1
|
Tellier M, Ansa G, Murphy S. Isoginkgetin and Madrasin are poor splicing inhibitors. PLoS One 2024; 19:e0310519. [PMID: 39432454 PMCID: PMC11493277 DOI: 10.1371/journal.pone.0310519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
The production of eukaryotic mRNAs requires transcription by RNA polymerase (pol) II and co-transcriptional processing, including capping, splicing, and cleavage and polyadenylation. Pol II can positively affect co-transcriptional processing through interaction of factors with its carboxyl terminal domain (CTD), comprising 52 repeats of the heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7, and pol II elongation rate can regulate splicing. Splicing, in turn, can also affect transcriptional activity and transcription elongation defects are caused by some splicing inhibitors. Multiple small molecule inhibitors of splicing are now available, some of which specifically target SF3B1, a U2 snRNP component. SF3B1 inhibition results in a general downregulation of transcription elongation, including premature termination of transcription caused by increased use of intronic poly(A) sites. Here, we have investigated the effect of Madrasin and Isoginkgetin, two non-SF3B1 splicing inhibitors, on splicing and transcription. Surprisingly, we found that both Madrasin and Isoginkgetin affect transcription before any effect on splicing, indicating that their effect on pre-mRNA splicing is likely to be indirect. Both small molecules promote a general downregulation of transcription. Based on these and other published results, we conclude that these two small molecules should not be considered as primarily pre-mRNA splicing inhibitors.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gilbert Ansa
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Tholen J. Branch site recognition by the spliceosome. RNA (NEW YORK, N.Y.) 2024; 30:1397-1407. [PMID: 39187383 PMCID: PMC11482624 DOI: 10.1261/rna.080198.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024]
Abstract
The spliceosome is a eukaryotic multimegadalton RNA-protein complex that removes introns from transcripts. The spliceosome ensures the selection of each exon-intron boundary through multiple recognition events. Initially, the 5' splice site (5' SS) and branch site (BS) are bound by the U1 small nuclear ribonucleoprotein (snRNP) and the U2 snRNP, respectively, while the 3' SS is mostly determined by proximity to the branch site. A large number of splicing factors recognize the splice sites and recruit the snRNPs before the stable binding of the snRNPs occurs by base-pairing the snRNA to the transcript. Fidelity of this process is crucial, as mutations in splicing factors and U2 snRNP components are associated with many diseases. In recent years, major advances have been made in understanding how splice sites are selected in Saccharomyces cerevisiae and humans. Here, I review and discuss the current understanding of the recognition of splice sites by the spliceosome with a focus on recognition and binding of the branch site by the U2 snRNP in humans.
Collapse
Affiliation(s)
- Jonas Tholen
- Department of Structural Biology, Genentech Inc., South San Francisco, California 94080, USA
| |
Collapse
|
3
|
Carrocci TJ, Neugebauer KM. Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing. Mol Cell 2024; 84:3656-3666. [PMID: 39366353 PMCID: PMC11463726 DOI: 10.1016/j.molcel.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Proper gene expression requires the collaborative effort of multiple macromolecular machines to produce functional messenger RNA. As RNA polymerase II (RNA Pol II) transcribes DNA, the nascent pre-messenger RNA is heavily modified by other complexes such as 5' capping enzymes, the spliceosome, the cleavage, and polyadenylation machinery as well as RNA-modifying/editing enzymes. Recent evidence has demonstrated that pre-mRNA splicing and 3' end cleavage can occur on similar timescales as transcription and significantly cross-regulate. In this review, we discuss recent advances in co-transcriptional processing and how it contributes to gene regulation. We highlight how emerging areas-including coordinated splicing events, physical interactions between the RNA synthesis and modifying machinery, rapid and delayed splicing, and nuclear organization-impact mRNA isoforms. Coordination among RNA-processing choices yields radically different mRNA and protein products, foreshadowing the likely regulatory importance of co-transcriptional RNA folding and co-transcriptional modifications that have yet to be characterized in detail.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
4
|
Capitanchik C, Wilkins OG, Wagner N, Gagneur J, Ule J. From computational models of the splicing code to regulatory mechanisms and therapeutic implications. Nat Rev Genet 2024:10.1038/s41576-024-00774-2. [PMID: 39358547 DOI: 10.1038/s41576-024-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Since the discovery of RNA splicing and its role in gene expression, researchers have sought a set of rules, an algorithm or a computational model that could predict the splice isoforms, and their frequencies, produced from any transcribed gene in a specific cellular context. Over the past 30 years, these models have evolved from simple position weight matrices to deep-learning models capable of integrating sequence data across vast genomic distances. Most recently, new model architectures are moving the field closer to context-specific alternative splicing predictions, and advances in sequencing technologies are expanding the type of data that can be used to inform and interpret such models. Together, these developments are driving improved understanding of splicing regulatory mechanisms and emerging applications of the splicing code to the rational design of RNA- and splicing-based therapeutics.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Oscar G Wilkins
- The Francis Crick Institute, London, UK
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Rambout X, Maquat LE. Nuclear mRNA decay: regulatory networks that control gene expression. Nat Rev Genet 2024; 25:679-697. [PMID: 38637632 PMCID: PMC11408106 DOI: 10.1038/s41576-024-00712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Proper regulation of mRNA production in the nucleus is critical for the maintenance of cellular homoeostasis during adaptation to internal and environmental cues. Over the past 25 years, it has become clear that the nuclear machineries governing gene transcription, pre-mRNA processing, pre-mRNA and mRNA decay, and mRNA export to the cytoplasm are inextricably linked to control the quality and quantity of mRNAs available for translation. More recently, an ever-expanding diversity of new mechanisms by which nuclear RNA decay factors finely tune the expression of protein-encoding genes have been uncovered. Here, we review the current understanding of how mammalian cells shape their protein-encoding potential by regulating the decay of pre-mRNAs and mRNAs in the nucleus.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
6
|
Romero-Cortadellas L, Ferrer-Cortès X, Calvo-López L, Olivella M, Barqué A, Diaz-de-Heredia C, Moser K, Kleine Budde I, Sanchez M. Novel transferrin gene mutations in four new cases of congenital Atransferrinaemia: Functional and diagnostic pathogenicity despite negative bioinformatics. Br J Haematol 2024; 205:1622-1626. [PMID: 39081172 DOI: 10.1111/bjh.19675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/17/2024] [Indexed: 10/18/2024]
Affiliation(s)
- Lídia Romero-Cortadellas
- Department of Biomedical Sciences, Iron Metabolism: Regulation and Diseases Group, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Xènia Ferrer-Cortès
- Department of Biomedical Sciences, Iron Metabolism: Regulation and Diseases Group, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
- BloodGenetics S.L. Diagnostics in Inherited Blood Diseases, Esplugues de Llobregat, Spain
| | - Laura Calvo-López
- Department of Biomedical Sciences, Iron Metabolism: Regulation and Diseases Group, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Mireia Olivella
- Bioinformatics and Bioimaging Group, Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia, Vic, Spain
- Institute for Research and Innovation in Life and Health Sciences (IRIS-CC), University of Vic-Central University of Catalonia, Vic, Spain
| | - Anna Barqué
- Program of Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | | | - Katja Moser
- Klinik für Kinder Und Jugendmedizin Hospital, Pediatrics and Neonatology Department, Aschaffenburg, Germany
| | - Ilona Kleine Budde
- Prothya Biosolutions, Medical and Clinical Affairs, Amsterdam, the Netherlands
| | - Mayka Sanchez
- Department of Biomedical Sciences, Iron Metabolism: Regulation and Diseases Group, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
- BloodGenetics S.L. Diagnostics in Inherited Blood Diseases, Esplugues de Llobregat, Spain
| |
Collapse
|
7
|
Hluchý M, Blazek D. CDK11, a splicing-associated kinase regulating gene expression. Trends Cell Biol 2024:S0962-8924(24)00161-2. [PMID: 39245599 DOI: 10.1016/j.tcb.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
The ability of a cell to properly express its genes depends on optimal transcription and splicing. RNA polymerase II (RNAPII) transcribes protein-coding genes and produces pre-mRNAs, which undergo, largely co-transcriptionally, intron excision by the spliceosome complex. Spliceosome activation is a major control step, leading to a catalytically active complex. Recent work has showed that cyclin-dependent kinase (CDK)11 regulates spliceosome activation via the phosphorylation of SF3B1, a core spliceosome component. Thus, CDK11 arises as a major coordinator of gene expression in metazoans due to its role in the rate-limiting step of pre-mRNA splicing. This review outlines the evolution of CDK11 and SF3B1 and their emerging roles in splicing regulation. It also discusses how CDK11 and its inhibition affect transcription and cell cycle progression.
Collapse
Affiliation(s)
- Milan Hluchý
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
8
|
Luo L, Jea JDY, Wang Y, Chao PW, Yen L. Control of mammalian gene expression by modulation of polyA signal cleavage at 5' UTR. Nat Biotechnol 2024; 42:1454-1466. [PMID: 38168982 DOI: 10.1038/s41587-023-01989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/13/2023] [Indexed: 01/05/2024]
Abstract
The ability to control gene expression in mammalian cells is crucial for safe and efficacious gene therapies and for elucidating gene functions. Current gene regulation systems have limitations such as harmful immune responses or low efficiency. We describe the pA regulator, an RNA-based switch that controls mammalian gene expression through modulation of a synthetic polyA signal (PAS) cleavage introduced into the 5' UTR of a transgene. The cleavage is modulated by a 'dual-mechanism'-(1) aptamer clamping to inhibit PAS cleavage and (2) drug-induced alternative splicing that removes the PAS, both activated by drug binding. This RNA-based methodology circumvents the immune responses observed in other systems and achieves a 900-fold induction with an EC50 of 0.5 µg ml-1 tetracycline (Tc), which is well within the FDA-approved dose range. The pA regulator effectively controls the luciferase transgene in live mice and the endogenous CD133 gene in human cells, in a dose-dependent and reversible manner with long-term stability.
Collapse
Affiliation(s)
- Liming Luo
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jocelyn Duen-Ya Jea
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yan Wang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Pei-Wen Chao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Laising Yen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Helm M, Winz ML. Nascent mRNA damage: depot and disposal. Signal Transduct Target Ther 2024; 9:198. [PMID: 39117645 PMCID: PMC11310187 DOI: 10.1038/s41392-024-01900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Mark Helm
- Institute of Pharmaceutical and Biomedical Science (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany.
| | - Marie-Luise Winz
- Institute of Pharmaceutical and Biomedical Science (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany.
| |
Collapse
|
10
|
Ietswaart R, Smalec BM, Xu A, Choquet K, McShane E, Jowhar ZM, Guegler CK, Baxter-Koenigs AR, West ER, Fu BXH, Gilbert L, Floor SN, Churchman LS. Genome-wide quantification of RNA flow across subcellular compartments reveals determinants of the mammalian transcript life cycle. Mol Cell 2024; 84:2765-2784.e16. [PMID: 38964322 PMCID: PMC11315470 DOI: 10.1016/j.molcel.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.
Collapse
Affiliation(s)
- Robert Ietswaart
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Brendan M Smalec
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Erik McShane
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ziad Mohamoud Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chantal K Guegler
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Autum R Baxter-Koenigs
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emma R West
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Luke Gilbert
- Arc Institute, Palo Alto, CA 94305, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94518, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Zhang X, Xu J, Hu J, Zhang S, Hao Y, Zhang D, Qian H, Wang D, Fu XD. Cockayne Syndrome Linked to Elevated R-Loops Induced by Stalled RNA Polymerase II during Transcription Elongation. Nat Commun 2024; 15:6031. [PMID: 39019869 PMCID: PMC11255242 DOI: 10.1038/s41467-024-50298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
Mutations in the Cockayne Syndrome group B (CSB) gene cause cancer in mice, but premature aging and severe neurodevelopmental defects in humans. CSB, a member of the SWI/SNF family of chromatin remodelers, plays diverse roles in regulating gene expression and transcription-coupled nucleotide excision repair (TC-NER); however, these functions do not explain the distinct phenotypic differences observed between CSB-deficient mice and humans. During investigating Cockayne Syndrome-associated genome instability, we uncover an intrinsic mechanism that involves elongating RNA polymerase II (RNAPII) undergoing transient pauses at internal T-runs where CSB is required to propel RNAPII forward. Consequently, CSB deficiency retards RNAPII elongation in these regions, and when coupled with G-rich sequences upstream, exacerbates genome instability by promoting R-loop formation. These R-loop prone motifs are notably abundant in relatively long genes related to neuronal functions in the human genome, but less prevalent in the mouse genome. These findings provide mechanistic insights into differential impacts of CSB deficiency on mice versus humans and suggest that the manifestation of the Cockayne Syndrome phenotype in humans results from the progressive evolution of mammalian genomes.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jun Xu
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Genetics and Metabolism Department, The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Hu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sitao Zhang
- National Institute of Biological Sciences,7 Science Park Road, Beijing, China
| | - Yajing Hao
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dongyang Zhang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Hao Qian
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences and School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Rogers JM, Mimoso CA, Martin BJE, Martin AP, Aster JC, Adelman K, Blacklow SC. Notch induces transcription by stimulating release of paused RNA Polymerase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598853. [PMID: 38915655 PMCID: PMC11195215 DOI: 10.1101/2024.06.13.598853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Notch proteins undergo ligand-induced proteolysis to release a nuclear effector that influences a wide range of cellular processes by regulating transcription. Despite years of study, however, how Notch induces the transcription of its target genes remains unclear. Here, we comprehensively examined the response to human Notch1 across a time course of activation using high-resolution genomic assays of chromatin accessibility and nascent RNA production. Our data reveal that Notch induces target gene transcription primarily by releasing paused RNA polymerase II (RNAPII). Moreover, in contrast to prevailing models suggesting that Notch acts by promoting chromatin accessibility, we found that open chromatin was established at Notch-responsive regulatory elements prior to Notch signal induction, through SWI/SNF-mediated remodeling. Together, these studies show that the nuclear response to Notch signaling is dictated by the pre-existing chromatin state and RNAPII distribution at the time of signal activation.
Collapse
Affiliation(s)
- Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin JE Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandre P Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Lead contact
| |
Collapse
|
13
|
Shine M, Gordon J, Schärfen L, Zigackova D, Herzel L, Neugebauer KM. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat Rev Mol Cell Biol 2024; 25:534-554. [PMID: 38509203 PMCID: PMC11199108 DOI: 10.1038/s41580-024-00706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/22/2024]
Abstract
Many steps of RNA processing occur during transcription by RNA polymerases. Co-transcriptional activities are deemed commonplace in prokaryotes, in which the lack of membrane barriers allows mixing of all gene expression steps, from transcription to translation. In the past decade, an extraordinary level of coordination between transcription and RNA processing has emerged in eukaryotes. In this Review, we discuss recent developments in our understanding of co-transcriptional gene regulation in both eukaryotes and prokaryotes, comparing methodologies and mechanisms, and highlight striking parallels in how RNA polymerases interact with the machineries that act on nascent RNA. The development of RNA sequencing and imaging techniques that detect transient transcription and RNA processing intermediates has facilitated discoveries of transcription coordination with splicing, 3'-end cleavage and dynamic RNA folding and revealed physical contacts between processing machineries and RNA polymerases. Such studies indicate that intron retention in a given nascent transcript can prevent 3'-end cleavage and cause transcriptional readthrough, which is a hallmark of eukaryotic cellular stress responses. We also discuss how coordination between nascent RNA biogenesis and transcription drives fundamental aspects of gene expression in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Morgan Shine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jackson Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dagmar Zigackova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lydia Herzel
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
14
|
Bedi K, Magnuson B, Narayanan IV, McShane A, Ashaka M, Paulsen MT, Wilson TE, Ljungman M. Isoform and pathway-specific regulation of post-transcriptional RNA processing in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598705. [PMID: 38915566 PMCID: PMC11195214 DOI: 10.1101/2024.06.12.598705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Steady-state levels of RNA transcripts are controlled by their rates of synthesis and degradation. Here we used nascent RNA Bru-seq and BruChase-seq to profile RNA dynamics across 16 human cell lines as part of ENCODE4 Deeply Profiled Cell Lines collection. We show that RNA turnover dynamics differ widely between transcripts of different genes and between different classes of RNA. Gene set enrichment analysis (GSEA) revealed that transcripts encoding proteins belonging to the same pathway often show similar turnover dynamics. Furthermore, transcript isoforms show distinct dynamics suggesting that RNA turnover is important in regulating mRNA isoform choice. Finally, splicing across newly made transcripts appears to be cooperative with either all or none type splicing. These data sets generated as part of ENCODE4 illustrate the intricate and coordinated regulation of RNA dynamics in controlling gene expression to allow for the precise coordination of cellular functions.
Collapse
Affiliation(s)
- Karan Bedi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Magnuson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology and Department of Human Genetics, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Ariel McShane
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mario Ashaka
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas E Wilson
- Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology and Department of Human Genetics, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Fingerhut JM, Lannes R, Whitfield TW, Thiru P, Yamashita YM. Co-transcriptional splicing facilitates transcription of gigantic genes. PLoS Genet 2024; 20:e1011241. [PMID: 38870220 PMCID: PMC11207136 DOI: 10.1371/journal.pgen.1011241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Although introns are typically tens to thousands of nucleotides, there are notable exceptions. In flies as well as humans, a small number of genes contain introns that are more than 1000 times larger than typical introns, exceeding hundreds of kilobases (kb) to megabases (Mb). It remains unknown why gigantic introns exist and how cells overcome the challenges associated with their transcription and RNA processing. The Drosophila Y chromosome contains some of the largest genes identified to date: multiple genes exceed 4Mb, with introns accounting for over 99% of the gene span. Here we demonstrate that co-transcriptional splicing of these gigantic Y-linked genes is important to ensure successful transcription: perturbation of splicing led to the attenuation of transcription, leading to a failure to produce mature mRNA. Cytologically, defective splicing of the Y-linked gigantic genes resulted in disorganization of transcripts within the nucleus suggestive of entanglement of transcripts, likely resulting from unspliced long RNAs. We propose that co-transcriptional splicing maintains the length of nascent transcripts of gigantic genes under a critical threshold, preventing their entanglement and ensuring proper gene expression. Our study reveals a novel biological significance of co-transcriptional splicing.
Collapse
Affiliation(s)
- Jaclyn M. Fingerhut
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Romain Lannes
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Troy W. Whitfield
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Prathapan Thiru
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
16
|
Merens HE, Choquet K, Baxter-Koenigs AR, Churchman LS. Timing is everything: advances in quantifying splicing kinetics. Trends Cell Biol 2024:S0962-8924(24)00070-9. [PMID: 38777664 DOI: 10.1016/j.tcb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Splicing is a highly regulated process critical for proper pre-mRNA maturation and the maintenance of a healthy cellular environment. Splicing events are impacted by ongoing transcription, neighboring splicing events, and cis and trans regulatory factors on the respective pre-mRNA transcript. Within this complex regulatory environment, splicing kinetics have the potential to influence splicing outcomes but have historically been challenging to study in vivo. In this review, we highlight recent technological advancements that have enabled measurements of global splicing kinetics and of the variability of splicing kinetics at single introns. We demonstrate how identifying features that are correlated with splicing kinetics has increased our ability to form potential models for how splicing kinetics may be regulated in vivo.
Collapse
Affiliation(s)
- Hope E Merens
- Harvard University, Department of Genetics, Boston, MA, USA
| | - Karine Choquet
- University of Sherbrooke, Department of Biochemistry and Functional Genomics, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
17
|
Boddu PC, Gupta AK, Roy R, De La Peña Avalos B, Olazabal-Herrero A, Neuenkirchen N, Zimmer JT, Chandhok NS, King D, Nannya Y, Ogawa S, Lin H, Simon MD, Dray E, Kupfer GM, Verma A, Neugebauer KM, Pillai MM. Transcription elongation defects link oncogenic SF3B1 mutations to targetable alterations in chromatin landscape. Mol Cell 2024; 84:1475-1495.e18. [PMID: 38521065 PMCID: PMC11061666 DOI: 10.1016/j.molcel.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.
Collapse
Affiliation(s)
- Prajwal C Boddu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Abhishek K Gupta
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Rahul Roy
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Bárbara De La Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center (UTHSC) at San Antonio, San Antonio, TX, USA
| | - Anne Olazabal-Herrero
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Joshua T Zimmer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Namrata S Chandhok
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Darren King
- Section of Hematology and Medical Oncology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI, USA
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Haifan Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center (UTHSC) at San Antonio, San Antonio, TX, USA
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amit Verma
- Division of Hemato-Oncology, Department of Medicine and Department of Developmental and Molecular Biology, Albert Einstein-Montefiore Cancer Center, New York, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University, New Haven, CT, USA
| | - Manoj M Pillai
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Coté A, O'Farrell A, Dardani I, Dunagin M, Coté C, Wan Y, Bayatpour S, Drexler HL, Alexander KA, Chen F, Wassie AT, Patel R, Pham K, Boyden ES, Berger S, Phillips-Cremins J, Churchman LS, Raj A. Post-transcriptional splicing can occur in a slow-moving zone around the gene. eLife 2024; 12:RP91357. [PMID: 38577979 PMCID: PMC10997330 DOI: 10.7554/elife.91357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.
Collapse
Affiliation(s)
- Allison Coté
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Aoife O'Farrell
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Ian Dardani
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Margaret Dunagin
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Chris Coté
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Yihan Wan
- School of Life Sciences, Westlake UniversityHangzhouChina
| | - Sareh Bayatpour
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Heather L Drexler
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Katherine A Alexander
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Fei Chen
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Asmamaw T Wassie
- Department of Cell and Molecular Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Rohan Patel
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Kenneth Pham
- Department of Cell and Molecular Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Edward S Boyden
- Departments of Biological Engineering and Brain and Cognitive Sciences, Media Lab and McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Shelly Berger
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | | | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Arjun Raj
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
19
|
Tufan T, Comertpay G, Villani A, Nelson GM, Terekhova M, Kelley S, Zakharov P, Ellison RM, Shpynov O, Raymond M, Sun J, Chen Y, Bockelmann E, Stremska M, Peterson LW, Boeckaerts L, Goldman SR, Etchegaray JI, Artyomov MN, Peri F, Ravichandran KS. Rapid unleashing of macrophage efferocytic capacity via transcriptional pause release. Nature 2024; 628:408-415. [PMID: 38480883 DOI: 10.1038/s41586-024-07172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
During development, inflammation or tissue injury, macrophages may successively engulf and process multiple apoptotic corpses via efferocytosis to achieve tissue homeostasis1. How macrophages may rapidly adapt their transcription to achieve continuous corpse uptake is incompletely understood. Transcriptional pause/release is an evolutionarily conserved mechanism, in which RNA polymerase (Pol) II initiates transcription for 20-60 nucleotides, is paused for minutes to hours and is then released to make full-length mRNA2. Here we show that macrophages, within minutes of corpse encounter, use transcriptional pause/release to unleash a rapid transcriptional response. For human and mouse macrophages, the Pol II pause/release was required for continuous efferocytosis in vitro and in vivo. Interestingly, blocking Pol II pause/release did not impede Fc receptor-mediated phagocytosis, yeast uptake or bacterial phagocytosis. Integration of data from three genomic approaches-precision nuclear run-on sequencing, RNA sequencing, and assay for transposase-accessible chromatin using sequencing (ATAC-seq)-on efferocytic macrophages at different time points revealed that Pol II pause/release controls expression of select transcription factors and downstream target genes. Mechanistic studies on transcription factor EGR3, prominently regulated by pause/release, uncovered EGR3-related reprogramming of other macrophage genes involved in cytoskeleton and corpse processing. Using lysosomal probes and a new genetic fluorescent reporter, we identify a role for pause/release in phagosome acidification during efferocytosis. Furthermore, microglia from egr3-deficient zebrafish embryos displayed reduced phagocytosis of apoptotic neurons and fewer maturing phagosomes, supporting defective corpse processing. Collectively, these data indicate that macrophages use Pol II pause/release as a mechanism to rapidly alter their transcriptional programs for efficient processing of the ingested apoptotic corpses and for successive efferocytosis.
Collapse
Affiliation(s)
- Turan Tufan
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gamze Comertpay
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ambra Villani
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Marina Terekhova
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shannon Kelley
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pavel Zakharov
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rochelle M Ellison
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Oleg Shpynov
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- JetBrains Research, Munich, Germany
| | - Michael Raymond
- Department of Neuroscience and MIC, University of Virginia, Charlottesville, VA, USA
| | - Jerry Sun
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yitan Chen
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Enno Bockelmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Marta Stremska
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lance W Peterson
- Department of Pediatrics, Division of Rheumatology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Boeckaerts
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Seth R Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - J Iker Etchegaray
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N Artyomov
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Kodi S Ravichandran
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neuroscience and MIC, University of Virginia, Charlottesville, VA, USA.
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
20
|
Baia Amaral D, Egidy R, Perera A, Bazzini AA. miR-430 regulates zygotic mRNA during zebrafish embryogenesis. Genome Biol 2024; 25:74. [PMID: 38504288 PMCID: PMC10949700 DOI: 10.1186/s13059-024-03197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/15/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Early embryonic developmental programs are guided by the coordinated interplay between maternally inherited and zygotically manufactured RNAs and proteins. Although these processes happen concomitantly and affecting gene function during this period is bound to affect both pools of mRNAs, it has been challenging to study their expression dynamics separately. RESULTS By employing SLAM-seq, a nascent mRNA labeling transcriptomic approach, in a developmental time series we observe that over half of the early zebrafish embryo transcriptome consists of maternal-zygotic genes, emphasizing their pivotal role in early embryogenesis. We provide an hourly resolution of de novo transcriptional activation events and follow nascent mRNA trajectories, finding that most de novo transcriptional events are stable throughout this period. Additionally, by blocking microRNA-430 function, a key post transcriptional regulator during zebrafish embryogenesis, we directly show that it destabilizes hundreds of de novo transcribed mRNAs from pure zygotic as well as maternal-zygotic genes. This unveils a novel miR-430 function during embryogenesis, fine-tuning zygotic gene expression. CONCLUSION These insights into zebrafish early embryo transcriptome dynamics emphasize the significance of post-transcriptional regulators in zygotic genome activation. The findings pave the way for future investigations into the coordinated interplay between transcriptional and post-transcriptional landscapes required for the establishment of animal cell identities and functions.
Collapse
Affiliation(s)
- Danielson Baia Amaral
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Rhonda Egidy
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
21
|
Erickson EC, You I, Perry G, Dugourd A, Donovan KA, Crafter C, Johannes JW, Williamson S, Moss JI, Ros S, Ziegler RE, Barry ST, Fischer ES, Gray NS, Madsen RR, Toker A. Multiomic profiling of breast cancer cells uncovers stress MAPK-associated sensitivity to AKT degradation. Sci Signal 2024; 17:eadf2670. [PMID: 38412255 PMCID: PMC10949348 DOI: 10.1126/scisignal.adf2670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
More than 50% of human tumors display hyperactivation of the serine/threonine kinase AKT. Despite evidence of clinical efficacy, the therapeutic window of the current generation of AKT inhibitors could be improved. Here, we report the development of a second-generation AKT degrader, INY-05-040, which outperformed catalytic AKT inhibition with respect to cellular suppression of AKT-dependent phenotypes in breast cancer cell lines. A growth inhibition screen with 288 cancer cell lines confirmed that INY-05-040 had a substantially higher potency than our first-generation AKT degrader (INY-03-041), with both compounds outperforming catalytic AKT inhibition by GDC-0068. Using multiomic profiling and causal network integration in breast cancer cells, we demonstrated that the enhanced efficacy of INY-05-040 was associated with sustained suppression of AKT signaling, which was followed by induction of the stress mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). Further integration of growth inhibition assays with publicly available transcriptomic, proteomic, and reverse phase protein array (RPPA) measurements established low basal JNK signaling as a biomarker for breast cancer sensitivity to AKT degradation. Together, our study presents a framework for mapping the network-wide signaling effects of therapeutically relevant compounds and identifies INY-05-040 as a potent pharmacological suppressor of AKT signaling.
Collapse
Affiliation(s)
- Emily C. Erickson
- Department of Pathology, Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Inchul You
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally to this work
| | - Grace Perry
- Department of Pathology, Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aurelien Dugourd
- Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg 69120, Germany
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Claire Crafter
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Jeffrey W. Johannes
- Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Stuart Williamson
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Jennifer I. Moss
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Susana Ros
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Robert E. Ziegler
- Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Simon T. Barry
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ralitsa R. Madsen
- University College London Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6BT, UK
- Current: MRC-Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alex Toker
- Department of Pathology, Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
22
|
Torres-Ulloa L, Calvo-Roitberg E, Pai AA. Genome-wide kinetic profiling of pre-mRNA 3' end cleavage. RNA (NEW YORK, N.Y.) 2024; 30:256-270. [PMID: 38164598 PMCID: PMC10870368 DOI: 10.1261/rna.079783.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Cleavage and polyadenylation is necessary for the formation of mature mRNA molecules. The rate at which this process occurs can determine the temporal availability of mRNA for subsequent function throughout the cell and is likely tightly regulated. Despite advances in high-throughput approaches for global kinetic profiling of RNA maturation, genome-wide 3' end cleavage rates have never been measured. Here, we describe a novel approach to estimate the rates of cleavage, using metabolic labeling of nascent RNA, high-throughput sequencing, and mathematical modeling. Using in silico simulations of nascent RNA-seq data, we show that our approach can accurately and precisely estimate cleavage half-lives for both constitutive and alternative sites. We find that 3' end cleavage is fast on average, with half-lives under a minute, but highly variable across individual sites. Rapid cleavage is promoted by the presence of canonical sequence elements and an increased density of polyadenylation signals near a cleavage site. Finally, we find that cleavage rates are associated with the localization of RNA polymerase II at the end of a gene, and faster cleavage leads to quicker degradation of downstream readthrough RNA. Our findings shed light on the features important for efficient 3' end cleavage and the regulation of transcription termination.
Collapse
Affiliation(s)
- Leslie Torres-Ulloa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Ezequiel Calvo-Roitberg
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
23
|
Chen CC, Han J, Chinn CA, Rounds JS, Li X, Nikan M, Myszka M, Tong L, Passalacqua LFM, Bredy T, Wood MA, Luptak A. Inhibition of Cpeb3 ribozyme elevates CPEB3 protein expression and polyadenylation of its target mRNAs and enhances object location memory. eLife 2024; 13:e90116. [PMID: 38319152 PMCID: PMC10919898 DOI: 10.7554/elife.90116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the Cpeb3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.
Collapse
Affiliation(s)
- Claire C Chen
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
| | - Joseph Han
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Carlene A Chinn
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Jacob S Rounds
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | | | - Marie Myszka
- Department of Chemistry, University of California, IrvineIrvineUnited States
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California, IrvineIrvineUnited States
| | - Luiz FM Passalacqua
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
| | - Timothy Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Andrej Luptak
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
- Department of Chemistry, University of California, IrvineIrvineUnited States
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineUnited States
| |
Collapse
|
24
|
Zhao J, Cato LD, Arora UP, Bao EL, Bryant SC, Williams N, Jia Y, Goldman SR, Nangalia J, Erb MA, Vos SM, Armstrong SA, Sankaran VG. Inherited blood cancer predisposition through altered transcription elongation. Cell 2024; 187:642-658.e19. [PMID: 38218188 PMCID: PMC10872907 DOI: 10.1016/j.cell.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 01/15/2024]
Abstract
Despite advances in defining diverse somatic mutations that cause myeloid malignancies, a significant heritable component for these cancers remains largely unexplained. Here, we perform rare variant association studies in a large population cohort to identify inherited predisposition genes for these blood cancers. CTR9, which encodes a key component of the PAF1 transcription elongation complex, is among the significant genes identified. The risk variants found in the cases cause loss of function and result in a ∼10-fold increased odds of acquiring a myeloid malignancy. Partial CTR9 loss of function expands human hematopoietic stem cells (HSCs) by increased super elongation complex-mediated transcriptional activity, which thereby increases the expression of key regulators of HSC self-renewal. By following up on insights from a human genetic study examining inherited predisposition to the myeloid malignancies, we define a previously unknown antagonistic interaction between the PAF1 and super elongation complexes. These insights could enable targeted approaches for blood cancer prevention.
Collapse
Affiliation(s)
- Jiawei Zhao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Uma P Arora
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Nicholas Williams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; UK and MRC-Wellcome Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Yuemeng Jia
- Harvard Stem Cell Institute, Cambridge, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Seth R Goldman
- Nascent Transcriptomics Core, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; UK and MRC-Wellcome Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott A Armstrong
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
25
|
Kaye EG, Basavaraju K, Nelson GM, Zomer HD, Roy D, Joseph II, Rajabi-Toustani R, Qiao H, Adelman K, Reddi PP. RNA polymerase II pausing is essential during spermatogenesis for appropriate gene expression and completion of meiosis. Nat Commun 2024; 15:848. [PMID: 38287033 PMCID: PMC10824759 DOI: 10.1038/s41467-024-45177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Male germ cell development requires precise regulation of gene activity in a cell-type and stage-specific manner, with perturbations in gene expression during spermatogenesis associated with infertility. Here, we use steady-state, nascent and single-cell RNA sequencing strategies to comprehensively characterize gene expression across male germ cell populations, to dissect the mechanisms of gene control and provide new insights towards therapy. We discover a requirement for pausing of RNA Polymerase II (Pol II) at the earliest stages of sperm differentiation to establish the landscape of gene activity across development. Accordingly, genetic knockout of the Pol II pause-inducing factor NELF in immature germ cells blocks differentiation to spermatids. Further, we uncover unanticipated roles for Pol II pausing in the regulation of meiosis during spermatogenesis, with the presence of paused Pol II associated with double-strand break (DSB) formation, and disruption of meiotic gene expression and DSB repair in germ cells lacking NELF.
Collapse
Affiliation(s)
- Emily G Kaye
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kavyashree Basavaraju
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Helena D Zomer
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Debarun Roy
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Irene Infancy Joseph
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Reza Rajabi-Toustani
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
26
|
Chauvier A, Walter NG. Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem Biol 2024; 31:71-85. [PMID: 38211587 DOI: 10.1016/j.chembiol.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Commensal and pathogenic bacteria continuously evolve to survive in diverse ecological niches by efficiently coordinating gene expression levels in their ever-changing environments. Regulation through the RNA transcript itself offers a faster and more cost-effective way to adapt than protein-based mechanisms and can be leveraged for diagnostic or antimicrobial purposes. However, RNA can fold into numerous intricate, not always functional structures that both expand and obscure the plethora of roles that regulatory RNAs serve within the cell. Here, we review the current knowledge of bacterial non-coding RNAs in relation to their folding pathways and interactions. We posit that co-transcriptional folding of these transcripts ultimately dictates their downstream functions. Elucidating the spatiotemporal folding of non-coding RNAs during transcription therefore provides invaluable insights into bacterial pathogeneses and predictive disease diagnostics. Finally, we discuss the implications of co-transcriptional folding andapplications of RNAs for therapeutics and drug targets.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Tian L, Chen CJ, Song YN, Xu K, Li NE, Zhang XH, Xie Y, Jin ZB, Li Y. Comprehensive genetic analysis reveals the mutational landscape of ABCA4-associated retinal dystrophy in a Chinese cohort. Gene 2024; 891:147832. [PMID: 37774808 DOI: 10.1016/j.gene.2023.147832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE To depict the variant profiles of the ABCA4 gene in a large Chinese cohort of patients with ABCA4-associated retinal dystrophy (ABCA4-RD). METHODS We recruited 290 unrelated Chinese patients with ABCA4-RD and did ABCA4 mutational screening by a combination of Sanger sequencing, targeted exome sequencing, entire ABCA4 locus sequencing, and whole genome sequencing (WGS). The pathogenicity of variants was assessed using in silico tools or in vitro splicing assays following the American College of Medical Genetics and Genomics guidelines. RESULTS Two hundred sixty-eight distinct pathogenic variants were identified, and 57 were novel. In 580 alleles, 22 noncoding region variants outside canonical splice sites and 4 structural variations were found in 44 alleles accounting for 7.6% of all alleles. Bioinformatics analysis showed the complex mechanism of aberrant splicing productsnatural splice site disruption, branch point destruction, and cryptic splice site activation. Correspondingly, minigene assays validated the various abnormal splicing products, including exon skipping, exon elongation, partial exon deletion, and pseudoexon insertion. WGS identified the first inversion variation in ABCA4. CONCLUSIONS This study systematically depicted the variant profiles of ABCA4 and revealed the missing alleles of patients with ABCA4-RD in a large Chinese cohort. Our findings demonstrated the complexity of molecular diagnosis of Mendelian diseases and the efficiency of WGS for detecting structural variants.
Collapse
Affiliation(s)
- Lu Tian
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China; Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chun-Jie Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yu-Ning Song
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Ke Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Ni-En Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Xiao-Hui Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yue Xie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yang Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China.
| |
Collapse
|
28
|
Caldas P, Luz M, Baseggio S, Andrade R, Sobral D, Grosso AR. Transcription readthrough is prevalent in healthy human tissues and associated with inherent genomic features. Commun Biol 2024; 7:100. [PMID: 38225287 PMCID: PMC10789751 DOI: 10.1038/s42003-024-05779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Transcription termination is a crucial step in the production of conforming mRNAs and functional proteins. Under cellular stress conditions, the transcription machinery fails to identify the termination site and continues transcribing beyond gene boundaries, a phenomenon designated as transcription readthrough. However, the prevalence and impact of this phenomenon in healthy human tissues remain unexplored. Here, we assessed transcription readthrough in almost 3000 transcriptome profiles representing 23 human tissues and found that 34% of the expressed protein-coding genes produced readthrough transcripts. The production of readthrough transcripts was restricted in genomic regions with high transcriptional activity and was associated with inefficient splicing and increased chromatin accessibility in terminal regions. In addition, we showed that these transcripts contained several binding sites for the same miRNA, unravelling a potential role as miRNA sponges. Overall, this work provides evidence that transcription readthrough is pervasive and non-stochastic, not only in abnormal conditions but also in healthy tissues. This suggests a potential role for such transcripts in modulating normal cellular functions.
Collapse
Affiliation(s)
- Paulo Caldas
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Mariana Luz
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Simone Baseggio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Rita Andrade
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Daniel Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Ana Rita Grosso
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
29
|
Lee S, Aubee JI, Lai EC. Regulation of alternative splicing and polyadenylation in neurons. Life Sci Alliance 2023; 6:e202302000. [PMID: 37793776 PMCID: PMC10551640 DOI: 10.26508/lsa.202302000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Cell-type-specific gene expression is a fundamental feature of multicellular organisms and is achieved by combinations of regulatory strategies. Although cell-restricted transcription is perhaps the most widely studied mechanism, co-transcriptional and post-transcriptional processes are also central to the spatiotemporal control of gene functions. One general category of expression control involves the generation of multiple transcript isoforms from an individual gene, whose balance and cell specificity are frequently tightly regulated via diverse strategies. The nervous system makes particularly extensive use of cell-specific isoforms, specializing the neural function of genes that are expressed more broadly. Here, we review regulatory strategies and RNA-binding proteins that direct neural-specific isoform processing. These include various classes of alternative splicing and alternative polyadenylation events, both of which broadly diversify the neural transcriptome. Importantly, global alterations of splicing and alternative polyadenylation are characteristic of many neural pathologies, and recent genetic studies demonstrate how misregulation of individual neural isoforms can directly cause mutant phenotypes.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Joseph I Aubee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
30
|
Krug B, Hu B, Chen H, Ptack A, Chen X, Gretarsson KH, Deshmukh S, Kabir N, Andrade AF, Jabbour E, Harutyunyan AS, Lee JJY, Hulswit M, Faury D, Russo C, Xu X, Johnston MJ, Baguette A, Dahl NA, Weil AG, Ellezam B, Dali R, Blanchette M, Wilson K, Garcia BA, Soni RK, Gallo M, Taylor MD, Kleinman CL, Majewski J, Jabado N, Lu C. H3K27me3 spreading organizes canonical PRC1 chromatin architecture to regulate developmental programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.567931. [PMID: 38116029 PMCID: PMC10729739 DOI: 10.1101/2023.11.28.567931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2)-mediated histone H3K27 tri-methylation (H3K27me3) recruits canonical PRC1 (cPRC1) to maintain heterochromatin. In early development, polycomb-regulated genes are connected through long-range 3D interactions which resolve upon differentiation. Here, we report that polycomb looping is controlled by H3K27me3 spreading and regulates target gene silencing and cell fate specification. Using glioma-derived H3 Lys-27-Met (H3K27M) mutations as tools to restrict H3K27me3 deposition, we show that H3K27me3 confinement concentrates the chromatin pool of cPRC1, resulting in heightened 3D interactions mirroring chromatin architecture of pluripotency, and stringent gene repression that maintains cells in progenitor states to facilitate tumor development. Conversely, H3K27me3 spread in pluripotent stem cells, following neural differentiation or loss of the H3K36 methyltransferase NSD1, dilutes cPRC1 concentration and dissolves polycomb loops. These results identify the regulatory principles and disease implications of polycomb looping and nominate histone modification-guided distribution of reader complexes as an important mechanism for nuclear compartment organization. Highlights The confinement of H3K27me3 at PRC2 nucleation sites without its spreading correlates with increased 3D chromatin interactions.The H3K27M oncohistone concentrates canonical PRC1 that anchors chromatin loop interactions in gliomas, silencing developmental programs.Stem and progenitor cells require factors promoting H3K27me3 confinement, including H3K36me2, to maintain cPRC1 loop architecture.The cPRC1-H3K27me3 interaction is a targetable driver of aberrant self-renewal in tumor cells.
Collapse
|
31
|
Pascal C, Zonszain J, Hameiri O, Gargi-Levi C, Lev-Maor G, Tammer L, Levy T, Tarabeih A, Roy VR, Ben-Salmon S, Elbaz L, Eid M, Hakim T, Abu Rabe'a S, Shalev N, Jordan A, Meshorer E, Ast G. Human histone H1 variants impact splicing outcome by controlling RNA polymerase II elongation. Mol Cell 2023; 83:3801-3817.e8. [PMID: 37922872 DOI: 10.1016/j.molcel.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Histones shape chromatin structure and the epigenetic landscape. H1, the most diverse histone in the human genome, has 11 variants. Due to the high structural similarity between the H1s, their unique functions in transferring information from the chromatin to mRNA-processing machineries have remained elusive. Here, we generated human cell lines lacking up to five H1 subtypes, allowing us to characterize the genomic binding profiles of six H1 variants. Most H1s bind to specific sites, and binding depends on multiple factors, including GC content. The highly expressed H1.2 has a high affinity for exons, whereas H1.3 binds intronic sequences. H1s are major splicing regulators, especially of exon skipping and intron retention events, through their effects on the elongation of RNA polymerase II (RNAPII). Thus, H1 variants determine splicing fate by modulating RNAPII elongation.
Collapse
Affiliation(s)
- Corina Pascal
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan Zonszain
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Gargi-Levi
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Luna Tammer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Levy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anan Tarabeih
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vanessa Rachel Roy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stav Ben-Salmon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liraz Elbaz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mireille Eid
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Hakim
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Salima Abu Rabe'a
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nana Shalev
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Albert Jordan
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Carrer de Baldiri Reixac, 15, 08028 Barcelona, Spain
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel; Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
32
|
Ntini E, Budach S, Vang Ørom UA, Marsico A. Genome-wide measurement of RNA dissociation from chromatin classifies transcripts by their dynamics and reveals rapid dissociation of enhancer lncRNAs. Cell Syst 2023; 14:906-922.e6. [PMID: 37857083 DOI: 10.1016/j.cels.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/24/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Long non-coding RNAs (lncRNAs) are involved in gene expression regulation in cis. Although enriched in the cell chromatin fraction, to what degree this defines their regulatory potential remains unclear. Furthermore, the factors underlying lncRNA chromatin tethering, as well as the molecular basis of efficient lncRNA chromatin dissociation and its impact on enhancer activity and target gene expression, remain to be resolved. Here, we developed chrTT-seq, which combines the pulse-chase metabolic labeling of nascent RNA with chromatin fractionation and transient transcriptome sequencing to follow nascent RNA transcripts from their transcription on chromatin to release and allows the quantification of dissociation dynamics. By incorporating genomic, transcriptomic, and epigenetic metrics, as well as RNA-binding protein propensities, in machine learning models, we identify features that define transcript groups of different chromatin dissociation dynamics. Notably, lncRNAs transcribed from enhancers display reduced chromatin retention, suggesting that, in addition to splicing, their chromatin dissociation may shape enhancer activity.
Collapse
Affiliation(s)
- Evgenia Ntini
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany; Institute of Molecular Biology and Biotechnology, IMBB-FORTH, 70013 Heraklio, Greece.
| | - Stefan Budach
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany
| | - Ulf A Vang Ørom
- Aarhus University, Department of Molecular Biology and Genetics, 8000 Aarhus, Denmark
| | - Annalisa Marsico
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany; Computational Health Center, Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
33
|
Lau MS, Hu Z, Zhao X, Tan YS, Liu J, Huang H, Yeo CJ, Leong HF, Grinchuk OV, Chan JK, Yan J, Tee WW. Transcriptional repression by a secondary DNA binding surface of DNA topoisomerase I safeguards against hypertranscription. Nat Commun 2023; 14:6464. [PMID: 37833256 PMCID: PMC10576097 DOI: 10.1038/s41467-023-42078-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Regulation of global transcription output is important for normal development and disease, but little is known about the mechanisms involved. DNA topoisomerase I (TOP1) is an enzyme well-known for its role in relieving DNA supercoils for enabling transcription. Here, we report a non-enzymatic function of TOP1 that downregulates RNA synthesis. This function is dependent on specific DNA-interacting residues located on a conserved protein surface. A loss-of-function knock-in mutation on this surface, R548Q, is sufficient to cause hypertranscription and alter differentiation outcomes in mouse embryonic stem cells (mESCs). Hypertranscription in mESCs is accompanied by reduced TOP1 chromatin binding and change in genomic supercoiling. Notably, the mutation does not impact TOP1 enzymatic activity; rather, it diminishes TOP1-DNA binding and formation of compact protein-DNA structures. Thus, TOP1 exhibits opposing influences on transcription through distinct activities which are likely to be coordinated. This highlights TOP1 as a safeguard of appropriate total transcription levels in cells.
Collapse
Affiliation(s)
- Mei Sheng Lau
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
| | - Zhenhua Hu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaodan Zhao
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute (BII), A*STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Jinyue Liu
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Hua Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Electrophysiology Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Clarisse Jingyi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwei Fen Leong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Oleg V Grinchuk
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Justin Kaixuan Chan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore.
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117557, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
| | - Wee-Wei Tee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
34
|
Wu G, Yoshida N, Liu J, Zhang X, Xiong Y, Heavican-Foral TB, Mandato E, Liu H, Nelson GM, Yang L, Chen R, Donovan KA, Jones MK, Roshal M, Zhang Y, Xu R, Nirmal AJ, Jain S, Leahy C, Jones KL, Stevenson KE, Galasso N, Ganesan N, Chang T, Wu WC, Louissaint A, Debaize L, Yoon H, Cin PD, Chan WC, Sui SJH, Ng SY, Feldman AL, Horwitz SM, Adelman K, Fischer ES, Chen CW, Weinstock DM, Brown M. TP63 fusions drive multicomplex enhancer rewiring, lymphomagenesis, and EZH2 dependence. Sci Transl Med 2023; 15:eadi7244. [PMID: 37729434 PMCID: PMC11014717 DOI: 10.1126/scitranslmed.adi7244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Gene fusions involving tumor protein p63 gene (TP63) occur in multiple T and B cell lymphomas and portend a dismal prognosis for patients. The function and mechanisms of TP63 fusions remain unclear, and there is no target therapy for patients with lymphoma harboring TP63 fusions. Here, we show that TP63 fusions act as bona fide oncogenes and are essential for fusion-positive lymphomas. Transgenic mice expressing TBL1XR1::TP63, the most common TP63 fusion, develop diverse lymphomas that recapitulate multiple human T and B cell lymphomas. Here, we identify that TP63 fusions coordinate the recruitment of two epigenetic modifying complexes, the nuclear receptor corepressor (NCoR)-histone deacetylase 3 (HDAC3) by the N-terminal TP63 fusion partner and the lysine methyltransferase 2D (KMT2D) by the C-terminal TP63 component, which are both required for fusion-dependent survival. TBL1XR1::TP63 localization at enhancers drives a unique cell state that involves up-regulation of MYC and the polycomb repressor complex 2 (PRC2) components EED and EZH2. Inhibiting EZH2 with the therapeutic agent valemetostat is highly effective at treating transgenic lymphoma murine models, xenografts, and patient-derived xenografts harboring TP63 fusions. One patient with TP63-rearranged lymphoma showed a rapid response to valemetostat treatment. In summary, TP63 fusions link partner components that, together, coordinate multiple epigenetic complexes, resulting in therapeutic vulnerability to EZH2 inhibition.
Collapse
Affiliation(s)
- Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Noriaki Yoshida
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Current address: Merck Research Laboratories, Boston, MA
02215, USA
| | - Jihe Liu
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School
of Public Health, Boston, MA 02115, USA
| | - Xiaoyang Zhang
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge,
MA 02142, USA
- Department of Oncological Sciences, Huntsman Cancer
Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Yuan Xiong
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tayla B. Heavican-Foral
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Huiyun Liu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Geoffrey M. Nelson
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical
School, Boston, MA 02115, USA
| | - Lu Yang
- Department of Systems Biology, City of Hope Comprehensive
Cancer Center, Monrovia, CA 91016, USA
| | - Renee Chen
- Department of Systems Biology, City of Hope Comprehensive
Cancer Center, Monrovia, CA 91016, USA
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcus K. Jones
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mikhail Roshal
- Department of Pathology, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Ran Xu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ajit J. Nirmal
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Salvia Jain
- Massachusetts General Hospital Cancer Center, Boston, MA
02114, USA
| | - Catharine Leahy
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kristen L. Jones
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kristen E. Stevenson
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Natasha Galasso
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Nivetha Ganesan
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Tiffany Chang
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Wen-Chao Wu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Abner Louissaint
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Pathology, Massachusetts General Hospital,
Boston, MA 02114, USA
| | - Lydie Debaize
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Hojong Yoon
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women’s
Hospital, Boston, MA 02115, USA
| | - Wing C. Chan
- Department of Pathology, City of Hope Medical Center,
Duarte, CA 91010, USA
| | - Shannan J. Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School
of Public Health, Boston, MA 02115, USA
| | - Samuel Y. Ng
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematopathology, Mayo Clinic College of
Medicine, Rochester, MN 55905, USA
| | - Andrew L. Feldman
- Current address: Department of Clinical Studies,
Radiation Effects Research Foundation, Hiroshima, 7320815, Japan
| | - Steven M. Horwitz
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Karen Adelman
- Broad Institute of MIT and Harvard University, Cambridge,
MA 02142, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chun-Wei Chen
- Department of Systems Biology, City of Hope Comprehensive
Cancer Center, Monrovia, CA 91016, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge,
MA 02142, USA
- Current address: Merck Research Laboratories, Boston, MA
02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
35
|
Zhou S, Zhao F, Zhu D, Zhang Q, Dai Z, Wu Z. Coupling of co-transcriptional splicing and 3' end Pol II pausing during termination in Arabidopsis. Genome Biol 2023; 24:206. [PMID: 37697420 PMCID: PMC10496290 DOI: 10.1186/s13059-023-03050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND In Arabidopsis, RNA Polymerase II (Pol II) often pauses within a few hundred base pairs downstream of the polyadenylation site, reflecting efficient transcriptional termination, but how such pausing is regulated remains largely elusive. RESULT Here, we analyze Pol II dynamics at 3' ends by combining comprehensive experiments with mathematical modelling. We generate high-resolution serine 2 phosphorylated (Ser2P) Pol II positioning data specifically enriched at 3' ends and define a 3' end pause index (3'PI). The position but not the extent of the 3' end pause correlates with the termination window size. The 3'PI is not decreased but even mildly increased in the termination deficient mutant xrn3, indicating 3' end pause is a regulatory step early during the termination and before XRN3-mediated RNA decay that releases Pol II. Unexpectedly, 3'PI is closely associated with gene exon numbers and co-transcriptional splicing efficiency. Multiple exons genes often display stronger 3' end pauses and more efficient on-chromatin splicing than genes with fewer exons. Chemical inhibition of splicing strongly reduces the 3'PI and disrupts its correlation with exon numbers but does not globally impact 3' end readthrough levels. These results are further confirmed by fitting Pol II positioning data with a mathematical model, which enables the estimation of parameters that define Pol II dynamics. CONCLUSION Our work highlights that the number of exons via co-transcriptional splicing is a major determinant of Pol II pausing levels at the 3' end of genes in plants.
Collapse
Affiliation(s)
- Sixian Zhou
- Harbin Institute of Technology, Harbin, 150001, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fengli Zhao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Danling Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiqi Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ziwei Dai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
36
|
Zhang Z, Bae B, Cuddleston WH, Miura P. Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing. Nat Commun 2023; 14:5506. [PMID: 37679364 PMCID: PMC10484994 DOI: 10.1038/s41467-023-41207-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nervous system development is associated with extensive regulation of alternative splicing (AS) and alternative polyadenylation (APA). AS and APA have been extensively studied in isolation, but little is known about how these processes are coordinated. Here, the coordination of cassette exon (CE) splicing and APA in Drosophila was investigated using a targeted long-read sequencing approach we call Pull-a-Long-Seq (PL-Seq). This cost-effective method uses cDNA pulldown and Nanopore sequencing combined with an analysis pipeline to quantify inclusion of alternative exons in connection with alternative 3' ends. Using PL-Seq, we identified genes that exhibit significant differences in CE splicing depending on connectivity to short versus long 3'UTRs. Genomic long 3'UTR deletion was found to alter upstream CE splicing in short 3'UTR isoforms and ELAV loss differentially affected CE splicing depending on connectivity to alternative 3'UTRs. This work highlights the importance of considering connectivity to alternative 3'UTRs when monitoring AS events.
Collapse
Affiliation(s)
- Zhiping Zhang
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Bongmin Bae
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | | | - Pedro Miura
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
- Institute for System Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
37
|
Shenasa H, Bentley DL. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet 2023; 39:672-685. [PMID: 37236814 PMCID: PMC10524715 DOI: 10.1016/j.tig.2023.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.
Collapse
Affiliation(s)
- Hossein Shenasa
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
38
|
Wang J, Muste Sadurni M, Saponaro M. RNAPII response to transcription-blocking DNA lesions in mammalian cells. FEBS J 2023; 290:4382-4394. [PMID: 35731652 PMCID: PMC10952651 DOI: 10.1111/febs.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 09/21/2023]
Abstract
RNA polymerase II moves along genes to decode genetic information stored in the mammalian genome into messenger RNA and different forms of non-coding RNA. However, the transcription process is frequently challenged by DNA lesions caused by exogenous and endogenous insults, among which helix-distorting DNA lesions and double-stranded DNA breaks are particularly harmful for cell survival. In response to such DNA damage, RNA polymerase II transcription is regulated both locally and globally by multi-layer mechanisms, whereas transcription-blocking lesions are repaired before transcription can recover. Failure in DNA damage repair will cause genome instability and cell death. Although recent studies have expanded our understanding of RNA polymerase II regulation confronting DNA lesions, it is still not always clear what the direct contribution of RNA polymerase II is in the DNA damage repair processes. In this review, we focus on how RNA polymerase II and transcription are both repressed by transcription stalling lesions such as DNA-adducts and double strand breaks, as well as how they are actively regulated to support the cellular response to DNA damage and favour the repair of lesions.
Collapse
Affiliation(s)
- Jianming Wang
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| | - Martina Muste Sadurni
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| | - Marco Saponaro
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| |
Collapse
|
39
|
Choquet K, Baxter-Koenigs AR, Dülk SL, Smalec BM, Rouskin S, Churchman LS. Pre-mRNA splicing order is predetermined and maintains splicing fidelity across multi-intronic transcripts. Nat Struct Mol Biol 2023; 30:1064-1076. [PMID: 37443198 PMCID: PMC10653200 DOI: 10.1038/s41594-023-01035-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Combinatorially, intron excision within a given nascent transcript could proceed down any of thousands of paths, each of which would expose different dynamic landscapes of cis-elements and contribute to alternative splicing. In this study, we found that post-transcriptional multi-intron splicing order in human cells is largely predetermined, with most genes spliced in one or a few predominant orders. Strikingly, these orders were conserved across cell types and stages of motor neuron differentiation. Introns flanking alternatively spliced exons were frequently excised last, after their neighboring introns. Perturbations to the spliceosomal U2 snRNA altered the preferred splicing order of many genes, and these alterations were associated with the retention of other introns in the same transcript. In one gene, early removal of specific introns was sufficient to induce delayed excision of three proximal introns, and this delay was caused by two distinct cis-regulatory mechanisms. Together, our results demonstrate that multi-intron splicing order in human cells is predetermined, is influenced by a component of the spliceosome and ensures splicing fidelity across long pre-mRNAs.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Sarah-Luisa Dülk
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Brendan M Smalec
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Silvi Rouskin
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Oksuz O, Henninger JE, Warneford-Thomson R, Zheng MM, Erb H, Vancura A, Overholt KJ, Hawken SW, Banani SF, Lauman R, Reich LN, Robertson AL, Hannett NM, Lee TI, Zon LI, Bonasio R, Young RA. Transcription factors interact with RNA to regulate genes. Mol Cell 2023; 83:2449-2463.e13. [PMID: 37402367 PMCID: PMC10529847 DOI: 10.1016/j.molcel.2023.06.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/16/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Transcription factors (TFs) orchestrate the gene expression programs that define each cell's identity. The canonical TF accomplishes this with two domains, one that binds specific DNA sequences and the other that binds protein coactivators or corepressors. We find that at least half of TFs also bind RNA, doing so through a previously unrecognized domain with sequence and functional features analogous to the arginine-rich motif of the HIV transcriptional activator Tat. RNA binding contributes to TF function by promoting the dynamic association between DNA, RNA, and TF on chromatin. TF-RNA interactions are a conserved feature important for vertebrate development and disrupted in disease. We propose that the ability to bind DNA, RNA, and protein is a general property of many TFs and is fundamental to their gene regulatory function.
Collapse
Affiliation(s)
- Ozgur Oksuz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Robert Warneford-Thomson
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ming M Zheng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hailey Erb
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Adrienne Vancura
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kalon J Overholt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susana Wilson Hawken
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Program of Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Salman F Banani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Lauman
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lauren N Reich
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anne L Robertson
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tong I Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Leonard I Zon
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
41
|
Townley BA, Buerer L, Tsao N, Bacolla A, Mansoori F, Rusanov T, Clark N, Goodarzi N, Schmidt N, Srivatsan SN, Sun H, Sample RA, Brickner JR, McDonald D, Tsai MS, Walter MJ, Wozniak DF, Holehouse AS, Pena V, Tainer JA, Fairbrother WG, Mosammaparast N. A functional link between lariat debranching enzyme and the intron-binding complex is defective in non-photosensitive trichothiodystrophy. Mol Cell 2023; 83:2258-2275.e11. [PMID: 37369199 PMCID: PMC10483886 DOI: 10.1016/j.molcel.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The pre-mRNA life cycle requires intron processing; yet, how intron-processing defects influence splicing and gene expression is unclear. Here, we find that TTDN1/MPLKIP, which is encoded by a gene implicated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to spliceosomal function. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, whereas its N-terminal intrinsically disordered region (IDR) binds the intron-binding complex (IBC). TTDN1 loss, or a mutated IDR, causes significant intron lariat accumulation, as well as splicing and gene expression defects, mirroring phenotypes observed in NP-TTD patient cells. A Ttdn1-deficient mouse model recapitulates intron-processing defects and certain neurodevelopmental phenotypes seen in NP-TTD. Fusing DBR1 to the TTDN1 IDR is sufficient to recruit DBR1 to the IBC and circumvents the functional requirement for TTDN1. Collectively, our findings link RNA lariat processing with splicing outcomes by revealing the molecular function of TTDN1.
Collapse
Affiliation(s)
- Brittany A Townley
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Luke Buerer
- Center for Computational Molecular Biology, Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ning Tsao
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fadhel Mansoori
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timur Rusanov
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathanial Clark
- Center for Computational Molecular Biology, Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Negar Goodarzi
- Mechanisms and Regulation of Splicing Research Group, The Institute of Cancer Research, London, UK
| | - Nicolas Schmidt
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Hua Sun
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reilly A Sample
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua R Brickner
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Drew McDonald
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miaw-Sheue Tsai
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew J Walter
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David F Wozniak
- Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Alex S Holehouse
- Department of Biochemistry & Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Vladimir Pena
- Mechanisms and Regulation of Splicing Research Group, The Institute of Cancer Research, London, UK
| | - John A Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - William G Fairbrother
- Center for Computational Molecular Biology, Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA; Hassenfeld Child Health Innovation Institute of Brown University, Providence, RI 02912, USA.
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
42
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
43
|
Rodríguez‐Molina JB, Turtola M. Birth of a poly(A) tail: mechanisms and control of mRNA polyadenylation. FEBS Open Bio 2023; 13:1140-1153. [PMID: 36416579 PMCID: PMC10315857 DOI: 10.1002/2211-5463.13528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
During their synthesis in the cell nucleus, most eukaryotic mRNAs undergo a two-step 3'-end processing reaction in which the pre-mRNA is cleaved and released from the transcribing RNA polymerase II and a polyadenosine (poly(A)) tail is added to the newly formed 3'-end. These biochemical reactions might appear simple at first sight (endonucleolytic RNA cleavage and synthesis of a homopolymeric tail), but their catalysis requires a multi-faceted enzymatic machinery, the cleavage and polyadenylation complex (CPAC), which is composed of more than 20 individual protein subunits. The activity of CPAC is further orchestrated by Poly(A) Binding Proteins (PABPs), which decorate the poly(A) tail during its synthesis and guide the mRNA through subsequent gene expression steps. Here, we review the structure, molecular mechanism, and regulation of eukaryotic mRNA 3'-end processing machineries with a focus on the polyadenylation step. We concentrate on the CPAC and PABPs from mammals and the budding yeast, Saccharomyces cerevisiae, because these systems are the best-characterized at present. Comparison of their functions provides valuable insights into the principles of mRNA 3'-end processing.
Collapse
Affiliation(s)
| | - Matti Turtola
- Department of Life TechnologiesUniversity of TurkuFinland
| |
Collapse
|
44
|
Li Y, Zhang H, Hu B, Wang P, Wang W, Liu J. Post-transcriptional regulation of erythropoiesis. BLOOD SCIENCE 2023; 5:150-159. [PMID: 37546708 PMCID: PMC10400058 DOI: 10.1097/bs9.0000000000000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/11/2023] [Indexed: 08/08/2023] Open
Abstract
Erythropoiesis is a complex, precise, and lifelong process that is essential for maintaining normal body functions. Its strict regulation is necessary to prevent a variety of blood diseases. Normal erythropoiesis is precisely regulated by an intricate network that involves transcription levels, signal transduction, and various epigenetic modifications. In recent years, research on post-transcriptional levels in erythropoiesis has expanded significantly. The dynamic regulation of splicing transitions is responsible for changes in protein isoform expression that add new functions beneficial for erythropoiesis. RNA-binding proteins adapt the translation of transcripts to the protein requirements of the cell, yielding mRNA with dynamic translation efficiency. Noncoding RNAs, such as microRNAs and lncRNAs, are indispensable for changing the translational efficiency and/or stability of targeted mRNAs to maintain the normal expression of genes related to erythropoiesis. N6-methyladenosine-dependent regulation of mRNA translation plays an important role in maintaining the expression programs of erythroid-related genes and promoting erythroid lineage determination. This review aims to describe our current understanding of the role of post-transcriptional regulation in erythropoiesis and erythroid-associated diseases, and to shed light on the physiological and pathological implications of the post-transcriptional regulation machinery in erythropoiesis. These may help to further enrich our understanding of the regulatory network of erythropoiesis and provide new strategies for the diagnosis and treatment of erythroid-related diseases.
Collapse
Affiliation(s)
- Yanan Li
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haihang Zhang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Bin Hu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Pan Wang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wei Wang
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
45
|
Abstract
Formation of the 3' end of a eukaryotic mRNA is a key step in the production of a mature transcript. This process is mediated by a number of protein factors that cleave the pre-mRNA, add a poly(A) tail, and regulate transcription by protein dephosphorylation. Cleavage and polyadenylation specificity factor (CPSF) in humans, or cleavage and polyadenylation factor (CPF) in yeast, coordinates these enzymatic activities with each other, with RNA recognition, and with transcription. The site of pre-mRNA cleavage can strongly influence the translation, stability, and localization of the mRNA. Hence, cleavage site selection is highly regulated. The length of the poly(A) tail is also controlled to ensure that every transcript has a similar tail when it is exported from the nucleus. In this review, we summarize new mechanistic insights into mRNA 3'-end processing obtained through structural studies and biochemical reconstitution and outline outstanding questions in the field.
Collapse
Affiliation(s)
- Vytautė Boreikaitė
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| |
Collapse
|
46
|
Henfrey C, Murphy S, Tellier M. Regulation of mature mRNA levels by RNA processing efficiency. NAR Genom Bioinform 2023; 5:lqad059. [PMID: 37305169 PMCID: PMC10251645 DOI: 10.1093/nargab/lqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Transcription and co-transcriptional processes, including pre-mRNA splicing and mRNA cleavage and polyadenylation, regulate the production of mature mRNAs. The carboxyl terminal domain (CTD) of RNA polymerase (pol) II, which comprises 52 repeats of the Tyr1Ser2Pro3Thr4Ser5Pro6Ser7 peptide, is involved in the coordination of transcription with co-transcriptional processes. The pol II CTD is dynamically modified by protein phosphorylation, which regulates recruitment of transcription and co-transcriptional factors. We have investigated whether mature mRNA levels from intron-containing protein-coding genes are related to pol II CTD phosphorylation, RNA stability, and pre-mRNA splicing and mRNA cleavage and polyadenylation efficiency. We find that genes that produce a low level of mature mRNAs are associated with relatively high phosphorylation of the pol II CTD Thr4 residue, poor RNA processing, increased chromatin association of transcripts, and shorter RNA half-life. While these poorly-processed transcripts are degraded by the nuclear RNA exosome, our results indicate that in addition to RNA half-life, chromatin association due to a low RNA processing efficiency also plays an important role in the regulation of mature mRNA levels.
Collapse
Affiliation(s)
- Callum Henfrey
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
47
|
Spencley AL, Bar S, Swigut T, Flynn RA, Lee CH, Chen LF, Bassik MC, Wysocka J. Co-transcriptional genome surveillance by HUSH is coupled to termination machinery. Mol Cell 2023; 83:1623-1639.e8. [PMID: 37164018 PMCID: PMC10915761 DOI: 10.1016/j.molcel.2023.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
The HUSH complex recognizes and silences foreign DNA such as viruses, transposons, and transgenes without prior exposure to its targets. Here, we show that endogenous targets of the HUSH complex fall into two distinct classes based on the presence or absence of H3K9me3. These classes are further distinguished by their transposon content and differential response to the loss of HUSH. A de novo genomic rearrangement at the Sox2 locus induces a switch from H3K9me3-independent to H3K9me3-associated HUSH targeting, resulting in silencing. We further demonstrate that HUSH interacts with the termination factor WDR82 and-via its component MPP8-with nascent RNA. HUSH accumulates at sites of high RNAPII occupancy including long exons and transcription termination sites in a manner dependent on WDR82 and CPSF. Together, our results uncover the functional diversity of HUSH targets and show that this vertebrate-specific complex exploits evolutionarily ancient transcription termination machinery for co-transcriptional chromatin targeting and genome surveillance.
Collapse
Affiliation(s)
- Andrew L Spencley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Shiran Bar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan A Flynn
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Cameron H Lee
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Liang-Fu Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
48
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
49
|
Kaye EG, Nelson GM, Zomer HD, Roy D, Joseph II, Adelman K, Reddi PP. RNA polymerase II pausing is essential during spermatogenesis for appropriate gene expression and completion of meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539879. [PMID: 37215034 PMCID: PMC10197597 DOI: 10.1101/2023.05.08.539879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Male germ cell development requires precise regulation of gene activity in a cell-type and stage-specific manner, with perturbations in gene expression during spermatogenesis associated with infertility. Here, we use steady-state, nascent and single-cell RNA sequencing strategies to comprehensively characterize gene expression across male germ cell populations, to dissect the mechanisms of gene control and provide new insights towards therapy. We discover a requirement for pausing of RNA Polymerase II (Pol II) at the earliest stages of sperm differentiation to establish the landscape of gene activity across development. Accordingly, genetic knockout of the Pol II pause-inducing factor NELF in immature germ cells blocks differentiation to mature spermatids. Further, we uncover unanticipated roles for Pol II pausing in the regulation of meiosis during spermatogenesis, with the presence of paused Pol II associated with double strand break formation by SPO11, and disruption of SPO11 expression in germ cells lacking NELF.
Collapse
Affiliation(s)
- Emily G. Kaye
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Geoffrey M. Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Helena D. Zomer
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61802, USA
| | - Debarun Roy
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61802, USA
| | - Irene Infancy Joseph
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61802, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Prabhakara P. Reddi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61802, USA
| |
Collapse
|
50
|
Alfonso-Gonzalez C, Legnini I, Holec S, Arrigoni L, Ozbulut HC, Mateos F, Koppstein D, Rybak-Wolf A, Bönisch U, Rajewsky N, Hilgers V. Sites of transcription initiation drive mRNA isoform selection. Cell 2023; 186:2438-2455.e22. [PMID: 37178687 PMCID: PMC10228280 DOI: 10.1016/j.cell.2023.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/16/2022] [Accepted: 04/06/2023] [Indexed: 05/15/2023]
Abstract
The generation of distinct messenger RNA isoforms through alternative RNA processing modulates the expression and function of genes, often in a cell-type-specific manner. Here, we assess the regulatory relationships between transcription initiation, alternative splicing, and 3' end site selection. Applying long-read sequencing to accurately represent even the longest transcripts from end to end, we quantify mRNA isoforms in Drosophila tissues, including the transcriptionally complex nervous system. We find that in Drosophila heads, as well as in human cerebral organoids, 3' end site choice is globally influenced by the site of transcription initiation (TSS). "Dominant promoters," characterized by specific epigenetic signatures including p300/CBP binding, impose a transcriptional constraint to define splice and polyadenylation variants. In vivo deletion or overexpression of dominant promoters as well as p300/CBP loss disrupted the 3' end expression landscape. Our study demonstrates the crucial impact of TSS choice on the regulation of transcript diversity and tissue identity.
Collapse
Affiliation(s)
- Carlos Alfonso-Gonzalez
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), 79108 Freiburg, Germany
| | - Ivano Legnini
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Sarah Holec
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Laura Arrigoni
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Hasan Can Ozbulut
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg, Germany
| | - Fernando Mateos
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - David Koppstein
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Agnieszka Rybak-Wolf
- Organoid Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Ulrike Bönisch
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; Charité - Universitätsmedizin, Charitépl. 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Berlin, Germany; German Cancer Consortium (DKTK); National Center for Tumor Diseases (NCT), Site Berlin, Berlin, Germany
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Signalling Research Centre CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany.
| |
Collapse
|