1
|
Qin PP, Chen PR, Tan L, Chu X, Ye BC, Yin BC. Programming ADAR-recruiting hairpin RNA sensor to detect endogenous molecules. Nucleic Acids Res 2025; 53:gkae1146. [PMID: 39673485 PMCID: PMC11724285 DOI: 10.1093/nar/gkae1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
RNA editing leveraging ADARs (adenosine deaminases acting on RNA) shows promising potential for in vivo biosensing beyond gene therapy. However, current ADAR sensors sense only a single target of RNA transcripts, thus limiting their use in different biosensing scenarios. Here, we report a hairpin RNA sensor that exploits new mechanisms to generate intramolecular duplex substrates for efficient ADAR recruitment and editing and apply it to detection of various intracellular molecules, including messenger RNA, small molecules and proteins. We utilize the base pairing interactions between neighbouring bases for enhanced stability, as well as the reverse effects to sense RNA transcripts and single-nucleotide variants with high sensitivity and specificity, irrespective of sequence requirement for complementarity to an UAG stop codon. In addition, we integrate RNA aptamers into the hairpin RNA sensor to realize the detection of the primary energy-supplying molecule, ATP, and a transcription factor, nuclear factor-kappa B (NF-κB), in live cells via a simple conformational change for programming the activation of hairpin RNA. This sensor not only broadens the detection of applicable molecules, but also offers potential for diverse cell manipulation.
Collapse
Affiliation(s)
- Pei-Pei Qin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
| | - Pin-Ru Chen
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
| | - Liu Tan
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
| | - Xiaohe Chu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, China
| | - Bin-Cheng Yin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shihezi University, No.221 North Fourth Road, Uighur autonomous region, Shihezi 832000, Xinjiang, China
| |
Collapse
|
2
|
Wang T, Wang J, Sun T, Zhang R, Li Y, Hu T. PU.1 regulates osteoarthritis progression via CSF1R in synovial cells. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167525. [PMID: 39313038 DOI: 10.1016/j.bbadis.2024.167525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
This study elucidates the molecular mechanisms driving osteoarthritis (OA) by focusing on the transcription factor PU.1's role in synovial cells, specifically macrophages and fibroblast-like synoviocytes (FLS). Analyzing OA-related synovial gene expression from the GEO database highlighted immune regulation pathways in OA. Using protein-protein interaction and the JASPAR database, we pinpointed essential genes in OA development. Synovial tissues from OA patients and controls revealed pronounced PU.1 and its target CSF1R presence. In a surgically induced OA mouse model with PU.1 and CSF1R knockdown, ChIP assays confirmed PU.1's binding to the CSF1R promoter. Dual luciferase reporter assays and immunohistochemistry validated PU.1's regulatory impact on CSF1R transcription. Combined analysis of microarrays GSE55235 and GSE206848 showed heightened PU.1 expression in OA, associated with immune regulation in macrophages. In vitro findings aligned with in vivo results, emphasizing PU.1's influence on macrophage polarization and FLS-induced inflammation. PU.1's direct activation of CSF1R transcription underpins its key role in OA progression. This research offers insights into OA's molecular basis, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Gerontology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Jiakai Wang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Tao Sun
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Rong Zhang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Yishuo Li
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China.
| | - Tianyu Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110001, PR China.
| |
Collapse
|
3
|
Ma K, Guo S, Li J, Wei T, Liang T. Biological and clinical role of TREM2 in liver diseases. Hepatol Commun 2024; 8:e0578. [PMID: 39774286 PMCID: PMC11567705 DOI: 10.1097/hc9.0000000000000578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/27/2024] [Indexed: 01/11/2025] Open
Abstract
Liver diseases constitute a major health burden worldwide, accounting for more than 4% of all disease-related mortalities. While the incidence of viral hepatitis is expected to decrease, metabolic liver disorders are increasingly diagnosed. Liver pathology is diverse, with functional and molecular alterations in both parenchymal and mesenchymal cells, including immune cells. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily and mainly expressed on myeloid cells. Several studies have demonstrated that TREM2 plays a critical role in tissue physiology and various pathological conditions. TREM2 is recognized as being associated with the development of liver diseases by regulating tissue homeostasis and the immune microenvironment. The biological and clinical impact of TREM2 is complex, given its diverse context-dependent functions. This review aims to summarize recent progress in understanding the association between TREM2 and different liver disorders and shed light on the clinical significance of targeting TREM2.
Collapse
Affiliation(s)
- Ke Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| | - Shouliang Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| | - Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Huang HY, Chen YZ, Zhao C, Zheng XN, Yu K, Yue JX, Ju HQ, Shi YX, Tian L. Alternations in inflammatory macrophage niche drive phenotypic and functional plasticity of Kupffer cells. Nat Commun 2024; 15:9337. [PMID: 39472435 PMCID: PMC11522483 DOI: 10.1038/s41467-024-53659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Inflammatory signals lead to recruitment of circulating monocytes and induce their differentiation into pro-inflammatory macrophages. Therefore, whether blocking inflammatory monocytes can mitigate disease progression is being actively evaluated. Here, we employ multiple lineage-tracing models and show that monocyte-derived macrophages (mo-mac) are the major population of immunosuppressive, liver metastasis-associated macrophages (LMAM), while the proportion of Kupffer cells (KC) as liver-resident macrophages is diminished in metastatic nodules. Paradoxically, genetic ablation of mo-macs results in only a marginal decrease in LMAMs. Using a proliferation-recording system and a KC-tracing model in a monocyte-deficient background, we find that LMAMs can be replenished either via increased local macrophage proliferation or by promoting KC infiltration. In the latter regard, KCs undergo transient proliferation and exhibit substantial phenotypic and functional alterations through epigenetic reprogramming following the vacating of macrophage niches by monocyte depletion. Our data thus suggest that a simultaneous blockade of monocyte recruitment and macrophage proliferation may effectively target immunosuppressive myelopoiesis and reprogram the microenvironment towards an immunostimulatory state.
Collapse
Affiliation(s)
- Han-Ying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Zhou Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuang Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xin-Nan Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Yu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Xia Shi
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
5
|
Serrano C, Cananzi S, Shen T, Wang LL, Zhang CL. Simple and highly specific targeting of resident microglia with adeno-associated virus. iScience 2024; 27:110706. [PMID: 39297168 PMCID: PMC11407971 DOI: 10.1016/j.isci.2024.110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024] Open
Abstract
Microglia, as the immune cells of the central nervous system (CNS), play dynamic roles in both healthy and diseased conditions. The ability to genetically target microglia using viruses is crucial for understanding their functions and advancing microglia-based treatments. We here show that resident microglia can be simply and specifically targeted using adeno-associated virus (AAV) vectors containing a 466-bp DNA fragment from the human IBA1 (hIBA1) promoter. This targeting approach is applicable to both resting and reactive microglia. When combining the short hIBA1 promoter with the target sequence of miR124, up to 98% of transduced cells are identified as microglia. Such a simple and highly specific microglia-targeting strategy may be further optimized for research and therapeutics.
Collapse
Affiliation(s)
- Carolina Serrano
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Cananzi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tianjin Shen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Margetts AV, Vilca SJ, Bourgain-Guglielmetti F, Tuesta LM. Epigenetic heterogeneity shapes the transcriptional landscape of regional microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607229. [PMID: 39149259 PMCID: PMC11326298 DOI: 10.1101/2024.08.08.607229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Microglia, the innate immune cells in the central nervous system, exhibit distinct transcriptional profiles across brain regions that are important for facilitating their specialized function. There has been recent interest in identifying the epigenetic modifications associated with these distinct transcriptional profiles, as these may improve our understanding of the underlying mechanisms governing the functional specialization of microglia. One obstacle to achieving this goal is the large number of microglia required to obtain a genome-wide profile for a single histone modification. Given the cellular and regional heterogeneity of the brain, this would require pooling many samples which would impede biological applications that are limited by numbers of available animals. To overcome this obstacle, we have adapted a method of chromatin profiling known as Cleavage Under Targets and Tagmentation (CUT&Tag-Direct) to profile histone modifications associated with regional differences in gene expression throughout the brain reward system. Consistent with previous studies, we find that transcriptional profiles of microglia vary by brain region. However, here we report that these regional differences also exhibit transcriptional network signatures specific to each region. Additionally, we find that these region-dependent network signatures are associated with differential deposition of H3K27ac and H3K7me3, and while the H3K27me3 landscape is remarkably stable across brain regions, the H3K27ac landscape is most consistent with the anatomical location of microglia which explain their distinct transcriptional profiles. Altogether, these findings underscore the established role of H3K27me3 in cell fate determination and support the active role of H3K27ac in the dynamic regulation of microglial gene expression. In this study, we report a molecular and computational framework that can be applied to improve our understanding of the role of epigenetic regulation in microglia in both health and disease, using as few as 2,500 cells per histone mark.
Collapse
Affiliation(s)
- Alexander V. Margetts
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Samara J. Vilca
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Florence Bourgain-Guglielmetti
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Luis M. Tuesta
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
7
|
Scholz R, Brösamle D, Yuan X, Beyer M, Neher JJ. Epigenetic control of microglial immune responses. Immunol Rev 2024; 323:209-226. [PMID: 38491845 DOI: 10.1111/imr.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
Microglia, the major population of brain-resident macrophages, are now recognized as a heterogeneous population comprising several cell subtypes with different (so far mostly supposed) functions in health and disease. A number of studies have performed molecular characterization of these different microglial activation states over the last years making use of "omics" technologies, that is transcriptomics, proteomics and, less frequently, epigenomics profiling. These approaches offer the possibility to identify disease mechanisms, discover novel diagnostic biomarkers, and develop new therapeutic strategies. Here, we focus on epigenetic profiling as a means to understand microglial immune responses beyond what other omics methods can offer, that is, revealing past and present molecular responses, gene regulatory networks and potential future response trajectories, and defining cell subtype-specific disease relevance through mapping non-coding genetic variants. We review the current knowledge in the field regarding epigenetic regulation of microglial identity and function, provide an exemplary analysis that demonstrates the advantages of performing joint transcriptomic and epigenomic profiling of single microglial cells and discuss how comprehensive epigenetic analyses may enhance our understanding of microglial pathophysiology.
Collapse
Affiliation(s)
- Rebekka Scholz
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Desirée Brösamle
- Biomedical Center (BMC), Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xidi Yuan
- Biomedical Center (BMC), Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marc Beyer
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of Bonn and West German Genome Center, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center (BMC), Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
8
|
Steinhauser S, Estoppey D, Buehler DP, Xiong Y, Pizzato N, Rietsch A, Wu F, Leroy N, Wunderlin T, Claerr I, Tropberger P, Müller M, Davison LM, Sheng Q, Bergling S, Wild S, Moulin P, Liang J, English WJ, Williams B, Knehr J, Altorfer M, Reyes A, Mickanin C, Hoepfner D, Nigsch F, Frederiksen M, Flynn CR, Fodor BD, Brown JD, Kolter C. The transcription factor ZNF469 regulates collagen production in liver fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591188. [PMID: 38712281 PMCID: PMC11071482 DOI: 10.1101/2024.04.25.591188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) - characterized by excess accumulation of fat in the liver - now affects one third of the world's population. As NAFLD progresses, extracellular matrix components including collagen accumulate in the liver causing tissue fibrosis, a major determinant of disease severity and mortality. To identify transcriptional regulators of fibrosis, we computationally inferred the activity of transcription factors (TFs) relevant to fibrosis by profiling the matched transcriptomes and epigenomes of 108 human liver biopsies from a deeply-characterized cohort of patients spanning the full histopathologic spectrum of NAFLD. CRISPR-based genetic knockout of the top 100 TFs identified ZNF469 as a regulator of collagen expression in primary human hepatic stellate cells (HSCs). Gain- and loss-of-function studies established that ZNF469 regulates collagen genes and genes involved in matrix homeostasis through direct binding to gene bodies and regulatory elements. By integrating multiomic large-scale profiling of human biopsies with extensive experimental validation we demonstrate that ZNF469 is a transcriptional regulator of collagen in HSCs. Overall, these data nominate ZNF469 as a previously unrecognized determinant of NAFLD-associated liver fibrosis.
Collapse
Affiliation(s)
| | | | - Dennis P Buehler
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Yanhua Xiong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, United States
| | | | | | - Fabian Wu
- Novartis Biomedical Research, Basel, Switzerland
| | - Nelly Leroy
- Novartis Biomedical Research, Basel, Switzerland
| | | | | | | | | | - Lindsay M Davison
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, United States
| | | | - Sophia Wild
- Novartis Biomedical Research, Basel, Switzerland
| | - Pierre Moulin
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
- Chief Scientific Officer, Deciphex Ltd, Dublin, Ireland
| | - Jiancong Liang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Wayne J English
- Department of Surgery, Vanderbilt University Medical Center, Nashville, United States
| | - Brandon Williams
- Department of Surgery, Vanderbilt University Medical Center, Nashville, United States
| | - Judith Knehr
- Novartis Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, United States
| | | | - Jonathan D Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, United States
| | | |
Collapse
|
9
|
Salloum Z, Dauner K, Li YF, Verma N, Valdivieso-González D, Almendro-Vedia V, Zhang JD, Nakka K, Chen MX, McDonald J, Corley CD, Sorisky A, Song BL, López-Montero I, Luo J, Dilworth JF, Zha X. Statin-mediated reduction in mitochondrial cholesterol primes an anti-inflammatory response in macrophages by upregulating Jmjd3. eLife 2024; 13:e85964. [PMID: 38602170 PMCID: PMC11186637 DOI: 10.7554/elife.85964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Statins are known to be anti-inflammatory, but the mechanism remains poorly understood. Here, we show that macrophages, either treated with statin in vitro or from statin-treated mice, have reduced cholesterol levels and higher expression of Jmjd3, a H3K27me3 demethylase. We provide evidence that lowering cholesterol levels in macrophages suppresses the adenosine triphosphate (ATP) synthase in the inner mitochondrial membrane and changes the proton gradient in the mitochondria. This activates nuclear factor kappa-B (NF-κB) and Jmjd3 expression, which removes the repressive marker H3K27me3. Accordingly, the epigenome is altered by the cholesterol reduction. When subsequently challenged by the inflammatory stimulus lipopolysaccharide (M1), macrophages, either treated with statins in vitro or isolated from statin-fed mice, express lower levels proinflammatory cytokines than controls, while augmenting anti-inflammatory Il10 expression. On the other hand, when macrophages are alternatively activated by IL-4 (M2), statins promote the expression of Arg1, Ym1, and Mrc1. The enhanced expression is correlated with the statin-induced removal of H3K27me3 from these genes prior to activation. In addition, Jmjd3 and its demethylase activity are necessary for cholesterol to modulate both M1 and M2 activation. We conclude that upregulation of Jmjd3 is a key event for the anti-inflammatory function of statins on macrophages.
Collapse
Affiliation(s)
- Zeina Salloum
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Kristin Dauner
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Yun-feng Li
- College of Life Sciences, Wuhan UniversityWuhanChina
| | - Neha Verma
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - David Valdivieso-González
- Departamento Química Física, Universidad Complutense de Madrid, AvdaMadridSpain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)MadridSpain
| | - Víctor Almendro-Vedia
- Departamento Química Física, Universidad Complutense de Madrid, AvdaMadridSpain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)MadridSpain
| | - John D Zhang
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Kiran Nakka
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Mei Xi Chen
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
- Department of Cell and Regenerative Biology, University of WisconsinMadisonUnited States
| | - Jeffrey McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chase D Corley
- Department of Molecular Genetics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Alexander Sorisky
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | | | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, AvdaMadridSpain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)MadridSpain
| | - Jie Luo
- College of Life Sciences, Wuhan UniversityWuhanChina
| | - Jeffrey F Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
- Department of Cell and Regenerative Biology, University of WisconsinMadisonUnited States
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Xiaohui Zha
- Chronic Disease Program, Ottawa Hospital Research InstituteOttawaCanada
- Departments of Medicine and of Biochemistry, Microbiology & Immunology, University of OttawaOttawaCanada
| |
Collapse
|
10
|
Saiioum Z, Dauner K, Li YF, Verma N, Almendro-Vedia V, Valdivieso Gonzalez D, Zhang DJ, Nakka K, McDonald J, Sorisky A, Song BL, Lopez Montero I, Luo J, Dilworth J, Zha X. Statin-mediated reduction in mitochondrial cholesterol primes an anti-inflammatory response in macrophages by upregulating JMJD3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.09.523264. [PMID: 36711703 PMCID: PMC9881925 DOI: 10.1101/2023.01.09.523264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stains are known to be anti-inflammatory, but the mechanism remains poorly understood. Here we show that macrophages, either treated with statin in vitro or from statin-treated mice, have reduced cholesterol levels and higher expression of Jmjd3, a H3K27me3 demethylase. We provide evidence that lowering cholesterol levels in macrophages suppresses the ATP synthase in the inner mitochondrial membrane (IMM) and changes the proton gradient in the mitochondria. This activates NFkB and Jmjd3 expression to remove the repressive marker H3K27me3. Accordingly, the epigenome is altered by the cholesterol reduction. When subsequently challenged by the inflammatory stimulus LPS (M1), both macrophages treated with statins in vitro or isolated from statin-treated mice in vivo, express lower levels pro-inflammatory cytokines than controls, while augmenting anti-inflammatory Il10 expression. On the other hand, when macrophages are alternatively activated by IL4 (M2), statins promote the expression of Arg1, Ym1, and Mrc1. The enhanced expression is correlated with the statin-induced removal of H3K27me3 from these genes prior to activation. In addition, Jmjd3 and its demethylase activity are necessary for cholesterol to modulate both M1 and M2 activation. We conclude that upregulation of Jmjd3 is a key event for the anti-inflammatory function of statins on macrophages.
Collapse
|
11
|
Ni L, Chen D, Zhao Y, Ye R, Fang P. Unveiling the flames: macrophage pyroptosis and its crucial role in liver diseases. Front Immunol 2024; 15:1338125. [PMID: 38380334 PMCID: PMC10877142 DOI: 10.3389/fimmu.2024.1338125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Macrophages play a critical role in innate immunity, with approximately 90% of the total macrophage population in the human body residing in the liver. This population encompasses both resident and infiltrating macrophages. Recent studies highlight the pivotal role of liver macrophages in various aspects such as liver inflammation, regeneration, and immune regulation. A novel pro-inflammatory programmed cell death, pyroptosis, initially identified in macrophages, has garnered substantial attention since its discovery. Studies investigating pyroptosis and inflammation progression have particularly centered around macrophages. In liver diseases, pyroptosis plays an important role in driving the inflammatory response, facilitating the fibrotic process, and promoting tumor progression. Notably, the role of macrophage pyroptosis cannot be understated. This review primarily focuses on the role of macrophage pyroptosis in liver diseases. Additionally, it underscores the therapeutic potential inherent in targeting macrophage pyroptosis.
Collapse
Affiliation(s)
| | | | | | | | - Peng Fang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Balak CD, Han CZ, Glass CK. Deciphering microglia phenotypes in health and disease. Curr Opin Genet Dev 2024; 84:102146. [PMID: 38171044 DOI: 10.1016/j.gde.2023.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Microglia are the major immune cells of the central nervous system (CNS) that perform numerous adaptive functions required for normal CNS development and homeostasis but are also linked to neurodegenerative and behavioral diseases. Microglia development and function are strongly influenced by brain environmental signals that are integrated at the level of transcriptional enhancers to drive specific programs of gene expression. Here, we describe a conceptual framework for how lineage-determining and signal-dependent transcription factors interact to select and regulate the ensembles of enhancers that determine microglia development and function. We then highlight recent findings that advance these concepts and conclude with a consideration of open questions that represent some of the major hurdles to be addressed in the future.
Collapse
Affiliation(s)
- Christopher D Balak
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA; Biomedical Sciences Graduate Program, University of California, San Diego, USA
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA; Department of Medicine, University of California, San Diego, USA.
| |
Collapse
|
13
|
Serrano C, Cananzi S, Shen T, Wang LL, Zhang CL. Simple and Highly Specific Targeting of Resident Microglia with Adeno-Associated Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571321. [PMID: 38168285 PMCID: PMC10760038 DOI: 10.1101/2023.12.12.571321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Microglia, as the immune cells of the central nervous system (CNS), play dynamic roles in both health and diseased conditions. The ability to genetically target microglia using viruses is crucial for understanding their functions and advancing microglia-based treatments. We here show that resident microglia can be simply and specifically targeted using adeno-associated virus (AAV) vectors containing a 466-bp DNA fragment from the human IBA1 (hIBA1) promoter. This targeting approach is applicable to both resting and reactive microglia. When combining the short hIBA1 promoter with the target sequence of miR124, up to 95% of transduced cells are identified as microglia. Such a simple and highly specific microglia-targeting strategy may be further optimized for research and therapeutics.
Collapse
Affiliation(s)
- Carolina Serrano
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Cananzi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tianjin Shen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Ray A, Kale SL, Ramonell RP. Bridging the Gap between Innate and Adaptive Immunity in the Lung: Summary of the Aspen Lung Conference 2022. Am J Respir Cell Mol Biol 2023; 69:266-280. [PMID: 37043828 PMCID: PMC10503303 DOI: 10.1165/rcmb.2023-0057ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
Although significant strides have been made in the understanding of pulmonary immunology, much work remains to be done to comprehensively explain coordinated immune responses in the lung. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic only served to highlight the inadequacy of current models of host-pathogen interactions and reinforced the need for current and future generations of immunologists to unravel complex biological questions. As part of that effort, the 64th Annual Thomas L. Petty Aspen Lung Conference was themed "Bridging the Gap between Innate and Adaptive Immunity in the Lung" and featured exciting work from renowned immunologists. This report summarizes the proceedings of the 2022 Aspen Lung Conference, which was convened to discuss the roles played by innate and adaptive immunity in disease pathogenesis, evaluate the interface between the innate and adaptive immune responses, assess the role of adaptive immunity in the development of autoimmunity and autoimmune lung disease, discuss lessons learned from immunologic cancer treatments and approaches, and define new paradigms to harness the immune system to prevent and treat lung diseases.
Collapse
Affiliation(s)
- Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sagar L. Kale
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Richard P. Ramonell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
15
|
Pérez-Cabello JA, Silvera-Carrasco L, Franco JM, Capilla-González V, Armaos A, Gómez-Lima M, García-García R, Yap XW, Leal-Lasarte M, Lall D, Baloh RH, Martínez S, Miyata Y, Tartaglia GG, Sawarkar R, García-Domínguez M, Pozo D, Roodveldt C. MAPK/MAK/MRK overlapping kinase (MOK) controls microglial inflammatory/type-I IFN responses via Brd4 and is involved in ALS. Proc Natl Acad Sci U S A 2023; 120:e2302143120. [PMID: 37399380 PMCID: PMC10334760 DOI: 10.1073/pnas.2302143120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease affecting motor neurons and characterized by microglia-mediated neurotoxic inflammation whose underlying mechanisms remain incompletely understood. In this work, we reveal that MAPK/MAK/MRK overlapping kinase (MOK), with an unknown physiological substrate, displays an immune function by controlling inflammatory and type-I interferon (IFN) responses in microglia which are detrimental to primary motor neurons. Moreover, we uncover the epigenetic reader bromodomain-containing protein 4 (Brd4) as an effector protein regulated by MOK, by promoting Ser492-phospho-Brd4 levels. We further demonstrate that MOK regulates Brd4 functions by supporting its binding to cytokine gene promoters, therefore enabling innate immune responses. Remarkably, we show that MOK levels are increased in the ALS spinal cord, particularly in microglial cells, and that administration of a chemical MOK inhibitor to ALS model mice can modulate Ser492-phospho-Brd4 levels, suppress microglial activation, and modify the disease course, indicating a pathophysiological role of MOK kinase in ALS and neuroinflammation.
Collapse
Affiliation(s)
- Jesús A. Pérez-Cabello
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| | - Lucía Silvera-Carrasco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| | - Jaime M. Franco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - Vivian Capilla-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - Alexandros Armaos
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova16152, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Genova16152, Italy
| | - María Gómez-Lima
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - Raquel García-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| | - Xin Wen Yap
- The Medical Research Council Toxicology Unit, University of Cambridge, CambridgeCB1 2QR, United Kingdom
| | - Magdalena Leal-Lasarte
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - Deepti Lall
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Robert H. Baloh
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Salvador Martínez
- Instituto de Neurociencias, Universidad Miguel Hernández de Elche-CSIC, Alicante03550, Spain
| | - Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto606-8501, Japan
| | - Gian G. Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova16152, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Genova16152, Italy
- Department of Biology and Biotechnologies, University Sapienza Rome, Rome00185, Italy
| | - Ritwick Sawarkar
- The Medical Research Council Toxicology Unit, University of Cambridge, CambridgeCB1 2QR, United Kingdom
| | - Mario García-Domínguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - David Pozo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| | - Cintia Roodveldt
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| |
Collapse
|
16
|
Chowdhary K, Benoist C. A variegated model of transcription factor function in the immune system. Trends Immunol 2023; 44:530-541. [PMID: 37258360 PMCID: PMC10332489 DOI: 10.1016/j.it.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023]
Abstract
Specific combinations of transcription factors (TFs) control the gene expression programs that underlie specialized immune responses. Previous models of TF function in immunocytes had restricted each TF to a single functional categorization [e.g., lineage-defining (LDTFs) vs. signal-dependent TFs (SDTFs)] within one cell type. Synthesizing recent results, we instead propose a variegated model of immunological TF function, whereby many TFs have flexible and different roles across distinct cell states, contributing to cell phenotypic diversity. We discuss evidence in support of this variegated model, describe contextual inputs that enable TF diversification, and look to the future to imagine warranted experimental and computational tools to build quantitative and predictive models of immunocyte gene regulatory networks.
Collapse
|
17
|
Qiu Y, Feng D, Jiang W, Zhang T, Lu Q, Zhao M. 3D genome organization and epigenetic regulation in autoimmune diseases. Front Immunol 2023; 14:1196123. [PMID: 37346038 PMCID: PMC10279977 DOI: 10.3389/fimmu.2023.1196123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Three-dimensional (3D) genomics is an emerging field of research that investigates the relationship between gene regulatory function and the spatial structure of chromatin. Chromatin folding can be studied using chromosome conformation capture (3C) technology and 3C-based derivative sequencing technologies, including chromosome conformation capture-on-chip (4C), chromosome conformation capture carbon copy (5C), and high-throughput chromosome conformation capture (Hi-C), which allow scientists to capture 3D conformations from a single site to the entire genome. A comprehensive analysis of the relationships between various regulatory components and gene function also requires the integration of multi-omics data such as genomics, transcriptomics, and epigenomics. 3D genome folding is involved in immune cell differentiation, activation, and dysfunction and participates in a wide range of diseases, including autoimmune diseases. We describe hierarchical 3D chromatin organization in this review and conclude with characteristics of C-techniques and multi-omics applications of the 3D genome. In addition, we describe the relationship between 3D genome structure and the differentiation and maturation of immune cells and address how changes in chromosome folding contribute to autoimmune diseases.
Collapse
Affiliation(s)
- Yueqi Qiu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Delong Feng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjuan Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Tingting Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
18
|
Tang Z, Lin B, Li W, Li X, Liu F, Zhu X. Y-box binding protein 1 promotes chromatin accessibility to aggravate liver fibrosis. Cell Signal 2023:110750. [PMID: 37290675 DOI: 10.1016/j.cellsig.2023.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Y-box binding protein 1 (YBX1) has been reported to be involved in the transcriptional regulation of various pathophysiological processes, such as inflammation, oxidative stress, and epithelial-mesenchymal transformation. However, its precise role and mechanism in regulating hepatic fibrosis remain unclear. In this study, we aimed to investigate the effects of YBX1 on liver fibrosis and its potential mechanism. The expression of YBX1 in human liver microarray, mice tissues and primary mouse hepatic stellate cells (HSCs) was validated to be upregulated in several hepatic fibrosis models (CCl4 injection, TAA injection, and BDL). Hepatic-specific Ybx1 overexpression exacerbated the liver fibrosis phenotypes in vivo and in vitro. Moreover, the knockdown of YBX1 significantly improved TGF-β-induced fibrosis in the LX2 cell (a hepatic stellate cell line). Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) of hepatic-specific Ybx1 overexpression (Ybx1-OE) mice with CCl4 injection showed increasing chromatin accessibility than CCl4 only group. Functional enrichments of open regions in the Ybx1-OE group indicated that extracellular matrix (ECM) accumulation, lipid purine metabolism, and oxytocin-related pathways were more accessible in the Ybx1-OE group. Accessible regions of the Ybx1-OE group in the promoter also suggested significant activation of genes related to liver fibrogenesis, such as response to oxidative stress and ROS, lipid localization, angiogenesis and vascular development, and inflammatory regulation. Moreover, we screened and validated the expression of candidate genes (Fyn, Axl, Acsl1, Plin2, Angptl3, Pdgfb, Ccl24, and Arg2), which might be potential targets of Ybx1 in the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Zihui Tang
- Department of Gastroenterology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai 200120, China
| | - Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Li
- Department of Gastroenterology, Pinghu Second People's Hospital, Zhejiang 314201, China
| | - Xiaojuan Li
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Fei Liu
- Department of Gastroenterology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai 200120, China; Department of Gastroenterology, Ji'an Hospital, Shanghai East Hospital, Ji'an, Jiangxi 343000, China.
| | - Xinyan Zhu
- Department of Gastroenterology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai 200120, China; Department of Gastroenterology, Ji'an Hospital, Shanghai East Hospital, Ji'an, Jiangxi 343000, China.
| |
Collapse
|
19
|
Cerneckis J, Shi Y. Modeling brain macrophage biology and neurodegenerative diseases using human iPSC-derived neuroimmune organoids. Front Cell Neurosci 2023; 17:1198715. [PMID: 37342768 PMCID: PMC10277621 DOI: 10.3389/fncel.2023.1198715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
20
|
Plant E, Bellefroid M, Van Lint C. A complex network of transcription factors and epigenetic regulators involved in bovine leukemia virus transcriptional regulation. Retrovirology 2023; 20:11. [PMID: 37268923 PMCID: PMC10236774 DOI: 10.1186/s12977-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023] Open
Abstract
Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leukosis, a disease characterized by the neoplastic proliferation of B cells in cattle. While most European countries have introduced efficient eradication programs, BLV is still present worldwide and no treatment is available. A major feature of BLV infection is the viral latency, which enables the escape from the host immune system, the maintenance of a persistent infection and ultimately the tumoral development. BLV latency is a multifactorial phenomenon resulting in the silencing of viral genes due to genetic and epigenetic repressions of the viral promoter located in the 5' Long Terminal Repeat (5'LTR). However, viral miRNAs and antisense transcripts are expressed from two different proviral regions, respectively the miRNA cluster and the 3'LTR. These latter transcripts are expressed despite the viral latency affecting the 5'LTR and are increasingly considered to take part in tumoral development. In the present review, we provide a summary of the experimental evidence that has enabled to characterize the molecular mechanisms regulating each of the three BLV transcriptional units, either through cis-regulatory elements or through epigenetic modifications. Additionally, we describe the recently identified BLV miRNAs and antisense transcripts and their implications in BLV-induced tumorigenesis. Finally, we discuss the relevance of BLV as an experimental model for the closely related human T-lymphotropic virus HTLV-1.
Collapse
Affiliation(s)
- Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium.
| |
Collapse
|
21
|
Wang J, He W, Zhang J. A richer and more diverse future for microglia phenotypes. Heliyon 2023; 9:e14713. [PMID: 37025898 PMCID: PMC10070543 DOI: 10.1016/j.heliyon.2023.e14713] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia are the only resident innate immune cells derived from the mesoderm in the nerve tissue. They play a role in the development and maturation of the central nervous system (CNS). Microglia mediate the repair of CNS injury and participate in endogenous immune response induced by various diseases by exerting neuroprotective or neurotoxic effects. Traditionally, microglia are considered to be in a resting state, the M0 type, under physiological conditions. In this state, they perform immune surveillance by constantly monitoring pathological responses in the CNS. In the pathological state, microglia undergo a series of morphological and functional changes from the M0 state and eventually polarize into classically activated microglia (M1) and alternatively activated microglia (M2). M1 microglia release inflammatory factors and toxic substances to inhibit pathogens, while M2 microglia exert neuroprotective effects by promoting nerve repair and regeneration. However, in recent years, the view regarding M1/M2 polarization of microglia has gradually changed. According to some researchers, the phenomenon of microglia polarization is not yet confirmed. The M1/M2 polarization term is used for a simplified description of its phenotype and function. Other researchers believe that the microglia polarization process is rich and diverse, and consequently, the classification method of M1/M2 has limitations. This conflict hinders the academic community from establishing more meaningful microglia polarization pathways and terms, and therefore, a careful revision of the concept of microglia polarization is required. The present article briefly reviews the current consensus and controversy regarding microglial polarization typing to provide supporting materials for a more objective understanding of the functional phenotype of microglia.
Collapse
|
22
|
Wu H, Wang Y, Fu H, Ji L, Li N, Zhang D, Su L, Hu Z. Maresin1 Ameliorates Sepsis-Induced Microglial Neuritis Induced through Blocking TLR4-NF-κ B-NLRP3 Signaling Pathway. J Pers Med 2023; 13:jpm13030534. [PMID: 36983716 PMCID: PMC10054512 DOI: 10.3390/jpm13030534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Objective: Neuroinflammation is a major etiology of cognitive dysfunction due to sepsis. Maresin1 (MaR1), identified as a docosahexaenoic acid (DHA)-derived metabolite from macrophages, has been demonstrated to exhibit potent neuroprotective and anti-inflammatory effects. Nevertheless, detailed functions and molecular mechanism of MaR1 in sepsis-induced cognitive dysfunction has not been fully elucidated. Here, we aimed to investigate potential neuroprotective effects of MaR1 on microglia-induced neuroinflammation in sepsis-induced cognitive impairment and to explore its anti-inflammatory mechanism. Methods: Different doses of MaR1 were administered to septic rats by via tail vein injection. The optimal dose was determined based on the 7-day survival rate of rats from each group. derived from macrophages with both anti-inflammatory to observe the ameliorative effects of MaR1 at optimal doses on cognitive dysfunction in septic rats. The effects of MaR1 on neuroinflammation-mediated microglial activation, neuronal apoptosis, and pro-inflammatory cytokine productions were in vivo and in vitro assayed, using Western blot, ELISA, TUNEL staining, Nissl staining, and the immunofluorescence method. To further elucidate anti-inflammatory machinery of MaR1, protein expressions of NLRP3 inflammatory vesicles and TLR4-NF-κB pathway-related proteins were subjected to Western blot assay. Results: After tail vein injection of MaR1 with different doses (2 ng/g, 4 ng/g, 8 ng/g), the results showed that 4 ng/g MaR1 treatment significantly increased the rats’ 7-day survival rate compared to the CLP controls. Therefore, subsequent experiments set 4 ng/g MaR1 as the optimal dose. Morris water maze experiments confirmed that MaR1 significantly reduced space memory dysfunction in rats. In addition, in CLP rats and LPS-stimulated BV2 microglia, MaR1 significantly reduced activated microglia and pro-inflammatory cytokines levels and neuronal apoptosis. Mechanically, MaR1 inhibits microglia-induced neuroinflammation through suppressing activations of NLRP3 inflammatory vesicles and TLR4-NF-κB signal pathway. Conclusion: Collectively, our findings suggested that MaR1 might be a prospective neuroprotective compound for prevention and treatment in the sepsis process.
Collapse
Affiliation(s)
- Huiping Wu
- School of Medicine, Soochow University, Suzhou 215006, China
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Ying Wang
- Operating Room, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China
| | - Haiyan Fu
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Lili Ji
- Emergency Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China
| | - Na Li
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Dan Zhang
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing 100730, China
- Correspondence: (L.S.); (Z.H.)
| | - Zhansheng Hu
- School of Medicine, Soochow University, Suzhou 215006, China
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
- Correspondence: (L.S.); (Z.H.)
| |
Collapse
|
23
|
Han RT, Vainchtein ID, Schlachetzki JC, Cho FS, Dorman LC, Ahn E, Kim DK, Barron JJ, Nakao-Inoue H, Molofsky AB, Glass CK, Paz JT, Molofsky AV. Microglial pattern recognition via IL-33 promotes synaptic refinement in developing corticothalamic circuits in mice. J Exp Med 2023; 220:e20220605. [PMID: 36520518 PMCID: PMC9757845 DOI: 10.1084/jem.20220605] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Microglia are critical regulators of brain development that engulf synaptic proteins during postnatal synapse remodeling. However, the mechanisms through which microglia sense the brain environment are not well defined. Here, we characterized the regulatory program downstream of interleukin-33 (IL-33), a cytokine that promotes microglial synapse remodeling. Exposing the developing brain to a supraphysiological dose of IL-33 altered the microglial enhancer landscape and increased binding of stimulus-dependent transcription factors including AP-1/FOS. This induced a gene expression program enriched for the expression of pattern recognition receptors, including the scavenger receptor MARCO. CNS-specific deletion of IL-33 led to increased excitatory/inhibitory synaptic balance, spontaneous absence-like epileptiform activity in juvenile mice, and increased seizure susceptibility in response to chemoconvulsants. We found that MARCO promoted synapse engulfment, and Marco-deficient animals had excess thalamic excitatory synapses and increased seizure susceptibility. Taken together, these data define coordinated epigenetic and functional changes in microglia and uncover pattern recognition receptors as potential regulators of postnatal synaptic refinement.
Collapse
Affiliation(s)
- Rafael T. Han
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ilia D. Vainchtein
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Frances S. Cho
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Leah C. Dorman
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Eunji Ahn
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Kyu Kim
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jerika J. Barron
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hiromi Nakao-Inoue
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ari B. Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jeanne T. Paz
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Anna V. Molofsky
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
24
|
Liu G, Li T, Yang A, Zhang X, Qi S, Feng W. Knowledge domains and emerging trends of microglia research from 2002 to 2021: A bibliometric analysis and visualization study. Front Aging Neurosci 2023; 14:1057214. [PMID: 36688156 PMCID: PMC9849393 DOI: 10.3389/fnagi.2022.1057214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Background Microglia have been identified for a century. In this period, their ontogeny and functions have come to light thanks to the tireless efforts of scientists. However, numerous documents are being produced, making it challenging for scholars, especially those new to the field, to understand them thoroughly. Therefore, having a reliable method for quickly grasping a field is crucial. Methods We searched and downloaded articles from the Web of Science Core Collection with "microglia" or "microglial" in the title from 2002 to 2021. Eventually, 12,813 articles were located and, using CiteSpace and VOSviewer, the fundamental data, knowledge domains, hot spots, and emerging trends, as well as the influential literature in the field of microglia research, were analyzed. Results Following 2011, microglia publications grew significantly. The two prominent journals are Glia and J Neuroinflamm. The United States and Germany dominated the microglia study. The primary research institutions are Harvard Univ and Univ Freiburg, and the leading authors are Prinz Marco and Kettenmann Helmut. The knowledge domains of microglia include eight directions, namely neuroinflammation, lipopolysaccharide, aging, neuropathic pain, macrophages, Alzheimer's disease, retina, and apoptosis. Microglial phenotype is the focus of research; while RNA-seq, exosome, and glycolysis are emerging topics, a microglial-specific marker is still a hard stone. We also identified 19 influential articles that contributed to the study of microglial origin (Mildner A 2007; Ginhoux F 2010), identity (Butovsky O 2014), homeostasis (Cardona AE 2006; Elmore MRP 2014); microglial function such as surveillance (Nimmerjahn A 2005), movement (Davalos D 2005; Haynes SE 2006), phagocytosis (Simard AR 2006), and synapse pruning (Wake H 2009; Paolicelli RC 2011; Schafer DP 2012; Parkhurst CN 2013); and microglial state/phenotype associated with disease (Keren-Shaul H 2017), as well as 5 review articles represented by Kettenmann H 2011. Conclusion Using bibliometrics, we have investigated the fundamental data, knowledge structure, and dynamic evolution of microglia research over the previous 20 years. We hope this study can provide some inspiration and a reference for researchers studying microglia in neuroscience.
Collapse
Affiliation(s)
- Guangjie Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tianhua Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,China International Neuroscience Institute (China-INI), Beijing, China
| | - Anming Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Songtao Qi, ✉
| | - Wenfeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,Wenfeng Feng, ✉
| |
Collapse
|
25
|
Rawji KS, Neumann B, Franklin RJM. Glial aging and its impact on central nervous system myelin regeneration. Ann N Y Acad Sci 2023; 1519:34-45. [PMID: 36398864 DOI: 10.1111/nyas.14933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aging is a major risk factor for several neurodegenerative diseases and is associated with cognitive decline. In addition to affecting neuronal function, the aging process significantly affects the functional phenotype of the glial cell compartment, comprising oligodendrocyte lineage cells, astrocytes, and microglia. These changes result in a more inflammatory microenvironment, resulting in a condition that is favorable for neuron and synapse loss. In addition to facilitating neurodegeneration, the aging glial cell population has negative implications for central nervous system remyelination, a regenerative process that is of particular importance to the chronic demyelinating disease multiple sclerosis. This review will discuss the changes that occur with aging in the three main glial populations and provide an overview of the studies documenting the impact these changes have on remyelination.
Collapse
Affiliation(s)
- Khalil S Rawji
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Björn Neumann
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | | |
Collapse
|
26
|
Gupta A, Sasse SK, Berman R, Gruca MA, Dowell RD, Chu HW, Downey GP, Gerber AN. Integrated genomics approaches identify transcriptional mediators and epigenetic responses to Afghan desert particulate matter in small airway epithelial cells. Physiol Genomics 2022; 54:389-401. [PMID: 36062885 PMCID: PMC9550581 DOI: 10.1152/physiolgenomics.00063.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 01/14/2023] Open
Abstract
Military Deployment to Southwest Asia and Afghanistan and exposure to toxic airborne particulates have been associated with an increased risk of developing respiratory disease, collectively termed deployment-related respiratory diseases (DRRDs). Our knowledge about how particulates mediate respiratory disease is limited, precluding the appropriate recognition or management. Central to this limitation is the lack of understanding of how exposures translate into dysregulated cell identity with dysregulated transcriptional programs. The small airway epithelium is involved in both the pathobiology of DRRD and fine particulate matter deposition. To characterize small airway epithelial cell epigenetic and transcriptional responses to Afghan desert particulate matter (APM) and investigate the functional interactions of transcription factors that mediate these responses, we applied two genomics assays, the assay for transposase accessible chromatin with sequencing (ATAC-seq) and Precision Run-on sequencing (PRO-seq). We identified activity changes in a series of transcriptional pathways as candidate regulators of susceptibility to subsequent insults, including signal-dependent pathways, such as loss of cytochrome P450 or P53/P63, and lineage-determining transcription factors, such as GRHL2 loss or TEAD3 activation. We further demonstrated that TEAD3 activation was unique to APM exposure despite similar inflammatory responses when compared with wood smoke particle exposure and that P53/P63 program loss was uniquely positioned at the intersection of signal-dependent and lineage-determining transcriptional programs. Our results establish the utility of an integrated genomics approach in characterizing responses to exposures and identifying genomic targets for the advanced investigation of the pathogenesis of DRRD.
Collapse
Affiliation(s)
- Arnav Gupta
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Reena Berman
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Margaret A Gruca
- Biofrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Robin D Dowell
- Biofrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Gregory P Downey
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado
| |
Collapse
|
27
|
Macrophage NOX2 NADPH oxidase maintains alveolar homeostasis in mice. Blood 2022; 139:2855-2870. [PMID: 35357446 PMCID: PMC9101249 DOI: 10.1182/blood.2021015365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
The leukocyte NADPH oxidase 2 (NOX2) plays a key role in pathogen killing and immunoregulation. Genetic defects in NOX2 result in chronic granulomatous disease (CGD), associated with microbial infections and inflammatory disorders, often involving the lung. Alveolar macrophages (AMs) are the predominant immune cell in the airways at steady state, and limiting their activation is important, given the constant exposure to inhaled materials, yet the importance of NOX2 in this process is not well understood. In this study, we showed a previously undescribed role for NOX2 in maintaining lung homeostasis by suppressing AM activation, in CGD mice or mice with selective loss of NOX2 preferentially in macrophages. AMs lacking NOX2 had increased cytokine responses to Toll-like receptor-2 (TLR2) and TLR4 stimulation ex vivo. Moreover, between 4 and 12 week of age, mice with global NOX2 deletion developed an activated CD11bhigh subset of AMs with epigenetic and transcriptional profiles reflecting immune activation compared with WT AMs. The presence of CD11bhigh AMs in CGD mice correlated with an increased number of alveolar neutrophils and proinflammatory cytokines at steady state and increased lung inflammation after insults. Moreover, deletion of NOX2 preferentially in macrophages was sufficient for mice to develop an activated CD11bhigh AM subset and accompanying proinflammatory sequelae. In addition, we showed that the altered resident macrophage transcriptional profile in the absence of NOX2 is tissue specific, as those changes were not seen in resident peritoneal macrophages. Thus, these data demonstrate that the absence of NOX2 in alveolar macrophages leads to their proinflammatory remodeling and dysregulates alveolar homeostasis.
Collapse
|
28
|
Ceasrine AM, Bilbo SD. Dietary fat: a potent microglial influencer. Trends Endocrinol Metab 2022; 33:196-205. [PMID: 35078706 PMCID: PMC8881786 DOI: 10.1016/j.tem.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022]
Abstract
Poor nutrition, lack of exercise, and genetic predisposition all contribute to the growing epidemic of obesity. Overweight/obesity create an environment of chronic inflammation that leads to negative physiological and neurological outcomes, such as diabetes, cardiovascular disease, and anxiety/depression. While the whole body contributes to metabolic homeostasis, the neuroimmune system has recently emerged as a key regulator of metabolism. Microglia, the resident immune cells of the brain, respond both directly and indirectly to dietary fat, and the environment in which microglia develop contributes to their responsiveness later in life. Thus, high maternal weight during pregnancy may have consequences for microglial function in offspring. Here, we discuss the most recent findings on microglia signaling in overweight/obesity with a focus on perinatal programming.
Collapse
Affiliation(s)
- Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
29
|
Dai R, Xu W, Chen W, Cui L, Li L, Zhou J, Jin X, Wang Y, Wang L, Sun Y. Epigenetic modification of <i>Kiss1</i> gene expression in the AVPV is essential for female reproductive aging. Biosci Trends 2022; 16:346-358. [DOI: 10.5582/bst.2022.01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ruoxi Dai
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wen Xu
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Urology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Liyuan Cui
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Lisha Li
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jing Zhou
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Xueling Jin
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Wang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ling Wang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Sun
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|