1
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
2
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
3
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
4
|
Nording H, Baron L, Sauter M, Lübken A, Rawish E, Szepanowski R, von Esebeck J, Sun Y, Emami H, Meusel M, Saraei R, Schanze N, Gorantla SP, von Bubnoff N, Geisler T, von Hundelshausen P, Stellos K, Marquardt J, Sadik CD, Köhl J, Duerschmied D, Kleinschnitz C, Langer HF. Platelets regulate ischemia-induced revascularization and angiogenesis by secretion of growth factor-modulating factors. Blood Adv 2023; 7:6411-6427. [PMID: 37257194 PMCID: PMC10598500 DOI: 10.1182/bloodadvances.2021006891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/02/2023] Open
Abstract
In ischemic tissue, platelets can modulate angiogenesis. The specific factors influencing this function, however, are poorly understood. Here, we characterized the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) expressed on platelets as a potent regulator of ischemia-driven revascularization. We assessed the relevance of the anaphylatoxin receptor C5aR1 on platelets in patients with coronary artery disease as well as those with peripheral artery disease and used genetic mouse models to characterize its significance for ischemia and growth factor-driven revascularization. The presence of C5aR1-expressing platelets was increased in the hindlimb ischemia model. Ischemia-driven angiogenesis was significantly improved in C5aR1-/- mice but not in C5-/- mice, suggesting a specific role of C5aR1. Experiments using the supernatant of C5a-stimulated platelets suggested a paracrine mechanism of angiogenesis inhibition by platelets by means of antiangiogenic CXC chemokine ligand 4 (CXCL4, PF4). Lineage-specific C5aR1 deletion verified that the secretion of CXCL4 depends on C5aR1 ligation on platelets. Using C5aR1-/-CXCL4-/- mice, we observed no additional effect in the revascularization response, underscoring a strong dependence of CXCL4 secretion on the C5a-C5aR1-axis. We identified a novel mechanism for inhibition of neovascularization via platelet C5aR1, which was mediated by the release of antiangiogenic CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Antje Lübken
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Rebecca Szepanowski
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Jacob von Esebeck
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ying Sun
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Hossein Emami
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Moritz Meusel
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Saraei
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Nancy Schanze
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sivahari Prasad Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Tobias Geisler
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Konstantinos Stellos
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Marquardt
- First Department of Medicine, University of Schleswig-Holstein, Lübeck, Germany
| | | | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Schleswig-Holstein, Lübeck, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Cardioimmunology Group, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Nording H, Baron L, Lübken A, Emami H, von Esebeck J, Meusel M, Sadik C, Schanze N, Duerschmied D, Köhl J, Münch G, Langer HF. The Platelet Anaphylatoxin Receptor C5aR1 (CD88) Is a Promising Target for Modulating Vessel Growth in Response to Ischemia a. TH OPEN 2023; 7:e289-e293. [PMID: 37868192 PMCID: PMC10586890 DOI: 10.1055/a-2156-8048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Antje Lübken
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Hossein Emami
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Jacob von Esebeck
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Moritz Meusel
- Medical Clinic II, University Hospital, University Heart Center Lübeck, Lübeck, Germany
| | - Christian Sadik
- Clinic for Dermatology, University of Lübeck, University Hospital, Lübeck, Germany
| | - Nancy Schanze
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jörg Köhl
- ISEF, University of Lübeck, Lübeck, Germany
| | | | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Clinic for Dermatology, University of Lübeck, University Hospital, Lübeck, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
| |
Collapse
|
6
|
Delgardo M, Tang AJ, Tudor T, Pascual-Leone A, Connolly ES. Role of gC1qR as a modulator of endothelial cell permeability and contributor to post-stroke inflammation and edema formation. Front Cell Neurosci 2023; 17:1123365. [PMID: 37383840 PMCID: PMC10294424 DOI: 10.3389/fncel.2023.1123365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. A serious risk of acute ischemic stroke (AIS) arises after the stroke event, due to inflammation and edema formation. Inflammation and edema in the brain are mediated by bradykinin, the formation of which is dependent upon a multi-ligand receptor protein called gC1qR. There are currently no preventive treatments for the secondary damage of AIS produced by inflammation and edema. This review aims to summarize recent research regarding the role of gC1qR in bradykinin formation, its role in inflammation and edema following ischemic injury, and potential therapeutic approaches to preventing post-stroke inflammation and edema formation.
Collapse
|
7
|
Milusev A, Despont A, Shaw J, Rieben R, Sorvillo N. Inflammatory stimuli induce shedding of heparan sulfate from arterial but not venous porcine endothelial cells leading to differential proinflammatory and procoagulant responses. Sci Rep 2023; 13:4483. [PMID: 36934164 PMCID: PMC10024017 DOI: 10.1038/s41598-023-31396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/10/2023] [Indexed: 03/20/2023] Open
Abstract
Endothelial dysfunction is an early event of vascular injury defined by a proinflammatory and procoagulant endothelial cell (EC) phenotype. Although endothelial glycocalyx disruption is associated with vascular damage, how various inflammatory stimuli affect the glycocalyx and whether arterial and venous cells respond differently is unknown. Using a 3D round-channel microfluidic system we investigated the endothelial glycocalyx, particularly heparan sulfate (HS), on porcine arterial and venous ECs. Heparan sulfate (HS)/glycocalyx expression was observed already under static conditions on venous ECs while it was flow-dependent on arterial cells. Furthermore, analysis of HS/glycocalyx response after stimulation with inflammatory cues revealed that venous, but not arterial ECs, are resistant to HS shedding. This finding was observed also on isolated porcine vessels. Persistence of HS on venous ECs prevented complement deposition and clot formation after stimulation with tumor necrosis factor α or lipopolysaccharide, whereas after xenogeneic activation no glycocalyx-mediated protection was observed. Contrarily, HS shedding on arterial cells, even without an inflammatory insult, was sufficient to induce a proinflammatory and procoagulant phenotype. Our data indicate that the dimorphic response of arterial and venous ECs is partially due to distinct HS/glycocalyx dynamics suggesting that arterial and venous thrombo-inflammatory disorders require targeted therapies.
Collapse
Affiliation(s)
- Anastasia Milusev
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Alain Despont
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland
| | - Jane Shaw
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland
| | - Nicoletta Sorvillo
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland.
| |
Collapse
|
8
|
Freda CT, Yin W, Ghebrehiwet B, Rubenstein DA. Complement component C1q initiates extrinsic coagulation via the receptor for the globular head of C1q in adventitial fibroblasts and vascular smooth muscle cells. Immun Inflamm Dis 2023; 11:e769. [PMID: 36705413 PMCID: PMC9868878 DOI: 10.1002/iid3.769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Vascular diseases are highly associated with inflammation and thrombosis. Elucidating links between these two processes may provide a clearer understanding of these diseases, allowing for the design of more effective treatments. The activation of complement component 1 (C1) is a crucial contributor to innate immunity and is associated with significant concentrations of circulating C1q. Many pathological pathways initiate when C1q interacts with gC1qR. This interaction plays a major role in inflammation observed during atherosclerosis and the initiation of intrinsic coagulation. However, the effects of C1 and the role of C1q/gC1qR on extrinsic coagulation, which is the more physiologically relevant coagulation arm, has not been studied. We hypothesized that C1q binding to gC1qR enhances the expression of tissue factor (TF) in adventitial fibroblasts and vascular smooth muscle cells, the primary TF bearing cells in the body. METHODS Using an enzyme-linked immunosorbent assay approach, TF expression and the role of gC1qR was observed. Cells were conditioned for 1 h with C1q or a gC1qR blocker and C1q, to assess the role of gC1qR. Additionally, cell growth characteristics were monitored to assess changes in viability and metabolic activity. RESULTS Our results indicate that the expression of TF increased significantly after incubation with C1q as compared with unconditioned cells. Cells conditioned with gC1qR blockers and C1q exhibited no change in TF expression when compared with cells conditioned with the blocking antibodies alone. Our results show no significant differences in metabolic activity or cell viability under these conditions. CONCLUSIONS This indicates that gC1qR association with C1q induces TF expression and may initiate extrinsic coagulation. Overall, this data illustrates a role for C1q in the activation of extrinsic coagulation and that gC1qR activity may link inflammation and thrombosis.
Collapse
Affiliation(s)
- Christopher T. Freda
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew YorkUSA
| | - Wei Yin
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew YorkUSA
| | | | - David A. Rubenstein
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW COVID-19 remains a major source of concern, particularly as new variants emerge and with recognition that patients may suffer long-term effects. Mechanisms underlying SARS-CoV-2 mediated organ damage and the associated vascular endotheliopathy remain poorly understood, hindering new drug development. Here, we highlight selected key concepts of how the complement system, a major component of innate immunity that is dysregulated in COVID-19, participates in the thromboinflammatory response and drives the vascular endotheliopathy. RECENT FINDINGS Recent studies have revealed mechanisms by which complement is activated directly by SARS-CoV-2, and how the system interfaces with other innate thromboinflammatory cellular and proteolytic pathways involving platelets, neutrophils, neutrophil extracellular traps and the coagulation and kallikrein-kinin systems. With this new information, multiple potential sites for therapeutic intervention are being uncovered and evaluated in the clinic. SUMMARY Infections with SARS-CoV-2 cause damage to the lung alveoli and microvascular endothelium via a process referred to as thromboinflammation. Although not alone in being dysregulated, complement is an early player, prominent in promoting the endotheliopathy and consequential organ damage, either directly and/or via the system's complex interplay with other cellular, molecular and biochemical pathways. Delineating these critical interactions is revealing novel and promising strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward L G Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Chen X, Wang Y, Yu X, Wang S, Zhao M. Potential Involvement of Complement Activation in Kidney Vascular Lesions of Arterionephrosclerosis. Front Med (Lausanne) 2022; 9:836155. [PMID: 35433725 PMCID: PMC9008485 DOI: 10.3389/fmed.2022.836155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundComplement dysregulation has been implicated in the pathogenesis of malignant nephrosclerosis with typical pathological manifestation as thrombotic microangiopathy (TMA) in recent studies. The aim of the present study was to evaluate the potential role of complement activation in arterionephrosclerosis, the major pathological change in benign hypertensive nephrosclerosis.MethodsPatients with biopsy-proven arterionephrosclerosis from 2010 to 2018 in our center were retrospectively enrolled in the present study. The clinical data were retrieved from the medical chart record. The pathological changes of renal biopsy were semiquantitatively evaluated. The ratio of inner-/outer-luminal diameter of the arterioles was calculated to evaluate the degree of arteriosclerosis. Immunohistochemical staining of CD34 and CD68 was adopted to evaluate peritubular capillary (PTC) density and macrophage infiltration, respectively. Complement components, including C3d, C4d, C1q, and C5b-9, were detected by immunohistochemical staining in paraffin-embedded sections. IgM and albumin were detected by immunofluorescence staining in frozen renal tissues.ResultsFifty-two patients were enrolled. The mean age was 45.0 ± 12.7 years, with 39 (75%) males. The median duration of hypertension was 66 months (IQR: 24–138 months). A total of 950 arterioles were evaluated, with a mean ratio of the inner/outer luminal diameter of 0.43 ± 0.05. The ratio of the inner-/outer-luminal diameter correlated with eGFR (r = 0.341, p = 0.013), sclerotic/ischemic glomerular lesions (r = –0.364, p = 0.008) and PTC density (r = 0.426, p = 0.002). Seventy-four percent (703/950) of the evaluated arterioles had C3d deposition with various patterns and intensities. The percentage of C3d-positive arterioles ranged from 63.6 to 100.0% in each specimen. The ratio of the inner/outer luminal diameter of arterioles correlated with the intensity of C3d deposition (r = –0.174, p = 0.001). Infiltration of macrophages was observed around C3d-positive arterioles. The percentage of C3d-positive arterioles was correlated with macrophage infiltration in each specimen (r = 0.330, p = 0.018). Occasional C4d-positive staining on arterioles was observed with no deposition of C1q or C5b-9 in arterionephrosclerosis specimens.ConclusionOur findings provide evidence for potential complement activation in the pathogenesis of vascular lesions in arterionephrosclerosis.
Collapse
Affiliation(s)
- Xuejing Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Yu Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- *Correspondence: Yu Wang,
| | - Xiaojuan Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Suxia Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Laboratory of Electron Microscopy, Pathological Centre, Peking University First Hospital, Beijing, China
| | - Minghui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, National Health and Family Planning Commission of the People’s Republic of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
11
|
Tao J, Ye C, Dai W, Li D, Zhou M, Li Y. Serum Level of Complement C1q is Associated with Contrast-Associated Acute Kidney Injury in Patients Undergoing Emergency Percutaneous Coronary Intervention. J Inflamm Res 2022; 14:7331-7339. [PMID: 34992420 PMCID: PMC8714012 DOI: 10.2147/jir.s343715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background As an inflammatory factor, complement C1q is related to the prevalence and progression of atherosclerosis; however, in patients undergoing emergency percutaneous coronary intervention (PCI), it is unclear whether C1q is related to the prevalence of contrast-associated acute kidney injury (CA-AKI). Methods From November 2018 to March 2021, 1182 patients who underwent emergency PCI were continuously recruited. Patients were divided into CA-AKI group (n = 234) and non-CA-AKI group (n = 948). CA-AKI was defined as an increase in serum creatinine from the baseline level (≥25% or ≥0.5 mg/dL) 48–72 hours after contrast exposure. All subjects were tested for serum C1q levels when they were admitted to the hospital. Results Among the 1182 patients undergoing emergency PCI, 234 patients (19.80%) developed CA-AKI. The level of preoperative serum complement C1q in the CA-AKI group was significantly higher than that in the non-CA-AKI group. Logistic regression and restricted cubic spline analyses showed that the incidence of CA-AKI was positively associated with the serum C1q level pre-PCI. Univariate and multivariate logistic regression analyses showed that C1q was an independent predictor of whether CA-AKI occurred after emergency PCI. The area under the curve (AUC) of the C1q was 0.703 [95% confidence interval (CI) 0.667–0.739] in patients receiving emergency PCI. CA-AKI model included the following three predictors: C1q, eGFR, and IABP use. The AUC of forecast probability was 0.718 [95% CI 0.682–0.754]. Conclusion In patients receiving emergency PCI procedure, a high C1q level before PCI is associated with the increased risk of CA-AKI.
Collapse
Affiliation(s)
- Jun Tao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chenglin Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Wen Dai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Di Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Man Zhou
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
12
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
13
|
Fandaros M, Joseph K, Kaplan AP, Rubenstein DA, Ghebrehiwet B, Yin W. gC1qR Antibody Can Modulate Endothelial Cell Permeability in Angioedema. Inflammation 2021; 45:116-128. [PMID: 34494203 DOI: 10.1007/s10753-021-01532-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Angioedema is characterized by swelling of the skin or mucous membranes. Overproduction of the vasodilator bradykinin (BK) is an important contributor to the disease pathology, which causes rapid increase in vascular permeability. BK formation on endothelial cells results from high molecular weight kininogen (HK) interacting with gC1qR, the receptor for the globular heads of C1q, the first component of the classical pathway of complement. Endothelial cells are sensitive to blood-flow-induced shear stress and it has been shown that shear stress can modulate gC1qR expression. This study aimed to determine the following: (1) how BK or angioedema patients' (HAE) plasma affected endothelial cell permeability and gC1qR expression under shear stress, and (2) if monoclonal antibody (mAb) 74.5.2, which recognizes the HK binding site on gC1qR, had an inhibitory effect in HK binding to endothelial cells. Human dermal microvascular endothelial cells (HDMECs) grown on Transwell inserts were exposed to shear stress in the presence of HAE patients' plasma. Endothelial cell permeability was measured using FITC-conjugated bovine serum albumin. gC1qR expression and HK binding to endothelial cell surface was measured using solid-phase ELISA. Cell morphology was quantified using immunofluorescence microscopy. The results demonstrated that BK at 1 µg/mL, but not HAE patients' plasma and/or shear stress, caused significant increases in HDMEC permeability. The mAb 74.5.2 could effectively inhibit HK binding to recombinant gC1qR, and reduce HAE patients' plasma-induced HDMEC permeability change. These results suggested that monoclonal antibody to gC1qR, i.e., 74.5.2, could be potentially used as an effective therapeutic reagent to prevent angioedema.
Collapse
Affiliation(s)
- Marina Fandaros
- Department of Biomedical Engineering, Stony Brook University, NY, Stony Brook, USA
| | - Kusumam Joseph
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.,BioCryst Pharmaceuticals Inc., Durham, NC, 27703, USA
| | - Allen P Kaplan
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, NY, Stony Brook, USA
| | | | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, NY, Stony Brook, USA.
| |
Collapse
|
14
|
Freda CT, Yin W, Ghebrehiwet B, Rubenstein DA. SARS-CoV-2 Structural Proteins Exposure Alter Thrombotic and Inflammatory Responses in Human Endothelial Cells. Cell Mol Bioeng 2021; 15:43-53. [PMID: 34484458 PMCID: PMC8407404 DOI: 10.1007/s12195-021-00696-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction We have experienced a pandemic induced by the interaction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) structural proteins with innate structures. These interactions are especially prevalent for patients with underlying pathologies, such as cardiovascular diseases. However, there has been limited work to uncover the range of responses induced by SARS-CoV-2 structural proteins. Thus, our objective was to investigate how endothelial cell pro-thrombotic and pro-inflammatory responses are altered after exposure to SARS-CoV-2 spike, nucleocapsid, and membrane-envelope proteins. We hypothesized that after a short duration exposure, endothelial cells would have a heightened thrombotic and inflammatory potential. With longer exposures, this may lead to altered disease progression and the observed increased mortality and morbidity rates in patients with underlying vascular pathologies. Methods To test this hypothesis, human endothelial cells were exposed to SARS-CoV-2 structural proteins. After the exposure, the expression of thrombomodulin, PECAM-1, connexin-43, and gC1qR were assessed. In parallel, standard cell culture readouts were assessed to determine if these incubations altered cell growth and metabolism. Results and Conclusions We observed significant increases in thrombotic and inflammatory marker expression, with no change to the cell culture parameters (with the exception of a reduction in cell density in response to one SARS-CoV-2 structural protein). Importantly, these observations were dependent on the viral structural protein the cells were exposed to, suggesting that the interactions of SARS-CoV-2 with innate cells is complex and must be uncovered. Combined, this suggests that SARS-CoV-2 structural proteins can regulate inflammatory and thrombotic responses that underlie common pathologies observed during COVID-19.
Collapse
Affiliation(s)
- Christopher Thor Freda
- Department of Biomedical Engineering, Stony Brook University, 101 Bioengineering, Stony Brook, NY 11794-5281 USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, 101 Bioengineering, Stony Brook, NY 11794-5281 USA
| | | | - David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, 101 Bioengineering, Stony Brook, NY 11794-5281 USA
| |
Collapse
|
15
|
Nording H, Baron L, Haberthür D, Emschermann F, Mezger M, Sauter M, Sauter R, Patzelt J, Knoepp K, Nording A, Meusel M, Meyer-Saraei R, Hlushchuk R, Sedding D, Borst O, Eitel I, Karsten CM, Feil R, Pichler B, Erdmann J, Verschoor A, Chavakis E, Chavakis T, von Hundelshausen P, Köhl J, Gawaz M, Langer HF. The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nat Commun 2021; 12:3352. [PMID: 34099640 PMCID: PMC8185003 DOI: 10.1038/s41467-021-23499-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1-/- mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo.In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - David Haberthür
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Frederic Emschermann
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Matthias Mezger
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Johannes Patzelt
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Kai Knoepp
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Anne Nording
- grid.10392.390000 0001 2190 1447Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Moritz Meusel
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Meyer-Saraei
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ruslan Hlushchuk
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Daniel Sedding
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Oliver Borst
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Ingo Eitel
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Robert Feil
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Bernd Pichler
- grid.10392.390000 0001 2190 1447Institute for Preclinical Imaging, Eberhard Karls University, Tübingen, Germany
| | - Jeanette Erdmann
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Admar Verschoor
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Emmanouil Chavakis
- grid.411088.40000 0004 0578 8220Department for Internal Medicine III/Cardiology, University Hospital of the Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Triantafyllos Chavakis
- grid.4488.00000 0001 2111 7257Department of Clinical Pathobiochemistry, Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Philipp von Hundelshausen
- grid.5252.00000 0004 1936 973XInstitute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
| | - Jörg Köhl
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany ,grid.239573.90000 0000 9025 8099Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Meinrad Gawaz
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
16
|
Complement-mediated microangiopathy in IgA nephropathy and IgA vasculitis with nephritis. Mod Pathol 2019; 32:1147-1157. [PMID: 30936425 DOI: 10.1038/s41379-019-0259-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Complement factor C4d was recently observed in renal biopsies from patients who had IgA nephropathy and a poor prognosis. We previously reported that C4d is a common denominator in microangiopathies. In this retrospective cohort study, we investigated whether C4d is a marker of microangiopathy in both IgA nephropathy and IgA vasculitis with nephritis, and whether patients with C4d and microangiopathy have poor renal outcome. We examined 128 renal biopsies from adult and pediatric patients, including normotensive and hypertensive patients, who presented with IgA nephropathy or IgA vasculitis with nephritis. Biopsies were re-evaluated in accordance with the Oxford classification, scored for additional lesions, and stained for complement proteins using immunohistochemistry, including C4d and C5b-9. Clinical data were collected with a mean (±SD) follow-up period of 51 ± 39 months. Changes in estimated glomerular filtration rate over time were compared using linear mixed-effects models. Renal survival was analyzed using multivariable Cox regression. Microangiopathic lesions were present in 20% of all biopsies (23% and 9% of patients with IgA nephropathy and IgA vasculitis with nephritis, respectively). Microangiopathy was associated with C4d and C5b-9 deposits, a higher number of chronic lesions, and hypertension (all p < 0.05). Patients with C4d and microangiopathic lesions had significantly poorer renal survival than patients without these findings, corrected for hypertension (p < 0.01). In conclusion, patients with IgA nephropathy or IgA vasculitis with nephritis with a combination of C4d positivity and microangiopathy comprise a clinical subgroup with an increased number of chronic lesions, lower estimated glomerular filtration rate, and poorer renal survival, even when corrected for hypertension. These data suggest that complement activation is involved in the development of microangiopathy in patients with IgA nephropathy and IgA vasculitis with nephritis, and that complement-mediated microangiopathy contributes to disease progression.
Collapse
|
17
|
Pednekar L, Pathan AA, Paudyal B, Tsolaki AG, Kaur A, Abozaid SM, Kouser L, Khan HA, Peerschke EI, Shamji MH, Stenbeck G, Ghebrehiwet B, Kishore U. Analysis of the Interaction between Globular Head Modules of Human C1q and Its Candidate Receptor gC1qR. Front Immunol 2016; 7:567. [PMID: 28018340 PMCID: PMC5153404 DOI: 10.3389/fimmu.2016.00567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
The heterotrimeric globular head (gC1q) domain of human C1q is made up of the C-terminal ends of the three individual chains, ghA, ghB, and ghC. A candidate receptor for the gC1q domain is a multi-functional pattern recognition protein, gC1qR. Since understanding of gC1qR and gC1q interaction could provide an insight into the pleiotropic functions of gC1qR, this study was undertaken to identify the gC1qR-binding site on the gC1q domain, using the recombinant ghA, ghB, and ghC modules and their substitution mutants. Our results show that ghA, ghB, and ghC modules can interact with gC1qR independently, thus reinforcing the notion of modularity within the gC1q domain of human C1q. Mutational analysis revealed that while Arg162 in the ghA module is central to interaction between gC1qR and C1q, a single amino acid substitution (arginine to glutamate) in residue 114 of the ghB module resulted in enhanced binding. Expression of gC1qR and C1q in adherent monocytes with or without pro-inflammatory stimuli was also analyzed by qPCR; it showed an autocrine/paracrine basis of C1q and gC1qR interaction. Microscopic studies revealed that C1q and gC1qR are colocalized on PBMCs. Cell proliferation assays indicated that ghA, ghB, and ghC modules were able to attenuate phytohemagglutinin-stimulated proliferation of PBMCs. Addition of gC1qR had an additive effect on the anti-proliferative effect of globular head modules. In summary, our results identify residues involved in C1q-gC1qR interaction and explain, to a certain level, their involvement on the immune cell surface, which is relevant for C1q-induced functions including inflammation, infection, and immunity.
Collapse
Affiliation(s)
- Lina Pednekar
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Ansar A. Pathan
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Basudev Paudyal
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Anthony G. Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Anuvinder Kaur
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Suhair M. Abozaid
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Lubna Kouser
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ellinor I. Peerschke
- Department of Laboratory Medicine, Memorial Sloan-Kettering, Cancer Center, New York, NY, USA
| | - Mohamed H. Shamji
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gudrun Stenbeck
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Berhane Ghebrehiwet
- Department of Medicine, State University of New York, Stony Brook, NY, USA
- *Correspondence: Berhane Ghebrehiwet, ; Uday Kishore, ,
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, London, UK
- *Correspondence: Berhane Ghebrehiwet, ; Uday Kishore, ,
| |
Collapse
|
18
|
The combined effect of sidestream smoke and dynamic shear stress on endothelial cell inflammatory responses. Thromb Res 2015; 135:362-7. [DOI: 10.1016/j.thromres.2014.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 01/08/2023]
|
19
|
Bouwens TAM, Trouw LA, Veerhuis R, Dirven CMF, Lamfers MLM, Al-Khawaja H. Complement activation in Glioblastoma multiforme pathophysiology: evidence from serum levels and presence of complement activation products in tumor tissue. J Neuroimmunol 2014; 278:271-6. [PMID: 25468776 DOI: 10.1016/j.jneuroim.2014.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 02/01/2023]
Abstract
Inflammation plays a key role in the pathophysiology of Glioblastoma Multiforme (GBM). Here we focus on the contribution of the so far largely ignored complement system. ELISA and immunohistochemistry were combined to assess levels and localization of critical components of the initiation- and effector pathways of the complement cascade in sera and tumor tissue from GBM patients and matched controls. Serum levels of factor-B were decreased in GBM patients whereas C1q levels were increased. C1q and factor-B deposited in the tumor tissue. Deposition of C3 and C5b-9 suggests local complement activation.MBL deficiency, based on serum levels, was significantly less frequent among GBM patients compared to controls (14% vs. 33%). Therefore low levels of MBL may protect against the initiation/progression of GBM.
Collapse
Affiliation(s)
- T A M Bouwens
- Erasmus University Medical Center, Brain Tumor Center, Department of Neurosurgery, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands
| | - L A Trouw
- Leiden University Medical Center, Department of Rheumatology, PO Box 9600, 2300 RC Leiden, Netherlands
| | - R Veerhuis
- Vrije University Medical Center, Departments of Clinical Chemistry and Psychiatry, PO Box 7057, 1007 MB Amsterdam, Netherlands
| | - C M F Dirven
- Erasmus University Medical Center, Brain Tumor Center, Department of Neurosurgery, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands
| | - M L M Lamfers
- Erasmus University Medical Center, Brain Tumor Center, Department of Neurosurgery, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands
| | - H Al-Khawaja
- Erasmus University Medical Center, Brain Tumor Center, Department of Neurosurgery, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands.
| |
Collapse
|
20
|
Orsini F, De Blasio D, Zangari R, Zanier ER, De Simoni MG. Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis. Front Cell Neurosci 2014; 8:380. [PMID: 25426028 PMCID: PMC4224073 DOI: 10.3389/fncel.2014.00380] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/22/2014] [Indexed: 01/30/2023] Open
Abstract
The immune response after brain injury is highly complex and involves both local and systemic events at the cellular and molecular level. It is associated to a dramatic over-activation of enzyme systems, the expression of proinflammatory genes and the activation/recruitment of immune cells. The complement system represents a powerful component of the innate immunity and is highly involved in the inflammatory response. Complement components are synthesized predominantly by the liver and circulate in the bloodstream primed for activation. Moreover, brain cells can produce complement proteins and receptors. After acute brain injury, the rapid and uncontrolled activation of the complement leads to massive release of inflammatory anaphylatoxins, recruitment of cells to the injury site, phagocytosis and induction of blood brain barrier (BBB) damage. Brain endothelial cells are particularly susceptible to complement-mediated effects, since they are exposed to both circulating and locally synthesized complement proteins. Conversely, during neurodegenerative disorders, complement factors play distinct roles depending on the stage and degree of neuropathology. In addition to the deleterious role of the complement, increasing evidence suggest that it may also play a role in normal nervous system development (wiring the brain) and adulthood (either maintaining brain homeostasis or supporting regeneration after brain injury). This article represents a compendium of the current knowledge on the complement role in the brain, prompting a novel view that complement activation can result in either protective or detrimental effects in brain conditions that depend exquisitely on the nature, the timing and the degree of the stimuli that induce its activation. A deeper understanding of the acute, subacute and chronic consequences of complement activation is needed and may lead to new therapeutic strategies, including the ability of targeting selective step in the complement cascade.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| | - Daiana De Blasio
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy ; Department of Experimental and Clinical Sciences, University of Chieti Pescara, Italy
| | - Rosalia Zangari
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy ; Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan Milan, Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| |
Collapse
|
21
|
|
22
|
Krautkrämer E, Zeier M. Old World hantaviruses: aspects of pathogenesis and clinical course of acute renal failure. Virus Res 2014; 187:59-64. [PMID: 24412712 DOI: 10.1016/j.virusres.2013.12.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/09/2013] [Accepted: 12/24/2013] [Indexed: 12/31/2022]
Abstract
Hantavirus-associated diseases represent emerging infections that are ranked in the highest priority group of communicable diseases for surveillance and epidemiological research. In the last years, several novel hantavirus species were described and the number of host reservoir species harboring hantaviruses is also increasing. Reports of cases with severe or atypical clinical courses become also more frequent. These facts raise more and more questions concerning host reservoir specificity, pathogenicity and molecular mechanism of pathogenesis. Hantavirus disease is characterized by vascular leakage due to increased capillary permeability. The infection manifests often in the lung (hantaviral cardiopulmonary syndrome; HCPS) or in the kidney (hemorrhagic fever with renal syndrome, HFRS). The underlying mechanisms of both syndromes are probably similar despite the difference in organ tropism. Characterization of hantaviral replication cycle and of patient-specific determinants will help to identify factors responsible for the clinical symptoms and course.
Collapse
Affiliation(s)
- Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
23
|
Ghebrehiwet B, Ji Y, Valentino A, Pednekar L, Ramadass M, Habiel D, Kew RR, Hosszu KH, Galanakis DK, Kishore U, Peerschke EIB. Soluble gC1qR is an autocrine signal that induces B1R expression on endothelial cells. THE JOURNAL OF IMMUNOLOGY 2013; 192:377-84. [PMID: 24319267 DOI: 10.4049/jimmunol.1302031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bradykinin (BK) is one of the most potent vasodilator agonists known and belongs to the kinin family of proinflammatory peptides. BK induces its activity via two G protein-coupled receptors: BK receptor 1 (B1R) and BK receptor 2. Although BK receptor 2 is constitutively expressed on endothelial cells (ECs), B1R is induced by IL-1β. The C1q receptor, receptor for the globular heads of C1q (gC1qR), which plays a role in BK generation, is expressed on activated ECs and is also secreted as soluble gC1qR (sgC1qR). Because sgC1qR can bind to ECs, we hypothesized that it may also serve as an autocrine/paracrine signal for the induction of B1R expression. In this study, we show that gC1qR binds to ECs via a highly conserved domain consisting of residues 174-180, as assessed by solid-phase binding assay and deconvolution fluorescence microscopy. Incubation of ECs (24 h, 37 °C) with sgC1qR resulted in enhancement of B1R expression, whereas incubation with gC1qR lacking aa 174-180 and 154-162 had a diminished effect. Binding of sgC1qR to ECs was through surface-bound fibrinogen and was inhibited by anti-fibrinogen. In summary, our data suggest that, at sites of inflammation, sgC1qR can enhance vascular permeability by upregulation of B1R expression through de novo synthesis, as well as rapid translocation of preformed B1R.
Collapse
|
24
|
Mäkelä K, Helén P, Haapasalo H, Paavonen T. Complement activation in astrocytomas: deposition of C4d and patient outcome. BMC Cancer 2012; 12:565. [PMID: 23199209 PMCID: PMC3517746 DOI: 10.1186/1471-2407-12-565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 11/28/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND C4d is a cleavage product of complement component C4 and is considered to serve as a marker for the site of complement activation. In this study C4d staining of grade I-IV astrocytic tumors was studied to explore if there is an association between complement activation and the grade of tumor, or patient survival. METHODS Tissue micro-array samples of 102 astrocytomas were stained immunohistochemically. The material consisted of 9 pilocytic astrocytomas and 93 grade II-IV astrocytomas, of which 67 were primary resections and 26 recurrent tumors. The intensity of C4d staining as well as extent of C4d and CD34 staining were evaluated. The intensity of C4d staining was scored semiquantitatively. The extent of the staining was counted morphometrically with a point counting grid yielding a percent of C4d and CD34 positive area of the sample. RESULTS The intensity and extent of C4d staining increased in grade II-IV diffusely infiltrating astrocytoma tumors in line with the malignancy grade (p = 0.034 and p = 0.016, respectively, Kruskal-Wallis test). However, C4d positive tumor area percentages were higher in grade I pilocytic astrocytomas than in grade II-IV diffusely infiltrating astrocytomas (p = 0.041, Mann-Whitney test). There was a significant correlation between CD34 positive and C4d positive endothelial area fraction in diffusely infiltrating astrocytomas (p < 0.001, Pearson correlation). In these tumors, the increasing intensity of C4d staining was also associated with worsened patient outcome (p = 0.014, log-rank test). CONCLUSION The worsening of patient outcome and malignant progression of tumor cells seem to be connected to microenvironmental changes evoked by chronically activated complement.
Collapse
Affiliation(s)
- Katri Mäkelä
- Department of Pathology, University of Tampere Medical School, Tampere, Finland
- University of Tampere, School of Medicine, Biokatu 6, Tampere 33520, Finland
| | - Pauli Helén
- Unit of Neurosurgery, Tampere University Hospital, Tampere, Finland
| | - Hannu Haapasalo
- Department of Pathology, University of Tampere Medical School, Tampere, Finland
- Department of Pathology, Fimlab laboratories, Tampere University Hospital, Tampere, Finland
| | - Timo Paavonen
- Department of Pathology, University of Tampere Medical School, Tampere, Finland
- Department of Pathology, Fimlab laboratories, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
25
|
Yanai R, Thanos A, Connor KM. Complement involvement in neovascular ocular diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:161-83. [PMID: 21948368 DOI: 10.1007/978-1-4614-0106-3_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pathological neovascularization (NV) is a hallmark of late stage neovascular age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinopathy of prematurity (ROP). There is accumulating evidence that alterations in inflammatory and immune system pathways that arise from genetic differences, injury, and disease can predispose individuals to retinal neovascular eye diseases. Yet the mechanism of disease progression with respect to the complement system in these maladies is not fully understood. Recent studies have implicated the complement system as an emerging player in the etiology of several retinal diseases. We will summarize herein several of the complement system pathways known to be involved in ocular neovascular pathologies. Current treatment for many neovascular eye diseases focuses on suppression of NV with laser ablation, photodynamic therapy, or anti-VEGF angiogenic inhibitors. However, these treatments do not address the underlying cause of many of these diseases. A clear understanding of the cellular and molecular mechanisms could bring a major shift in our approach to disease treatment and prevention.
Collapse
Affiliation(s)
- Ryoji Yanai
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
26
|
Haque R, Hwang BY, Appelboom G, Piazza MA, Guo K, Connolly ES. Alterations in systemic complement component 3a and 5a levels in patients with cerebral arteriovenous malformations. J Clin Neurosci 2011; 18:1235-9. [DOI: 10.1016/j.jocn.2011.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
|
27
|
Complement and non-complement activating functions of C1q: A prototypical innate immune molecule. Innate Immun 2011; 18:350-63. [DOI: 10.1177/1753425910396252] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
C1q is a versatile innate immune molecule that serves as the initiation subcomponent of the classical complement pathway. In addition, it is also a potent pattern recognition molecule, the versatility of which has fuelled its functional flexibility. C1q recognises an array of self, non-self and altered-self ligands. The broad-spectrum ligand-binding potential of C1q is facilitated by the modular organisation of the heterotrimeric globular head region, its ability to change its conformation in a very subtle way, and the manner in which this ancient molecule appears to have evolved to deal with the different types of ligands. Over recent years, molecules that resemble C1q have been put together to form the C1q family. In this review, we briefly summarise complement-dependent and complement-independent functions of C1q, its cognate receptors and key members of the rapidly growing C1q family.
Collapse
|
28
|
Abstract
Atherosclerosis is a chronic inflammatory disease and the complement system plays a central role in innate immunity. Increasing evidence exists that the complement system is activated within atherosclerotic plaques. However, the role of complement in atherogenesis is not fully understood. Whereas complement activation by the classic and lectin pathway may be protective by removing apoptotic cells and cell debris from atherosclerotic plaques, activation of the complement cascade by the alternative pathway and beyond the C3 convertase with formation of anaphylatoxins and the terminal complement complex may be proatherogenic and may play a role in plaque destabilization leading to its rupture and the onset of acute cardiovascular events. In this review article we present evidence for complement activation within atherosclerotic plaques and we discuss recent data derived from experimental animal models that suggest a dual role of complement in the development of the disease. In addition, we summarize the role of complement components as biomarkers for cardiovascular disease.
Collapse
Affiliation(s)
- W S Speidl
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
29
|
Bulla R, Agostinis C, Bossi F, Rizzi L, Debeus A, Tripodo C, Radillo O, De Seta F, Ghebrehiwet B, Tedesco F. Decidual endothelial cells express surface-bound C1q as a molecular bridge between endovascular trophoblast and decidual endothelium. Mol Immunol 2008; 45:2629-40. [PMID: 18295334 DOI: 10.1016/j.molimm.2007.12.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 12/21/2007] [Accepted: 12/24/2007] [Indexed: 12/20/2022]
Abstract
This study was prompted by the observation that decidual endothelial cells (DECs), unlike endothelial cells (ECs) of blood vessels in normal skin, kidney glomeruli and brain, express surface-bound C1q in physiologic pregnancy. This finding was unexpected, because deposits of C1q are usually observed in pathologic conditions and are associated with complement activation. In the case of DECs, we failed to detect immunoglobulins and C4 co-localized with C1q on the cell surface. Surprisingly, DECs expressed mRNA for the three chains of C1q and secreted detectable level of this component in serum-free medium. The ability to synthesize C1q is acquired by DECs during pregnancy and is not shared by ECs obtained from endometrium and from other sources. Cell-associated C1q has a molecular weight similar to that of secreted C1q and is released from DECs following treatment with heparinase or incubation at low pH. This suggests that C1q binds to DECs and it is not constitutively expressed on the cell surface. C1q is localized at contact sites between endovascular trophoblast and DECs and acts as an intercellular molecular bridge because adhesion of endovascular trophoblast to DECs was inhibited by antibodies to C1q and to a receptor recognizing its globular portion expressed on trophoblast.
Collapse
Affiliation(s)
- Roberta Bulla
- Department of Physiology and Pathology, University of Trieste, via Fleming 22, 34127, Trieste, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yin W, Ghebrehiwet B, Weksler B, Peerschke EIB. Regulated complement deposition on the surface of human endothelial cells: effect of tobacco smoke and shear stress. Thromb Res 2007; 122:221-8. [PMID: 18166221 DOI: 10.1016/j.thromres.2007.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/20/2007] [Accepted: 11/27/2007] [Indexed: 12/23/2022]
Abstract
Cigarette smoke and hemodynamic stress both contribute to vascular inflammation and associated atherosclerosis. We recently demonstrated direct activation of complement components C4 and C3 on human endothelial cells (EC). The present study was designed to explore complement activation on bone marrow microvascular endothelial cells (BMEC) and human umbilical vein endothelial cells (HUVEC) in response to endothelial cell injury by tobacco smoke extract, shear stress, or other known inflammatory and atherogenic mediators, lipopolysaccharide (LPS) and INF-gamma. Following treatment, confluent EC monolayers were exposed to plasma (60 min, 37 degrees C), and cell surface deposition of stable complement derivatives C4d, iC3b and SC5b-9 was measured in situ using an ELISA approach. Consistent with previous results, moderate levels of C4d, iC3b and SC5b-9 deposition were observed on native EC monolayers exposed to human plasma. Tobacco smoke and shear stress enhanced EC C4d deposition. In contrast, LPS and INF-gamma failed to affect EC mediated complement activation, despite evidence of EC activation illustrated by ICAM-1 expression. The combination of tobacco smoke and shear stress nearly doubled EC C4d expression. No increases in iC3b or SC5b-9 were noted, suggesting inhibition of classical and alternative pathway C3 convertase assembly or activity. Indeed, concomitantly increased surface expression of complement regulatory proteins CD35 (CR1) and CD55 was observed following EC exposure to tobacco smoke and shear stress. These results suggest that a balance between complement activation and regulation exists at the EC surface, and may impact vascular injury leading to thrombosis, arteriosclerosis, and atherogenesis.
Collapse
Affiliation(s)
- Wei Yin
- Department of Pathology and Laboratory of Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | |
Collapse
|