1
|
Gong X, He S, Cai P. Roles of TRIM21/Ro52 in connective tissue disease-associated interstitial lung diseases. Front Immunol 2024; 15:1435525. [PMID: 39165359 PMCID: PMC11333224 DOI: 10.3389/fimmu.2024.1435525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Multiple factors contribute to the development of connective tissue diseases (CTD), often alongside a range of interstitial lung diseases (ILD), including Sjögren's syndrome-associated ILD, systemic sclerosis-associated ILD, systemic lupus erythematosus-associated ILD, idiopathic inflammatory myositis-associated ILD. TRIM21(or Ro52), an E3 ubiquitin ligase, plays a vital role in managing innate and adaptive immunity, and maintaining cellular homeostasis, and is a focal target for autoantibodies in various rheumatic autoimmune diseases. However, the effectiveness of anti-TRIM21 antibodies in diagnosing CTD remains a matter of debate because of their non-specific nature. Recent studies indicate that TRIM21 and its autoantibody are involved in the pathogenesis of CTD-ILD and play an important role in diagnosis and prognosis. In this review, we focus on the contribution of TRIM21 in the pathogenesis of CTD-ILD, as well as the potential diagnostic value of its autoantibodies in different types of CTD-ILD for disease progression and potential as a novel therapeutic target.
Collapse
Affiliation(s)
| | | | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Nishihata SY, Shimizu T, Umeda M, Furukawa K, Ohyama K, Kawakami A, Nakamura H. The Toll-like Receptor 7-Mediated Ro52 Antigen-Presenting Pathway in the Salivary Gland Epithelial Cells of Sjögren's Syndrome. J Clin Med 2023; 12:4423. [PMID: 37445456 DOI: 10.3390/jcm12134423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE To investigate whether stimulation with toll-like receptor (TLR) 7 leads to pathways that proceed to tripartite motif-containing protein 21 (TRIM21) or Ro52/SS-A antigen presentation through major histocompatibility complex (MHC) class I in salivary gland epithelial cells (SGECs) from Sjögren's syndrome (SS) patients. DESIGN AND METHODS Cultured SGECs from SS patients were stimulated with TLR7 agonist, loxoribine, and interferon-β. Cell lysates immunoprecipitated by anti-MHC class I antibody were analyzed by Western blotting. The immunofluorescence of salivary gland tissue from SS and non-SS subjects and cultured TLR7-stimulated SGECs was examined. RESULTS Significantly increased MHC class I expression was observed in SS patients' ducts versus non-SS ducts; no significant difference was detected for ubiquitin. Upregulated MHC class I in the cell membrane and cytoplasm and augmented Ro52 expression were observed in SGECs stimulated with TLR7. The formation of peptide-loading complex (PLC), including tapasin, calreticulin, transporter associated with antigen processing 1, and endoplasmic reticulum-resident protein 57 in labial salivary glands (LSGs) from SS patients, was dominantly observed and colocalized with MHC class I, which was confirmed in TLR7-stimulated SGEC samples. CONCLUSION These findings suggest that the TLR7 stimulation of SS patients' SGECs advances the process toward the antigen presentation of TRIM21/Ro52-SS-A via MHC class I.
Collapse
Affiliation(s)
- Shin-Ya Nishihata
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kaori Furukawa
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Kaname Ohyama
- Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hideki Nakamura
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 113-8602, Japan
| |
Collapse
|
3
|
Hu F, Liu Y, Wang F, Fu X, Liu X, Zou Z, Zhou B. Prognostic and clinicopathological significance of TRIM21 in various cancers: A meta and bioinformatic analysis. Medicine (Baltimore) 2023; 102:e34012. [PMID: 37335642 DOI: 10.1097/md.0000000000034012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Tripartite motif-containing protein 21 (TRIM21), a member of the ubiquitin ligase family, makes a significant contribution to the ubiquitination of multiple tumor marker proteins associated with tumor cell proliferation, metastasis and selective apoptosis. As the research further develops, an increasing number of studies have manifested that the TRIM21 expression level can be considered an indicator of cancer prognosis. However, the interrelationship between TRIM21 and multiple forms of carcinogens has not been demonstrated in a meta-analysis. METHODS We performed a systematic literature retrieval in various electronic databases including PubMed, Embase, Web of Science, Wanfang and China National Knowledge Infrastructure. Besides, the hazard ratio (HR) and the pooled relative risk (RR) were integrated in the assessment of cancer incidence and cancer mortality by Stata SE15.1. Additionally, we used an online database based on The Cancer Genome Atlas (TCGA) to further validate our results. RESULTS A total of 17 studies were included, totaling 7239 participants. High expression of TRIM21 was significantly correlated with better OS (HR = 0.74; 95% CI: 0.57-0.91; P < .001) and progression-free survival (PFS) (HR = 0.66; 95% CI: 0.42-0.91; P < .001). We found that high TRIM21 expression predicted significant impact on clinical characteristics like decreased lymph node metastasis (RR = 1.12; 95% CI: 0.97-1.30; P < .001), tumor stage (RR = 1.06; 95% CI: 0.82-1.37; P < .001) and tumor grade (RR = 1.07; 95% CI: 0.56-2.05; P < .001). However, TRIM21 expression had no significant impact on other clinical characteristics such as age (RR = 1.06; 95% CI: 0.91-1.25; P = .068), sex (RR = 1.04; 95% CI: 0.95-1.12; P = .953), or tumor size (RR = 1.14; 95% CI: 0.97-1.33; P = .05). Based on the Gene Expression Profiling Interactive Analysis (GEPIA) online analysis tool, TRIM21 was significantly downregulated in 5 cancers while significantly upregulated in 2 cancers, and the descending expression of TRIM21 predicted shorter OS in 5 cancers, worse PFS in 2 malignancies, while the elevated expression of TRIM21 predicted shorter OS and worse PFS in 2 carcinomas. CONCLUSIONS TRIM21 could serve as a new biomarker for patients with solid malignancies and could be a potential therapeutic target for patients.
Collapse
Affiliation(s)
- Feng Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- The First School of Clinical Medicine of Nanchang University, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- The Second School of Clinical Medicine of Nanchang University, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Feiyang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- The First School of Clinical Medicine of Nanchang University, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xinyi Fu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- The First School of Clinical Medicine of Nanchang University, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiangjun Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhenhong Zou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Bin Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
4
|
Chan EKL. Anti-Ro52 Autoantibody Is Common in Systemic Autoimmune Rheumatic Diseases and Correlating with Worse Outcome when Associated with interstitial lung disease in Systemic Sclerosis and Autoimmune Myositis. Clin Rev Allergy Immunol 2022; 63:178-193. [PMID: 35040083 DOI: 10.1007/s12016-021-08911-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 01/13/2023]
Abstract
This review highlights the 30 plus years research progress since the discovery of autoantibody to Ro52/TRIM21 in patients with systemic lupus erythematosus (SLE) and Sjögren's syndrome (SjS). After the initial expression cloning of the Ro52 cDNA, it has taken many years to the current understanding in the interesting biological function of Ro52 as an E3 ubiquitin ligase and its role in innate immune clearance of intracellular IgG-bound complex. Early observations show that anti-Ro52, mostly associated with anti-SS-A/Ro60 and/or anti-SS-B/La, is commonly found in SLE (40-70%), SjS (70-90%), neonatal lupus erythematosus (NLE, 75-90%), and subacute cutaneous lupus erythematosus (50-60%). Anti-Ro52 has long been postulated to play a direct pathogenic role in congenital heart block in NLE as well as in the QT interval prolongation in some adults. The widespread availability of the anti-Ro52 assay has led to the detection of anti-Ro52 in other diseases including autoimmune hepatitis (20-40%), systemic sclerosis (10-30%), and autoimmune myositis (20-40%). More than ten studies have pointed to an association of anti-Ro52 with interstitial lung disease and, more importantly, correlating with poor outcome and worse survival. Other studies are implicating an interesting role for anti-Ro52 in the diagnosis of certain cancers. Future studies are needed to examine the mechanism in the pathogenesis of anti-Ro52 and carefully documenting its causal relationships in different disease conditions.
Collapse
Affiliation(s)
- Edward K L Chan
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL, 32610-0424, USA.
| |
Collapse
|
5
|
Ramos AF, Fernandes LA, Batista F, de Souza Vieira B, Thompson M, Mattos JJ, Marques MRF, de Lourdes Borba Magalhães M, da Silva GF. TRIM21 chimeric protein as a new molecular tool for multispecies IgG detection. J Genet Eng Biotechnol 2022; 20:111. [PMID: 35900674 PMCID: PMC9334459 DOI: 10.1186/s43141-022-00396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
Background The production of monoclonal antibodies for immunoglobulin detection is not cost-effective, while polyclonal antibody production depends on laboratory animals, raising concerns on animal welfare. The widespread use of immunoglobulins in the pharmaceutical industry and the increasing number and variety of new antibodies entering the market require new detection and purification strategies. The Tripartite motif-containing protein 21 is a soluble intracellular immunoglobulin G receptor that binds to the constant region of immunoglobulin G from various species with high affinity. We hypothesized that using this protein as an antibody-binding module to create immunoglobulin detection probes will improve the portfolio of antibody affinity ligands for diagnostic or therapeutic purposes. Results We created a chimeric protein containing a mutated form of the C-terminal domain of mouse Tripartite motif-containing protein 21 linked to streptavidin to detect immunoglobulin G from various species of mammals. The protein is produced by heterologous expression and consists of an improved molecular tool, expanding the portfolio of antibody-affinity ligands for immunoassays. We also demonstrate that this affinity ligand may be used for purification purposes since imidazole elution of antibodies can be achieved instead of acidic elution conditions of current antibody purification methods. Conclusion Data reported here provides an additional and superior alternative to the use of secondary antibodies, expanding the portfolio of antibodies affinity ligands for detection and purification purposes. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00396-3.
Collapse
Affiliation(s)
- Anelize Felicio Ramos
- Biochemistry Laboratory, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil
| | - Leonardo Antônio Fernandes
- Biochemistry Laboratory, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil
| | - Franciane Batista
- Biochemistry Laboratory, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil
| | | | - Mayerson Thompson
- Research and Development Department, Bioclin®, Belo Horizonte, MG, 31.565-130, Brazil
| | - Jacó Joaquim Mattos
- Biochemistry Laboratory, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | | | - Maria de Lourdes Borba Magalhães
- Biochemistry Laboratory, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil.
| | - Gustavo Felippe da Silva
- Biochemistry Laboratory, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil.
| |
Collapse
|
6
|
Kiss L, James LC. The molecular mechanisms that drive intracellular neutralization by the antibody-receptor and RING E3 ligase TRIM21. Semin Cell Dev Biol 2021; 126:99-107. [PMID: 34823983 DOI: 10.1016/j.semcdb.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
The cytosolic antibody receptor and RING E3 ligase TRIM21 targets intracellular, antibody-coated immune complexes for degradation and activates the immune system. Here we review how TRIM21 degrades diverse targets and how this activity can be exploited in molecular biology and for the development of new therapeutics. In addition, we compare what is known about TRIM21's mechanism to other TRIM proteins and RING E3 ligases.
Collapse
Affiliation(s)
- Leo Kiss
- MRC Laboratory of Molecular Biology, UK.
| | | |
Collapse
|
7
|
Virus neutralisation by intracellular antibodies. Semin Cell Dev Biol 2021; 126:108-116. [PMID: 34782185 DOI: 10.1016/j.semcdb.2021.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/22/2022]
Abstract
For decades antibodies were largely thought to provide protection in extracellular spaces alone, mediating their effector functions by mechanisms such as entry-blocking, complement activation and phagocyte recruitment. However, a wealth of research has shown that antibodies are also capable of neutralising numerous viruses inside cells. Efficacy has now been demonstrated at virtually all intracellular stages of the viral life cycle. Antibodies can neutralise viruses in endosomes by blocking uncoating, fusion mechanisms, or new particle egress. Neutralisation can also occur in the cytosol via recruitment of the intracellular antibody receptor TRIM21. In addition to these direct neutralisation effects, recent research has shown that antibodies can mediate virus control indirectly by promoting MHC class I presentation and thereby increasing the CD8 T cell response. This provides valuable new insight into how non-neutralising antibodies can mediate potent protection in vivo. Overall, the importance of understanding the mechanisms of intracellular neutralisation by antibodies is highlighted by the ongoing need to develop new methods to control viruses. Using or inducing antibodies to block virus replication inside cells is now an innovative approach used by several vaccination and therapeutic strategies.
Collapse
|
8
|
D'Amico F, Mukhopadhyay R, Ovaa H, Mulder MPC. Targeting TRIM Proteins: A Quest towards Drugging an Emerging Protein Class. Chembiochem 2021; 22:2011-2031. [PMID: 33482040 PMCID: PMC8251876 DOI: 10.1002/cbic.202000787] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Indexed: 02/06/2023]
Abstract
The ubiquitylation machinery regulates several fundamental biological processes from protein homeostasis to a wide variety of cellular signaling pathways. As a consequence, its dysregulation is linked to diseases including cancer, neurodegeneration, and autoimmunity. With this review, we aim to highlight the therapeutic potential of targeting E3 ligases, with a special focus on an emerging class of RING ligases, named tri-partite motif (TRIM) proteins, whose role as targets for drug development is currently gaining pharmaceutical attention. TRIM proteins exert their catalytic activity as scaffolds involved in many protein-protein interactions, whose multidomains and adapter-like nature make their druggability very challenging. Herein, we give an overview of the current understanding of this class of single polypeptide RING E3 ligases and discuss potential targeting options.
Collapse
Affiliation(s)
- Francesca D'Amico
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Rishov Mukhopadhyay
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Monique P. C. Mulder
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| |
Collapse
|
9
|
Transcriptional and Non-Transcriptional Activation, Posttranslational Modifications, and Antiviral Functions of Interferon Regulatory Factor 3 and Viral Antagonism by the SARS-Coronavirus. Viruses 2021; 13:v13040575. [PMID: 33805458 PMCID: PMC8066409 DOI: 10.3390/v13040575] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system defends against invading pathogens through the rapid activation of innate immune signaling pathways. Interferon regulatory factor 3 (IRF3) is a key transcription factor activated in response to virus infection and is largely responsible for establishing an antiviral state in the infected host. Studies in Irf3−/− mice have demonstrated the absence of IRF3 imparts a high degree of susceptibility to a wide range of viral infections. Virus infection causes the activation of IRF3 to transcribe type-I interferon (e.g., IFNβ), which is responsible for inducing the interferon-stimulated genes (ISGs), which act at specific stages to limit virus replication. In addition to its transcriptional function, IRF3 is also activated to trigger apoptosis of virus-infected cells, as a mechanism to restrict virus spread within the host, in a pathway called RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA). These dual functions of IRF3 work in concert to mediate protective immunity against virus infection. These two pathways are activated differentially by the posttranslational modifications (PTMs) of IRF3. Moreover, PTMs regulate not only IRF3 activation and function, but also protein stability. Consequently, many viruses utilize viral proteins or hijack cellular enzymes to inhibit IRF3 functions. This review will describe the PTMs that regulate IRF3′s RIPA and transcriptional activities and use coronavirus as a model virus capable of antagonizing IRF3-mediated innate immune responses. A thorough understanding of the cellular control of IRF3 and the mechanisms that viruses use to subvert this system is critical for developing novel therapies for virus-induced pathologies.
Collapse
|
10
|
Morita H, Shimizu Y, Nakamura Y, Okutomi H, Watanabe T, Yokoyama T, Soda S, Ikeda N, Shiobara T, Miyoshi M, Chibana K, Takemasa A, Kurasawa K. Auto-antibody evaluation in idiopathic interstitial pneumonia and worse survival of patients with Ro52/TRIM21auto-antibody. J Clin Biochem Nutr 2020; 67:199-205. [PMID: 33041518 PMCID: PMC7533866 DOI: 10.3164/jcbn.20-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022] Open
Abstract
Some patients with interstitial pneumonia (IP) have auto-antibodies, but do not fit the criteria for specific connective tissue diseases. Examination of auto-antibodies is recommended for diagnosis idiopathic pulmonary fibrosis. A prospective cohort study was performed in 285 patients with IP. Eleven auto-antibodies were assessed and patients were followed for 2 years. All 285 patients underwent the myositis panel test (MPT) for 11 auto-antibodies. Among them, 23.5% (67/285) of the patients had a positive MPT and 14.7% (42/285) had connective tissue diseases. Among the 49 MPT positive patients without connective tissue diseases, 29 patients (59.2%) were positive for Ro52, including 17 patients with Ro52 mono-positivity. Among interstitial pneumonia patients without connective tissue diseases, the Ro52 mono-positive patients showed worse at 2-years survival than those who were Ro52 negative (p = 0.022, HR = 5.88, 95% CI 1.29–26.75). Most of the Ro52 positive patients also showed a low titer of anti-nucleolar antibody. About 20% of IP patients had auto-antibodies detectable by the MPT, and Ro52 positive patients accounted for more than half of the MPT positive patients without connective tissue diseases. Detection of Ro52 auto-antibodies may be useful for assessing the risk of progression in idiopathic interstitial pneumonia patients without connective tissue diseases and a low anti-nucleolar antibody titer.
Collapse
Affiliation(s)
- Hiroko Morita
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Hiroaki Okutomi
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Taiji Watanabe
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Tatsuya Yokoyama
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Sayo Soda
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Naoya Ikeda
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Taichi Shiobara
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Masaaki Miyoshi
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Kazuyuki Chibana
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Akihiro Takemasa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Kazuhiro Kurasawa
- Department of Rheumatology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
11
|
Qin F, Wang X, Yan G, Gao M, Zhang X. A new strategy of studying protein-protein interactions: Integrated strong anion exchange/reversed-phase chromatography/immunoprecipitation coupled with mass spectrometry for large-scale identification of proteins interact with immunoglobulin G in HeLa cells. J Sep Sci 2020; 43:3913-3920. [PMID: 32835449 DOI: 10.1002/jssc.202000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 11/07/2022]
Abstract
Recently, significant research efforts have been devoted to the development of technology for large-scale analysis of protein-protein interactions. Herein, a comprehensive method by coupling the first-dimension strong anion exchange chromatography with the second-dimension reversed-phase liquid chromatography via immunoprecipitation technique and high-resolution mass spectrometry analysis was developed for analyzing protein-protein interactions. After two-dimensional liquid chromatography separation, 108 fractions were obtained in one experiment. Immunoglobulin G from human serum was used as a model of an interacting protein. As a result, 919 proteins in these fractions were identified to interact with immunoglobulin G. By searching STRING database and data analysis, 27 of 919 proteins were inferred to directly interact with immunoglobulin G. Moreover, important target proteins that interacted with immunoglobulin G were mapped in the two-dimensional liquid chromatography system, which facilitated selection of these proteins from specific fractions. These results demonstrated that the proposed method can be useful for large-scale investigation of protein-protein interactions and as an advanced tool for the isolation of target proteins.
Collapse
Affiliation(s)
- Feng Qin
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.,NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, P. R. China
| | - Xuantang Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Guoquan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
12
|
Gkoutzourelas A, Liaskos C, Simopoulou T, Katsiari C, Efthymiou G, Scheper T, Meyer W, Tsirogianni A, Tsigalou C, Dardiotis E, Daoussis D, Sakkas LI, Bogdanos DP. A study of antigen-specific anti-cytomegalovirus antibody reactivity in patients with systemic sclerosis and concomitant anti-Ro52 antibodies. Rheumatol Int 2020; 40:1689-1699. [DOI: 10.1007/s00296-020-04643-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
|
13
|
Severe Fever with Thrombocytopenia Syndrome Virus NSs Interacts with TRIM21 To Activate the p62-Keap1-Nrf2 Pathway. J Virol 2020; 94:JVI.01684-19. [PMID: 31852783 DOI: 10.1128/jvi.01684-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) dissociates from its inhibitor, Keap1, upon stress signals and subsequently induces an antioxidant response that critically controls the viral life cycle and pathogenesis. Besides intracellular Fc receptor function, tripartite motif 21 (TRIM21) E3 ligase plays an essential role in the p62-Keap1-Nrf2 axis pathway for redox homeostasis. Specifically, TRIM21-mediated p62 ubiquitination abrogates p62 oligomerization and sequestration activity and negatively regulates the Keap1-Nrf2-mediated antioxidant response. A number of viruses target the Nrf2-mediated antioxidant response to generate an optimal environment for their life cycle. Here we report that a nonstructural protein (NSs) of severe fever with thrombocytopenia syndrome virus (SFTSV) interacts with and inhibits TRIM21 to activate the Nrf2 antioxidant signal pathway. Mass spectrometry identified TRIM21 to be a binding protein for NSs. NSs bound to the carboxyl-terminal SPRY subdomain of TRIM21, enhancing p62 stability and oligomerization. This facilitated p62-mediated Keap1 sequestration and ultimately increased Nrf2-mediated transcriptional activation of antioxidant genes, including those for heme oxygenase 1, NAD(P)H quinone oxidoreductase 1, and CD36. Mutational analysis found that the NSs-A46 mutant, which no longer interacted with TRIM21, was unable to increase Nrf2-mediated transcriptional activation. Functionally, the NS wild type (WT), but not the NSs-A46 mutant, increased the surface expression of the CD36 scavenger receptor, resulting in an increase in phagocytosis and lipid uptake. A combination of reverse genetics and assays with Ifnar -/- mouse models revealed that while the SFTSV-A46 mutant replicated similarly to wild-type SFTSV (SFTSV-WT), it showed weaker pathogenic activity than SFTSV-WT. These data suggest that the activation of the p62-Keap1-Nrf2 antioxidant response induced by the NSs-TRIM21 interaction contributes to the development of an optimal environment for the SFTSV life cycle and efficient pathogenesis.IMPORTANCE Tick-borne diseases have become a growing threat to public health. SFTSV, listed by the World Health Organization as a prioritized pathogen, is an emerging phlebovirus, and fatality rates among those infected with this virus are high. Infected Haemaphysalis longicornis ticks are the major source of human SFTSV infection. In particular, the recent spread of this tick to over 12 states in the United States has increased the potential for outbreaks of this disease beyond Far East Asia. Due to the lack of therapies and vaccines against SFTSV infection, there is a pressing need to understand SFTSV pathogenesis. As the Nrf2-mediated antioxidant response affects viral life cycles, a number of viruses deregulate Nrf2 pathways. Here we demonstrate that the SFTSV NSs inhibits the TRIM21 function to upregulate the p62-Keap1-Nrf2 antioxidant pathway for efficient viral pathogenesis. This study not only demonstrates the critical role of SFTSV NSs in viral pathogenesis but also suggests potential future therapeutic approaches to treat SFTSV-infected patients.
Collapse
|
14
|
Li Z, Huan C, Wang H, Liu Y, Liu X, Su X, Yu J, Zhao Z, Yu XF, Zheng B, Zhang W. TRIM21-mediated proteasomal degradation of SAMHD1 regulates its antiviral activity. EMBO Rep 2020; 21:e47528. [PMID: 31797533 PMCID: PMC6944907 DOI: 10.15252/embr.201847528] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/09/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
SAMHD1 possesses multiple functions, but whether cellular factors regulate SAMHD1 expression or its function remains not well characterized. Here, by investigating why cultured RD and HEK293T cells show different sensitivity to enterovirus 71 (EV71) infection, we demonstrate that SAMHD1 is a restriction factor for EV71. Importantly, we identify TRIM21, an E3 ubiquitin ligase, as a key regulator of SAMHD1, which specifically interacts and degrades SAMHD1 through the proteasomal pathway. However, TRIM21 has no effect on EV71 replication itself. Moreover, we prove that interferon production stimulated by EV71 infection induces increased TRIM21 and SAMHD1 expression, whereas increasing TRIM21 overrides SAMHD1 inhibition of EV71 in cells and in a neonatal mouse model. TRIM21-mediated degradation of SAMHD1 also affects SAMHD1-dependent restriction of HIV-1 and the regulation of interferon production. We further identify the functional domains in TRIM21 required for SAMHD1 binding and the ubiquitination site K622 in SAMHD1 and show that phosphorylation of SAMHD1 at T592 also blocks EV71 restriction. Our findings illuminate how EV71 overcomes SAMHD1 inhibition via the upregulation of TRIM21.
Collapse
Affiliation(s)
- Zhaolong Li
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Chen Huan
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Hong Wang
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Yue Liu
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Xin Liu
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Xing Su
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Jinghua Yu
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Zhilei Zhao
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Xiao-Fang Yu
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Baisong Zheng
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Wenyan Zhang
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| |
Collapse
|
15
|
Ehrlichia chaffeensis Outer Membrane Protein 1-Specific Human Antibody-Mediated Immunity Is Defined by Intracellular TRIM21-Dependent Innate Immune Activation and Extracellular Neutralization. Infect Immun 2019; 87:IAI.00383-19. [PMID: 31548319 PMCID: PMC6867850 DOI: 10.1128/iai.00383-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Antibodies are essential for immunity against Ehrlichia chaffeensis, and protective mechanisms involve blocking of ehrlichial attachment or complement and Fcγ-receptor-dependent destruction. In this study, we determined that major outer membrane protein 1 (OMP-19) hypervariable region 1 (HVR1)-specific human monoclonal antibodies (huMAbs) are protective through conventional extracellular neutralization and, more significantly, through a novel intracellular TRIM21-mediated mechanism. Antibodies are essential for immunity against Ehrlichia chaffeensis, and protective mechanisms involve blocking of ehrlichial attachment or complement and Fcγ-receptor-dependent destruction. In this study, we determined that major outer membrane protein 1 (OMP-19) hypervariable region 1 (HVR1)-specific human monoclonal antibodies (huMAbs) are protective through conventional extracellular neutralization and, more significantly, through a novel intracellular TRIM21-mediated mechanism. Addition of OMP-1-specific huMAb EHRL-15 (IgG1) prevented infection by blocking attachment/entry, a mechanism previously reported; conversely, OMP-1-specific huMAb EHRL-4 (IgG3) engaged intracellular TRIM21 and initiated an immediate innate immune response and rapid intracellular degradation of ehrlichiae. EHRL-4-TRIM21-mediated inhibition was significantly impaired in TRIM21 knockout THP-1 cells. EHRL-4 interacted with cytosolic Fc receptor TRIM21, observed by confocal microscopy and confirmed by co-immunoprecipitation. E. chaffeensis-EHRL-4-TRIM21 complexes caused significant upregulation of proinflammatory cytokine/chemokine transcripts and resulted in rapid (<30 min) nuclear accumulation of NF-κB and TRIM21 and ehrlichial destruction. We investigated the role of TRIM21 in the autophagic clearance of ehrlichiae in the presence of EHRL-4. Colocalization between EHRL-4-opsonized ehrlichiae, polyubiquitinated TRIM21, autophagy regulators (ULK1 and beclin 1) and effectors (LC3 and p62), and lysosome-associated membrane protein 2 (LAMP2) was observed. Moreover, autophagic flux defined by conversion of LC3I to LC3II and accumulation and degradation of p62 was detected, and EHRL-4-mediated degradation of E. chaffeensis was abrogated by the autophagy inhibitor 3-methyladenine. Our results demonstrate that huMAbs are capable of inhibiting E. chaffeensis infection by distinct effector mechanisms: extracellularly by neutralization and intracellularly by engaging TRIM21, which mediates a rapid innate immune response that mobilizes the core autophagy components, triggering localized selective autophagic degradation of ehrlichiae.
Collapse
|
16
|
Israel S, Casser E, Drexler HCA, Fuellen G, Boiani M. A framework for TRIM21-mediated protein depletion in early mouse embryos: recapitulation of Tead4 null phenotype over three days. BMC Genomics 2019; 20:755. [PMID: 31638890 PMCID: PMC6805607 DOI: 10.1186/s12864-019-6106-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background While DNA and RNA methods are routine to disrupt the expression of specific genes, complete understanding of developmental processes requires also protein methods, because: oocytes and early embryos accumulate proteins and these are not directly affected by DNA and RNA methods. When proteins in the oocyte encounter a specific antibody and the TRIpartite Motiv-containing 21 (TRIM21) ubiquitin-protein ligase, they can be committed to degradation in the proteasome, producing a transient functional knock-out that reveals the role of the protein. However, there are doubts about whether this targeted proteolysis could be successfully used to study mammalian development, because duration of the transient effect is unknown, and also because amounts of reagents delivered must be adequate in relation to the amount of target protein, which is unknown, too. Results We show that the mouse egg contains up to 1E-02 picomoles/protein, as estimated by mass spectrometry using the intensity-based absolute quantification (iBAQ) algorithm. However, the egg can only accommodate ≈1E-04 picomoles of antibody or TRIM21 without incurring toxic effects. Within this framework, we demonstrate that TRIM21-mediated protein depletion efficiently disrupts the embryonic process of trophectoderm formation, which critically depends on the TEA domain family member 4 (Tead4) gene. TEAD4 depletion starting at the 1-cell stage lasts for 3 days prior to a return of gene and protein expression to baseline. This time period is long enough to result in a phenotype entirely consistent with that of the published null mutation and RNA interference studies: significant underexpression of trophectodermal genes Cdx2 and Gata3 and strongly impaired ability of embryos to cavitate and implant in the uterus. Omics data are available via ProteomeXchange (PXD012613) and GEO (GSE124844). Conclusions TRIM21-mediated protein depletion can be an effective means to disrupt gene function in mouse development, provided the target gene is chosen carefully and the method is tuned accurately. The knowledge gathered in this study provides the basic know-how (prerequisites, requirements, limitations) to expedite the protein depletion of other genes besides Tead4.
Collapse
Affiliation(s)
- Steffen Israel
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Ellen Casser
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
| |
Collapse
|
17
|
Shehat MG, Cardona OA, Aranjuez GF, Jewett MW, Tigno-Aranjuez JT. RIP2 promotes FcγR-mediated reactive oxygen species production. J Biol Chem 2019; 294:10365-10378. [PMID: 31113864 DOI: 10.1074/jbc.ra118.007218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/02/2019] [Indexed: 11/06/2022] Open
Abstract
Receptor-interacting protein 2 (RIP2) is a kinase that mediates signaling downstream of the bacterial peptidoglycan sensors NOD1 and NOD2. Genetic loss or pharmaceutical inhibition of RIP2 has been shown to be beneficial in multiple inflammatory disease models with the effects largely attributed to reducing proinflammatory signaling downstream of peptidoglycan recognition. However, given the widespread expression of this kinase and its reported interactions with numerous other proteins, it is possible that RIP2 may also function in roles outside of peptidoglycan sensing. In this work, we show that RIP2 undergoes tyrosine phosphorylation and activation in response to engagement of the Fc γ receptor (FcγR). Using bone marrow-derived macrophages from WT and RIP2-KO mice, we show that loss of RIP2 leads to deficient FcγR signaling and reactive oxygen species (ROS) production upon FcγR cross-linking without affecting cytokine secretion, phagocytosis, or nitrate/nitrite production. The FcγR-induced ROS response was still dependent on NOD2, as macrophages deficient in this receptor showed similar defects. Mechanistically, we found that different members of the Src family kinases (SFKs) can promote RIP2 tyrosine phosphorylation and activation. Altogether, our findings suggest that RIP2 is functionally important in pathways outside of bacterial peptidoglycan sensing and that involvement in such pathways may depend on the actions of SFKs. These findings will have important implications for future therapies designed to target this kinase.
Collapse
Affiliation(s)
- Michael G Shehat
- From the Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Omar A Cardona
- From the Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - George F Aranjuez
- From the Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Mollie W Jewett
- From the Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| | - Justine T Tigno-Aranjuez
- From the Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827
| |
Collapse
|
18
|
Wang M, Liu C, Wang W, Dong M, Zhang P, Liu Y, Wang L, Song L. A SPRY domain-containing SOCS box protein 3 (SPSB3) involved in the regulation of cytokine production in granulocytes of Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:28-37. [PMID: 30711451 DOI: 10.1016/j.dci.2019.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
The sp1A/ryanodine receptor (SPRY) family members have been reported to involve in important biological pathways, including innate immune signaling, cytokine signaling suppression, development, cell growth, and retroviral restriction. In the present study, a SPRY domain-containing SOCS box protein (named as CgSPSB3) was identified and characterized from oyster Crassostrea gigas. The open reading frame of CgSPSB3 gene was of 699 bp, encoding a polypeptide of 232 amino acid residues with a central SPRY domain and a C-terminal SOCS box motif. CgSPSB3 mRNA transcripts could be detected in all the examined tissues with the highest level in hemocytes, which was about 82.72-fold (p < 0.05) of that in gonad. Furthermore, the expression level of CgSPSB3 mRNA in granulocytes was significantly higher than that in semi-granulocytes and agranulocytes, which was about 2.04-fold (p < 0.05) of the average level of hemocytes. Immunofluorescence assay further revealed that CgSPSB3 protein was mainly distributed in the cytoplasm of granulocytes. The mRNA expression of CgSPSB3 in hemocytes was up-regulated after lipopolysaccharide (LPS) and Vibrio splendidus stimulations. The mRNA expression of CgIFNLP, CgIL17-5 and CgTNF-1 decreased significantly (p < 0.05) at 24 h after the CgSPSB3 mRNA was knocked down by RNAi. These results collectively indicated that CgSPSB3 might play an important role in regulating cytokines production in granulocytes of C. gigas.
Collapse
Affiliation(s)
- Min Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Disease Control and Prevention of Aquaculture Animals, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Disease Control and Prevention of Aquaculture Animals, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Peng Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Disease Control and Prevention of Aquaculture Animals, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
19
|
Gkoutzourelas A, Liaskos C, Mytilinaiou MG, Simopoulou T, Katsiari C, Tsirogianni A, Daoussis D, Scheper T, Meyer W, Bogdanos DP, Sakkas LI. Anti-Ro60 Seropositivity Determines Anti-Ro52 Epitope Mapping in Patients With Systemic Sclerosis. Front Immunol 2018; 9:2835. [PMID: 30581434 PMCID: PMC6293197 DOI: 10.3389/fimmu.2018.02835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Epitope mapping of anti-Ro52 antibodies (Abs) has been extensively studied in patients with Sjögren's syndrome (SjS) and systemic lupus erythematosus (SLE). Comprehensive epitope mapping in systemic sclerosis (SSc), where anti-Ro52 antibodies are also frequently detected, has not been performed. The aim of the present study was to fully characterize Ro52 epitopes in anti-Ro52-positive SSc using Ro52 fragments spanning the full antigen. Further analysis was made according to anti-Ro60 status. Epitope mapping was performed in 43 anti-Ro52-positive SSc patients. Seventy eight anti-Ro52-positive pathological controls, including 20 patients with SjS, 28 patients with SLE, 15 patients with dermatomyositis (DM), and 15 patients with primary biliary cholangitis (PBC), and 20 anti-Ro52-negative healthy individuals as normal controls were also tested. Five recombinant Ro52 fragments [Ro52-1 (aa 1-127), Ro52-2 (aa 125-268), Ro52-3 (aa 268-475), Ro52-4 (aa 57-180), and Ro52-5 (aa 181-320) were used to test reactivity by line-immunoassay and in house ELISA. Anti-Ro60 reactivity was tested by ELISA. All anti-Ro52 positive sera reacted with Ro52-2; none recognized Ro52-3. Antibodies against Ro52-1 were less frequently found in SSc than in SjS/SLE (11.6 vs. 41.7%, p = 0.001); and antibodies against Ro52-4 were less frequently found in SSc than in SjS/SLE (27.9 vs. 50%, p = 0.03). In SSc patients, reactivity against Ro52-1 was more frequent in anti-Ro52+/anti-Ro60+ than in anti-Ro52+/anti-Ro60-patients (33.3 vs. 0%, p = 0.003). In this comprehensive analysis of Ro52 epitope mapping in SSc, the coiled coil domain remains the predominant epitope on Ro52. Contrary to SjS and SLE, patients with SSc fail to identify epitopic regions within the N-terminus of the protein, especially if they lack con-current anti-Ro60 reactivity.
Collapse
Affiliation(s)
- Athanasios Gkoutzourelas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Liaskos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Maria G. Mytilinaiou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theodora Simopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christina Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandra Tsirogianni
- Department of Immunology-Histocompatibility, Evangelismos General Hospital, Athens, Greece
| | - Dimitrios Daoussis
- Department of Rheumatology, Patras University Hospital, Faculty of Medicine, University of Patras Medical School, Patras, Greece
| | - Thomas Scheper
- Institute of Immunology Affiliated to Euroimmun AG, Lübeck, Germany
| | - Wolfgang Meyer
- Institute of Immunology Affiliated to Euroimmun AG, Lübeck, Germany
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Lazaros I. Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
20
|
Abstract
Tripartite motif (TRIM) proteins are a versatile family of ubiquitin E3 ligases involved in a multitude of cellular processes. Studies in recent years have demonstrated that many TRIM proteins play central roles in the host defense against viral infection. While some TRIM proteins directly antagonize distinct steps in the viral life cycle, others regulate signal transduction pathways induced by innate immune sensors, thereby modulating antiviral cytokine responses. Furthermore, TRIM proteins have been implicated in virus-induced autophagy and autophagy-mediated viral clearance. Given the important role of TRIM proteins in antiviral restriction, it is not surprising that several viruses have evolved effective maneuvers to neutralize the antiviral action of specific TRIM proteins. Here, we describe the major antiviral mechanisms of TRIM proteins as well as viral strategies to escape TRIM-mediated host immunity.
Collapse
Affiliation(s)
- Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Konstantin M J Sparrer
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
21
|
Kamiyama R, Yoshimi R, Takeno M, Iribe Y, Tsukahara T, Kishimoto D, Kunishita Y, Sugiyama Y, Tsuchida N, Nakano H, Minegishi K, Tamura M, Asami Y, Kirino Y, Ishigatsubo Y, Ozato K, Nakajima H. Dysfunction of TRIM21 in interferon signature of systemic lupus erythematosus. Mod Rheumatol 2018; 28:993-1003. [PMID: 29385873 DOI: 10.1080/14397595.2018.1436028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES TRIM21 is an E3 ubiquitin ligase for interferon regulatory factors (IRFs) that are involved in innate and acquired immunity. Here, we evaluated the role of TRIM21 in the interferon (IFN) signature of systemic lupus erythematosus (SLE). METHODS Twenty SLE patients and 24 healthy controls were enrolled in this study. We analyzed mRNA expression of TRIM21, type I IFN, and IFN-inducible genes in peripheral blood mononuclear cell (PBMC). The protein levels of IRFs were assessed by Western blotting in PBMCs cultured with or without MG-132. RESULTS The expression of TRIM21 mRNA and protein was significantly higher in SLE PBMCs as compared to healthy controls. There was a correlation between TRIM21 mRNA expression and SLE activities. In contrast to a negative correlation between mRNA expression level of TRIM21 and those of type I IFNs in healthy controls, we found a positive correlation between them in anti-TRIM21 antibody-positive SLE patients. Neither positive nor negative correlation was observed in the autoantibody-negative SLE patients. Western-blotting analysis revealed impaired ubiquitin-dependent proteasomal degradation of IRFs in SLE PBMCs. CONCLUSION Our study showed ubiquitin-dependent proteasomal degradation of IRFs was impaired in anti-TRIM21 antibody-dependent and -independent fashions, leading to amplification of IFN signature in SLE.
Collapse
Affiliation(s)
- Reikou Kamiyama
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Ryusuke Yoshimi
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Mitsuhiro Takeno
- b Department of Allergy and Rheumatology , Nippon Medical School Graduate School of Medicine , Tokyo , Japan
| | - Yasuhiro Iribe
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Toshinori Tsukahara
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan.,c Department of Pulmonology , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Daiga Kishimoto
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Yosuke Kunishita
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Yumiko Sugiyama
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Naomi Tsuchida
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Hiroto Nakano
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Kaoru Minegishi
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Maasa Tamura
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Yukiko Asami
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Yohei Kirino
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Yoshiaki Ishigatsubo
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Keiko Ozato
- d Program in Genomics of Differentiation , NICHD, National Institutes of Health , Bethesda , MD , USA
| | - Hideaki Nakajima
- a Department of Stem Cell and Immune Regulation , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| |
Collapse
|
22
|
Burbelo PD, Teos LY, Herche JL, Iadarola MJ, Alevizos I. Autoantibodies against the Immunoglobulin-Binding Region of Ro52 Link its Autoantigenicity with Pathogen Neutralization. Sci Rep 2018; 8:3345. [PMID: 29463848 PMCID: PMC5820281 DOI: 10.1038/s41598-018-21522-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
Ro52/TRIM21 plays a key role in antibody-dependent pathogen neutralization and is a major autoantigen in systemic lupus erythematosus, Sjögren's syndrome (SS), and other autoimmune diseases. Here we evaluated immunoreactivity against Ro52-related molecules in SS and healthy volunteers. Although most proteins examined were not antigenic, several TRIM paralogs, including TRIM22, and TRIM38, showed sporadic immunoreactivity in SS. In contrast, the murine Ro52 ortholog with limited linear homology demonstrated high levels of autoantibodies implicating the importance of shared conformational epitopes. To further explore the autoantigencity of Ro52, deletion and point mutant analyses were employed revealing previously hidden, robust autoantibodies directed against its C-terminal immunoglobulin-binding domain. Another autoantibody, rheumatoid factor, targeting the Fc region of IgG, strongly overlapped with Ro52 seropositivity (odds ratio 14; P < 0.0001). These convergent mechanistic findings support a model whereby intracellular Ro52-bound antibody-coated pathogen complexes, released or misprocessed from infected cells, drive autoantigenicity against Ro52 and the Fc region of IgG.
Collapse
Affiliation(s)
- Peter D Burbelo
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Leyla Y Teos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jesse L Herche
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ilias Alevizos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
Rhodes DA, Isenberg DA. TRIM21 and the Function of Antibodies inside Cells. Trends Immunol 2017; 38:916-926. [PMID: 28807517 DOI: 10.1016/j.it.2017.07.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/28/2017] [Accepted: 07/18/2017] [Indexed: 11/26/2022]
Abstract
Therapeutic antibodies targeting disease-associated antigens are key tools in the treatment of cancer and autoimmunity. So far, therapeutic antibodies have targeted antigens that are, or are presumed to be, extracellular. A largely overlooked property of antibodies is their functional activity inside cells. The diverse literature dealing with intracellular antibodies emerged historically from studies of the properties of some autoantibodies. The identification of tripartite motif (TRIM) 21 as an intracellular Fc receptor linking cytosolic antibody recognition to the ubiquitin proteasome system brings this research into sharper focus. We review critically the research related to intracellular antibodies, link this to the TRIM21 effector mechanism, and highlight how this work is exposing the previously restricted intracellular space to the potential of therapeutic antibodies.
Collapse
Affiliation(s)
- David A Rhodes
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge, UK.
| | - David A Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| |
Collapse
|
24
|
Ebner P, Versteeg GA, Ikeda F. Ubiquitin enzymes in the regulation of immune responses. Crit Rev Biochem Mol Biol 2017; 52:425-460. [PMID: 28524749 PMCID: PMC5490640 DOI: 10.1080/10409238.2017.1325829] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022]
Abstract
Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.
Collapse
|
25
|
Foltz C, Napolitano A, Khan R, Clough B, Hirst EM, Frickel EM. TRIM21 is critical for survival of Toxoplasma gondii infection and localises to GBP-positive parasite vacuoles. Sci Rep 2017; 7:5209. [PMID: 28701773 PMCID: PMC5507857 DOI: 10.1038/s41598-017-05487-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/16/2017] [Indexed: 11/09/2022] Open
Abstract
Interferon gamma (IFNγ) is the major proinflammatory cytokine conferring resistance to the intracellular vacuolar pathogen Toxoplasma gondii by inducing the destruction of the parasitophorous vacuole (PV). We previously identified TRIM21 as an IFNγ-driven E3 ubiquitin ligase mediating the deposition of ubiquitin around pathogen inclusions. Here, we show that TRIM21 knockout mice were highly susceptible to Toxoplasma infection, exhibiting decreased levels of serum inflammatory cytokines and higher parasite burden in the peritoneum and brain. We demonstrate that IFNγ drives recruitment of TRIM21 to GBP1-positive Toxoplasma vacuoles, leading to Lys63-linked ubiquitination of the vacuole and restriction of parasite early replication without interfering with vacuolar disruption. As seen in vivo, TRIM21 impacted the secretion of inflammatory cytokines. This study identifies TRIM21 as a previously unknown modulator of Toxoplasma gondii resistance in vivo thereby extending host innate immune recognition of eukaryotic pathogens to include E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Clémence Foltz
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Anna Napolitano
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rabia Khan
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Barbara Clough
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | | |
Collapse
|
26
|
Foss S, Watkinson R, Sandlie I, James LC, Andersen JT. TRIM21: a cytosolic Fc receptor with broad antibody isotype specificity. Immunol Rev 2016; 268:328-39. [PMID: 26497531 PMCID: PMC4670481 DOI: 10.1111/imr.12363] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibodies are key molecules in the fight against infections. Although previously thought to mediate protection solely in the extracellular environment, recent research has revealed that antibody-mediated protection extends to the cytosolic compartment of cells. This postentry viral defense mechanism requires binding of the antibody to a cytosolic Fc receptor named tripartite motif containing 21 (TRIM21). In contrast to other Fc receptors, TRIM21 shows remarkably broad isotype specificity as it does not only bind IgG but also IgM and IgA. When viral pathogens coated with these antibody isotypes enter the cytosol, TRIM21 is rapidly recruited and efficient neutralization occurs before the virus has had the time to replicate. In addition, inflammatory signaling is induced. As such, TRIM21 acts as a cytosolic sensor that engages antibodies that have failed to protect against infection in the extracellular environment. Here, we summarize our current understanding of how TRIM21 orchestrates humoral immunity in the cytosolic environment.
Collapse
Affiliation(s)
- Stian Foss
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, Oslo, Norway.,CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Ruth Watkinson
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Inger Sandlie
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, Oslo, Norway.,CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jan Terje Andersen
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Affiliation(s)
- David A. Rhodes
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom; ,
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland;
| | - John Trowsdale
- Department of Pathology, Immunology Division, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom; ,
| |
Collapse
|
28
|
Coordinated Neutralization and Immune Activation by the Cytosolic Antibody Receptor TRIM21. J Virol 2016; 90:4856-4859. [PMID: 26937031 DOI: 10.1128/jvi.00050-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TRIM21 is a high-affinity antibody receptor uniquely expressed in the cytosol of mammalian cells. Here we summarize its role in extending antibody protection into the intracellular environment and allowing nonprofessional cells to benefit from adaptive immunity. We highlight recent work that has shed light on how TRIM21 acts as both an immune sensor and effector. We also review how TRIM21 synergizes with other innate immune receptors to promote an integrated antiviral response.
Collapse
|
29
|
Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus. Proc Natl Acad Sci U S A 2016; 113:E2142-51. [PMID: 27035940 DOI: 10.1073/pnas.1513943113] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Defects in clearing apoptotic debris disrupt tissue and immunological homeostasis, leading to autoimmune and inflammatory diseases. Herein, we report that macrophages from lupus-prone MRL/lpr mice have impaired lysosomal maturation, resulting in heightened ROS production and attenuated lysosomal acidification. Impaired lysosomal maturation diminishes the ability of lysosomes to degrade apoptotic debris contained within IgG-immune complexes (IgG-ICs) and promotes recycling and the accumulation of nuclear self-antigens at the membrane 72 h after internalization. Diminished degradation of IgG-ICs prolongs the intracellular residency of nucleic acids, leading to the activation of Toll-like receptors. It also promotes phagosomal membrane permeabilization, allowing dsDNA and IgG to leak into the cytosol and activate AIM2 and TRIM21. Collectively, these events promote the accumulation of nuclear antigens and activate innate sensors that drive IFNα production and heightened cell death. These data identify a previously unidentified defect in lysosomal maturation that provides a mechanism for the chronic activation of intracellular innate sensors in systemic lupus erythematosus.
Collapse
|
30
|
Fan W, Zhang D, Qian P, Qian S, Wu M, Chen H, Li X. Swine TRIM21 restricts FMDV infection via an intracellular neutralization mechanism. Antiviral Res 2016; 127:32-40. [PMID: 26777733 DOI: 10.1016/j.antiviral.2016.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 12/24/2022]
Abstract
The tripartite motif protein 21 (TRIM21) is a ubiquitously expressed E3 ubiquitin ligase and an intracellular antibody receptor. TRIM21 mediates antibody-dependent intracellular neutralization (ADIN) in cytosol and provides an intracellular immune response to protect host defense against pathogen infection. In this study, swine TRIM21 (sTRIM21) was cloned and its role in ADIN was investigated. The expression of sTRIM21 is induced by type I interferon in PK-15 cells. sTRIM21 restricts FMDV infection in the presence of FMDV specific antibodies. Furthermore, sTRIM21 interacts with Fc fragment of swine immunoglobulin G (sFc) fused VP1 of FMDV and thereby causing its degradation. Both the RING and SPRY domains are essential for sTRIM21 to degrade sFc-fused VP1. These results suggest that the intracellular neutralization features of FMDV contribute to the antiviral activity of sTRIM21. sTRIM21 provide another intracellular mechanism to inhibit FMDV infection in infected cells.
Collapse
Affiliation(s)
- Wenchun Fan
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dong Zhang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ping Qian
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Suhong Qian
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mengge Wu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huanchun Chen
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiangmin Li
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
31
|
Li S, Wang L, Fu B, Dorf ME. Trim65: a cofactor for regulation of the microRNA pathway. RNA Biol 2015; 11:1113-21. [PMID: 25483047 DOI: 10.4161/rna.36179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) comprise a large family of non-protein coding transcripts which regulate gene expression in diverse biological pathways of both plants and animals. We recently used a systematic proteomic approach to generate a protein interactome map of the human miRNA pathway involved in miRNA biogenesis and processing. The interactome expands the number of candidate proteins in the miRNA pathway and connects the network to other cellular processes. Functional analyses identified TRIM65 and at least 3 other proteins as novel regulators of the miRNA pathway. Biochemical studies established that TRIM65 forms stable complexes with TNRC6 proteins and these molecules co-localize in P-body-like structures. Gain of function and RNAi analyses reveal that TRIM65 negatively regulates miRNA-driven suppression of mRNA translation by targeting TNRC6 proteins for ubiquitination and degradation. The potential molecular mechanisms which regulate TRIM65 catalytic activity are discussed.
Collapse
Key Words
- AGO, Argonaute
- AP-MS, Affinity purification coupled with mass spectrometry
- DGCR8, DiGeorge syndrome critical region gene 8
- HCIP, High confidence interacting protein
- IMP-1, IGF2 mRNA-binding protein 1
- MOV10, Moloney leukemia virus 10
- MiRNA, microRNA
- PDCD4, Programmed cell death 4
- PTEN, Phosphatase and tensin homolog
- RISC, RNA-induced silencing complex
- RNA-induced silencing complex
- TARBP2, TAR (HIV-1) RNA binding protein 2
- TNRC6
- TNRC6, Trinucleotide repeat containing 6
- TRIM65, Tripartite Motif-Containing 65
- interactome
- proteomics
- tripartite motif proteins
- ubiquitin E3 ligase
Collapse
Affiliation(s)
- Shitao Li
- a Department of Microbiology & Immunobiology; Harvard Medical School; Boston , MA USA
| | | | | | | |
Collapse
|
32
|
Crystal structure of TRIM20 C-terminal coiled-coil/B30.2 fragment: implications for the recognition of higher order oligomers. Sci Rep 2015; 5:10819. [PMID: 26043233 PMCID: PMC4455283 DOI: 10.1038/srep10819] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/29/2015] [Indexed: 01/07/2023] Open
Abstract
Many tripartite motif-containing (TRIM) proteins, comprising RING-finger, B-Box, and coiled-coil domains, carry additional B30.2 domains on the C-terminus of the TRIM motif and are considered to be pattern recognition receptors involved in the detection of higher order oligomers (e.g. viral capsid proteins). To investigate the spatial architecture of domains in TRIM proteins we determined the crystal structure of the TRIM20Δ413 fragment at 2.4 Å resolution. This structure comprises the central helical scaffold (CHS) and C-terminal B30.2 domains and reveals an anti-parallel arrangement of CHS domains placing the B-box domains 170 Å apart from each other. Small-angle X-ray scattering confirmed that the linker between CHS and B30.2 domains is flexible in solution. The crystal structure suggests an interaction between the B30.2 domain and an extended stretch in the CHS domain, which involves residues that are mutated in the inherited disease Familial Mediterranean Fever. Dimerization of B30.2 domains by means of the CHS domain is crucial for TRIM20 to bind pro-IL-1β in vitro. To exemplify how TRIM proteins could be involved in binding higher order oligomers we discuss three possible models for the TRIM5α/HIV-1 capsid interaction assuming different conformations of B30.2 domains.
Collapse
|
33
|
Hanson QM, Barb AW. A perspective on the structure and receptor binding properties of immunoglobulin G Fc. Biochemistry 2015; 54:2931-42. [PMID: 25926001 DOI: 10.1021/acs.biochem.5b00299] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recombinant antibodies spurred a revolution in medicine that saw the introduction of powerful therapeutics for treating a wide range of diseases, from cancers to autoimmune disorders and transplant rejection, with more applications looming on the horizon. Many of these therapeutic monoclonal antibodies (mAbs) are based on human immunoglobulin G1 (IgG1) or contain at least a portion of the molecule. Most mAbs require interactions with cell surface receptors for efficacy, including the Fc γ receptors. High-resolution structural models of antibodies and antibody fragments have been available for nearly 40 years; however, a thorough description of the structural features that determine the affinity with which antibodies interact with human receptors has not been published. In this review, we will cover the relevant history of IgG-related literature and how recent developments have changed our view of critical antibody-cell interactions at the atomic level with a nod to outstanding questions in the field and future prospects.
Collapse
Affiliation(s)
- Quinlin M Hanson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, Iowa 50011, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, Iowa 50011, United States
| |
Collapse
|
34
|
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014; 5:520. [PMID: 25368619 PMCID: PMC4202688 DOI: 10.3389/fimmu.2014.00520] [Citation(s) in RCA: 1691] [Impact Index Per Article: 169.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
Of the five immunoglobulin isotypes, immunoglobulin G (IgG) is most abundant in human serum. The four subclasses, IgG1, IgG2, IgG3, and IgG4, which are highly conserved, differ in their constant region, particularly in their hinges and upper CH2 domains. These regions are involved in binding to both IgG-Fc receptors (FcγR) and C1q. As a result, the different subclasses have different effector functions, both in terms of triggering FcγR-expressing cells, resulting in phagocytosis or antibody-dependent cell-mediated cytotoxicity, and activating complement. The Fc-regions also contain a binding epitope for the neonatal Fc receptor (FcRn), responsible for the extended half-life, placental transport, and bidirectional transport of IgG to mucosal surfaces. However, FcRn is also expressed in myeloid cells, where it participates in both phagocytosis and antigen presentation together with classical FcγR and complement. How these properties, IgG-polymorphisms and post-translational modification of the antibodies in the form of glycosylation, affect IgG-function will be the focus of the current review.
Collapse
Affiliation(s)
- Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Gillian Dekkers
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
35
|
D'Cruz AA, Babon JJ, Norton RS, Nicola NA, Nicholson SE. Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. Protein Sci 2014; 22:1-10. [PMID: 23139046 DOI: 10.1002/pro.2185] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 11/12/2022]
Abstract
The SPRY domain is a protein interaction module found in 77 murine and ~100 human proteins, and is implicated in important biological pathways, including those that regulate innate and adaptive immunity. The current definition of the SPRY domain is based on a sequence repeat discovered in the splA kinase and ryanodine receptors. The greater SPRY family is divided into the B30.2 (which contains a PRY extension at the N-terminus) and "SPRY-only" sub-families. In this brief review, we examine the current structural and biochemical literature on SPRY/B30.2 domain involvement in key immune processes and highlight a PRY-like 60 amino acid region in the N-terminus of "SPRY-only" proteins. Phylogenetic, structural, and functional analyses suggest that this N-terminal region is related to the PRY region of B30.2 and should be characterized as part of an extended SPRY domain. Greater understanding of the functional importance of the N-terminal region in "SPRY only" proteins will enhance our ability to interrogate SPRY interactions with their respective binding partners.
Collapse
Affiliation(s)
- Akshay A D'Cruz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
36
|
Hillyar CRT, Cornelissen B, Vallis KA. Uptake, internalization and nuclear translocation of radioimmunotherapeutic agents. Ther Deliv 2014; 5:319-35. [PMID: 24592956 DOI: 10.4155/tde.14.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
Radioimmunotherapy (RIT) agents that incorporate short-range particle-emitting radionuclides exploit the high linear energy transfer of α-particles and Auger electrons. Both are densely ionizing, generate complex DNA double-strand breaks and so are profoundly cytotoxic. Internalizing RIT agents enter tumor cells through receptor-mediated endocytosis and by incorporation of cell-penetrating peptides. Once internalized, some RIT agents mediate escape from endosomes and/or translocate to the nucleus. In the classical nuclear import pathway, α/β-importins recognize nuclear localization sequences in RIT agents. Translocation through nuclear pores enables RIT agents to bind to nuclear targets induced by, for example, cellular stress, growth factors or anticancer therapy, such as γH2AX or p27(KIP-1). This review discusses RIT agents designed to exploit the mechanisms underlying these complex processes and compares them with noninternalizing RIT agents.
Collapse
Affiliation(s)
- Christopher R T Hillyar
- Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, OX3 7DQ, UK
| | | | | |
Collapse
|
37
|
Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: a key component of antiviral signalling. Biochem J 2014; 456:231-40. [PMID: 24015671 DOI: 10.1042/bj20121425] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TRIM (tripartite motif) proteins primarily function as ubiquitin E3 ligases that regulate the innate immune response to infection. TRIM25 [also known as Efp (oestrogen-responsive finger protein)] has been implicated in the regulation of oestrogen receptor α signalling and in the regulation of innate immune signalling via RIG-I (retinoic acid-inducible gene-I). RIG-I senses cytosolic viral RNA and is subsequently ubiquitinated by TRIM25 at its N-terminal CARDs (caspase recruitment domains), leading to type I interferon production. The interaction with RIG-I is dependent on the TRIM25 B30.2 domain, a protein-interaction domain composed of the PRY and SPRY tandem sequence motifs. In the present study we describe the 1.8 Å crystal structure of the TRIM25 B30.2 domain, which exhibits a typical B30.2/SPRY domain fold comprising two N-terminal α-helices, thirteen β-strands arranged into two β-sheets and loop regions of varying lengths. A comparison with other B30.2/SPRY structures and an analysis of the loop regions identified a putative binding pocket, which is likely to be involved in binding target proteins. This was supported by mutagenesis and functional analyses, which identified two key residues (Asp(488) and Trp(621)) in the TRIM25 B30.2 domain as being critical for binding to the RIG-I CARDs.
Collapse
|
38
|
Kirmaier A, Krupp A, Johnson WE. Understanding restriction factors and intrinsic immunity: insights and lessons from the primate lentiviruses. Future Virol 2014; 9:483-497. [PMID: 26543491 PMCID: PMC4630824 DOI: 10.2217/fvl.14.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Primate lentiviruses include the HIVs, HIV-1 and HIV-2; the SIVs, which are endemic to more than 40 species of nonhuman primates in Africa; and SIVmac, an AIDS-causing pathogen that emerged in US macaque colonies in the 1970s. Because of the worldwide spread of HIV and AIDS, primate lentiviruses have been intensively investigated for more than 30 years. Research on these viruses has played a leading role in the discovery and characterization of intrinsic immunity, and in particular the identification of several antiviral effectors (also known as restriction factors) including APOBEC3G, TRIM5α, BST-2/tetherin and SAMHD1. Comparative studies of the primate lentiviruses and their hosts have proven critical for understanding both the evolutionary significance and biological relevance of intrinsic immunity, and the role intrinsic immunity plays in governing viral host range and interspecies transmission of viruses in nature.
Collapse
Affiliation(s)
- Andrea Kirmaier
- Biology Department, Boston College, 550 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | - Annabel Krupp
- Biology Department, Boston College, 550 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität, Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Welkin E Johnson
- Biology Department, Boston College, 550 Higgins Hall, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| |
Collapse
|
39
|
Rajsbaum R, García-Sastre A, Versteeg GA. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol 2013; 426:1265-84. [PMID: 24333484 DOI: 10.1016/j.jmb.2013.12.005] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/24/2022]
Abstract
Tripartite motif (TRIM) proteins have been implicated in multiple cellular functions, including antiviral activity. Research efforts so far indicate that the antiviral activity of TRIMs relies, for the most part, on their function as E3-ubiquitin ligases. A substantial number of the TRIM family members have been demonstrated to mediate innate immune cell signal transduction and subsequent cytokine induction. In addition, a subset of TRIMs has been shown to restrict viral replication by directly targeting viral proteins. Although the body of work on the cellular roles of TRIM E3-ubiquitin ligases has rapidly grown over the last years, many aspects of their molecular workings and multi-functionality remain unclear. The antiviral function of many TRIMs seems to be conferred by specific isoforms, by sub-cellular localization and in cell-type-specific contexts. Here we review recent findings on TRIM antiviral functions, current limitations and an outlook for future research.
Collapse
Affiliation(s)
- Ricardo Rajsbaum
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Gijs A Versteeg
- Max F. Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
40
|
Arentz G, Thurgood LA, Lindop R, Chataway TK, Gordon TP. Secreted human Ro52 autoantibody proteomes express a restricted set of public clonotypes. J Autoimmun 2012; 39:466-70. [PMID: 22871259 DOI: 10.1016/j.jaut.2012.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 11/26/2022]
Abstract
Long-lived secreted autoantibody responses in systemic autoimmunity are generally regarded to be polyclonal and to express a diverse B-cell repertoire. Here, we have used a proteomic approach based on de novo sequencing to determine the clonality and V region structures of human autoantibodies directed against a prototypic systemic autoantigen, Ro52 (TRIM21). Remarkably, anti-Ro52 autoantibodies from patients with primary Sjögren's syndrome, systemic lupus erythematosus, systemic sclerosis or polymyositis were restricted to two IgG1 kappa clonotypes that migrated as a single species on isoelectric focusing; shared a common light chain paired with one of two closely-related heavy chains; and were public in unrelated patients. Targeted mass spectrometry using these uniquely mutated V region peptides as surrogates detected anti-Ro52 autoantibodies in human sera with high sensitivity and specificity compared with traditional ELISA. Mass spectrometry-based detection of specific autoantibody motifs provides a powerful new tool for analysis of humoral autoimmunity.
Collapse
Affiliation(s)
- Georgia Arentz
- Department of Immunology, Flinders Medical Centre and Flinders University, SA Pathology, Flinders Drive, Bedford Park, 5042 South Australia, Australia
| | | | | | | | | |
Collapse
|
41
|
Volchenkov R, Jonsson R, Appel S. Anti-Ro and anti-La autoantibody profiling in Norwegian patients with primary Sjögren's syndrome using luciferase immunoprecipitation systems (LIPS). Scand J Rheumatol 2012; 41:314-5. [PMID: 22804348 DOI: 10.3109/03009742.2012.670863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Autoantigen TRIM21/Ro52 as a Possible Target for Treatment of Systemic Lupus Erythematosus. Int J Rheumatol 2012; 2012:718237. [PMID: 22701487 PMCID: PMC3373075 DOI: 10.1155/2012/718237] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/01/2012] [Accepted: 04/02/2012] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, systemic, and autoimmune disease, whose etiology is still unknown. Although there has been progress in the treatment of SLE through the use of glucocorticoid and immunosuppressive drugs, these drugs have limited efficacy and pose significant risks of toxicity. Moreover, prognosis of patients with SLE has remained difficult to assess. TRIM21/Ro52/SS-A1, a 52-kDa protein, is an autoantigen recognized by antibodies in sera of patients with SLE and Sjögren's syndrome (SS), another systemic autoimmune disease, and anti-TRIM21 antibodies have been used as a diagnostic marker for decades. TRIM21 belongs to the tripartite motif-containing (TRIM) super family, which has been found to play important roles in innate and acquired immunity. Recently, TRIM21 has been shown to be involved in both physiological immune responses and pathological autoimmune processes. For example, TRIM21 ubiquitylates proteins of the interferon-regulatory factor (IRF) family and regulates type I interferon and proinflammatory cytokines. In this paper, we summarize molecular features of TRIM21 revealed so far and discuss its potential as an attractive therapeutic target for SLE.
Collapse
|
43
|
Stacey KB, Breen E, Jefferies CA. Tyrosine phosphorylation of the E3 ubiquitin ligase TRIM21 positively regulates interaction with IRF3 and hence TRIM21 activity. PLoS One 2012; 7:e34041. [PMID: 22479513 PMCID: PMC3316593 DOI: 10.1371/journal.pone.0034041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/21/2012] [Indexed: 11/19/2022] Open
Abstract
Patients suffering from Systemic Lupus Erythematous (SLE) have elevated type I interferon (IFN) levels which correlate with disease activity and severity. TRIM21, an autoantigen associated with SLE, has been identified as an ubiquitin E3 ligase that targets the transcription factor IRF3 in order to turn off and limit type I IFN production following detection of viral and bacterial infection by Toll Like Receptors (TLRs). However, how the activity of TRIM21 is regulated downstream of TLRs is unknown. In this study we demonstrate that TRIM21 is tyrosine phosphorylated following TLR3 and TLR4 stimulation, suggesting that its activity is potentially regulated by tyrosine phosphorylation. Using Netphos, we have identified three key tyrosines that are strongly predicted to be phosphorylated, two of which are conserved between the human and murine forms of TRIM21, at residues 343, 388, and 393, all of which have been mutated from tyrosine to phenylalanine (Y343F, Y388F, and Y393F). We have observed that tyrosine phosphorylation of TRIM21 only occurs in the substrate binding PRY/SPRY domain, and that Y393, and to a lesser extent, Y388 are required for TRIM21 to function as a negative regulator of IFN-β promoter activity. Further studies revealed that mutating Y393 to phenylalanine inhibits the ability of TRIM21 to interact with its substrate, IRF3, thus providing a molecular explanation for the lack of activity of Y393 on the IFN-β promoter. Our data demonstrates a novel role for tyrosine phosphorylation in regulating the activity of TRIM21 downstream of TLR3 and TLR4. Given the pathogenic role of TRIM21 in systemic autoimmunity, these findings have important implications for the development of novel therapeutics.
Collapse
Affiliation(s)
- Kevin B. Stacey
- Department Molecular and Cellular Therapeutics, Royal College Surgeons in Ireland Research Institute, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eamon Breen
- Department Molecular and Cellular Therapeutics, Royal College Surgeons in Ireland Research Institute, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centenary Institute and Arthur William (AW) Morrow Gastroenterology and Liver Centre, Camperdown, Australia,
| | - Caroline A. Jefferies
- Department Molecular and Cellular Therapeutics, Royal College Surgeons in Ireland Research Institute, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
44
|
Ferreira JP, Almeida I, Marinho A, Cerveira C, Vasconcelos C. Anti-ro52 antibodies and interstitial lung disease in connective tissue diseases excluding scleroderma. ISRN RHEUMATOLOGY 2012; 2012:415272. [PMID: 22567412 PMCID: PMC3328145 DOI: 10.5402/2012/415272] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/29/2012] [Indexed: 01/05/2023]
Abstract
Introduction. The presence of anti-Ro52 antibodies has been reported in a wide variety of autoimmune diseases, particularly in myositis, scleroderma, and autoimmune liver diseases. Clinical significance of anti-Ro52 antibodies remains controversial, and studies are lacking for clarifying the association of anti-Ro52 with interstitial lung disease (ILD) in connective tissue diseases (CTD). Objectives. To determine if anti-Ro52 antibodies are associated with ILD in CTD other than scleroderma. Methods. Single-center, retrospective study based on immunoblotting panel analysis and patients clinical records. Results. In our connective tissue disease cohort, 162 patients had immunoblotting panels with anti-Ro52 reactivity analysis, 41 (25,3%) had inclusion criteria. Among the 41 selected sera, 85.4% (n = 35) had anti-Ro52 reactivity. The prevalence of ILD in the positive anti-Ro52 antibodies was 71.4% (n = 25), and 16.7% (n = 1) in the negative anti-Ro52 group (P = 0.018). Overall sensitivity (96.2%), specificity (83.3%), positive (71.4%) and negative (83.3%) predictive values of anti-Ro52 antibodies to determine ILD in CTD is detailed in this study. Conclusion. Ro52 autoantibodies are associated with ILD in CTD excluding scleroderma. We suggest that the presence of anti-Ro52 reactivity in CTD should increase the clinician curiosity for the search of ILD.
Collapse
Affiliation(s)
- João Pedro Ferreira
- Unidade de Imunologia Clínica, Hospital de Santo António, Centro Hospitalar do Porto, 4099-001 Porto, Portugal
| | | | | | | | | |
Collapse
|
45
|
Lindop R, Arentz G, Thurgood LA, Reed JH, Jackson MW, Gordon TP. Pathogenicity and proteomic signatures of autoantibodies to Ro and La. Immunol Cell Biol 2012; 90:304-9. [PMID: 22249199 DOI: 10.1038/icb.2011.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ro/SSA and La/SSB comprise a linked set of autoantigens that are clinically important members of the extractable nuclear antigen family and key translational biomarkers for lupus and primary Sjögren's syndrome. Autoantibodies directed against the Ro60 and La polypeptide components of the Ro/La ribonucleoprotein complex, and the structurally unrelated Ro52 protein, mediate tissue damage in the neonatal lupus syndrome, a model of passively acquired autoimmunity in humans in which the most serious manifestation is congenital heart block (CHB). Recent studies have concentrated on two distinct pathogenic mechanisms by which maternal anti-Ro/La autoantibodies can cause CHB: by forming immune complexes with apoptotic cells in developing fetal heart; and/or by acting as functional autoantibodies that cross-react with and inhibit calcium channels. Although the precise role of the individual autoantibodies is yet to be settled, maternal anti-Ro60 and anti-Ro52 remain the most likely culprits. This article will discuss the molecular pathways that culminate in the development of CHB, including the recent discovery of β2 glycoprotein I as a protective factor, and present a proteomic approach based on direct mass spectrometric sequencing, which may give a more representative snapshot of the idiotype repertoire of these autoantibodies than genomic-based technologies.
Collapse
Affiliation(s)
- Rhianna Lindop
- Department of Immunology, Flinders Medical Centre and Flinders University, Bedford Park, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Wines BD, Trist HM, Farrugia W, Ngo C, Trowsdale J, Areschoug T, Lindahl G, Fraser JD, Ramsland PA. A conserved host and pathogen recognition site on immunoglobulins: structural and functional aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:87-112. [PMID: 21948364 DOI: 10.1007/978-1-4614-0106-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A common site in the constant region (Fc) of immunoglobulins is recognized by host receptors and is a frequent target of proteins expressed by pathogens. This site is located at the junction of two constant domains in the antibody heavy chains and produces a large shallow cavity formed by loops of the CH2 and CH3 domains in IgG and IgA (CH3 and CH4 domains in IgM). Crystal structures have been determined for complexes of IgG-Fc and IgA-Fc with a structurally diverse set of host, pathogen and in vitro selected ligands. While pathogen proteins may directly block interactions with the immunoglobulins thereby evading host immunity, it is likely that the same pathogen molecules also interact with other host factors to carry out their primary biological function. Herein we review the structural and functional aspects of host and pathogen molecular recognition of the common site on the Fc of immunoglobulins. We also propose that some pathogen proteins may promote virulence by affecting the bridging between innate and adaptive immunity.
Collapse
Affiliation(s)
- Bruce D Wines
- Centre for Immunology, Burnet Institute, Melbourne, VIC 3004, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abeler-Dörner L, Swamy M, Williams G, Hayday AC, Bas A. Butyrophilins: an emerging family of immune regulators. Trends Immunol 2011; 33:34-41. [PMID: 22030238 DOI: 10.1016/j.it.2011.09.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/04/2011] [Accepted: 09/19/2011] [Indexed: 11/17/2022]
Abstract
Butyrophilins (Btns) and butyrophilin-like (Btnl) molecules are emerging as novel regulators of immune responses in mice and humans. Several clues point to their probable importance: many of the genes are located within the MHC; they are structurally related to B7-co-stimulatory molecules; they are functionally implicated in T cell inhibition and in the modulation of epithelial cell-T cell interactions; and they are genetically associated with inflammatory diseases. Nonetheless, initial immersion into the current literature can uncover confusion over even basic information such as gene names and expression patterns, and seemingly conflicting data regarding the biological activities of different family members. This review addresses each of these issues, concluding with the attractive potential of Btn and Btnl molecules to act as specific attenuators of tissue-associated inflammatory responses.
Collapse
Affiliation(s)
- Lucie Abeler-Dörner
- Peter Gorer Department of Immunobiology, King's College School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|
48
|
Hwang M, Ko JK, Weisleder N, Takeshima H, Ma J. Redox-dependent oligomerization through a leucine zipper motif is essential for MG53-mediated cell membrane repair. Am J Physiol Cell Physiol 2011; 301:C106-14. [PMID: 21525429 DOI: 10.1152/ajpcell.00382.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We recently discovered that MG53, a muscle-specific tripartite motif (TRIM) family protein, functions as a sensor of oxidation to nucleate the assembly of cell membrane repair machinery. Our data showed that disulfide bond formation mediated by Cys242 is critical for MG53-mediated translocation of intracellular vesicles toward the injury sites. Here we test the hypothesis that leucine zipper motifs in the coiled-coil domain of MG53 constitute an additional mechanism that facilitates oligomerization of MG53 during cell membrane repair. Two leucine zipper motifs in the coiled-coil domain of MG53 (LZ1 - L176/L183/L190/V197 and LZ2 - L205/L212/L219/L226) are highly conserved across the different animal species. Chemical cross-linking studies show that LZ1 is critical for MG53 homodimerization, whereas LZ2 is not. Mutations of the conserved leucines into alanines in LZ1, not in LZ2, diminish the redox-dependent oligomerization of MG53. Live cell imaging studies demonstrate that the movement of green fluorescent protein (GFP)-tagged MG53 mutants (GFP-LA1 and GFP-LA2) is partially compromised in response to mechanical damage of the cell membrane, and the GFP-LA1/2 double mutant is completely ineffective in translocation toward the injury sites. In addition to the leucine zipper-mediated intermolecular interaction, redox-dependent cross talk between MG53 appears to be an obligatory step for cell membrane repair, since in vivo modification of cysteine residues with alkylating reagents can prevent the movement of MG53 toward the injury sites. Our data show that oxidation of the thiol group of Cys242 and leucine zipper-mediated interaction among the MG53 molecules both contribute to the nucleation process for MG53-mediated cell membrane repair.
Collapse
Affiliation(s)
- Moonsun Hwang
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
49
|
Jefferis R. The antibody paradigm: present and future development as a scaffold for biopharmaceutical drugs. Biotechnol Genet Eng Rev 2011; 26:1-42. [PMID: 21415874 DOI: 10.5661/bger-26-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early studies of the humoral immune response revealed an apparent paradox: an infinite diversity of antibody specificities encoded within a finite genome. In consequence antibodies became a focus of interest for biochemists and geneticists. It resulted in the elucidation of the basic structural unit, the immunoglobulin (Ig) domain, comprised of ~ 100 amino acid residues that generate the characteristic "immunoglobulin (Ig) fold". The Ig fold has an anti-parallel ß-pleated sheet (barrel) structure that affords structural stability whilst the ß-bends allow for essentially infinite structural variation and functional diversity. This versatility is reflected in the Ig domain being the most widely utilised structural unit within the proteome. Human antibodies are comprised of multiple Ig domains and their structural diversity may be enhanced through the attachment of oligosaccharides. This review summarizes our current understanding of the immunoglobulin structure/function relationships and the application of protein and oligosaccharide engineering to further develop the Ig domain as a scaffold for the generation of new and novel antibody based therapeutics.
Collapse
Affiliation(s)
- Roy Jefferis
- School of Immunity and Infection, The College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
50
|
Clinical significance of anti-Ro52 (TRIM21) antibodies non-associated with anti-SSA 60kDa antibodies: results of a multicentric study. Autoimmun Rev 2011; 10:509-13. [PMID: 21447407 DOI: 10.1016/j.autrev.2011.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/15/2011] [Indexed: 11/20/2022]
Abstract
Ro52 antigen has recently been identified as TRIM21 protein, but the clinical significance of anti-Ro52/TRIM21 antibodies remains controversial. The aim of this multicentric study was to investigate the significance of anti-Ro52 antibodies without anti-SSA/Ro60 antibodies in various connective diseases. Sera were selected by each laboratory using its own method (ELISA, immunodot or Luminex technology), and then performed with ANA Screen BioPlex™ reagent (BIO-RAD). Among the 247 screened sera, 155/247 (63%) were confirmed as anti-Ro52 positive and anti-SSA/Ro60 negative. These sera were analyzed for the detection of other antibodies in relation with clinical settings. Isolated anti-Ro52 antibodies were detected in 89/155 (57%) sera. For the remaining sera (66/155), the main antibodies associations were Sm/SmRNP or Chromatin (n=38; 57%), Jo1 (n=17; 26%) and CenpB (n=9; 14%). Clinical data from the 155 patients showed high prevalence in autoimmune diseases (73%) including myositis or dermatomyositis (n=30), lupus (n=23); Sjögren and/or sicca syndrome (n=27); CREST or Systemic sclerosis (n=11) and autoimmune hepatitis (n=11). We found that pulmonary manifestations were often associated with the presence of anti-Ro52 antibodies (n=34, 22%), in addition with anti-tRNA synthetases, anti-SRP or anti-Ku antibodies (18/34) or isolated in half of cases (16/34). Separate detection of anti-Ro52 antibodies might be useful in related antisynthetase syndrome diagnosis. The presence of anti-Ro52 antibodies should probably precede development of autoimmune disease and must induce sequential follow-up of positive patients, particularly in interstitial lung disease progression.
Collapse
|