1
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025. [PMID: 39746035 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
2
|
Cruz-Pulido YE, LoMascolo NJ, May D, Hatahet J, Thomas CE, Chu AKW, Stacey SP, Villanueva Guzman MDM, Aubert G, Mounce BC. Polyamines mediate cellular energetics and lipid metabolism through mitochondrial respiration to facilitate virus replication. PLoS Pathog 2024; 20:e1012711. [PMID: 39556649 DOI: 10.1371/journal.ppat.1012711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
Polyamines are critical cellular components that regulate a variety of processes, including translation, cell cycling, and nucleic acid metabolism. The polyamines, putrescine, spermidine, and spermine, are found abundantly within cells and are positively-charged at physiological pH. Polyamine metabolism is connected to distinct other metabolic pathways, including nucleotide and amino acid metabolism. However, the breadth of the effect of polyamines on cellular metabolism remains to be fully understood. We recently demonstrated a role for polyamines in cholesterol metabolism, and following these studies, we measured the impact of polyamines on global lipid metabolism. We find that lipid droplets increase in number and size with polyamine depletion. We further demonstrate that lipid anabolism is markedly decreased, and lipid accumulation is due to reduced mitochondrial fatty acid oxidation. In fact, mitochondrial structure and function are largely ablated with polyamine depletion. To compensate, cells depleted of polyamines switch from aerobic respiration to glycolysis in a polyamine depletion-mediated Warburg-like effect. Finally, we show that inhibitors of lipid metabolism are broadly antiviral, suggesting that polyamines and lipids are promising antiviral targets. Together, these data demonstrate a novel role for polyamines in mitochondrial function, lipid metabolism, and cellular energetics.
Collapse
Affiliation(s)
- Yazmin E Cruz-Pulido
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Natalie J LoMascolo
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Delaina May
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Jomana Hatahet
- Department of Cellular and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Caroline E Thomas
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Andrea K W Chu
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Samantha P Stacey
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Maria Del Mar Villanueva Guzman
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
- Infectious Disease and Immunology Research Institute, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Gregory Aubert
- Division of Cardiology, Department of Internal Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Bryan C Mounce
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
- Infectious Disease and Immunology Research Institute, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
3
|
Li P, Bågenholm V, Hägglund P, Lindkvist-Petersson K, Wang K, Gourdon P. The structure and function of P5A-ATPases. Nat Commun 2024; 15:9605. [PMID: 39505844 PMCID: PMC11541931 DOI: 10.1038/s41467-024-53757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Endoplasmic reticulum (ER) membrane resident P5A-ATPases broadly affect protein biogenesis and quality control, and yet their molecular function remains debated. Here, we report cryo-EM structures of a P5A-ATPase, CtSpf1, covering multiple transport intermediates of the E1 → E1-ATP → E1P-ADP → E1P → E2P → E2.Pi → E2 → E1 cycle. In the E2P and E2.Pi states a cleft spans the entire membrane, holding a polypeptide cargo molecule. The cargo includes an ER luminal extension, pinpointed as the C-terminus in the E2.Pi state, which reenters the membrane in E2P. The E1 structure harbors a cytosol-facing cavity that is blocked by an insertion we refer to as the Plug-domain. The Plug-domain is nestled to key ATPase features and is displaced in the E1P-ADP and E1P states. Collectively, our findings are compatible with a broad range of proteins as cargo, with the P5A-ATPases serving a role in membrane removal of helices, although insertion/secretion cannot be excluded, as well as with a mechanistic role of the Plug-domain.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
| | - Viktoria Bågenholm
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | | | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
4
|
Saeki K, Ikari K, Ohira SI, Toda K. Measurement of atmospheric amines and aminoamides by column adsorption/extraction and hydrophilic liquid chromatography-electrospray-tandem mass spectrometry. ANAL SCI 2024; 40:1907-1918. [PMID: 38967710 DOI: 10.1007/s44211-024-00626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Sampling and chromatography-mass spectrometry methods were investigated to measure atmospheric amines and aminoamides. Amines and their amide derivatives play significant roles in new particle formation (NPF) in the atmosphere, especially diamines and aminoamides have higher NPF potentials compared to monoamines. For amine sampling, silica gel tube collection and formic acid extraction gave good overall recoveries (>93 ± 8%) for mono-, di-, tri-, tetramines, and aminoamides. Two chromatography methods were subjected to analyze the extracted amines. One involved direct analysis using hydrophilic interaction liquid chromatography with carboxyl or diol group functioned separation column (carboxyl-HILIC or diol-HILIC), and the other utilized derivatization with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) and subsequent reversed-phase chromatography (HPLC). Separated amines were detected by electrospray ionization and tandem mass spectrometry in both cases. DBD-F-HPLC method provided good sensitivity for mono- and all polyamines (limit of detection (LOD) < 4.6 nM, relative standard deviation (RSD) for 100 nM < 9.2%). However, aminoamides could not be detected by DBD-F-HPLC. Carboxyl-HILIC provided good sensitivities for mono- and diamines and aminoamides (LOD < 1.6 nM, RSD < 4.8%). Forest air measurement was performed and data obtained by carboxyl-HILIC and DBD-F-HPLC showed good agreement for 1,3-diaminopropane, 1,4-diaminobutane (putrescine) and 1,5-diaminopentane (cadaverine) (R2 = 0.9215-0.9739, n = 7-14). Carboxyl-HILIC method was the best for the amine analysis, and combination with silica gel tube sampling provides atmospheric monitoring available. The developed method can be used not only to study atmospheric chemistry of diamines and aminoamides but also to analyze flavor/odor of foods, flowers and wastes.
Collapse
Affiliation(s)
- Kentaro Saeki
- Department of Chemistry, University of the Ryukyus, 1 Senbaru, Okinawa, 903-0213, Japan.
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan.
| | - Kazuya Ikari
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Shin-Ichi Ohira
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Kei Toda
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan.
| |
Collapse
|
5
|
Qiao Z, Do PH, Yeo JY, Ero R, Li Z, Zhan L, Basak S, Gao YG. Structural insights into polyamine spermidine uptake by the ABC transporter PotD-PotABC. SCIENCE ADVANCES 2024; 10:eado8107. [PMID: 39303029 DOI: 10.1126/sciadv.ado8107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
Polyamines, characterized by their polycationic nature, are ubiquitously present in all organisms and play numerous cellular functions. Among polyamines, spermidine stands out as the predominant type in both prokaryotic and eukaryotic cells. The PotD-PotABC protein complex in Escherichia coli, belonging to the adenosine triphosphate-binding cassette transporter family, is a spermidine-preferential uptake system. Here, we report structural details of the polyamine uptake system PotD-PotABC in various states. Our analyses reveal distinct "inward-facing" and "outward-facing" conformations of the PotD-PotABC transporter, as well as conformational changes in the "gating" residues (F222, Y223, D226, and K241 in PotB; Y219 and K223 in PotC) controlling spermidine uptake. Therefore, our structural analysis provides insights into how the PotD-PotABC importer recognizes the substrate-binding protein PotD and elucidates molecular insights into the spermidine uptake mechanism of bacteria.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Phong Hoa Do
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Joshua Yi Yeo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Rya Ero
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Zhuowen Li
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sandip Basak
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
6
|
Schibalski RS, Shulha AS, Tsao BP, Palygin O, Ilatovskaya DV. The role of polyamine metabolism in cellular function and physiology. Am J Physiol Cell Physiol 2024; 327:C341-C356. [PMID: 38881422 PMCID: PMC11427016 DOI: 10.1152/ajpcell.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Polyamines are molecules with multiple amino groups that are essential for cellular function. The major polyamines are putrescine, spermidine, spermine, and cadaverine. Polyamines are important for posttranscriptional regulation, autophagy, programmed cell death, proliferation, redox homeostasis, and ion channel function. Their levels are tightly controlled. High levels of polyamines are associated with proliferative pathologies such as cancer, whereas low polyamine levels are observed in aging, and elevated polyamine turnover enhances oxidative stress. Polyamine metabolism is implicated in several pathophysiological processes in the nervous, immune, and cardiovascular systems. Currently, manipulating polyamine levels is under investigation as a potential preventive treatment for several pathologies, including aging, ischemia/reperfusion injury, pulmonary hypertension, and cancer. Although polyamines have been implicated in many intracellular mechanisms, our understanding of these processes remains incomplete and is a topic of ongoing investigation. Here, we discuss the regulation and cellular functions of polyamines, their role in physiology and pathology, and emphasize the current gaps in knowledge and potential future research directions.
Collapse
Affiliation(s)
- Ryan S Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Anastasia S Shulha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Betty P Tsao
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
7
|
Sikora J, Dovero S, Kinet R, Arotcarena ML, Bohic S, Bezard E, Fernagut PO, Dehay B. Nigral ATP13A2 depletion induces Parkinson's disease-related neurodegeneration in a pilot study in non-human primates. NPJ Parkinsons Dis 2024; 10:141. [PMID: 39090150 PMCID: PMC11294619 DOI: 10.1038/s41531-024-00757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Lysosomal impairment is strongly implicated in Parkinson's disease (PD). Among the several PD-linked genes, the ATP13A2 gene, associated with the PARK9 locus, encodes a transmembrane lysosomal P5-type ATPase. Mutations in the ATP13A2 gene were primarily identified as the cause of Kufor-Rakeb syndrome (KRS), a juvenile-onset form of PD. Subsequently, an increasing list of several mutations has been described. These mutations result in truncation of the ATP13A2 protein, leading to a loss of function but surprisingly causing heterogeneity and variability in the clinical symptoms associated with different brain pathologies. In vitro studies show that its loss compromises lysosomal function, contributing to cell death. To understand the role of ATP13A2 dysfunction in disease, we disrupted its expression through a viral vector-based approach in nonhuman primates. Here, in this pilot study, we injected bilaterally into the substantia nigra of macaques, a lentiviral vector expressing an ATP13A2 small hairpin RNA. Animals were terminated five months later, and brains were harvested and compared with historical non-injected control brains to evaluate cerebral pathological markers known to be affected in KRS and PD. We characterised the pattern of dopaminergic loss in the striatum and the substantia nigra, the regional distribution of α-synuclein immunoreactivity in several brain structures, and its pathological status (i.e., S129 phosphorylation), the accumulation of heavy metals in nigral sections and occurrence of lysosomal dysfunction. This proof-of-concept experiment highlights the potential value of lentivirus-mediated ATP13A2 silencing to induce significant and ongoing degeneration in the nigrostriatal pathway, α-synuclein pathology, and iron accumulation in nonhuman primates.
Collapse
Affiliation(s)
- Joanna Sikora
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
- Univ. De Poitiers, INSERM, LNEC, Poitiers, France
| | | | - Rémi Kinet
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
| | | | - Sylvain Bohic
- Univ. Grenoble Alpes, Synchrotron Radiation for Biomedicine (STROBE), Grenoble, France
| | | | | | | |
Collapse
|
8
|
Erb ML, Sipple K, Levine N, Chen X, Moore DJ. Adult-onset deletion of ATP13A2 in mice induces progressive nigrostriatal pathway dopaminergic degeneration and lysosomal abnormalities. NPJ Parkinsons Dis 2024; 10:133. [PMID: 39030200 PMCID: PMC11271504 DOI: 10.1038/s41531-024-00748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
Although most cases of Parkinson's disease (PD) are sporadic, mutations in over 20 genes are known to cause heritable forms of the disease. Recessive loss-of-function mutations in ATP13A2, a lysosomal transmembrane P5B-type ATPase and polyamine exporter, can cause early-onset familial PD. Familial ATP13A2 mutations are also linked to related neurodegenerative diseases, including Kufor-Rakeb syndrome, hereditary spastic paraplegias, neuronal ceroid lipofuscinosis, and amyotrophic lateral sclerosis. Despite the severe effects of ATP13A2 mutations in humans, ATP13A2 knockout (KO) mice fail to exhibit neurodegeneration even at advanced ages, making it challenging to study the neuropathological effects of ATP13A2 loss in vivo. Germline deletion of ATP13A2 in rodents may trigger the upregulation of compensatory pathways during embryonic development that mask the full neurotoxic effects of ATP13A2 loss in the brain. To explore this idea, we selectively deleted ATP13A2 in the adult mouse brain by the unilateral delivery of an AAV-Cre vector into the substantia nigra of young adult mice carrying conditional loxP-flanked ATP13A2 KO alleles. We observe a progressive loss of striatal dopaminergic nerve terminals at 3 and 10 months after AAV-Cre delivery. Cre-injected mice also exhibit robust dopaminergic neuronal degeneration in the substantia nigra at 10 months. Adult-onset ATP13A2 KO also recreates many of the phenotypes observed in aged germline ATP13A2 KO mice, including lysosomal abnormalities, p62-positive inclusions, and neuroinflammation. Our study demonstrates that the adult-onset homozygous deletion of ATP13A2 in the nigrostriatal pathway produces robust and progressive dopaminergic neurodegeneration that serves as a useful in vivo model of ATP13A2-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Madalynn L Erb
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kayla Sipple
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Nathan Levine
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Xi Chen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
9
|
Zhao M, Yan X, Wang L, Yin F. Cervical Dystonia Caused by Variant of ATP13A2 Responsive to Subthalamic Deep Brain Stimulation. Mov Disord 2024; 39:1074-1076. [PMID: 38586886 DOI: 10.1002/mds.29759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 04/09/2024] Open
Affiliation(s)
- Mingming Zhao
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Xin Yan
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Lin Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Yin
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
10
|
Croucher KM, Fleming SM. ATP13A2 (PARK9) and basal ganglia function. Front Neurol 2024; 14:1252400. [PMID: 38249738 PMCID: PMC10796451 DOI: 10.3389/fneur.2023.1252400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
ATP13A2 is a lysosomal protein involved in polyamine transport with loss of function mutations associated with multiple neurodegenerative conditions. These include early onset Parkinson's disease, Kufor-Rakeb Syndrome, neuronal ceroid lipofuscinosis, hereditary spastic paraplegia, and amyotrophic lateral sclerosis. While ATP13A2 mutations may result in clinical heterogeneity, the basal ganglia appear to be impacted in the majority of cases. The basal ganglia is particularly vulnerable to environmental exposures such as heavy metals, pesticides, and industrial agents which are also established risk factors for many neurodegenerative conditions. Not surprisingly then, impaired function of ATP13A2 has been linked to heavy metal toxicity including manganese, iron, and zinc. This review discusses the role of ATP13A2 in basal ganglia function and dysfunction, potential common pathological mechanisms in ATP13A2-related disorders, and how gene x environment interactions may contribute to basal ganglia dysfunction.
Collapse
Affiliation(s)
- Kristina M. Croucher
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
- Biomedical Sciences Graduate Program, Kent State University, Kent, OH, United States
| | - Sheila M. Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
11
|
Dieudonné T, Kümmerer F, Laursen MJ, Stock C, Flygaard RK, Khalid S, Lenoir G, Lyons JA, Lindorff-Larsen K, Nissen P. Activation and substrate specificity of the human P4-ATPase ATP8B1. Nat Commun 2023; 14:7492. [PMID: 37980352 PMCID: PMC10657443 DOI: 10.1038/s41467-023-42828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/23/2023] [Indexed: 11/20/2023] Open
Abstract
Asymmetric distribution of phospholipids in eukaryotic membranes is essential for cell integrity, signaling pathways, and vesicular trafficking. P4-ATPases, also known as flippases, participate in creating and maintaining this asymmetry through active transport of phospholipids from the exoplasmic to the cytosolic leaflet. Here, we present a total of nine cryo-electron microscopy structures of the human flippase ATP8B1-CDC50A complex at 2.4 to 3.1 Å overall resolution, along with functional and computational studies, addressing the autophosphorylation steps from ATP, substrate recognition and occlusion, as well as a phosphoinositide binding site. We find that the P4-ATPase transport site is occupied by water upon phosphorylation from ATP. Additionally, we identify two different autoinhibited states, a closed and an outward-open conformation. Furthermore, we identify and characterize the PI(3,4,5)P3 binding site of ATP8B1 in an electropositive pocket between transmembrane segments 5, 7, 8, and 10. Our study also highlights the structural basis of a broad lipid specificity of ATP8B1 and adds phosphatidylinositol as a transport substrate for ATP8B1. We report a critical role of the sn-2 ester bond of glycerophospholipids in substrate recognition by ATP8B1 through conserved S403. These findings provide fundamental insights into ATP8B1 catalytic cycle and regulation, and substrate recognition in P4-ATPases.
Collapse
Affiliation(s)
- Thibaud Dieudonné
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Felix Kümmerer
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michelle Juknaviciute Laursen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Charlott Stock
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rasmus Kock Flygaard
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Joseph A Lyons
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO) Aarhus University, Aarhus, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
12
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
13
|
Valko A, Fracchiolla D. "Autophagic landscapes: on the paradox of survival through self-degradation" - a science-inspired exhibition. Autophagy 2023; 19:2601-2606. [PMID: 37191317 PMCID: PMC10392750 DOI: 10.1080/15548627.2023.2214031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
The Complexity Science Hub Vienna is hosting an autophagy-based art exhibition that shows the artwork by Ayelen Valko and Dorotea Fracchiolla, two artists who are also scientists engaged in autophagy research. This exhibition, called "Autophagic landscapes: on the paradox of survival through self-degradation"-which will be open to the general public from January to May 2023-proposes a visual journey from entire organisms toward the interior of a single cell. The core ideas represented in the exhibited artworks are the molecular mechanisms and vesicular dynamics of autophagy-two phenomena that have been feeding the imagination of the two artists, inspiring the creation of art that depicts intriguing subcellular landscapes. Although the microscale bears very valuable aesthetic features, it is not a common subject in art. Correcting this is the main aim of this exhibition and of the two artists.
Collapse
|
14
|
van Veen S, Kourti A, Ausloos E, Van Asselberghs J, Van den Haute C, Baekelandt V, Eggermont J, Vangheluwe P. ATP13A4 Upregulation Drives the Elevated Polyamine Transport System in the Breast Cancer Cell Line MCF7. Biomolecules 2023; 13:918. [PMID: 37371498 DOI: 10.3390/biom13060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Polyamine homeostasis is disturbed in several human diseases, including cancer, which is hallmarked by increased intracellular polyamine levels and an upregulated polyamine transport system (PTS). Thus far, the polyamine transporters contributing to the elevated levels of polyamines in cancer cells have not yet been described, despite the fact that polyamine transport inhibitors are considered for cancer therapy. Here, we tested whether the upregulation of candidate polyamine transporters of the P5B transport ATPase family is responsible for the increased PTS in the well-studied breast cancer cell line MCF7 compared to the non-tumorigenic epithelial breast cell line MCF10A. We found that MCF7 cells presented elevated expression of a previously uncharacterized P5B-ATPase, ATP13A4, which was responsible for the elevated polyamine uptake activity. Furthermore, MCF7 cells were more sensitive to polyamine cytotoxicity, as demonstrated by cell viability, cell death and clonogenic assays. Importantly, the overexpression of ATP13A4 WT in MCF10A cells induced a MCF7 polyamine phenotype, with significantly higher uptake of BODIPY-labeled polyamines and increased sensitivity to polyamine toxicity. In conclusion, we established ATP13A4 as a new polyamine transporter in the human PTS and showed that ATP13A4 may play a major role in the increased polyamine uptake of breast cancer cells. ATP13A4 therefore emerges as a candidate therapeutic target for anticancer drugs that block the PTS.
Collapse
Affiliation(s)
- Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Antria Kourti
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Elke Ausloos
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Joris Van Asselberghs
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Fujii T, Nagamori S, Wiriyasermkul P, Zheng S, Yago A, Shimizu T, Tabuchi Y, Okumura T, Fujii T, Takeshima H, Sakai H. Parkinson's disease-associated ATP13A2/PARK9 functions as a lysosomal H +,K +-ATPase. Nat Commun 2023; 14:2174. [PMID: 37080960 PMCID: PMC10119128 DOI: 10.1038/s41467-023-37815-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Mutations in the human ATP13A2 (PARK9), a lysosomal ATPase, cause Kufor-Rakeb Syndrome, an early-onset form of Parkinson's disease (PD). Here, we demonstrate that ATP13A2 functions as a lysosomal H+,K+-ATPase. The K+-dependent ATPase activity and the lysosomal K+-transport activity of ATP13A2 are inhibited by an inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase, thapsigargin, and K+-competitive inhibitors of gastric H+,K+-ATPase, such as vonoprazan and SCH28080. Interestingly, these H+,K+-ATPase inhibitors cause lysosomal alkalinization and α-synuclein accumulation, which are pathological hallmarks of PD. Furthermore, PD-associated mutants of ATP13A2 show abnormal expression and function. Our results suggest that the H+/K+-transporting function of ATP13A2 contributes to acidification and α-synuclein degradation in lysosomes.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Shushi Nagamori
- Center for SI Medical Research and Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Pattama Wiriyasermkul
- Center for SI Medical Research and Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Shizhou Zheng
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Asaka Yago
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
16
|
Mu J, Xue C, Fu L, Yu Z, Nie M, Wu M, Chen X, Liu K, Bu R, Huang Y, Yang B, Han J, Jiang Q, Chan KC, Zhou R, Li H, Huang A, Wang Y, Liu Z. Conformational cycle of human polyamine transporter ATP13A2. Nat Commun 2023; 14:1978. [PMID: 37031211 PMCID: PMC10082790 DOI: 10.1038/s41467-023-37741-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Dysregulation of polyamine homeostasis strongly associates with human diseases. ATP13A2, which is mutated in juvenile-onset Parkinson's disease and autosomal recessive spastic paraplegia 78, is a transporter with a critical role in balancing the polyamine concentration between the lysosome and the cytosol. Here, to better understand human ATP13A2-mediated polyamine transport, we use single-particle cryo-electron microscopy to solve high-resolution structures of human ATP13A2 in six intermediate states, including the putative E2 structure for the P5 subfamily of the P-type ATPases. These structures comprise a nearly complete conformational cycle spanning the polyamine transport process and capture multiple substrate binding sites distributed along the transmembrane regions, suggesting a potential polyamine transport pathway. Integration of high-resolution structures, biochemical assays, and molecular dynamics simulations allows us to obtain a better understanding of the structural basis of how hATP13A2 transports polyamines, providing a mechanistic framework for ATP13A2-related diseases.
Collapse
Affiliation(s)
- Jianqiang Mu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Chenyang Xue
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Lei Fu
- Shanghai Institute for Advanced Study, Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China
| | - Zongjun Yu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Minhan Nie
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, 510006, Guangzhou, China
| | - Mengqi Wu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Xinmeng Chen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Kun Liu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Ruiqian Bu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Ying Huang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Baisheng Yang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Jianming Han
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Qianru Jiang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Kevin C Chan
- Shanghai Institute for Advanced Study, Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China
| | - Ruhong Zhou
- Shanghai Institute for Advanced Study, Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, 510006, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, Guangdong, China
| | - Ancheng Huang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Yong Wang
- Shanghai Institute for Advanced Study, Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, 314400, Haining, China.
| | - Zhongmin Liu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Sim SI, Park E. P5-ATPases: Structure, substrate specificities, and transport mechanisms. Curr Opin Struct Biol 2023; 79:102531. [PMID: 36724561 DOI: 10.1016/j.sbi.2023.102531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 02/01/2023]
Abstract
P5A- and P5B- ATPases, or collectively P5-ATPases, are eukaryotic-specific ATP-dependent transporters that are important for the function of the endoplasmic reticulum (ER) and endo-/lysosomes. However, their substrate specificities had remained enigmatic for many years. Recent cryo-electron microscopy (cryo-EM) and biochemical studies of P5-ATPases have revealed their substrate specificities and transport mechanisms, which were found to be markedly different from other members of the P-type ATPase superfamily. The P5A-ATPase extracts mistargeted or mis-inserted transmembrane helices from the ER membrane for protein quality control, while the P5B-ATPases mediate export of polyamines from late endo-/lysosomes into the cytosol. In this review, we discuss the mechanisms of their substrate recognition and transport based on the cryo-EM structures of the yeast and human P5-ATPases. We highlight how structural diversification of the transmembrane domain has enabled the P5-ATPase subfamily to adapt for transport of atypical substrates.
Collapse
Affiliation(s)
- Sue Im Sim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Chen Z, Watanabe S, Hashida H, Inoue M, Daigaku Y, Kikkawa M, Inaba K. Cryo-EM structures of human SPCA1a reveal the mechanism of Ca 2+/Mn 2+ transport into the Golgi apparatus. SCIENCE ADVANCES 2023; 9:eadd9742. [PMID: 36867705 PMCID: PMC9984183 DOI: 10.1126/sciadv.add9742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/27/2023] [Indexed: 06/02/2023]
Abstract
Secretory pathway Ca2+/Mn2+ ATPase 1 (SPCA1) actively transports cytosolic Ca2+ and Mn2+ into the Golgi lumen, playing a crucial role in cellular calcium and manganese homeostasis. Detrimental mutations of the ATP2C1 gene encoding SPCA1 cause Hailey-Hailey disease. Here, using nanobody/megabody technologies, we determined cryo-electron microscopy structures of human SPCA1a in the ATP and Ca2+/Mn2+-bound (E1-ATP) state and the metal-free phosphorylated (E2P) state at 3.1- to 3.3-Å resolutions. The structures revealed that Ca2+ and Mn2+ share the same metal ion-binding pocket with similar but notably different coordination geometries in the transmembrane domain, corresponding to the second Ca2+-binding site in sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). In the E1-ATP to E2P transition, SPCA1a undergoes similar domain rearrangements to those of SERCA. Meanwhile, SPCA1a shows larger conformational and positional flexibility of the second and sixth transmembrane helices, possibly explaining its wider metal ion specificity. These structural findings illuminate the unique mechanisms of SPCA1a-mediated Ca2+/Mn2+ transport.
Collapse
Affiliation(s)
- Zhenghao Chen
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Hironori Hashida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Michio Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasukazu Daigaku
- Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan
| | - Masahide Kikkawa
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
19
|
Novel Green Fluorescent Polyamines to Analyze ATP13A2 and ATP13A3 Activity in the Mammalian Polyamine Transport System. Biomolecules 2023; 13:biom13020337. [PMID: 36830711 PMCID: PMC9953717 DOI: 10.3390/biom13020337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Cells acquire polyamines putrescine (PUT), spermidine (SPD) and spermine (SPM) via the complementary actions of polyamine uptake and synthesis pathways. The endosomal P5B-type ATPases ATP13A2 and ATP13A3 emerge as major determinants of mammalian polyamine uptake. Our biochemical evidence shows that fluorescently labeled polyamines are genuine substrates of ATP13A2. They can be used to measure polyamine uptake in ATP13A2- and ATP13A3-dependent cell models resembling radiolabeled polyamine uptake. We further report that ATP13A3 enables faster and stronger cellular polyamine uptake than does ATP13A2. We also compared the uptake of new green fluorescent PUT, SPD and SPM analogs using different coupling strategies (amide, triazole or isothiocyanate) and fluorophores (symmetrical BODIPY, BODIPY-FL and FITC). ATP13A2 promotes the uptake of various SPD and SPM analogs, whereas ATP13A3 mainly stimulates the uptake of PUT and SPD conjugates. However, the polyamine linker and coupling position on the fluorophore impacts the transport capacity, whereas replacing the fluorophore affects polyamine selectivity. The highest uptake in ATP13A2 or ATP13A3 cells is observed with BODIPY-FL-amide conjugated to SPD, whereas BODIPY-PUT analogs are specifically taken up via ATP13A3. We found that P5B-type ATPase isoforms transport fluorescently labeled polyamine analogs with a distinct structure-activity relationship (SAR), suggesting that isoform-specific polyamine probes can be designed.
Collapse
|
20
|
Multiple sub-state structures of SERCA2b reveal conformational overlap at transition steps during the catalytic cycle. Cell Rep 2022; 41:111760. [PMID: 36476867 DOI: 10.1016/j.celrep.2022.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/06/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) pumps Ca2+ into the endoplasmic reticulum (ER). Herein, we present cryo-electron microscopy (EM) structures of three intermediates of SERCA2b: Ca2+-bound phosphorylated (E1P·2Ca2+) and Ca2+-unbound dephosphorylated (E2·Pi) intermediates and another between the E2P and E2·Pi states. Our cryo-EM analysis demonstrates that the E1P·2Ca2+ state exists in low abundance and preferentially transitions to an E2P-like structure by releasing Ca2+ and that the Ca2+ release gate subsequently undergoes stepwise closure during the dephosphorylation processes. Importantly, each intermediate adopts multiple sub-state structures including those like the next one in the catalytic series, indicating conformational overlap at transition steps, as further substantiated by atomistic molecular dynamic simulations of SERCA2b in a lipid bilayer. The present findings provide insight into how enzymes accelerate catalytic cycles.
Collapse
|
21
|
Azfar M, van Veen S, Houdou M, Hamouda NN, Eggermont J, Vangheluwe P. P5B-ATPases in the mammalian polyamine transport system and their role in disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119354. [PMID: 36064065 DOI: 10.1016/j.bbamcr.2022.119354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Polyamines (PAs) are physiologically relevant molecules that are ubiquitous in all organisms. The vitality of PAs to the healthy functioning of a cell is due to their polycationic nature causing them to interact with a vast plethora of cellular players and partake in numerous cellular pathways. Naturally, the homeostasis of such essential molecules is tightly regulated in a strictly controlled interplay between intracellular synthesis and degradation, uptake from and secretion to the extracellular compartment, as well as intracellular trafficking. Not surprisingly, dysregulated PA homeostasis and signaling are implicated in multiple disorders, ranging from cancer to neurodegeneration; leading many to propose rectifying the PA balance as a potential therapeutic strategy. Despite being well characterized in bacteria, fungi and plants, the molecular identity and properties of the PA transporters in animals are poorly understood. This review brings together the current knowledge of the cellular function of the mammalian PA transport system (PTS). We will focus on the role of P5B-ATPases ATP13A2-5 which are PA transporters in the endosomal system that have emerged as key players in cellular PA uptake and organelle homeostasis. We will discuss recent breakthroughs on their biochemical and structural properties as well as their implications for disease and therapy.
Collapse
Affiliation(s)
- Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium
| | - Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium
| | - Marine Houdou
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium
| | - Norin Nabil Hamouda
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
22
|
Zhang Y, Inaba K. Structural basis of the conformational and functional regulation of human SERCA2b, the ubiquitous endoplasmic reticulum calcium pump. Bioessays 2022; 44:e2200052. [PMID: 35560336 DOI: 10.1002/bies.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Abstract
Sarco/endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b), a member of the SERCA family, is expressed ubiquitously and transports Ca2+ into the sarco/endoplasmic reticulum using the energy provided by ATP binding and hydrolysis. The crystal structure of SERCA2b in its Ca2+ - and ATP-bound (E1∙2Ca2+ -ATP) state and cryo-electron microscopy (cryo-EM) structures of the protein in its E1∙2Ca2+ -ATP and Ca2+ -unbound phosphorylated (E2P) states have provided essential insights into how the overall conformation and ATPase activity of SERCA2b is regulated by the transmembrane helix 11 and the subsequent luminal extension loop, both of which are specific to this isoform. More recently, our cryo-EM analysis has revealed that SERCA2b likely adopts open and closed conformations of the cytosolic domains in the Ca2+ -bound but ATP-free (E1∙2Ca2+ ) state, and that the closed conformation represents a state immediately prior to ATP binding. This review article summarizes the unique mechanisms underlying the conformational and functional regulation of SERCA2b.
Collapse
Affiliation(s)
- Yuxia Zhang
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan.,Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Japan
| |
Collapse
|