, and PARP. Because of an explosion in the number of clinical trials and the resultant shortage of available patients, it is essential to rationally design drug combinations.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Heming Kang
- DPM, Faculty of Health Sciences, University of Macau, Room 1049, E12, Macao SAR, 999078, China
| | - Liyang Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Wei Xiong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanjia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
- DPM, Faculty of Health Sciences, University of Macau, Room 1049, E12, Macao SAR, 999078, China.
| |
Collapse
|
39
|
Hjazi A, Ghaffar E, Asghar W, Alauldeen Khalaf H, Ikram Ullah M, Mireya Romero-Parra R, Hussien BM, Abdulally Abdulhussien Alazbjee A, Singh Bisht Y, Fakri Mustafa Y, Reza Hosseini-Fard S. CDKN2B-AS1 as a novel therapeutic target in cancer: Mechanism and clinical perspective. Biochem Pharmacol 2023; 213:115627. [PMID: 37257723 DOI: 10.1016/j.bcp.2023.115627] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Long non-coding RNAs (lncRNA) have been identified as essential components having considerable modulatory impactson biological activities through altering gene transcription, epigenetic changes, and protein translation. Cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1), a recently discovered lncRNA, was shown to be substantially elevated in various cancers.Furthermore, via modulation ofvarious signalingaxes, it is effectively connected to the control of critical cancer-associatedbiological pathways likecell proliferation, apoptosis, cell cycle, epithelial-mesenchymal transition(EMT), invasion, and migration. Considering the crucial functions ofCDKN2B-AS1in cancer onset and development, this lncRNA offers immense therapeutic implications for usage as a new diagnostic or treatment approach. In this article, we evaluate the most recent discoveries made into the functions of the lncRNA CDKN2B-AS1 in cancer, in addition to its prospect asbeneficial properties,prognostic anddiagnostic biomarkersin the cancer-related treatment, emphasizingits participation in a broad network of signalingaxes whichcould affectvariouscancers and investigating its promising therapeutic possibility.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | | | | | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | | | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Seyed Reza Hosseini-Fard
- Biochemistry Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Liu H, Fan Z, Lin J, Yang Y, Ran T, Chen H. The recent progress of deep-learning-based in silico prediction of drug combination. Drug Discov Today 2023:103625. [PMID: 37236526 DOI: 10.1016/j.drudis.2023.103625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Drug combination therapy has become a common strategy for the treatment of complex diseases. There is an urgent need for computational methods to efficiently identify appropriate drug combinations owing to the high cost of experimental screening. In recent years, deep learning has been widely used in the field of drug discovery. Here, we provide a comprehensive review on deep-learning-based drug combination prediction algorithms from multiple aspects. Current studies highlight the flexibility of this technology in integrating multimodal data and the ability to achieve state-of-art performance; it is expected that deep-learning-based prediction of drug combinations should play an important part in future drug discovery.
Collapse
Affiliation(s)
- Haoyang Liu
- Department of Drug and Vaccine Research, Guangzhou Laboratory, Guangzhou 513000, China; College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhiguang Fan
- Department of Drug and Vaccine Research, Guangzhou Laboratory, Guangzhou 513000, China; School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Jie Lin
- Department of Drug and Vaccine Research, Guangzhou Laboratory, Guangzhou 513000, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China.
| | - Ting Ran
- Department of Drug and Vaccine Research, Guangzhou Laboratory, Guangzhou 513000, China.
| | - Hongming Chen
- Department of Drug and Vaccine Research, Guangzhou Laboratory, Guangzhou 513000, China.
| |
Collapse
|
41
|
Entrialgo-Cadierno R, Cueto-Ureña C, Welch C, Feliu I, Macaya I, Vera L, Morales X, Michelina SV, Scaparone P, Lopez I, Darbo E, Erice O, Vallejo A, Moreno H, Goñi-Salaverri A, Lara-Astiaso D, Halberg N, Cortes-Dominguez I, Guruceaga E, Ambrogio C, Lecanda F, Vicent S. The phospholipid transporter PITPNC1 links KRAS to MYC to prevent autophagy in lung and pancreatic cancer. Mol Cancer 2023; 22:86. [PMID: 37210549 DOI: 10.1186/s12943-023-01788-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND The discovery of functionally relevant KRAS effectors in lung and pancreatic ductal adenocarcinoma (LUAD and PDAC) may yield novel molecular targets or mechanisms amenable to inhibition strategies. Phospholipids availability has been appreciated as a mechanism to modulate KRAS oncogenic potential. Thus, phospholipid transporters may play a functional role in KRAS-driven oncogenesis. Here, we identified and systematically studied the phospholipid transporter PITPNC1 and its controlled network in LUAD and PDAC. METHODS Genetic modulation of KRAS expression as well as pharmacological inhibition of canonical effectors was completed. PITPNC1 genetic depletion was performed in in vitro and in vivo LUAD and PDAC models. PITPNC1-deficient cells were RNA sequenced, and Gene Ontology and enrichment analyses were applied to the output data. Protein-based biochemical and subcellular localization assays were run to investigate PITPNC1-regulated pathways. A drug repurposing approach was used to predict surrogate PITPNC1 inhibitors that were tested in combination with KRASG12C inhibitors in 2D, 3D, and in vivo models. RESULTS PITPNC1 was increased in human LUAD and PDAC, and associated with poor patients' survival. PITPNC1 was regulated by KRAS through MEK1/2 and JNK1/2. Functional experiments showed PITPNC1 requirement for cell proliferation, cell cycle progression and tumour growth. Furthermore, PITPNC1 overexpression enhanced lung colonization and liver metastasis. PITPNC1 regulated a transcriptional signature which highly overlapped with that of KRAS, and controlled mTOR localization via enhanced MYC protein stability to prevent autophagy. JAK2 inhibitors were predicted as putative PITPNC1 inhibitors with antiproliferative effect and their combination with KRASG12C inhibitors elicited a substantial anti-tumour effect in LUAD and PDAC. CONCLUSIONS Our data highlight the functional and clinical relevance of PITPNC1 in LUAD and PDAC. Moreover, PITPNC1 constitutes a new mechanism linking KRAS to MYC, and controls a druggable transcriptional network for combinatorial treatments.
Collapse
Affiliation(s)
- Rodrigo Entrialgo-Cadierno
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Cristina Cueto-Ureña
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Connor Welch
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iker Feliu
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Irati Macaya
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Laura Vera
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Xabier Morales
- Imaging Unit and Cancer Imaging Laboratory, University of Navarra, CIMA, Pamplona, Spain
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Ines Lopez
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Elodie Darbo
- University of Bordeaux, INSERM, BRIC, U 1312, F-33000, Bordeaux, France
| | - Oihane Erice
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Adrian Vallejo
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Haritz Moreno
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | | | - David Lara-Astiaso
- Molecular Therapies Program, University of Navarra, CIMA, Pamplona, Spain
- Wellcome - MRC Cambridge Stem Cell Institute (CSCI), Cambridge, UK
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ivan Cortes-Dominguez
- Imaging Unit and Cancer Imaging Laboratory, University of Navarra, CIMA, Pamplona, Spain
- Bioinformatics Platform, University of Navarra, CIMA, Pamplona, Spain
| | - Elizabeth Guruceaga
- Bioinformatics Platform, University of Navarra, CIMA, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Fernando Lecanda
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Silve Vicent
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
42
|
Yin M, Fang Y, Sun X, Xue M, Zhang C, Zhu Z, Meng Y, Kong L, Myint YY, Li Y, Zhao J, Yang X. Synthesis and anticancer activity of podophyllotoxin derivatives with nitrogen-containing heterocycles. Front Chem 2023; 11:1191498. [PMID: 37234201 PMCID: PMC10206303 DOI: 10.3389/fchem.2023.1191498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Three series of podophyllotoxin derivatives with various nitrogen-containing heterocycles were designed and synthesized. The antitumor activity of these podophyllotoxin derivatives was evaluated in vitro against a panel of human tumor cell lines. The results showed that podophyllotoxin-imidazolium salts and podophyllotoxin-1,2,4-triazolium salts a1-a20 exhibited excellent cytotoxic activity. Among them, a6 was the most potent cytotoxic compound with IC50 values of 0.04-0.29 μM. Podophyllotoxin-1,2,3-triazole derivatives b1-b5 displayed medium cytotoxic activity, and podophyllotoxin-amine compounds c1-c3 has good cytotoxic activity with IC50 value of 0.04-0.58 μM. Furthermore, cell cycle and apoptosis experiments of compound a6 were carried out and the results exhibited that a6 could induce G2/M cell cycle arrest and apoptosis in HCT-116 cells.
Collapse
Affiliation(s)
- Meng Yin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| | - Yongsheng Fang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| | - Xiaotong Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| | - Minggao Xue
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| | - Caimei Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| | - Zhiyun Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| | - Yamiao Meng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| | - Lingmei Kong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| | - Yi Yi Myint
- Department of Chemistry, University of Mandalay, Mandalay, Myanmar
| | - Yan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| | - Jingfeng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, China
| |
Collapse
|
43
|
Javitt A, Shmueli MD, Kramer MP, Kolodziejczyk AA, Cohen IJ, Radomir L, Sheban D, Kamer I, Litchfield K, Bab-Dinitz E, Zadok O, Neiens V, Ulman A, Wolf-Levy H, Eisenberg-Lerner A, Kacen A, Alon M, Rêgo AT, Stacher-Priehse E, Lindner M, Koch I, Bar J, Swanton C, Samuels Y, Levin Y, da Fonseca PCA, Elinav E, Friedman N, Meiners S, Merbl Y. The proteasome regulator PSME4 modulates proteasome activity and antigen diversity to abrogate antitumor immunity in NSCLC. NATURE CANCER 2023; 4:629-647. [PMID: 37217651 DOI: 10.1038/s43018-023-00557-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/10/2023] [Indexed: 05/24/2023]
Abstract
Immunotherapy revolutionized treatment options in cancer, yet the mechanisms underlying resistance in many patients remain poorly understood. Cellular proteasomes have been implicated in modulating antitumor immunity by regulating antigen processing, antigen presentation, inflammatory signaling and immune cell activation. However, whether and how proteasome complex heterogeneity may affect tumor progression and the response to immunotherapy has not been systematically examined. Here, we show that proteasome complex composition varies substantially across cancers and impacts tumor-immune interactions and the tumor microenvironment. Through profiling of the degradation landscape of patient-derived non-small-cell lung carcinoma samples, we find that the proteasome regulator PSME4 is upregulated in tumors, alters proteasome activity, attenuates presented antigenic diversity and associates with lack of response to immunotherapy. Collectively, our approach affords a paradigm by which proteasome composition heterogeneity and function should be examined across cancer types and targeted in the context of precision oncology.
Collapse
Affiliation(s)
- Aaron Javitt
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav D Shmueli
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Matthias P Kramer
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ivan J Cohen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lihi Radomir
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Kamer
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Kevin Litchfield
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Oranit Zadok
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Vanessa Neiens
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum Muenchen, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Adi Ulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Wolf-Levy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Assaf Kacen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Alon
- Department of Molecular and Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | - Ina Koch
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Lung Clinic Munich-Gauting, Gauting, Germany
| | - Jair Bar
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charles Swanton
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Yardena Samuels
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Paula C A da Fonseca
- Department of Molecular and Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany
| | - Nir Friedman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum Muenchen, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Yifat Merbl
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
44
|
Zhang H, Wang Z, Nan Y, Zagidullin B, Yi D, Tang J, Guan Y. Harmonizing across datasets to improve the transferability of drug combination prediction. Commun Biol 2023; 6:397. [PMID: 37041243 PMCID: PMC10090076 DOI: 10.1038/s42003-023-04783-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Combination treatment has multiple advantages over traditional monotherapy in clinics, thus becoming a target of interest for many high-throughput screening (HTS) studies, which enables the development of machine learning models predicting the response of new drug combinations. However, most existing models have been tested only within a single study, and these models cannot generalize across different datasets due to significantly variable experimental settings. Here, we thoroughly assessed the transferability issue of single-study-derived models on new datasets. More importantly, we propose a method to overcome the experimental variability by harmonizing dose-response curves of different studies. Our method improves the prediction performance of machine learning models by 184% and 1367% compared to the baseline models in intra-study and inter-study predictions, respectively, and shows consistent improvement in multiple cross-validation settings. Our study addresses the crucial question of the transferability in drug combination predictions, which is fundamental for such models to be extrapolated to new drug combination discovery and clinical applications that are de facto different datasets.
Collapse
Affiliation(s)
- Hanrui Zhang
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ziyan Wang
- Department of Electrical Engineering and Computer Science (EECS) - CSE Division, University of Michigan, Ann Arbor, MI, USA
| | - Yiyang Nan
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bulat Zagidullin
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Daiyao Yi
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
45
|
Wang Z, Mačáková M, Bugai A, Kuznetsov SG, Hassinen A, Lenasi T, Potdar S, Friedel CC, Barborič M. P-TEFb promotes cell survival upon p53 activation by suppressing intrinsic apoptosis pathway. Nucleic Acids Res 2023; 51:1687-1706. [PMID: 36727434 PMCID: PMC9976905 DOI: 10.1093/nar/gkad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Positive transcription elongation factor b (P-TEFb) is the crucial player in RNA polymerase II (Pol II) pause release that has emerged as a promising target in cancer. Because single-agent therapy may fail to deliver durable clinical response, targeting of P-TEFb shall benefit when deployed as a combination therapy. We screened a comprehensive oncology library and identified clinically relevant antimetabolites and Mouse double minute 2 homolog (MDM2) inhibitors as top compounds eliciting p53-dependent death of colorectal cancer cells in synergy with selective inhibitors of P-TEFb. While the targeting of P-TEFb augments apoptosis by anti-metabolite 5-fluorouracil, it switches the fate of cancer cells by the non-genotoxic MDM2 inhibitor Nutlin-3a from cell-cycle arrest to apoptosis. Mechanistically, the fate switching is enabled by the induction of p53-dependent pro-apoptotic genes and repression of P-TEFb-dependent pro-survival genes of the PI3K-AKT signaling cascade, which stimulates caspase 9 and intrinsic apoptosis pathway in BAX/BAK-dependent manner. Finally, combination treatments trigger apoptosis of cancer cell spheroids. Together, co-targeting of P-TEFb and suppressors of intrinsic apoptosis could become a viable strategy to eliminate cancer cells.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Monika Mačáková
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Andrii Bugai
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland.,Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Sergey G Kuznetsov
- High-Throughput Biomedicine Unit (HTB), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FIN-00014, Finland
| | - Antti Hassinen
- High Content Imaging and Analysis Unit (HCA), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FIN-00014, Finland
| | - Tina Lenasi
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Swapnil Potdar
- High-Throughput Biomedicine Unit (HTB), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FIN-00014, Finland
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Matjaž Barborič
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
46
|
Kenski JCN, Huang X, Vredevoogd DW, de Bruijn B, Traets JJH, Ibáñez-Molero S, Schieven SM, van Vliet A, Krijgsman O, Kuilman T, Pozniak J, Loayza-Puch F, Terry AM, Müller J, Logtenberg MEW, de Bruijn M, Levy P, Körner PR, Goding CR, Schumacher TN, Marine JC, Agami R, Peeper DS. An adverse tumor-protective effect of IDO1 inhibition. Cell Rep Med 2023; 4:100941. [PMID: 36812891 PMCID: PMC9975322 DOI: 10.1016/j.xcrm.2023.100941] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023]
Abstract
By restoring tryptophan, indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors aim to reactivate anti-tumor T cells. However, a phase III trial assessing their clinical benefit failed, prompting us to revisit the role of IDO1 in tumor cells under T cell attack. We show here that IDO1 inhibition leads to an adverse protection of melanoma cells to T cell-derived interferon-gamma (IFNγ). RNA sequencing and ribosome profiling shows that IFNγ shuts down general protein translation, which is reversed by IDO1 inhibition. Impaired translation is accompanied by an amino acid deprivation-dependent stress response driving activating transcription factor-4 (ATF4)high/microphtalmia-associated transcription factor (MITF)low transcriptomic signatures, also in patient melanomas. Single-cell sequencing analysis reveals that MITF downregulation upon immune checkpoint blockade treatment predicts improved patient outcome. Conversely, MITF restoration in cultured melanoma cells causes T cell resistance. These results highlight the critical role of tryptophan and MITF in the melanoma response to T cell-derived IFNγ and uncover an unexpected negative consequence of IDO1 inhibition.
Collapse
Affiliation(s)
- Juliana C N Kenski
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Xinyao Huang
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sofía Ibáñez-Molero
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sebastiaan M Schieven
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alex van Vliet
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Thomas Kuilman
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joanna Pozniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Fabricio Loayza-Puch
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alexandra M Terry
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Judith Müller
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Meike E W Logtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Marjolein de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pierre Levy
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pierre-René Körner
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, OX OX3 7DQ, UK
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
47
|
Vashistha V, Katsoulakis E, Guo A, Price M, Ahmed S, Kelley MJ. Molecular-Guided Off-Label Targeted Therapy in a Large-Scale Precision Oncology Program. JCO Precis Oncol 2023; 7:e2200518. [PMID: 36787508 PMCID: PMC10309545 DOI: 10.1200/po.22.00518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 02/16/2023] Open
Abstract
PURPOSE Increasing utilization of comprehensive genomic profiling (CGP) and a growing number of targeted agents (TAs) have led to substantial improvements in outcomes among patients with cancer with actionable mutations. We sought to evaluate real-world experience with off-label TAs among Veterans who underwent CGP. METHODS The National Precision Oncology Program database and VA Corporate Data Warehouse were queried to identify patients who underwent CGP between February 2019 and December 2021 and were prescribed 1 of 73 TAs for malignancy. OncoKB annotations were used to select patients who received off-label TAs based upon CGP results. Chart abstraction was performed to review response, toxicities, and time to progression. RESULTS Of 18,686 patients who underwent CGP, 2,107 (11%) were prescribed a TA and 169 (0.9%) were prescribed a total of 183 regimens containing off-label TAs for variants in 31 genes. Median age was 68 years and 83% had prior systemic therapy, with 28% receiving three or more lines. Frequency of off-label TA prescriptions was highest for patients undergoing CGP for thyroid (8.6%) and breast (7.6%) cancers. Most patients harbored alterations in BRCA1/BRCA2/ATM (22.5%), ERBB2 (19.5%), and BRAF (19.5%). Among the 160 regimens prescribed > 4 weeks, 43 (27%) led to response. Median progression-free survival and overall survival were 5.3 (4.2-6.5) and 9.7 (7.5-11.9) months, respectively. Patients with OncoKB level 2/3A/3B annotations had longer median progression-free survival (5.8 [4.5-7] months v 3.7 [1.6-7.7] months; hazard ratio, 0.45; 95% CI, 0.24 to 0.82; P = .01) compared with those receiving level 4 treatments. CONCLUSION Although administration of off-label TAs is infrequent after CGP, more than one quarter of treatment regimens led to response. TAs associated with level 4 annotations lead to worse outcomes than TAs bearing higher levels of evidence.
Collapse
Affiliation(s)
- Vishal Vashistha
- Section of Hematology/Oncology, Raymond G. Murphy New Mexico Veterans Affairs Medical Center, Albuquerque, NM
- University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Evangelia Katsoulakis
- Department of Radiation Oncology, James A. Haley Veterans Affairs Medical Center, Tampa, FL
| | - Aixia Guo
- Department of Veterans Affairs, National Precision Oncology Program, Durham, NC
| | - Meghan Price
- Department of Medicine Baltimore, The Johns Hopkins Hospital, Baltimore, MD
| | - Sara Ahmed
- Department of Veterans Affairs, National Precision Oncology Program, Durham, NC
| | - Michael J. Kelley
- Department of Veterans Affairs, National Precision Oncology Program, Durham, NC
- Department of Medicine, Duke University Health System, Durham, NC
- Division of Hematology-Oncology, Durham Veterans Affairs Medical Center, Durham, NC
| |
Collapse
|
48
|
Augmented efficacy of nano-formulated docetaxel plus curcumin in orthotopic models of neuroblastoma. Pharmacol Res 2023; 188:106639. [PMID: 36586642 DOI: 10.1016/j.phrs.2022.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Neuroblastoma is a biologically heterogeneous extracranial tumor, derived from the sympathetic nervous system, that affects most often the pediatric population. Therapeutic strategies relying on aggressive chemotherapy, surgery, radiotherapy, and immunotherapy have a negative outcome in advanced or recurrent disease. Here, spherical polymeric nanomedicines (SPN) are engineered to co-deliver a potent combination therapy, including the cytotoxic docetaxel (DTXL) and the natural wide-spectrum anti-inflammatory curcumin (CURC). Using an oil-in-water emulsion/solvent evaporation technique, four SPN configurations were engineered depending on the therapeutic payload and characterized for their physico-chemical and pharmacological properties. All SPN configurations presented a hydrodynamic diameter of ∼ 185 nm with a narrow size distribution. A biphasic release profile was observed for all the configurations, with almost 90 % of the total drug mass released within the first 24 h. SPN cytotoxic potential was assessed on a panel of human neuroblastoma cells, returning IC50 values in the order of 1 nM at 72 h and documenting a strong synergism between CURC and DTXL. Therapeutic efficacy was tested in a clinically relevant orthotopic model of neuroblastoma, following the injection of SH-SY5Y-Luc+ cells in the left adrenal gland of athymic mice. Although ∼ 2 % of the injected SPN per mass tissue reached the tumor, the overall survival of mice treated with CURC/DTXL-SPN was extended by 50 % and 25 % as compared to the untreated control and the monotherapies, respectively. In conclusion, these results demonstrate that the therapeutic potential of the DTXL/CURC combination can be fully exploited only by reformulating these two compounds into systemically injectable nanoparticles.
Collapse
|
49
|
Rao D, Lacroix R, Rooker A, Gomes T, Stunnenberg JA, Valenti M, Dimitriadis P, Lin CP, de Bruijn B, Krijgsman O, Ligtenberg MA, Peeper DS, Blank CU. MeVa2.1.dOVA and MeVa2.2.dOVA: two novel BRAFV600E-driven mouse melanoma cell lines to study tumor immune resistance. Melanoma Res 2023; 33:12-26. [PMID: 36545919 DOI: 10.1097/cmr.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While immunotherapy has become standard-of-care for cutaneous melanoma patients, primary and acquired resistance prevent long-term benefits for about half of the late-stage patients. Pre-clinical models are essential to increase our understanding of the resistance mechanisms of melanomas, aiming to improve the efficacy of immunotherapy. Here, we present two novel syngeneic transplantable murine melanoma cell lines derived from the same primary tumor induced on BrafV600E Pten-/- mice: MeVa2.1 and MeVa2.2. Derivatives of these cell lines expressing the foreign antigen ovalbumin (dOVA) showed contrasting immune-mediated tumor control. MeVa2.2.dOVA melanomas were initially controlled in immune-competent hosts until variants grew out that had lost their antigens. By contrast, MeVa2.1.dOVA tumors were not controlled despite presenting the strong OVA antigen, as well as infiltration of tumor-reactive CD8+ T cells. MeVa2.1.dOVA displayed reduced sensitivity to T cell-mediated killing and growth inhibition in vitro by both IFN-γ and TNF-α. MeVa2.1.dOVA tumors were transiently controlled in vivo by either targeted therapy, adoptive T cell transfer, regulatory T cell depletion, or immune checkpoint blockade. MeVa2.1.dOVA could thus become a valuable melanoma model to evaluate novel immunotherapy combinations aiming to overcome immune resistance mechanisms.
Collapse
Affiliation(s)
- Disha Rao
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - Ruben Lacroix
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - Alex Rooker
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - Tainá Gomes
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - Johanna A Stunnenberg
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - Mesele Valenti
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - Petros Dimitriadis
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - Chun-Pu Lin
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - Beaunelle de Bruijn
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - Oscar Krijgsman
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - Maarten A Ligtenberg
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
| | - Daniel S Peeper
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
- Oncode Institute, Utrecht
| | - Christian U Blank
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
50
|
TOR1B: a predictor of bone metastasis in breast cancer patients. Sci Rep 2023; 13:1495. [PMID: 36707670 PMCID: PMC9883392 DOI: 10.1038/s41598-023-28140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Recent therapeutic advances in breast cancer (BC) have improved survival outcomes; however, the prognosis for patients with bone metastasis (BM) remains poor. Hence, novel clinical biomarkers are needed to accurately predict BC BM as well as to promote personalized medicine. Here, we discovered a novel biomarker, TOR1B, for BM in BC patients via analysis of BC gene expression data and clinical information downloaded from open public databases. In cancer cells, we found high expression levels of TOR1B in the nucleus and endoplasmic reticulum. Regarding gene expression, the level of TOR1B was significantly upregulated in BC patients with BM (p < 0.05), and the result was externally validated. In addition, gene expression clearly demonstrated two distinct types of prognoses in ER- and PR-positive patients. In multivariate regression, the gene could be an independent predictor of BM in BC patients, i.e., a low expression level of TOR1B was associated with delayed metastasis to bone in BC patients (HR, 0.28; 95% CI 0.094-0.84). Conclusively, TOR1B might be a useful biomarker for predicting BM; specifically, patients with ER- and PR-positive subtypes would benefit from the clinical use of this promising prognostic biomarker.
Collapse
|