1
|
Feng S, Liu K, Shang J, Hoeg L, Pastore G, Yang W, Roy S, Sastre-Moreno G, Young JTF, Wu W, Xu D, Durocher D. Profound synthetic lethality between SMARCAL1 and FANCM. Mol Cell 2024:S1097-2765(24)00856-6. [PMID: 39510066 DOI: 10.1016/j.molcel.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
DNA replication stress is a threat to genome integrity. The large SNF2-family of ATPases participates in preventing and mitigating DNA replication stress by employing their ATP-driven motor to remodel DNA or DNA-bound proteins. To understand the contribution of these ATPases in genome maintenance, we undertook CRISPR-based synthetic lethality screens in human cells with three SNF2-type ATPases: SMARCAL1, ZRANB3, and HLTF. Here, we show that SMARCAL1 displays a profound synthetic-lethal interaction with FANCM, another ATP-dependent translocase involved in DNA replication and genome stability. Their combined loss causes severe genome instability that we link to chromosome breakage at loci enriched in simple repeats, which are known to challenge replication fork progression. Our findings illuminate a critical genetic buffering mechanism that provides an essential function for maintaining genome integrity.
Collapse
Affiliation(s)
- Sumin Feng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Kaiwen Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinfeng Shang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lisa Hoeg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Graziana Pastore
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - William Yang
- Repare Therapeutics, 7171 rue Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada
| | - Sabrina Roy
- Repare Therapeutics, 7171 rue Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada
| | - Guillermo Sastre-Moreno
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jordan T F Young
- Repare Therapeutics, 7171 rue Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada
| | - Wei Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
Zhang C, Zhang H, Zhang Q, Fan H, Yu P, Xia W, Zhang JZH, Liang X, Chen Y. Targeting ATP catalytic activity of chromodomain helicase CHD1L for the anticancer inhibitor discovery. Int J Biol Macromol 2024; 281:136678. [PMID: 39426766 DOI: 10.1016/j.ijbiomac.2024.136678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
CHD1L functions as an ATP-dependent chromatin remodeling enzyme, featuring an ATPase catalytic domain activated by double-stranded DNA. Its involvement in critical aspects of cancer progression, such as drug resistance and epithelial-mesenchymal transition, underscores its potential as a promising therapeutic target for cancer treatment. In this study, we have pioneered an innovative approach that integrates multiple deep learning methodologies alongside biochemical and cellular experiments to identify promising inhibitors of CHD1L. Through virtual screening of over 1.5 million small molecule compounds, we carefully curated a set of 36 candidate compounds and rigorously evaluated the top 13 candidates. Our findings establish the lead compound C071-0684 as a potent anticancer agent with a novel molecular backbone, demonstrating remarkable efficacy against colorectal and breast cancer cells targeting CHD1L. This compound exhibited a comparable effect on ATPase activity and binding affinity with CHD1Li 6.11, highlighting its superior pharmacological potential. These results provide valuable insights and pave the way for the discovery and development of CHD1L-targeted therapeutics, holding great promise for cancer patients.
Collapse
Affiliation(s)
- Caiying Zhang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Haiping Zhang
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiuyun Zhang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Pengfei Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Wei Xia
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - John Z H Zhang
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
3
|
Hrychova K, Burdova K, Polackova Z, Giamaki D, Valtorta B, Brazina J, Krejcikova K, Kuttichova B, Caldecott K, Hanzlikova H. Dispensability of HPF1 for cellular removal of DNA single-strand breaks. Nucleic Acids Res 2024; 52:10986-10998. [PMID: 39162207 PMCID: PMC11472159 DOI: 10.1093/nar/gkae708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024] Open
Abstract
In response to DNA damage, the histone PARylation factor 1 (HPF1) regulates PARP1/2 activity, facilitating serine ADP-ribosylation of chromatin-associated factors. While PARP1/2 are known for their role in DNA single-strand break repair (SSBR), the significance of HPF1 in this process remains unclear. Here, we investigated the impact of HPF1 deficiency on cellular survival and SSBR following exposure to various genotoxins. We found that HPF1 loss did not generally increase cellular sensitivity to agents that typically induce DNA single-strand breaks (SSBs) repaired by PARP1. SSBR kinetics in HPF1-deficient cells were largely unaffected, though its absence partially influenced the accumulation of SSB intermediates after exposure to specific genotoxins in certain cell lines, likely due to altered ADP-ribosylation of chromatin. Despite reduced serine mono-ADP-ribosylation, HPF1-deficient cells maintained robust poly-ADP-ribosylation at SSB sites, possibly reflecting PARP1 auto-poly-ADP-ribosylation at non-serine residues. Notably, poly-ADP-ribose chains were sufficient to recruit the DNA repair factor XRCC1, which may explain the relatively normal SSBR capacity in HPF1-deficient cells. These findings suggest that HPF1 and histone serine ADP-ribosylation are largely dispensable for PARP1-dependent SSBR in response to genotoxic stress, highlighting the complexity of mechanisms that maintain genomic stability and chromatin remodeling.
Collapse
Affiliation(s)
- Kristyna Hrychova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
- Faculty of Science, Charles University in Prague, Prague 2128 43, Czech Republic
| | - Kamila Burdova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
| | - Zuzana Polackova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
| | - Despoina Giamaki
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| | - Beatrice Valtorta
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
- Faculty of Science, Charles University in Prague, Prague 2128 43, Czech Republic
| | - Jan Brazina
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Katerina Krejcikova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
| | - Barbora Kuttichova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
| | - Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Hana Hanzlikova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
4
|
Yu T, Lok BH. PARP inhibitor resistance mechanisms and PARP inhibitor derived imaging probes. Expert Rev Anticancer Ther 2024; 24:989-1008. [PMID: 39199000 DOI: 10.1080/14737140.2024.2398494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Chen S, Fan Y, Sun Y, Li S, Zheng Z, Chu C, Li L, Yin C. Identification and functional characteristics of CHD1L gene variants implicated in human Müllerian duct anomalies. Biol Res 2024; 57:68. [PMID: 39342328 PMCID: PMC11437902 DOI: 10.1186/s40659-024-00550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Müllerian duct anomalies (MDAs) are congenital developmental disorders that present as a series of abnormalities within the reproductive tracts of females. Genetic factors are linked to MDAs and recent advancements in whole-exome sequencing (WES) provide innovative perspectives in this field. However, relevant mechanism has only been investigated in a restricted manner without clear elucidation of respective observations. METHODS Our previous study reported that 2 of 12 patients with MDAs harbored the CHD1L variant c.348-1G>C. Subsequently, an additional 85 MDAs patients were recruited. Variants in CHD1L were screened through the in-house database of WES performed in the cohort and two cases were identified. One presented with partial septate uterus with left renal agenesis and the other with complete septate uterus, duplicated cervices and longitudinal vaginal septum. The pathogenicity of the discovered variants was further assessed by molecular dynamics simulation and various functional assays. RESULTS Ultimately, two novel heterozygous CHD1L variants, including a missense variant c.956G>A (p.R319Q) and a nonsense variant c.1831C>T (p.R611*) were observed. The variants were absent in 100 controls. Altogether, the contribution yield of CHD1L to MDAs was calculated as 4.12% (4/97). All three variants were assessed as pathogenic through various functional analysis. The splice-site variant c.348-1G>C resulted in a 11 bp sequence skipping in exon 4 of CHD1L and led to nonsense mediated decay of its transcripts. Unlike WT CHD1L, the truncated R611* protein mislocalized to the cytoplasm, abolish the ability of CHD1L to promote cell migration and failed to interact with PARP1 owing to the loss of macro domain. The R319Q variant exhibited conformational disparities and showed abnormal protein recruitment behavior through laser microirradiation comparing with the WT CHD1L. All these variants impaired the CHD1L function in DNA damage repair, thus participating in MDAs. CONCLUSIONS The current study not only expands the mutational spectrum of CHD1L in MDAs but determines three variants as pathogenic according to ACMG guidelines with reliable functional evidence. Additionally, the impairment in DNA damage repair is an underlying mechanism involved in MDAs.
Collapse
Affiliation(s)
- Shuya Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 QiHeLou Street, Dongcheng District, Beijing, 100006, China
| | - Yali Fan
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 QiHeLou Street, Dongcheng District, Beijing, 100006, China
| | - Yujun Sun
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 QiHeLou Street, Dongcheng District, Beijing, 100006, China
| | - Shenghui Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 YaoJiaYuan Road, Chaoyang District, Beijing, 100026, China
| | - Zhi Zheng
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 QiHeLou Street, Dongcheng District, Beijing, 100006, China
| | - Chunfang Chu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 251 YaoJiaYuan Road, Chaoyang District, Beijing, 100026, China.
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 QiHeLou Street, Dongcheng District, Beijing, 100006, China.
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 QiHeLou Street, Dongcheng District, Beijing, 100006, China.
| |
Collapse
|
6
|
Diossy M, Tisza V, Li H, Sahgal P, Zhou J, Sztupinszki Z, Young D, Nousome D, Kuo C, Jiang J, Chen Y, Ebner R, Sesterhenn IA, Moncur JT, Chesnut GT, Petrovics G, Klus GT, Valcz G, Nuzzo PV, Ribli D, Börcsök J, Prosz A, Krzystanek M, Ried T, Szuts D, Rizwan K, Kaochar S, Pathania S, D'Andrea AD, Csabai I, Srivastava S, Freedman ML, Dobi A, Spisak S, Szallasi Z. Frequent CHD1 deletions in prostate cancers of African American men is associated with rapid disease progression. NPJ Precis Oncol 2024; 8:208. [PMID: 39294262 PMCID: PMC11411125 DOI: 10.1038/s41698-024-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
We analyzed genomic data from the prostate cancer of African- and European American men to identify differences contributing to racial disparity of outcome. We also performed FISH-based studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CHD1-deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. Subclonal deletion of CHD1 was nearly three times as frequent in prostate tumors of African American than in European American men and it associates with rapid disease progression. CHD1 deletion was not associated with HR deficiency associated mutational signatures or HR deficiency as detected by RAD51 foci formation. This was consistent with the moderate increase of olaparib and talazoparib sensitivity with several CHD1 deficient cell lines showing talazoparib sensitivity in the clinically relevant concentration range. CHD1 loss may contribute to worse disease outcome in African American men.
Collapse
Affiliation(s)
- Miklos Diossy
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Viktoria Tisza
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hua Li
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Pranshu Sahgal
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zsofia Sztupinszki
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Denise Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Darryl Nousome
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Claire Kuo
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Jiji Jiang
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Yongmei Chen
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | | | | | | | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Gregory T Klus
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gabor Valcz
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Pier Vitale Nuzzo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dezso Ribli
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | | | - Aurel Prosz
- Danish Cancer Institute, Copenhagen, Denmark
| | | | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David Szuts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Kinza Rizwan
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA.
| | - Sandor Spisak
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Zoltan Szallasi
- Danish Cancer Institute, Copenhagen, Denmark.
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- 2nd Department of Pathology and Department of Bioinformatics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Aubuchon LN, Verma P. Endogenous base damage as a driver of genomic instability in homologous recombination-deficient cancers. DNA Repair (Amst) 2024; 141:103736. [PMID: 39096699 DOI: 10.1016/j.dnarep.2024.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
Homologous recombination (HR) is a high-fidelity DNA double-strand break (DSB) repair pathway. Both familial and somatic loss of function mutation(s) in various HR genes predispose to a variety of cancer types, underscoring the importance of error-free repair of DSBs in human physiology. While environmental sources of DSBs have been known, more recent studies have begun to uncover the role of endogenous base damage in leading to these breaks. Base damage repair intermediates often consist of single-strand breaks, which if left unrepaired, can lead to DSBs as the replication fork encounters these lesions. This review summarizes various sources of endogenous base damage and how these lesions are repaired. We highlight how conversion of base repair intermediates, particularly those with 5'or 3' blocked ends, to DSBs can be a predominant source of genomic instability in HR-deficient cancers. We also discuss how endogenous base damage and ensuing DSBs can be exploited to enhance the efficacy of Poly (ADP-ribose) polymerase inhibitors (PARPi), that are widely used in the clinics for the regimen of HR-deficient cancers.
Collapse
Affiliation(s)
- Lindsey N Aubuchon
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Xiao M, Yang J, Dong M, Mao X, Pan H, Lei Y, Tong X, Yu X, Yu X, Shi S. NLRP4 renders pancreatic cancer resistant to olaparib through promotion of the DNA damage response and ROS-induced autophagy. Cell Death Dis 2024; 15:620. [PMID: 39187531 PMCID: PMC11347561 DOI: 10.1038/s41419-024-06984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Olaparib has been approved as a therapeutic option for metastatic pancreatic ductal adenocarcinoma patients with BRCA1/2 mutations. However, a significant majority of pancreatic cancer patients have inherent resistance or develop tolerance to olaparib. It is crucial to comprehend the molecular mechanism underlying olaparib resistance to facilitate the development of targeted therapies for pancreatic cancer. In this study, we conducted an analysis of the DepMap database to investigate gene expression variations associated with olaparib sensitivity. Our findings revealed that NLRP4 upregulation contributes to increased resistance to olaparib in pancreatic cancer cells, both in vitro and in vivo. RNA sequencing and Co-IP MS analysis revealed that NLRP4 is involved in the DNA damage response and autophagy pathway. Our findings confirmed that NLRP4 enhances the capacity for DNA repair and induces the production of significant levels of reactive oxygen species (ROS) and autophagy in response to treatment with olaparib. Specifically, NLRP4-generated mitochondrial ROS promote autophagy in pancreatic cancer cells upon exposure to olaparib. However, NLRP4-induced ROS do not affect DNA damage. The inhibition of mitochondrial ROS using MitoQ and autophagy using chloroquine (CQ) may render cells more susceptible to the effects of olaparib. Taken together, our findings highlight the significant roles played by NLRP4 in the processes of autophagy and DNA repair when pancreatic cancer cells are treated with olaparib, thereby suggesting the potential therapeutic utility of olaparib in pancreatic cancer patients with low NLRP4 expression.
Collapse
Affiliation(s)
- Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mingwei Dong
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Haoqi Pan
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Yalan Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoning Yu
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Huang M, Zhu X, Wang C, He L, Li L, Wang H, Fan G, Wang Y. PINX1 loss confers susceptibility to PARP inhibition in pan-cancer cells. Cell Death Dis 2024; 15:610. [PMID: 39174499 PMCID: PMC11341912 DOI: 10.1038/s41419-024-07009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
PARP1 is crucial in DNA damage repair, chromatin remodeling, and transcriptional regulation. The principle of synthetic lethality has effectively guided the application of PARP inhibitors in treating tumors carrying BRCA1/2 mutations. Meanwhile, PARP inhibitors have exhibited efficacy in BRCA-proficient patients, further highlighting the necessity for a deeper understanding of PARP1 function and its inhibition in cancer therapy. Here, we unveil PIN2/TRF1-interacting telomerase inhibitor 1 (PINX1) as an uncharacterized PARP1-interacting protein that synergizes with PARP inhibitors upon its depletion across various cancer cell lines. Loss of PINX1 compromises DNA damage repair capacity upon etoposide treatment. The vulnerability of PINX1-deficient cells to etoposide and PARP inhibitors could be effectively restored by introducing either a full-length or a mutant form of PINX1 lacking telomerase inhibitory activity. Mechanistically, PINX1 is recruited to DNA lesions through binding to the ZnF3-BRCT domain of PARP1, facilitating the downstream recruitment of the DNA repair factor XRCC1. In the absence of DNA damage, PINX1 constitutively binds to PARP1, promoting PARP1-chromatin association and transcription of specific DNA damage repair proteins, including XRCC1, and transcriptional regulators, including GLIS3. Collectively, our findings identify PINX1 as a multifaceted partner of PARP1, crucial for safeguarding cells against genotoxic stress and emerging as a potential candidate for targeted tumor therapy.
Collapse
Affiliation(s)
- Mei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaotong Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liying He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Liang J, Zhou X, Yuan L, Chen T, Wan Y, Jiang Y, Meng H, Xu M, Zhang L, Cheng W. Olaparib combined with CDK12-IN-3 to promote genomic instability and cell death in ovarian cancer. Int J Biol Sci 2024; 20:4513-4531. [PMID: 39247812 PMCID: PMC11380446 DOI: 10.7150/ijbs.94568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Large-scale phase III clinical trials of Olaparib have revealed benefits for ovarian cancer patients with BRCA gene mutations or homologous recombination deficiency (HRD). However, fewer than 50% of ovarian cancer patients have both BRCA mutations and HRD. Therefore, improving the effect of Olaparib in HR-proficient patients is of great clinical value. Here, a combination strategy comprising Olaparib and CDK12-IN-3 effectively inhibited the growth of HR-proficient ovarian cancer in cell line, patient-derived organoid (PDO), and mouse xenograft models. Furthermore, the combination strategy induced severe DNA double-strand break (DSB) formation, increased NHEJ activity in the G2 phase, and reduced HR activity in cancer cells. Mechanistically, the combination treatment impaired Ku80 poly(ADP-ribosyl)ation (PARylation) and phosphorylation, resulting in PARP1-Ku80 complex dissociation. After dissociation, Ku80 occupancy at DSBs and the resulting Ku80-primed NHEJ activity were increased. Owing to Ku80-mediated DNA end protection, MRE11 and Rad51 foci formation was inhibited after the combination treatment, suggesting that this treatment suppressed HR activity. Intriguingly, the combination strategy expedited cGAS nuclear relocalization, further suppressing HR and, conversely, increasing genomic instability. Moreover, the inhibitory effect on cell survival persisted after drug withdrawal. These findings provide a rationale for the clinical application of CDK12-IN-3 in combination with Olaparib.
Collapse
Affiliation(s)
- Jianqiang Liang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xuan Zhou
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Yuan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Tian Chen
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yicong Wan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yi Jiang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Huangyang Meng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Mengting Xu
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Wenjun Cheng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
11
|
Bian X, Liu W, Yang K, Sun C. Therapeutic targeting of PARP with immunotherapy in acute myeloid leukemia. Front Pharmacol 2024; 15:1421816. [PMID: 39175540 PMCID: PMC11338796 DOI: 10.3389/fphar.2024.1421816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Targeting the poly (ADP-ribose) polymerase (PARP) protein has shown therapeutic efficacy in cancers with homologous recombination (HR) deficiency due to BRCA mutations. Only small fraction of acute myeloid leukemia (AML) cells carry BRCA mutations, hence the antitumor efficacy of PARP inhibitors (PARPi) against this malignancy is predicted to be limited; however, recent preclinical studies have demonstrated that PARPi monotherapy has modest efficacy in AML, while in combination with cytotoxic chemotherapy it has remarkable synergistic antitumor effects. Immunotherapy has revolutionized therapeutics in cancer treatment, and PARPi creates an ideal microenvironment for combination therapy with immunomodulatory agents by promoting tumor mutation burden. In this review, we summarize the role of PARP proteins in DNA damage response (DDR) pathways, and discuss recent preclinical studies using synthetic lethal modalities to treat AML. We also review the immunomodulatory effects of PARPi in AML preclinical models and propose future directions for therapy in AML, including combined targeting of the DDR and tumor immune microenvironment; such combination regimens will likely benefit patients with AML undergoing PARPi-mediated cancer therapy.
Collapse
Affiliation(s)
- Xing Bian
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenli Liu
- Food and Drug Inspection Center, Lu’an, China
| | - Kaijin Yang
- Food and Drug Inspection Center, Huai’nan, China
| | - Chuanbo Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
12
|
Sala R, Esquer H, Kellett T, Kearns JT, Awolade P, Zhou Q, LaBarbera DV. CHD1L Regulates Cell Survival in Breast Cancer and Its Inhibition by OTI-611 Impedes the DNA Damage Response and Induces PARthanatos. Int J Mol Sci 2024; 25:8590. [PMID: 39201277 PMCID: PMC11354643 DOI: 10.3390/ijms25168590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The Chromodomain helicase DNA-binding protein 1-like (CHD1L) is a nucleosome remodeling enzyme, which plays a key role in chromatin relaxation during the DNA damage response. Genome editing has shown that deletion of CHD1L sensitizes cells to PARPi, but the effect of its pharmacological inhibition has not been defined. Triple-negative breast cancer SUM149PT, HCC1937, and MDA-MB-231 cells were used to assess the mechanism of action of the CHD1Li OTI-611. Cytotoxicity as a single agent or in combination with standard-of-care treatments was assessed in tumor organoids. Immunofluorescence was used to assess the translocation of PAR and AIF to the cytoplasm or the nucleus and to study markers of DNA damage or apoptosis. Trapping of PARP1/2 or CHD1L onto chromatin was also assessed by in situ subcellular fractionation and immunofluorescence and validated by Western blot. We show that the inhibition of CHD1L's ATPase activity by OTI-611 is cytotoxic to triple-negative breast cancer tumor organoids and synergizes with PARPi and chemotherapy independently of the BRCA mutation status. The inhibition of the remodeling function blocks the phosphorylation of H2AX, traps CHD1L on chromatin, and leaves PAR chains on PARP1/2 open for hydrolysis. PAR hydrolysis traps PARP1/2 at DNA damage sites and mediates PAR translocation to the cytoplasm, release of AIF from the mitochondria, and induction of PARthanatos. The targeted inhibition of CHD1L's oncogenic function by OTI-611 signifies an innovative therapeutic strategy for breast cancer and other cancers. This approach capitalizes on CHD1L-mediated DNA repair and cell survival vulnerabilities, thereby creating synergy with standard-of-care therapies.
Collapse
Affiliation(s)
- Rita Sala
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
| | - Hector Esquer
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
- The CU Anschutz Center for Drug Discovery, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy Kellett
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
| | - Jeffrey T. Kearns
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
| | - Paul Awolade
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
- The CU Anschutz Center for Drug Discovery, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel V. LaBarbera
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA; (R.S.); (H.E.); (T.K.); (J.T.K.); (P.A.); (Q.Z.)
- The CU Anschutz Center for Drug Discovery, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Özdemir C, Purkey LR, Sanchez A, Miller KM. PARticular MARks: Histone ADP-ribosylation and the DNA damage response. DNA Repair (Amst) 2024; 140:103711. [PMID: 38924925 DOI: 10.1016/j.dnarep.2024.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Cellular and molecular responses to DNA damage are highly orchestrated and dynamic, acting to preserve the maintenance and integrity of the genome. Histone proteins bind DNA and organize the genome into chromatin. Post-translational modifications of histones have been shown to play an essential role in orchestrating the chromatin response to DNA damage by regulating the DNA damage response pathway. Among the histone modifications that contribute to this intricate network, histone ADP-ribosylation (ADPr) is emerging as a pivotal component of chromatin-based DNA damage response (DDR) pathways. In this review, we survey how histone ADPr is regulated to promote the DDR and how it impacts chromatin and other histone marks. Recent advancements have revealed histone ADPr effects on chromatin structure and the regulation of DNA repair factor recruitment to DNA lesions. Additionally, we highlight advancements in technology that have enabled the identification and functional validation of histone ADPr in cells and in response to DNA damage. Given the involvement of DNA damage and epigenetic regulation in human diseases including cancer, these findings have clinical implications for histone ADPr, which are also discussed. Overall, this review covers the involvement of histone ADPr in the DDR and highlights potential future investigations aimed at identifying mechanisms governed by histone ADPr that participate in the DDR, human diseases, and their treatments.
Collapse
Affiliation(s)
- Cem Özdemir
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laura R Purkey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Ramakrishnan N, Weaver TM, Aubuchon LN, Woldegerima A, Just T, Song K, Vindigni A, Freudenthal BD, Verma P. Nucleolytic processing of abasic sites underlies PARP inhibitor hypersensitivity in ALC1-deficient BRCA mutant cancer cells. Nat Commun 2024; 15:6343. [PMID: 39068174 PMCID: PMC11283519 DOI: 10.1038/s41467-024-50673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Clinical success with poly (ADP-ribose) polymerase inhibitors (PARPi) is impeded by inevitable resistance and associated cytotoxicity. Depletion of Amplified in Liver Cancer 1 (ALC1), a chromatin-remodeling enzyme, can overcome these limitations by hypersensitizing BReast CAncer genes 1/2 (BRCA1/2) mutant cells to PARPi. Here, we demonstrate that PARPi hypersensitivity upon ALC1 loss is reliant on its role in promoting the repair of chromatin buried abasic sites. We show that ALC1 enhances the ability of the abasic site processing enzyme, Apurinic/Apyrimidinic endonuclease 1 (APE1) to cleave nucleosome-occluded abasic sites. However, unrepaired abasic sites in ALC1-deficient cells are readily accessed by APE1 at the nucleosome-free replication forks. APE1 cleavage leads to fork breakage and trapping of PARP1/2 upon PARPi treatment, resulting in hypersensitivity. Collectively, our studies reveal how cells overcome the chromatin barrier to repair abasic lesions and uncover cleavage of abasic sites as a mechanism to overcome limitations of PARPi.
Collapse
Affiliation(s)
- Natasha Ramakrishnan
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Lindsey N Aubuchon
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ayda Woldegerima
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Taylor Just
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kevin Song
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Li X, Zou L. BRCAness, DNA gaps, and gain and loss of PARP inhibitor-induced synthetic lethality. J Clin Invest 2024; 134:e181062. [PMID: 39007266 PMCID: PMC11245158 DOI: 10.1172/jci181062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Mutations in the tumor-suppressor genes BRCA1 and BRCA2 resulting in BRCA1/2 deficiency are frequently identified in breast, ovarian, prostate, pancreatic, and other cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cancer cells by inducing synthetic lethality, providing an effective biomarker-guided strategy for targeted cancer therapy. However, a substantial fraction of cancer patients carrying BRCA1/2 mutations do not respond to PARPis, and most patients develop resistance to PARPis over time, highlighting a major obstacle to PARPi therapy in the clinic. Recent studies have revealed that changes of specific functional defects of BRCA1/2-deficient cells, particularly their defects in suppressing and protecting single-stranded DNA gaps, contribute to the gain or loss of PARPi-induced synthetic lethality. These findings not only shed light on the mechanism of action of PARPis, but also lead to revised models that explain how PARPis selectively kill BRCA-deficient cancer cells. Furthermore, new mechanistic principles of PARPi sensitivity and resistance have emerged from these studies, generating potentially useful guidelines for predicting the PARPi response and design therapies for overcoming PARPi resistance. In this Review, we will discuss these recent studies and put them in context with the classic views of PARPi-induced synthetic lethality, aiming to stimulate the development of new therapeutic strategies to overcome PARPi resistance and improve PARPi therapy.
Collapse
|
16
|
Mamar H, Fajka-Boja R, Mórocz M, Jurado E, Zentout S, Mihuţ A, Kopasz AG, Mérey M, Smith R, Sharma AB, Lakin N, Bowman A, Haracska L, Huet S, Timinszky G. The loss of DNA polymerase epsilon accessory subunits POLE3-POLE4 leads to BRCA1-independent PARP inhibitor sensitivity. Nucleic Acids Res 2024; 52:6994-7011. [PMID: 38828775 PMCID: PMC11229324 DOI: 10.1093/nar/gkae439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.
Collapse
Affiliation(s)
- Hasan Mamar
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Biology, University of Szeged, 6720 Szeged, Hungary
| | - Roberta Fajka-Boja
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Mónika Mórocz
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
| | - Eva Pinto Jurado
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | - Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | - Alexandra Mihuţ
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Anna Georgina Kopasz
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Mihály Mérey
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | | | - Nicholas D Lakin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Andrew James Bowman
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, UK
| | - Lajos Haracska
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
| |
Collapse
|
17
|
Miramova A, Gartner A, Ivanov D. How to sensitize glioblastomas to temozolomide chemotherapy: a gap-centered view. Front Cell Dev Biol 2024; 12:1436563. [PMID: 39011394 PMCID: PMC11246897 DOI: 10.3389/fcell.2024.1436563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Temozolomide (TMZ) is a methylating agent used as the first-line drug in the chemotherapy of glioblastomas. However, cancer cells eventually acquire resistance, necessitating the development of TMZ-potentiating therapy agents. TMZ induces several DNA base adducts, including O 6 -meG, 3-meA, and 7-meG. TMZ cytotoxicity stems from the ability of these adducts to directly (3-meA) or indirectly (O 6 -meG) impair DNA replication. Although TMZ toxicity is generally attributed to O 6 -meG, other alkylated bases can be similarly important depending on the status of various DNA repair pathways of the treated cells. In this mini-review we emphasize the necessity to distinguish TMZ-sensitive glioblastomas, which do not express methylguanine-DNA methyltransferase (MGMT) and are killed by the futile cycle of mismatch repair (MMR) of the O 6 -meG/T pairs, vs. TMZ-resistant MGMT-positive or MMR-negative glioblastomas, which are selected in the course of the treatment and are killed only at higher TMZ doses by the replication-blocking 3-meA. These two types of cells can be TMZ-sensitized by inhibiting different DNA repair pathways. However, in both cases, the toxic intermediates appear to be ssDNA gaps, a vulnerability also seen in BRCA-deficient cancers. PARP inhibitors (PARPi), which were initially developed to treat BRCA1/2-deficient cancers by synthetic lethality, were re-purposed in clinical trials to potentiate the effects of TMZ. We discuss how the recent advances in our understanding of the genetic determinants of TMZ toxicity might lead to new approaches for the treatment of glioblastomas by inhibiting PARP1 and other enzymes involved in the repair of alkylation damage (e.g., APE1).
Collapse
Affiliation(s)
- Alila Miramova
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Anton Gartner
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Graduate School for Health Sciences and Technology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Dmitri Ivanov
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| |
Collapse
|
18
|
Zentout S, Imburchia V, Chapuis C, Duma L, Schützenhofer K, Prokhorova E, Ahel I, Smith R, Huet S. Histone ADP-ribosylation promotes resistance to PARP inhibitors by facilitating PARP1 release from DNA lesions. Proc Natl Acad Sci U S A 2024; 121:e2322689121. [PMID: 38865276 PMCID: PMC11194589 DOI: 10.1073/pnas.2322689121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) has emerged as a central target for cancer therapies due to the ability of PARP inhibitors to specifically kill tumors deficient for DNA repair by homologous recombination. Upon DNA damage, PARP1 quickly binds to DNA breaks and triggers ADP-ribosylation signaling. ADP-ribosylation is important for the recruitment of various factors to sites of damage, as well as for the timely dissociation of PARP1 from DNA breaks. Indeed, PARP1 becomes trapped at DNA breaks in the presence of PARP inhibitors, a mechanism underlying the cytotoxitiy of these inhibitors. Therefore, any cellular process influencing trapping is thought to impact PARP inhibitor efficiency, potentially leading to acquired resistance in patients treated with these drugs. There are numerous ADP-ribosylation targets after DNA damage, including PARP1 itself as well as histones. While recent findings reported that the automodification of PARP1 promotes its release from the DNA lesions, the potential impact of other ADP-ribosylated proteins on this process remains unknown. Here, we demonstrate that histone ADP-ribosylation is also crucial for the timely dissipation of PARP1 from the lesions, thus contributing to cellular resistance to PARP inhibitors. Considering the crosstalk between ADP-ribosylation and other histone marks, our findings open interesting perspectives for the development of more efficient PARP inhibitor-driven cancer therapies.
Collapse
Affiliation(s)
- Siham Zentout
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
| | - Victor Imburchia
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
| | - Catherine Chapuis
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
| | - Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Kira Schützenhofer
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Rebecca Smith
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Sébastien Huet
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
| |
Collapse
|
19
|
Zhang J, Zhao H, Zou B, Li H, Dong S, Guan J, Wang C, Li W, Liu Y, Chen Y, Rasheed N, He J. Cryo-EM structure and functional analysis of the chromatin remodeler RSF. Acta Crystallogr F Struct Biol Commun 2024; 80:125-134. [PMID: 38818823 PMCID: PMC11189100 DOI: 10.1107/s2053230x24004655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
The RSF complex belongs to the ISWI chromatin-remodeling family and is composed of two subunits: RSF1 (remodeling and spacing factor 1) and SNF2h (sucrose nonfermenting protein 2 homolog). The RSF complex participates in nucleosome spacing and assembly, and subsequently promotes nucleosome maturation. Although SNF2h has been extensively studied in the last few years, the structural and functional properties of the remodeler RSF1 still remain vague. Here, a cryo-EM structure of the RSF-nucleosome complex is reported. The 3D model shows a two-lobe architecture of RSF, and the structure of the RSF-nucleosome (flanked with linker DNA) complex shows that the RSF complex moves the DNA away from the histone octamer surface at the DNA-entry point. Additionally, a nucleosome-sliding assay and a restriction-enzyme accessibility assay show that the RSF1 subunit may cause changes in the chromatin-remodeling properties of SNF2h. As a `nucleosome ruler', the results of an RSF-dinucleosome binding affinity test led to the proposal that the critical distance that RSF `measures' between two nucleosomes is about 24 base pairs.
Collapse
Affiliation(s)
- Jiale Zhang
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
- University of Chinese Academy of SciencesBeijingPeople’s Republic of China
| | - Heyu Zhao
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
- University of Chinese Academy of SciencesBeijingPeople’s Republic of China
| | - Binqian Zou
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
| | - Huadong Li
- Faculty of Health Sciences, University of Macau, Macau SAR, People’s Republic of China
| | - Shuqi Dong
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
- University of Chinese Academy of SciencesBeijingPeople’s Republic of China
| | - Jiali Guan
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
- University of Chinese Academy of SciencesBeijingPeople’s Republic of China
| | - Chi Wang
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhuiPeople’s Republic of China
| | - Weijie Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Yutong Liu
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
| | - Yingying Chen
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
| | - Nadia Rasheed
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
| | - Jun He
- CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine GIBH–HKU Guangdong–Hong Kong Stem Cell and Regenerative Medicine Research Centre GIBH–CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongPeople’s Republic of China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongPeople’s Republic of China
- State Key Laboratory of Respiratory Disease CAS Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health, Chinese Academy of ScienceGuangzhouGuangdongPeople’s Republic of China
| |
Collapse
|
20
|
Huang Y, Ren S, Ding L, Jiang Y, Luo J, Huang J, Yin X, Zhao J, Fu S, Liao J. TP53-specific mutations serve as a potential biomarker for homologous recombination deficiency in breast cancer: a clinical next-generation sequencing study. PRECISION CLINICAL MEDICINE 2024; 7:pbae009. [PMID: 38745917 PMCID: PMC11092399 DOI: 10.1093/pcmedi/pbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
Background TP53 mutations and homologous recombination deficiency (HRD) occur frequently in breast cancer. However, the characteristics of TP53 pathogenic mutations in breast cancer patients with/without HRD are not clear. Methods Clinical next-generation sequencing (NGS) of both tumor and paired blood DNA from 119 breast cancer patients (BRCA-119 cohort) was performed with a 520-gene panel. Mutations, tumor mutation burden (TMB), and genomic HRD scores were assessed from NGS data. NGS data from 47 breast cancer patients in the HRD test cohort were analyzed for further verification. Results All TP53 pathogenic mutations in patients had somatic origin, which was associated with the protein expression of estrogen receptor and progestogen receptor. Compared to patients without TP53 pathologic mutations, patients with TP53 pathologic mutations had higher levels of HRD scores and different genomic alterations. The frequency of TP53 pathologic mutation was higher in the HRD-high group (HRD score ≥ 42) relative to that in the HRD-low group (HRD score < 42). TP53 has different mutational characteristics between the HRD-low and HRD-high groups. TP53-specific mutation subgroups had diverse genomic features and TMB. Notably, TP53 pathogenic mutations predicted the HRD status of breast cancer patients with an area under the curve (AUC) of 0.61. TP53-specific mutations, namely HRD-low mutation, HRD-high mutation, and HRD common mutation, predicted the HRD status of breast cancer patients with AUC values of 0.32, 0.72, and 0.58, respectively. Interestingly, TP53 HRD-high mutation and HRD common mutation combinations showed the highest AUC values (0.80) in predicting HRD status. Conclusions TP53-specific mutation combinations predict the HRD status of patients, indicating that TP53 pathogenic mutations could serve as a potential biomarker for poly-ADP-ribose polymerase (PARP) inhibitors in breast cancer patients .
Collapse
Affiliation(s)
- Yongsheng Huang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shuwei Ren
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Linxiaoxiao Ding
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuanling Jiang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiahuan Luo
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinghua Huang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinke Yin
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jianli Zhao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Sha Fu
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jianwei Liao
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
21
|
Cunningham ML, Schiewer MJ. PARP-ish: Gaps in Molecular Understanding and Clinical Trials Targeting PARP Exacerbate Racial Disparities in Prostate Cancer. Cancer Res 2024; 84:743102. [PMID: 38635890 PMCID: PMC11217733 DOI: 10.1158/0008-5472.can-23-3458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
PARP is a nuclear enzyme with a major function in the DNA damage response. PARP inhibitors (PARPi) have been developed for treating tumors harboring homologous recombination repair (HRR) defects that lead to a dependency on PARP. There are currently three PARPi approved for use in advanced prostate cancer (PCa), and several others are in clinical trials for this disease. Recent clinical trial results have reported differential efficacy based on the specific PARPi utilized as well as patient race. There is a racial disparity in PCa, where African American (AA) males are twice as likely to develop and die from the disease compared to European American (EA) males. Despite the disparity, there continues to be a lack of diversity in clinical trial cohorts for PCa. In this review, PARP nuclear functions, inhibition, and clinical relevance are explored through the lens of racial differences. This review will touch on the biological variations that have been explored thus far between AA and EA males with PCa to offer rationale for investigating PARPi response in the context of race at both the basic science and the clinical development levels.
Collapse
Affiliation(s)
- Moriah L. Cunningham
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Matthew J. Schiewer
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
22
|
McAvera RM, Morgan JJ, Herrero AB, Mills KI, Crawford LJ. TRIM33 loss in multiple myeloma is associated with genomic instability and sensitivity to PARP inhibitors. Sci Rep 2024; 14:8797. [PMID: 38627415 PMCID: PMC11021562 DOI: 10.1038/s41598-024-58828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Deletions of chromosome 1p (del(1p)) are a recurrent genomic aberration associated with poor outcome in Multiple myeloma (MM.) TRIM33, an E3 ligase and transcriptional co-repressor, is located within a commonly deleted region at 1p13.2. TRIM33 is reported to play a role in the regulation of mitosis and PARP-dependent DNA damage response (DDR), both of which are important for maintenance of genome stability. Here, we demonstrate that MM patients with loss of TRIM33 exhibit increased chromosomal instability and poor outcome. Through knockdown studies, we show that TRIM33 loss induces a DDR defect, leading to accumulation of DNA double strand breaks (DSBs) and slower DNA repair kinetics, along with reduced efficiency of non-homologous end joining (NHEJ). Furthermore, TRIM33 loss results in dysregulated ubiquitination of ALC1, an important regulator of response to PARP inhibition. We show that TRIM33 knockdown sensitizes MM cells to the PARP inhibitor Olaparib, and this is synergistic with the standard of care therapy bortezomib, even in co-culture with bone marrow stromal cells (BMSCs). These findings suggest that TRIM33 loss contributes to the pathogenesis of high-risk MM and that this may be therapeutically exploited through the use of PARP inhibitors.
Collapse
Affiliation(s)
- Roisin M McAvera
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Jonathan J Morgan
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Ana B Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Ken I Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Lisa J Crawford
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
23
|
Huang Y, Qiu Y, Ding L, Ren S, Jiang Y, Luo J, Huang J, Yin X, Fu S, Zhao J, Hu K, Liao J. Somatic mutations in four novel genes contribute to homologous recombination deficiency in breast cancer: a real-world clinical tumor sequencing study. J Pathol Clin Res 2024; 10:e12367. [PMID: 38504382 PMCID: PMC10951049 DOI: 10.1002/2056-4538.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/21/2024]
Abstract
Breast cancers involving mutations in homologous recombination (HR) genes, most commonly BRCA1 and BRCA2 (BRCA1/2), respond well to PARP inhibitors and platinum-based chemotherapy. However, except for these specific HR genes, it is not clear which other mutations contribute to homologous recombination defects (HRD). Here, we performed next-generation sequencing of tumor tissues and matched blood samples from 119 breast cancer patients using the OncoScreen Plus panel. Genomic mutation characteristics and HRD scores were analyzed. In the HR genes, we found that BRCA1/2 and PLAB2 mutations were related to HRD. HRD was also detected in a subset of patients without germline or somatic mutations in BRCA1/2, PLAB2, or other HR-related genes. Notably, LRP1B, NOTCH3, GATA2, and CARD11 (abbreviated as LNGC) mutations were associated with high HRD scores in breast cancer patients. Furthermore, functional experiments demonstrated that silencing CARD11 and GATA2 impairs HR repair efficiency and enhances the sensitivity of tumor cells to olaparib treatment. In summary, in the absence of mutations in the HR genes, the sensitivity of tumor cells to PARP inhibitors and platinum-based chemotherapy may be enhanced in a subset of breast cancer patients with LNGC somatic mutations.
Collapse
Affiliation(s)
- Yongsheng Huang
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouPR China
| | - Yuntan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouPR China
| | - Linxiaoxiao Ding
- Breast Tumor Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Shuwei Ren
- Department of Clinical LaboratoryThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Yuanling Jiang
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Jiahuan Luo
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Jinghua Huang
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Xinke Yin
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Sha Fu
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Jianli Zhao
- Breast Tumor Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouPR China
| | - Jianwei Liao
- Cellular & Molecular Diagnostics CenterSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPR China
| |
Collapse
|
24
|
Bacic L, Gaullier G, Mohapatra J, Mao G, Brackmann K, Panfilov M, Liszczak G, Sabantsev A, Deindl S. Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1. Nat Commun 2024; 15:1000. [PMID: 38307862 PMCID: PMC10837151 DOI: 10.1038/s41467-024-45237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
The chromatin remodeler ALC1 is activated by DNA damage-induced poly(ADP-ribose) deposited by PARP1/PARP2 and their co-factor HPF1. ALC1 has emerged as a cancer drug target, but how it is recruited to ADP-ribosylated nucleosomes to affect their positioning near DNA breaks is unknown. Here we find that PARP1/HPF1 preferentially initiates ADP-ribosylation on the histone H2B tail closest to the DNA break. To dissect the consequences of such asymmetry, we generate nucleosomes with a defined ADP-ribosylated H2B tail on one side only. The cryo-electron microscopy structure of ALC1 bound to such an asymmetric nucleosome indicates preferential engagement on one side. Using single-molecule FRET, we demonstrate that this asymmetric recruitment gives rise to directed sliding away from the DNA linker closest to the ADP-ribosylation site. Our data suggest a mechanism by which ALC1 slides nucleosomes away from a DNA break to render it more accessible to repair factors.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
- Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden
| | - Jugal Mohapatra
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Mikhail Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Glen Liszczak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
25
|
Longoria O, Beije N, de Bono JS. PARP inhibitors for prostate cancer. Semin Oncol 2024; 51:25-35. [PMID: 37783649 DOI: 10.1053/j.seminoncol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed the treatment landscape for patients with metastatic castration-resistant prostate cancer (mCRPC) and alterations in DNA damage response genes. This has also led to widespread use of genomic testing in all patients with mCRPC. The current review will give an overview of (1) the current understanding of the interplay between DNA damage response and PARP enzymes; (2) the clinical landscape of PARP inhibitors, including the combination of PARP inhibitors with other agents such as androgen-receptor signaling agents; (3) biomarkers related to PARP inhibitor response and resistance; and (4) considerations for interpreting genomic testing results and treating patients with PARP inhibitors.
Collapse
Affiliation(s)
- Ossian Longoria
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Nick Beije
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.
| |
Collapse
|
26
|
Kanev PB, Atemin A, Stoynov S, Aleksandrov R. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol 2024; 51:2-18. [PMID: 37714792 DOI: 10.1053/j.seminoncol.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/17/2023]
Abstract
Genome integrity is under constant insult from endogenous and exogenous sources. In order to cope, eukaryotic cells have evolved an elaborate network of DNA repair that can deal with diverse lesion types and exhibits considerable functional redundancy. PARP1 is a major sensor of DNA breaks with established and putative roles in a number of pathways within the DNA repair network, including repair of single- and double-strand breaks as well as protection of the DNA replication fork. Importantly, PARP1 is the major target of small-molecule PARP inhibitors (PARPi), which are employed in the treatment of homologous recombination (HR)-deficient tumors, as the latter are particularly susceptible to the accumulation of DNA damage due to an inability to efficiently repair highly toxic double-strand DNA breaks. The clinical success of PARPi has fostered extensive research into PARP biology, which has shed light on the involvement of PARP1 in various genomic transactions. A major goal within the field has been to understand the relationship between catalytic inhibition and PARP1 trapping. The specific consequences of inhibition and trapping on genomic stability as a basis for the cytotoxicity of PARP inhibitors remain a matter of debate. Finally, PARP inhibition is increasingly recognized for its capacity to elicit/modulate anti-tumor immunity. The clinical potential of PARP inhibition is, however, hindered by the development of resistance. Hence, extensive efforts are invested in identifying factors that promote resistance or sensitize cells to PARPi. The current review provides a summary of advances in our understanding of PARP1 biology, the mechanistic nature, and molecular consequences of PARP inhibition, as well as the mechanisms that give rise to PARPi resistance.
Collapse
Affiliation(s)
- Petar-Bogomil Kanev
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aleksandar Atemin
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Radoslav Aleksandrov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
27
|
Zhang Y, Liang L, Li Z, Huang Y, Jiang M, Zou B, Xu Y. Polyadenosine diphosphate-ribose polymerase inhibitors: advances, implications, and challenges in tumor radiotherapy sensitization. Front Oncol 2023; 13:1295579. [PMID: 38111536 PMCID: PMC10726039 DOI: 10.3389/fonc.2023.1295579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Polyadenosine diphosphate-ribose polymerase (PARP) is a key modifying enzyme in cells, which participates in single-strand break repair and indirectly affects double-strand break repair. PARP inhibitors have shown great potential in oncotherapy by exploiting DNA damage repair pathways, and several small molecule PARP inhibitors have been approved by the U.S. Food and Drug Administration for treating various tumor types. PARP inhibitors not only have significant antitumor effects but also have some synergistic effects when combined with radiotherapy; therefore they have potential as radiation sensitizers. Here, we reviewed the advances and implications of PARP inhibitors in tumor radiotherapy sensitization. First, we summarized the multiple functions of PARP and the mechanisms by which its inhibitors exert antitumor effects. Next, we discuss the immunomodulatory effects of PARP and its inhibitors in tumors. Then, we described the theoretical basis of using PARP inhibitors in combination with radiotherapy and outlined their importance in oncological radiotherapy. Finally, we reviewed the current challenges in this field and elaborated on the future applications of PARP inhibitors as radiation sensitizers. A comprehensive understanding of the mechanism, optimal dosing, long-term safety, and identification of responsive biomarkers remain key challenges to integrating PARP inhibition into the radiotherapy management of cancer patients. Therefore, extensive research in these areas would facilitate the development of precision radiotherapy using PARP inhibitors to improve patient outcomes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lijie Liang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, China
| | - Ming Jiang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Rouleau-Turcotte É, Pascal JM. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. J Biol Chem 2023; 299:105397. [PMID: 37898399 PMCID: PMC10722394 DOI: 10.1016/j.jbc.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
ADP-ribose is a versatile modification that plays a critical role in diverse cellular processes. The addition of this modification is catalyzed by ADP-ribosyltransferases, among which notable poly(ADP-ribose) polymerase (PARP) enzymes are intimately involved in the maintenance of genome integrity. The role of ADP-ribose modifications during DNA damage repair is of significant interest for the proper development of PARP inhibitors targeted toward the treatment of diseases caused by genomic instability. More specifically, inhibitors promoting PARP persistence on DNA lesions, termed PARP "trapping," is considered a desirable characteristic. In this review, we discuss key classes of proteins involved in ADP-ribose signaling (writers, readers, and erasers) with a focus on those involved in the maintenance of genome integrity. An overview of factors that modulate PARP1 and PARP2 persistence at sites of DNA lesions is also discussed. Finally, we clarify aspects of the PARP trapping model in light of recent studies that characterize the kinetics of PARP1 and PARP2 recruitment at sites of lesions. These findings suggest that PARP trapping could be considered as the continuous recruitment of PARP molecules to sites of lesions, rather than the physical stalling of molecules. Recent studies and novel research tools have elevated the level of understanding of ADP-ribosylation, marking a coming-of-age for this interesting modification.
Collapse
Affiliation(s)
- Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
29
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
30
|
Awwad SW, Serrano-Benitez A, Thomas JC, Gupta V, Jackson SP. Revolutionizing DNA repair research and cancer therapy with CRISPR-Cas screens. Nat Rev Mol Cell Biol 2023; 24:477-494. [PMID: 36781955 DOI: 10.1038/s41580-022-00571-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/15/2023]
Abstract
All organisms possess molecular mechanisms that govern DNA repair and associated DNA damage response (DDR) processes. Owing to their relevance to human disease, most notably cancer, these mechanisms have been studied extensively, yet new DNA repair and/or DDR factors and functional interactions between them are still being uncovered. The emergence of CRISPR technologies and CRISPR-based genetic screens has enabled genome-scale analyses of gene-gene and gene-drug interactions, thereby providing new insights into cellular processes in distinct DDR-deficiency genetic backgrounds and conditions. In this Review, we discuss the mechanistic basis of CRISPR-Cas genetic screening approaches and describe how they have contributed to our understanding of DNA repair and DDR pathways. We discuss how DNA repair pathways are regulated, and identify and characterize crosstalk between them. We also highlight the impacts of CRISPR-based studies in identifying novel strategies for cancer therapy, and in understanding, overcoming and even exploiting cancer-drug resistance, for example in the contexts of PARP inhibition, homologous recombination deficiencies and/or replication stress. Lastly, we present the DDR CRISPR screen (DDRcs) portal , in which we have collected and reanalysed data from CRISPR screen studies and provide a tool for systematically exploring them.
Collapse
Affiliation(s)
- Samah W Awwad
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Almudena Serrano-Benitez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - John C Thomas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
31
|
Krishnan A, Spegg V, Dettwiler S, Schraml P, Moch H, Dedes K, Varga Z, Altmeyer M. Analysis of the PARP1, ADP-Ribosylation, and TRIP12 Triad With Markers of Patient Outcome in Human Breast Cancer. Mod Pathol 2023; 36:100167. [PMID: 36990278 DOI: 10.1016/j.modpat.2023.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
PARP inhibitors (PARPi) are increasingly used in breast cancer therapy, including high-grade triple-negative breast cancer (TNBC) treatment. Varying treatment responses and PARPi resistance with relapse currently pose limitations to the efficacy of PARPi therapy. The pathobiological reasons why individual patients respond differently to PARPi are poorly understood. In this study, we analyzed expression of PARP1, the main target of PARPi, in normal breast tissue, breast cancer, and its precursor lesions using human breast cancer tissue microarrays covering a total of 824 patients, including more than 100 TNBC cases. In parallel, we analyzed nuclear adenosine diphosphate (ADP)-ribosylation as a marker of PARP1 activity and TRIP12, an antagonist of PARPi-induced PARP1 trapping. Although we found PARP1 expression to be generally increased in invasive breast cancer, PARP1 protein levels and nuclear ADP-ribosylation were lower in higher tumor grade and TNBC samples than non-TNBCs. Cancers with low levels of PARP1 and low levels of nuclear ADP-ribosylation were associated with significantly reduced overall survival. This effect was even more pronounced in cases with high levels of TRIP12. These results indicate that PARP1-dependent DNA repair capacity may be compromised in aggressive breast cancers, potentially fueling enhanced accumulation of mutations. Moreover, the results revealed a subset of breast cancers with low PARP1, low nuclear ADP-ribosylation, and high TRIP12 levels, which may compromise their response to PARPi, suggesting a combination of markers for PARP1 abundance, enzymatic activity, and trapping capabilities might aid patient stratification for PARPi therapy.
Collapse
Affiliation(s)
- Aswini Krishnan
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Susanne Dettwiler
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Konstantin Dedes
- Department of Gynecology, University Hospital of Zurich, Zurich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Duma L, Ahel I. The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans 2023; 51:995-1008. [PMID: 37171085 PMCID: PMC10317172 DOI: 10.1042/bst20220749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
ADP-ribosylation is a post-translational modification involved in DNA damage response (DDR). In higher organisms it is synthesised by PARP 1-3, DNA strand break sensors. Recent advances have identified serine residues as the most common targets for ADP-ribosylation during DDR. To ADP-ribosylate serine, PARPs require an accessory factor, HPF1 which completes the catalytic domain. Through ADP-ribosylation, PARPs recruit a variety of factors to the break site and control their activities. However, the timely removal of ADP-ribosylation is also key for genome stability and is mostly performed by two hydrolases: PARG and ARH3. Here, we describe the key writers, readers and erasers of ADP-ribosylation and their contribution to the mounting of the DDR. We also discuss the use of PARP inhibitors in cancer therapy and the ways to tackle PARPi treatment resistance.
Collapse
Affiliation(s)
- Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| |
Collapse
|
33
|
Raja SJ, Van Houten B. UV-DDB as a General Sensor of DNA Damage in Chromatin: Multifaceted Approaches to Assess Its Direct Role in Base Excision Repair. Int J Mol Sci 2023; 24:10168. [PMID: 37373320 PMCID: PMC10298998 DOI: 10.3390/ijms241210168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Base excision repair (BER) is a cellular process that removes damaged bases arising from exogenous and endogenous sources including reactive oxygen species, alkylation agents, and ionizing radiation. BER is mediated by the actions of multiple proteins which work in a highly concerted manner to resolve DNA damage efficiently to prevent toxic repair intermediates. During the initiation of BER, the damaged base is removed by one of 11 mammalian DNA glycosylases, resulting in abasic sites. Many DNA glycosylases are product-inhibited by binding to the abasic site more avidly than the damaged base. Traditionally, apurinic/apyrimidinic endonuclease 1, APE1, was believed to help turn over the glycosylases to undergo multiple rounds of damaged base removal. However, in a series of papers from our laboratory, we have demonstrated that UV-damaged DNA binding protein (UV-DDB) stimulates the glycosylase activities of human 8-oxoguanine glycosylase (OGG1), MUTY DNA glycosylase (MUTYH), alkyladenine glycosylase/N-methylpurine DNA glycosylase (AAG/MPG), and single-strand selective monofunctional glycosylase (SMUG1), between three- and five-fold. Moreover, we have shown that UV-DDB can assist chromatin decompaction, facilitating access of OGG1 to 8-oxoguanine damage in telomeres. This review summarizes the biochemistry, single-molecule, and cell biology approaches that our group used to directly demonstrate the essential role of UV-DDB in BER.
Collapse
Affiliation(s)
- Sripriya J. Raja
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
34
|
Jang S, Raja SJ, Roginskaya V, Schaich MA, Watkins S, Van Houten B. UV-DDB stimulates the activity of SMUG1 during base excision repair of 5-hydroxymethyl-2'-deoxyuridine moieties. Nucleic Acids Res 2023; 51:4881-4898. [PMID: 36971122 PMCID: PMC10250209 DOI: 10.1093/nar/gkad206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 11/15/2023] Open
Abstract
UV-damaged DNA-binding protein (UV-DDB) is a heterodimeric protein, consisting of DDB1 and DDB2 subunits, that works to recognize DNA lesions induced by UV damage during global genome nucleotide excision repair (GG-NER). Our laboratory previously discovered a non-canonical role for UV-DDB in the processing of 8-oxoG, by stimulating 8-oxoG glycosylase, OGG1, activity 3-fold, MUTYH activity 4-5-fold, and APE1 (apurinic/apyrimidinic endonuclease 1) activity 8-fold. 5-hydroxymethyl-deoxyuridine (5-hmdU) is an important oxidation product of thymidine which is removed by single-strand selective monofunctional DNA glycosylase (SMUG1). Biochemical experiments with purified proteins indicated that UV-DDB stimulates the excision activity of SMUG1 on several substrates by 4-5-fold. Electrophoretic mobility shift assays indicated that UV-DDB displaced SMUG1 from abasic site products. Single-molecule analysis revealed that UV-DDB decreases the half-life of SMUG1 on DNA by ∼8-fold. Immunofluorescence experiments demonstrated that cellular treatment with 5-hmdU (5 μM for 15 min), which is incorporated into DNA during replication, produces discrete foci of DDB2-mCherry, which co-localize with SMUG1-GFP. Proximity ligation assays supported a transient interaction between SMUG1 and DDB2 in cells. Poly(ADP)-ribose accumulated after 5-hmdU treatment, which was abrogated with SMUG1 and DDB2 knockdown. These data support a novel role for UV-DDB in the processing of the oxidized base, 5-hmdU.
Collapse
Affiliation(s)
- Sunbok Jang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sripriya J Raja
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vera Roginskaya
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew A Schaich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
35
|
Dabin J, Mori M, Polo SE. The DNA damage response in the chromatin context: A coordinated process. Curr Opin Cell Biol 2023; 82:102176. [PMID: 37301060 DOI: 10.1016/j.ceb.2023.102176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
In the cell nucleus, DNA damage signaling and repair machineries operate on a chromatin substrate, the integrity of which is critical for cell function and viability. Here, we review recent advances in deciphering the tight coordination between chromatin maintenance and the DNA damage response (DDR). We discuss how the DDR impacts chromatin marks, organization and mobility, and, in turn, how chromatin alterations actively contribute to the DDR, providing additional levels of regulation. We present our current knowledge of the molecular bases of these critical processes in physiological and pathological conditions, and also highlight open questions that emerge in this expanding field.
Collapse
Affiliation(s)
- Juliette Dabin
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, 35 rue Hélène Brion, 75013 Paris, France
| | - Margherita Mori
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, 35 rue Hélène Brion, 75013 Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, 35 rue Hélène Brion, 75013 Paris, France.
| |
Collapse
|
36
|
Mijiti M, Maimaiti A, Chen X, Tuersun M, Dilixiati M, Dilixiati Y, Zhu G, Wu H, Li Y, Turhon M, Abulaiti A, Maimaitiaili N, Yiming N, Kasimu M, Wang Y. CRISPR-cas9 screening identified lethal genes enriched in Hippo kinase pathway and of predictive significance in primary low-grade glioma. Mol Med 2023; 29:64. [PMID: 37183261 PMCID: PMC10183247 DOI: 10.1186/s10020-023-00652-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Low-grade gliomas (LGG) are a type of brain tumor that can be lethal, and it is essential to identify genes that are correlated with patient prognosis. In this study, we aimed to use CRISPR-cas9 screening data to identify key signaling pathways and develop a genetic signature associated with high-risk, low-grade glioma patients. METHODS The study used CRISPR-cas9 screening data to identify essential genes correlated with cell survival in LGG. We used RNA-seq data to identify differentially expressed genes (DEGs) related to cell viability. Moreover, we used the least absolute shrinkage and selection operator (LASSO) method to construct a genetic signature for predicting overall survival in patients. We performed enrichment analysis to identify pathways mediated by DEGs, overlapping genes, and genes shared in the Weighted correlation network analysis (WGCNA). Finally, the study used western blot, qRT-PCR, and IHC to detect the expression of hub genes from signature in clinical samples. RESULTS The study identified 145 overexpressed oncogenes in low-grade gliomas using the TCGA database. These genes were intersected with lethal genes identified in the CRISPR-cas9 screening data from Depmap database, which are enriched in Hippo pathways. A total of 19 genes were used to construct a genetic signature, and the Hippo signaling pathway was found to be the predominantly enriched pathway. The signature effectively distinguished between low- and high-risk patients, with high-risk patients showing a shorter overall survival duration. Differences in hub gene expression were found in different clinical samples, with the protein and mRNA expression of REP65 being significantly up-regulated in tumor cells. The study suggests that the Hippo signaling pathway may be a critical regulator of viability and tumor proliferation and therefore is an innovative new target for treating cancerous brain tumors, including low-grade gliomas. CONCLUSION Our study identified a novel genetic signature associated with high-risk, LGG patients. We found that the Hippo signaling pathway was significantly enriched in this signature, indicating that it may be a critical regulator of tumor viability and proliferation in LGG. Targeting the Hippo pathway could be an innovative new strategy for treating LGG.
Collapse
Affiliation(s)
- Maimaitili Mijiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830054, Urumqi, China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830054, Urumqi, China
| | - Xiaoqing Chen
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Maidina Tuersun
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | | | | | - Guohua Zhu
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830054, Urumqi, China
| | - Hao Wu
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830054, Urumqi, China
| | - Yandong Li
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830054, Urumqi, China
| | - Mirzat Turhon
- Department of Neurointerventional Surgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurointerventional Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830054, Urumqi, China
| | | | - Nadire Yiming
- Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Maimaitijiang Kasimu
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830054, Urumqi, China.
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830054, Urumqi, China.
| |
Collapse
|
37
|
Fleury H, MacEachern MK, Stiefel CM, Anand R, Sempeck C, Nebenfuehr B, Maurer-Alcalá K, Ball K, Proctor B, Belan O, Taylor E, Ortega R, Dodd B, Weatherly L, Dansoko D, Leung JW, Boulton SJ, Arnoult N. The APE2 nuclease is essential for DNA double-strand break repair by microhomology-mediated end joining. Mol Cell 2023; 83:1429-1445.e8. [PMID: 37044098 PMCID: PMC10164096 DOI: 10.1016/j.molcel.2023.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Abstract
Microhomology-mediated end joining (MMEJ) is an intrinsically mutagenic pathway of DNA double-strand break (DSB) repair essential for proliferation of homologous recombination (HR)-deficient tumors. Although targeting MMEJ has emerged as a powerful strategy to eliminate HR-deficient (HRD) cancers, this is limited by an incomplete understanding of the mechanism and factors required for MMEJ repair. Here, we identify the APE2 nuclease as an MMEJ effector. We show that loss of APE2 inhibits MMEJ at deprotected telomeres and at intra-chromosomal DSBs and is epistatic with Pol Theta for MMEJ activity. Mechanistically, we demonstrate that APE2 possesses intrinsic flap-cleaving activity, that its MMEJ function in cells depends on its nuclease activity, and further identify an uncharacterized domain required for its recruitment to DSBs. We conclude that this previously unappreciated role of APE2 in MMEJ contributes to the addiction of HRD cells to APE2, which could be exploited in the treatment of cancer.
Collapse
Affiliation(s)
- Hubert Fleury
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Myles K MacEachern
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Clara M Stiefel
- Department of Radiation Oncology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Colin Sempeck
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin Nebenfuehr
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Kelper Maurer-Alcalá
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Kerri Ball
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Bruce Proctor
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Erin Taylor
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Raquel Ortega
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin Dodd
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Laila Weatherly
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Djelika Dansoko
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK; Artios Pharma Ltd, Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Nausica Arnoult
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
38
|
Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 2023; 23:78-94. [PMID: 36471053 DOI: 10.1038/s41568-022-00535-5] [Citation(s) in RCA: 245] [Impact Index Per Article: 245.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Simoneau A, Engel JL, Bandi M, Lazarides K, Liu S, Meier SR, Choi AH, Zhang H, Shen B, Martires L, Gotur D, Pham TV, Li F, Gu L, Gong S, Zhang M, Wilker E, Pan X, Whittington DA, Throner S, Maxwell JP, Chen Y, Yu Y, Huang A, Andersen JN, Feng T. Ubiquitinated PCNA Drives USP1 Synthetic Lethality in Cancer. Mol Cancer Ther 2023; 22:215-226. [PMID: 36228090 PMCID: PMC9891357 DOI: 10.1158/1535-7163.mct-22-0409] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 02/05/2023]
Abstract
CRISPR Cas9-based screening is a powerful approach for identifying and characterizing novel drug targets. Here, we elucidate the synthetic lethal mechanism of deubiquitinating enzyme USP1 in cancers with underlying DNA damage vulnerabilities, specifically BRCA1/2 mutant tumors and a subset of BRCA1/2 wild-type (WT) tumors. In sensitive cells, pharmacologic inhibition of USP1 leads to decreased DNA synthesis concomitant with S-phase-specific DNA damage. Genome-wide CRISPR-Cas9 screens identify RAD18 and UBE2K, which promote PCNA mono- and polyubiquitination respectively, as mediators of USP1 dependency. The accumulation of mono- and polyubiquitinated PCNA following USP1 inhibition is associated with reduced PCNA protein levels. Ectopic expression of WT or ubiquitin-dead K164R PCNA reverses USP1 inhibitor sensitivity. Our results show, for the first time, that USP1 dependency hinges on the aberrant processing of mono- and polyubiquitinated PCNA. Moreover, this mechanism of USP1 dependency extends beyond BRCA1/2 mutant tumors to selected BRCA1/2 WT cancer cell lines enriched in ovarian and lung lineages. We further show PARP and USP1 inhibition are strongly synergistic in BRCA1/2 mutant tumors. We postulate USP1 dependency unveils a previously uncharacterized vulnerability linked to posttranslational modifications of PCNA. Taken together, USP1 inhibition may represent a novel therapeutic strategy for BRCA1/2 mutant tumors and a subset of BRCA1/2 WT tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Fang Li
- Tango Therapeutics, Boston, Massachusetts
| | - Lina Gu
- Tango Therapeutics, Boston, Massachusetts
| | | | | | | | - Xuewen Pan
- Tango Therapeutics, Boston, Massachusetts
| | | | | | | | | | - Yi Yu
- Tango Therapeutics, Boston, Massachusetts
| | - Alan Huang
- Tango Therapeutics, Boston, Massachusetts
| | | | - Tianshu Feng
- Tango Therapeutics, Boston, Massachusetts.,Corresponding Author: Tianshu Feng, Tango Therapeutics, 201 Brookline Avenue, Suite 901, Boston, MA 02215. E-mail:
| |
Collapse
|
40
|
Belan O, Sebald M, Adamowicz M, Anand R, Vancevska A, Neves J, Grinkevich V, Hewitt G, Segura-Bayona S, Bellelli R, Robinson HMR, Higgins GS, Smith GCM, West SC, Rueda DS, Boulton SJ. POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells. Mol Cell 2022; 82:4664-4680.e9. [PMID: 36455556 DOI: 10.1016/j.molcel.2022.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
POLQ is a key effector of DSB repair by microhomology-mediated end-joining (MMEJ) and is overexpressed in many cancers. POLQ inhibitors confer synthetic lethality in HR and Shieldin-deficient cancer cells, which has been proposed to reflect a critical dependence on the DSB repair pathway by MMEJ. Whether POLQ also operates independent of MMEJ remains unexplored. Here, we show that POLQ-deficient cells accumulate post-replicative ssDNA gaps upon BRCA1/2 loss or PARP inhibitor treatment. Biochemically, cooperation between POLQ helicase and polymerase activities promotes RPA displacement and ssDNA-gap fill-in, respectively. POLQ is also capable of microhomology-mediated gap skipping (MMGS), which generates deletions during gap repair that resemble the genomic scars prevalent in POLQ overexpressing cancers. Our findings implicate POLQ in mutagenic post-replicative gap sealing, which could drive genome evolution in cancer and whose loss places a critical dependency on HR for gap protection and repair and cellular viability.
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marie Sebald
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marek Adamowicz
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aleksandra Vancevska
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Joana Neves
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Vera Grinkevich
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Graeme Hewitt
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sandra Segura-Bayona
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Helen M R Robinson
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Geoff S Higgins
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Graeme C M Smith
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK.
| |
Collapse
|
41
|
Schleicher EM, Moldovan GL. CRISPR screens guide the way for PARP and ATR inhibitor biomarker discovery. FEBS J 2022; 289:7854-7868. [PMID: 34601817 PMCID: PMC9003637 DOI: 10.1111/febs.16217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
DNA repair pathways are heavily studied for their role in cancer initiation and progression. Due to the large amount of inherent DNA damage in cancer cells, tumor cells profoundly rely on proper DNA repair for efficient cell cycle progression. Several current chemotherapeutics promote excessive DNA damage in cancer cells, thus leading to cell death during cell cycle progression. However, if the tumor has efficient DNA repair mechanisms, DNA-damaging therapeutics may not be as effective. Therefore, directly inhibiting DNA repair pathways alone and in combination with chemotherapeutics that cause DNA damage may result in improved clinical outcomes. Nevertheless, tumors can acquire resistance to DNA repair inhibitors. It is essential to understand the genetic mechanisms underlying this resistance. Genome-wide CRISPR screening has emerged as a powerful tool to identify biomarkers of resistance or sensitivity to DNA repair inhibitors. CRISPR knockout and CRISPR activation screens can be designed to investigate how the loss or overexpression of any human gene impacts resistance or sensitivity to specific inhibitors. This review will address the role of CRISPR screening in identifying biomarkers of resistance and sensitivity to DNA repair pathway inhibitors. We will focus on inhibitors targeting the PARP1 and ATR enzymes, and how the biomarkers identified from CRISPR screens can help inform the treatment plan for cancer patients.
Collapse
Affiliation(s)
- Emily M. Schleicher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
42
|
Zhan A, Luo Y, Qin H, Lin W, Tian L. Hypomagnetic Field Exposure Affecting Gut Microbiota, Reactive Oxygen Species Levels, and Colonic Cell Proliferation in Mice. Bioelectromagnetics 2022; 43:462-475. [PMID: 36434792 DOI: 10.1002/bem.22427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota has been considered one of the key factors in host health, which is influenced by many environmental factors. The geomagnetic field (GMF) represents one of the important environmental conditions for living organisms. Previous studies have shown that the elimination of GMF, the so-called hypomagnetic field (HMF), could affect the physiological functions and resistance to antibiotics of some microorganisms. However, whether long-term HMF exposure could alter the gut microbiota to some extent in mammals remains unclear. Here, we investigated the effects of long-term (8- and 12-week) HMF exposure on the gut microbiota in C57BL/6J mice. Our results clearly showed that 8-week HMF significantly affected the diversity and function of the mouse gut microbiota. Compared with the GMF group, the concentrations of short-chain fatty acids tended to decrease in the HMF group. Immunofluorescence analysis showed that HMF promoted colonic cell proliferation, concomitant with an increased level of reactive oxygen species (ROS). To our knowledge, this is the first in vivo finding that long-term HMF exposure could affect the mouse gut microbiota, ROS levels, and colonic cell proliferation in the colon. Moreover, the changes in gut microbiota can be restored by returning mice to the GMF environment, thus the possible harm to the microbiota caused by HMF exposure can be alleviated. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Aisheng Zhan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yukai Luo
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huafeng Qin
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Lanxiang Tian
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Wilson J, Loizou JI. Exploring the genetic space of the DNA damage response for cancer therapy through CRISPR-based screens. Mol Oncol 2022; 16:3778-3791. [PMID: 35708734 PMCID: PMC9627789 DOI: 10.1002/1878-0261.13272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage response for the treatment of cancer. Historically, interactions between two genes have had a longstanding presence in genetics and have been identified through forward genetic screens that rely on the molecular basis of the characterized phenotypes, typically caused by mutations in single genes. While such complex genetic interactions between genes have been studied extensively in model organisms, they have only recently been prioritized as therapeutic strategies due to technological advancements in genetic screens. Here, we discuss synthetic lethal and viable interactions within the DNA damage response and present how CRISPR-based genetic screens and chemical compounds have allowed for the systematic identification and targeting of such interactions for the treatment of cancer.
Collapse
Affiliation(s)
- Jordan Wilson
- Center for Cancer Research, Comprehensive Cancer CentreMedical University of ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Joanna I. Loizou
- Center for Cancer Research, Comprehensive Cancer CentreMedical University of ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
44
|
Alemasova EE, Lavrik OI. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Res 2022; 50:10817-10838. [PMID: 36243979 PMCID: PMC9638928 DOI: 10.1093/nar/gkac866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Condensates are biomolecular assemblies that concentrate biomolecules without the help of membranes. They are morphologically highly versatile and may emerge via distinct mechanisms. Nucleic acids-DNA, RNA and poly(ADP-ribose) (PAR) play special roles in the process of condensate organization. These polymeric scaffolds provide multiple specific and nonspecific interactions during nucleation and 'development' of macromolecular assemblages. In this review, we focus on condensates formed with PAR. We discuss to what extent the literature supports the phase separation origin of these structures. Special attention is paid to similarities and differences between PAR and RNA in the process of dynamic restructuring of condensates during their functioning.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
45
|
Thada V, Greenberg RA. Unpaved roads: How the DNA damage response navigates endogenous genotoxins. DNA Repair (Amst) 2022; 118:103383. [PMID: 35939975 PMCID: PMC9703833 DOI: 10.1016/j.dnarep.2022.103383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/03/2023]
Abstract
Accurate DNA repair is essential for cellular and organismal homeostasis, and DNA repair defects result in genetic diseases and cancer predisposition. Several environmental factors, such as ultraviolet light, damage DNA, but many other molecules with DNA damaging potential are byproducts of normal cellular processes. In this review, we highlight some of the prominent sources of endogenous DNA damage as well as their mechanisms of repair, with a special focus on repair by the homologous recombination and Fanconi anemia pathways. We also discuss how modulating DNA damage caused by endogenous factors may augment current approaches used to treat BRCA-deficient cancers. Finally, we describe how synthetic lethal interactions may be exploited to exacerbate DNA repair deficiencies and cause selective toxicity in additional types of cancers.
Collapse
|
46
|
Kloeber JA, Lou Z. Critical DNA damaging pathways in tumorigenesis. Semin Cancer Biol 2022; 85:164-184. [PMID: 33905873 PMCID: PMC8542061 DOI: 10.1016/j.semcancer.2021.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
The acquisition of DNA damage is an early driving event in tumorigenesis. Premalignant lesions show activated DNA damage responses and inactivation of DNA damage checkpoints promotes malignant transformation. However, DNA damage is also a targetable vulnerability in cancer cells. This requires a detailed understanding of the cellular and molecular mechanisms governing DNA integrity. Here, we review current work on DNA damage in tumorigenesis. We discuss DNA double strand break repair, how repair pathways contribute to tumorigenesis, and how double strand breaks are linked to the tumor microenvironment. Next, we discuss the role of oncogenes in promoting DNA damage through replication stress. Finally, we discuss our current understanding on DNA damage in micronuclei and discuss therapies targeting these DNA damage pathways.
Collapse
Affiliation(s)
- Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
47
|
Weaver TM, Hoitsma NM, Spencer JJ, Gakhar L, Schnicker NJ, Freudenthal BD. Structural basis for APE1 processing DNA damage in the nucleosome. Nat Commun 2022; 13:5390. [PMID: 36104361 PMCID: PMC9474862 DOI: 10.1038/s41467-022-33057-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Genomic DNA is continually exposed to endogenous and exogenous factors that promote DNA damage. Eukaryotic genomic DNA is packaged into nucleosomes, which present a barrier to accessing and effectively repairing DNA damage. The mechanisms by which DNA repair proteins overcome this barrier to repair DNA damage in the nucleosome and protect genomic stability is unknown. Here, we determine how the base excision repair (BER) endonuclease AP-endonuclease 1 (APE1) recognizes and cleaves DNA damage in the nucleosome. Kinetic assays determine that APE1 cleaves solvent-exposed AP sites in the nucleosome with 3 − 6 orders of magnitude higher efficiency than occluded AP sites. A cryo-electron microscopy structure of APE1 bound to a nucleosome containing a solvent-exposed AP site reveal that APE1 uses a DNA sculpting mechanism for AP site recognition, where APE1 bends the nucleosomal DNA to access the AP site. Notably, additional biochemical and structural characterization of occluded AP sites identify contacts between the nucleosomal DNA and histone octamer that prevent efficient processing of the AP site by APE1. These findings provide a rationale for the position-dependent activity of BER proteins in the nucleosome and suggests the ability of BER proteins to sculpt nucleosomal DNA drives efficient BER in chromatin. AP endonuclease 1 (APE1) processes genomic AP sites during base excision repair. Here, the authors determine the structural mechanism used by APE1 to process nucleosomal AP sites, providing new insight into DNA repair in chromatin.
Collapse
|
48
|
Revisiting PARP2 and PARP1 trapping through quantitative live-cell imaging. Biochem Soc Trans 2022; 50:1169-1177. [PMID: 35959996 DOI: 10.1042/bst20220366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP1) and 2 (PARP2) are two DNA damage-induced poly (ADP-ribose) (PAR) polymerases in cells and are the targets of PARP inhibitors used for cancer therapy. Strand breaks recruit and activate PARP1 and 2, which rapidly generate PAR from NAD+. PAR promotes the recruitment of other repair factors, relaxes chromatin, and has a role in DNA repair, transcription regulation, and RNA biology. Four PARP1/2 dual inhibitors are currently used to treat BRCA-deficient breast, ovarian, prostate, and pancreatic cancers. In addition to blocking the enzymatic activity of PARP1 and 2, clinical PARP inhibitors extend the appearance of PARP1 and PARP2 on chromatin after damage, termed trapping. Loss of PARP1 confers resistance to PARP inhibitors, suggesting an essential role of trapping in cancer therapy. Yet, whether the persistent PARP1 and 2 foci at the DNA damage sites are caused by the retention of the same molecules or by the continual exchange of different molecules remains unknown. Here, we discuss recent results from quantitative live-cell imaging studies focusing on PARP1 and PARP2's distinct DNA substrate specificities and modes of recruitment and trapping with implications for cancer therapy and on-target toxicities of PARP inhibitors.
Collapse
|
49
|
Cong K, Cantor SB. Exploiting replication gaps for cancer therapy. Mol Cell 2022; 82:2363-2369. [PMID: 35568026 PMCID: PMC9271608 DOI: 10.1016/j.molcel.2022.04.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 01/08/2023]
Abstract
Defects in DNA double-strand break repair are thought to render BRCA1 or BRCA2 (BRCA) mutant tumors selectively sensitive to PARP inhibitors (PARPis). Challenging this framework, BRCA and PARP1 share functions in DNA synthesis on the lagging strand. Thus, BRCA deficiency or "BRCAness" could reflect an inherent lagging strand problem that is vulnerable to drugs such as PARPi that also target the lagging strand, a combination that generates a toxic accumulation of replication gaps.
Collapse
Affiliation(s)
- Ke Cong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
50
|
Longarini EJ, Matic I. The fast-growing business of Serine ADP-ribosylation. DNA Repair (Amst) 2022; 118:103382. [DOI: 10.1016/j.dnarep.2022.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
|