1
|
Bidgood GM, Keating N, Doggett K, Nicholson SE. SOCS1 is a critical checkpoint in immune homeostasis, inflammation and tumor immunity. Front Immunol 2024; 15:1419951. [PMID: 38947335 PMCID: PMC11211259 DOI: 10.3389/fimmu.2024.1419951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
The Suppressor of Cytokine Signaling (SOCS) family proteins are important negative regulators of cytokine signaling. SOCS1 is the prototypical member of the SOCS family and functions in a classic negative-feedback loop to inhibit signaling in response to interferon, interleukin-12 and interleukin-2 family cytokines. These cytokines have a critical role in orchestrating our immune defence against viral pathogens and cancer. The ability of SOCS1 to limit cytokine signaling positions it as an important immune checkpoint, as evidenced by the detection of detrimental SOCS1 variants in patients with cytokine-driven inflammatory and autoimmune disease. SOCS1 has also emerged as a key checkpoint that restricts anti-tumor immunity, playing both a tumor intrinsic role and impacting the ability of various immune cells to mount an effective anti-tumor response. In this review, we describe the mechanism of SOCS1 action, focusing on the role of SOCS1 in autoimmunity and cancer, and discuss the potential for new SOCS1-directed cancer therapies that could be used to enhance adoptive immunotherapy and immune checkpoint blockade.
Collapse
Affiliation(s)
- Grace M. Bidgood
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Narelle Keating
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Karen Doggett
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Sandra E. Nicholson
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Dual Effects of Let-7b in the Early Stage of Hepatitis C Virus Infection. J Virol 2021; 95:JVI.01800-20. [PMID: 33208444 DOI: 10.1128/jvi.01800-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNA let-7b expression is induced by infection of hepatitis C virus (HCV) and is involved in the regulation of HCV replication by directly targeting the HCV genome. The current study demonstrated that let-7b directly targets negative regulators of type I interferon (IFN) signaling thereby limiting HCV replication in the early stage of HCV infection. Let-7b-regulated genes which are involved in host cellular responses to HCV infection were unveiled by microarray profiling and bioinformatic analyses, followed by various molecular and cellular assays using Huh7 cells expressing wild-type (WT) or the seed region-mutated let-7b. Let-7b targeted the cytokine signaling 1 (SOCS1) protein, a negative regulator of JAK/STAT signaling, which then enhanced STAT1-Y701 phosphorylation leading to increased expression of the downstream interferon-stimulated genes (ISGs). Let-7b augmented retinoic acid-inducible gene I (RIG-I) signaling, but not MDA5, to phosphorylate and nuclear translocate IRF3 leading to increased expression of IFN-β. Let-7b directly targeted the ATG12 and IκB kinase alpha (IKKα) transcripts and reduced the interaction of the ATG5-ATG12 conjugate and RIG-I leading to increased expression of IFN, which may further stimulate JAK/STAT signaling. Let-7b induced by HCV infection elicits dual effects on IFN expression and signaling, along with targeting the coding sequences of NS5B and 5' UTR of the HCV genome, and limits HCV RNA accumulation in the early stage of HCV infection. Controlling let-7b expression is thereby crucial in the intervention of HCV infection.IMPORTANCE HCV is a leading cause of liver disease, with an estimated 71 million people infected worldwide. During HCV infection, type I interferon (IFN) signaling displays potent antiviral and immunomodulatory effects. Host factors, including microRNAs (miRNAs), play a role in upregulating IFN signaling to limit HCV replication. Let-7b is a liver-abundant miRNA that is induced by HCV infection and targets the HCV genome to suppress HCV RNA accumulation. In this study, we demonstrated that let-7b, as a positive regulator of type I IFN signaling, plays dual roles against HCV replication by increasing the expression of IFN and interferon-sensitive response element (ISRE)-driven interferon-stimulated genes (ISGs) in the early stage of HCV infection. This study sheds new insight into understanding the role of let-7b in combatting HCV infection. Clarifying IFN signaling regulated by miRNA during the early phase of HCV infection may help researchers understand the initial defense mechanisms to other RNA viruses.
Collapse
|
3
|
Zhang W, Chen S, Zhang J, Wu Z, Wang M, Jia R, Zhu D, Liu M, Sun K, Yang Q, Wu Y, Chen X, Cheng A. Molecular identification and immunological characteristics of goose suppressor of cytokine signaling 1 (SOCS-1) in vitro and vivo following DTMUV challenge. Cytokine 2017; 93:1-9. [PMID: 28416080 DOI: 10.1016/j.cyto.2017.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/18/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022]
Abstract
Purpose suppressor of cytokine signaling 1 (SOCS-1) is inducible feedback inhibitors of cytokine signaling and involved in viral infection through regulation of both innate and adaptive immunity. In this study, we firstly cloned SOCS-1 (goSOCS-1) from duck Tembusu virus (DTMUV) infected goose. The full-length sequence of goSOCS-1 ORF is 624bp and encoded 108 amino acids. Structurally, the mainly functional regions (KIR, SH2, SOCS-box) were conserved between avian and mammalian. The tissues distribution data showed SOCS-1 highly expressed in immune related tissues (SP, LU, HG) of both gosling and adult goose. Moreover, the goSOCS-1 transcripts were induced by goIFNs in GEFs and by TLR ligands in PBMCs. Notably, upon DTMUV infection, highly expression level of goSOCS-1 was detected in vitro and in vivo with high viral load. Our results indicated that goSOCS-1 might involve in both innate and adaptive antiviral immunity of waterfowl.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jingyue Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
4
|
Zimmer J, Weitnauer M, Boutin S, Küblbeck G, Thiele S, Walker P, Lasitschka F, Lunding L, Orinska Z, Vock C, Arnold B, Wegmann M, Dalpke A. Nuclear Localization of Suppressor of Cytokine Signaling-1 Regulates Local Immunity in the Lung. Front Immunol 2016; 7:514. [PMID: 27917175 PMCID: PMC5114302 DOI: 10.3389/fimmu.2016.00514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/04/2016] [Indexed: 01/14/2023] Open
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a negative feedback inhibitor of cytoplasmic Janus kinase and signal transducer and activator of transcription (STAT) signaling. SOCS1 also contains a nuclear localization sequence (NLS), yet, the in vivo importance of nuclear translocation is unknown. We generated transgenic mice containing mutated Socs1ΔNLS that fails to translocate in the cell nucleus (MGLtg mice). Whereas mice fully deficient for SOCS1 die within the first 3 weeks due to excessive interferon signaling and multiorgan inflammation, mice expressing only non-nuclear Socs1ΔNLS (Socs1-/-MGLtg mice) were rescued from early lethality. Canonical interferon gamma signaling was still functional in Socs1-/-MGLtg mice as shown by unaltered tyrosine phosphorylation of STAT1 and whole genome expression analysis. However, a subset of NFκB inducible genes was dysregulated. Socs1-/-MGLtg mice spontaneously developed low-grade inflammation in the lung and had elevated Th2-type cytokines. Upon ovalbumin sensitization and challenge, airway eosinophilia was increased in Socs1-/-MGLtg mice. Decreased transepithelial electrical resistance in trachea epithelial cells from Socs1-/-MGLtg mice suggests disrupted epithelial cell barrier. The results indicate that nuclear SOCS1 is a regulator of local immunity in the lung and unravel a so far unrecognized function for SOCS1 in the cell nucleus.
Collapse
Affiliation(s)
- Jana Zimmer
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg , Heidelberg , Germany
| | - Michael Weitnauer
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg , Heidelberg , Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany; German Center for Lung Research (DZL), Germany
| | | | - Sabrina Thiele
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg , Heidelberg , Germany
| | - Patrick Walker
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg , Heidelberg , Germany
| | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg , Heidelberg , Germany
| | - Lars Lunding
- German Center for Lung Research (DZL), Germany; Division of Asthma Mouse Model, Research Center Borstel, Borstel, Germany; Airway Research Center North, Borstel, Germany
| | - Zane Orinska
- German Center for Lung Research (DZL), Germany; Airway Research Center North, Borstel, Germany; Division of Experimental Pneumology, Prority Area Asthma & Allergy, Research Center Borstel, Borstel, Germany
| | - Christina Vock
- German Center for Lung Research (DZL), Germany; Airway Research Center North, Borstel, Germany; Division of Experimental Pneumology, Prority Area Asthma & Allergy, Research Center Borstel, Borstel, Germany
| | - Bernd Arnold
- German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Michael Wegmann
- German Center for Lung Research (DZL), Germany; Division of Asthma Mouse Model, Research Center Borstel, Borstel, Germany; Airway Research Center North, Borstel, Germany
| | - Alexander Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany; German Center for Lung Research (DZL), Germany
| |
Collapse
|
5
|
Linossi EM, Nicholson SE. Kinase inhibition, competitive binding and proteasomal degradation: resolving the molecular function of the suppressor of cytokine signaling (SOCS) proteins. Immunol Rev 2016; 266:123-33. [PMID: 26085211 DOI: 10.1111/imr.12305] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The suppressor of cytokine signaling (SOCS) family of proteins are key negative regulators of cytokine and growth factor signaling. They act at the receptor complex to modulate the intracellular signaling cascade, preventing excessive signaling and restoring homeostasis. This regulation is critical to the normal cessation of signaling, highlighted by the complex inflammatory phenotypes exhibited by mice deficient in SOCS1 or SOCS3. These two SOCS proteins remain the best characterized of the eight family members (CIS, SOCS1-7), and in particular, we now possess a sound understanding of the mechanism of action for SOCS3. Here, we review the mechanistic role of the SOCS proteins and identify examples where clear, definitive data have been generated and discuss areas where the information is less clear. From this functional viewpoint, we discuss how the SOCS proteins achieve exquisite and specific regulation of cytokine signaling and highlight outstanding questions regarding the function of the less well-studied SOCS family members.
Collapse
Affiliation(s)
- Edmond M Linossi
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,The University of Melbourne, Parkville, VIC, Australia
| | - Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
SOCS1 in cancer: An oncogene and a tumor suppressor. Cytokine 2016; 82:87-94. [DOI: 10.1016/j.cyto.2016.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 01/24/2023]
|
7
|
Garg A, Rawat P, Spector SA. Interleukin 23 produced by myeloid dendritic cells contributes to T-cell dysfunction in HIV type 1 infection by inducing SOCS1 expression. J Infect Dis 2015; 211:755-68. [PMID: 25234720 PMCID: PMC4402373 DOI: 10.1093/infdis/jiu523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/09/2014] [Indexed: 12/18/2022] Open
Abstract
The mechanism of myeloid dendritic cell (mDC)-mediated impaired T-cell function was investigated during human immunodeficiency virus type 1 (HIV-1) infection. HIV or gp120 were found to inhibit lipopolysaccharide-induced mDC maturation and cause defects in allogeneic T-cell proliferation, interleukin 2 and interferon γ (IFN-γ) production, and phosphorylated STAT1 expression. gp120-treated mDCs downregulated autologous T-cell proliferation and IFN-γ production against a peptide pool consisting of cytomegalovirus, Epstein-Barr virus, and influenza virus (CEF). These T-cell defects were associated with a decrease in production of the T-helper type 1-polarizing cytokine interleukin 12p70 and an increase in interleukin 23 (IL-23) production by gp120-treated mDCs. gp120-induced IL-23 upregulated suppressor of cytokine signaling 1 (SOCS1) protein in T cells, which inhibited IFN-γ production and killing of CEF-pulsed monocytes. These effector functions were recovered by silencing SOCS1 in T cells. Furthermore, we observed IL-23-induced SOCS1 binding to the IFN-γ transcription complex. These results identify SOCS1 as a novel target to improve the immune function in HIV-infected persons.
Collapse
Affiliation(s)
- Ankita Garg
- Department of Pediatrics, Division of Infectious Diseases, University of California–San Diego, La Jolla
| | - Pratima Rawat
- Department of Pediatrics, Division of Infectious Diseases, University of California–San Diego, La Jolla
| | - Stephen A. Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California–San Diego, La Jolla
- Rady Children's Hospital, San Diego, California
| |
Collapse
|
8
|
Gielen V, Sykes A, Zhu J, Chan B, Macintyre J, Regamey N, Kieninger E, Gupta A, Shoemark A, Bossley C, Davies J, Saglani S, Walker P, Nicholson SE, Dalpke AH, Kon OM, Bush A, Johnston SL, Edwards MR. Increased nuclear suppressor of cytokine signaling 1 in asthmatic bronchial epithelium suppresses rhinovirus induction of innate interferons. J Allergy Clin Immunol 2015; 136:177-188.e11. [PMID: 25630941 PMCID: PMC4541718 DOI: 10.1016/j.jaci.2014.11.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 10/27/2014] [Accepted: 11/12/2014] [Indexed: 01/13/2023]
Abstract
Background Rhinovirus infections are the dominant cause of asthma exacerbations, and deficient virus induction of IFN-α/β/λ in asthmatic patients is important in asthma exacerbation pathogenesis. Mechanisms causing this interferon deficiency in asthmatic patients are unknown. Objective We sought to investigate the expression of suppressor of cytokine signaling (SOCS) 1 in tissues from asthmatic patients and its possible role in impaired virus-induced interferon induction in these patients. Methods We assessed SOCS1 mRNA and protein levels in vitro, bronchial biopsy specimens, and mice. The role of SOCS1 was inferred by proof-of-concept studies using overexpression with reporter genes and SOCS1-deficient mice. A nuclear role of SOCS1 was shown by using bronchial biopsy staining, overexpression of mutant SOCS1 constructs, and confocal microscopy. SOCS1 levels were also correlated with asthma-related clinical outcomes. Results We report induction of SOCS1 in bronchial epithelial cells (BECs) by asthma exacerbation–related cytokines and by rhinovirus infection in vitro. We found that SOCS1 was increased in vivo in bronchial epithelium and related to asthma severity. SOCS1 expression was also increased in primary BECs from asthmatic patients ex vivo and was related to interferon deficiency and increased viral replication. In primary human epithelium, mouse lung macrophages, and SOCS1-deficient mice, SOCS1 suppressed rhinovirus induction of interferons. Suppression of virus-induced interferon levels was dependent on SOCS1 nuclear translocation but independent of proteasomal degradation of transcription factors. Nuclear SOCS1 levels were also increased in BECs from asthmatic patients. Conclusion We describe a novel mechanism explaining interferon deficiency in asthmatic patients through a novel nuclear function of SOCS1 and identify SOCS1 as an important therapeutic target for asthma exacerbations.
Collapse
Affiliation(s)
- Vera Gielen
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Centre for Respiratory Infection, Imperial College London, London, United Kingdom
| | - Annemarie Sykes
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Centre for Respiratory Infection, Imperial College London, London, United Kingdom; Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Jie Zhu
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Centre for Respiratory Infection, Imperial College London, London, United Kingdom
| | - Brian Chan
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jonathan Macintyre
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Centre for Respiratory Infection, Imperial College London, London, United Kingdom; Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | | | | | - Atul Gupta
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Respiratory Pediatrics, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Amelia Shoemark
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Respiratory Pediatrics, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Cara Bossley
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Respiratory Pediatrics, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane Davies
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Respiratory Pediatrics, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sejal Saglani
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Respiratory Pediatrics, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Patrick Walker
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Sandra E Nicholson
- Walter & Eliza Hall Institute, Parkville, Australia; Department of Medical Biology of the University of Melbourne, Parkville, Australia
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Onn-Min Kon
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Andrew Bush
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Respiratory Pediatrics, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Centre for Respiratory Infection, Imperial College London, London, United Kingdom; Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Michael R Edwards
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Centre for Respiratory Infection, Imperial College London, London, United Kingdom.
| |
Collapse
|
9
|
Choi YS, Park JK, Kang EH, Lee YK, Kim TK, Chung JH, Zimmerer JM, Carson WE, Song YW, Lee YJ. Cytokine signaling-1 suppressor is inducible by IL-1beta and inhibits the catabolic effects of IL-1beta in chondrocytes: its implication in the paradoxical joint-protective role of IL-1beta. Arthritis Res Ther 2014; 15:R191. [PMID: 24238405 PMCID: PMC3979110 DOI: 10.1186/ar4381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 11/05/2013] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Although IL-1β is believed to be crucial in the pathogenesis of osteoarthritis (OA), the IL-1β blockade brings no therapeutic benefit in human OA and results in OA aggravation in several animal models. We explored the role of a cytokine signaling 1 (SOCS1) suppressor as a regulatory modulator of IL-1β signaling in chondrocytes. METHODS Cartilage samples were obtained from patients with knee OA and those without OA who underwent surgery for femur-neck fracture. SOCS1 expression in cartilage was assessed with immunohistochemistry. IL-1β-induced SOCS1 expression in chondrocytes was analyzed with quantitative polymerase chain reaction and immunoblot. The effect of SOCS1 on IL-1β signaling pathways and the synthesis of matrix metalloproteinases (MMPs) and aggrecanase-1 was investigated in SOCS1-overexpressing or -knockdown chondrocytes. RESULTS SOCS1 expression was significantly increased in OA cartilage, especially in areas of severe damage (P < 0.01). IL-1β stimulated SOCS1 mRNA expression in a dose-dependent pattern (P < 0.01). The IL-1β-induced production of MMP-1, MMP-3, MMP-13, and ADAMTS-4 (aggrecanase-1, a disintegrin and metalloproteinase with thrombospondin motifs 4) was affected by SOCS1 overexpression or knockdown in both SW1353 cells and primary human articular chondrocytes (all P values < 0.05). The inhibitory effects of SOCS1 were mediated by blocking p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) activation, and by downregulating transforming growth factor-β-activated kinase 1 (TAK1) expression. CONCLUSIONS Our results show that SOCS1 is induced by IL1-β in OA chondrocytes and suppresses the IL-1β-induced synthesis of matrix-degrading enzymes by inhibiting IL-1β signaling at multiple levels. It suggests that the IL-1β-inducible SOCS1 acts as a negative regulator of the IL-1β response in OA cartilage.
Collapse
|
10
|
Saelee P, Chuensumran U, Wongkham S, Chariyalertsak S, Tiwawech D, Petmitr S. Hypermethylation of suppressor of cytokine signaling 1 in hepatocellular carcinoma patients. Asian Pac J Cancer Prev 2013; 13:3489-93. [PMID: 22994783 DOI: 10.7314/apjcp.2012.13.7.3489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common primary hepatic tumor, is highly prevalent in the Asia-Pacific region, including Thailand. Many genetic and epigenetic alterations in HCC have been elucidated. The aim of this study was to determine whether aberrant methylation of the suppressor of cytokine signaling 1 gene (SOCS1) occurs in HCCs. Methylation specific-PCR assays were performed to identify the methylation status of SOCS1 in 29 tumors and their corresponding normal liver tissues. An abnormal methylation status was detected in 17 (59%), with a higher prevalence of aberrant SOCS1 methylation significantly correlating with HCC treated without chemotherapy (OR=0.04, 95%CI=0.01-0.31; P=0.001). This study suggests that epigenetic aberrant SOCS1 methylation may be a predictive marker for HCC patients.
Collapse
Affiliation(s)
- Pensri Saelee
- Research Division, National Cancer Institute, Khon Kaen, Thailand.
| | | | | | | | | | | |
Collapse
|
11
|
Zhang J, Li H, Yu JP, Wang SE, Ren XB. Role of SOCS1 in tumor progression and therapeutic application. Int J Cancer 2012; 130:1971-80. [PMID: 22025331 DOI: 10.1002/ijc.27318] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/17/2011] [Indexed: 01/07/2023]
Abstract
SOCS1, a prototype molecule of the SOCS family, was initially defined as a suppressor of cytokine signaling. The molecular mechanisms of SOCS1-mediated functions have been subsequently identified by studies using gene knockout mice and gene silencing technology. As part of a negative feedback regulation, SOCS1 downregulates cytokine signaling through direct inhibition of the JAK tyrosine kinase and the signaling cascade of activated cytokine receptors, thereby attenuating cytokine-initiated signal transduction. Moreover, other studies have demonstrated that SOCS1 also downregulates TLR signaling through direct and indirect mechanisms. Both cytokine receptor and TLR signaling pathways mediate important functions in survival, maturation and differentiation of various types of cells and in the regulation of immune function. Abnormal expression of SOCS1 in tumor cells has been detected in various human cancers, where it is associated with dysregulation of cytokine receptor and TLR signaling to promote cell transformation. Recent studies on the function of SOCS1 in tumor cells have revealed its novel role in carcinogenesis. In this review, we will focus on the mechanism of action of SOCS1 in both tumor cells and antigen-presenting cells in the tumor microenvironment. The potential of using SOCS1 as a diagnostic marker and therapeutic target in tumor diagnosis, prognosis and treatment is discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | | | | | | | | |
Collapse
|
12
|
Zouein FA, Duhé RJ, Booz GW. JAKs go nuclear: emerging role of nuclear JAK1 and JAK2 in gene expression and cell growth. Growth Factors 2011; 29:245-52. [PMID: 21892841 PMCID: PMC3595105 DOI: 10.3109/08977194.2011.614949] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The four Janus kinases (JAKs) comprise a family of intracellular, nonreceptor tyrosine kinases that first gained attention as signaling mediators of the type I and type II cytokine receptors. Subsequently, the JAKs were found to be involved in signaling downstream of the insulin receptor, a number of receptor tyrosine kinases, and certain G-protein coupled receptors. Although a number of cytoplasmic targets for the JAKs have been identified, their predominant action was found to be the phosphorylation and activation of the signal transducers and activators of transcription (STAT) factors. Through the STATs, the JAKs activate gene expression linked to cellular stress, proliferation, and differentiation. The JAKs are especially important in hematopoiesis, inflammation, and immunity, and aberrant JAK activity has been implicated in a number of disorders including rheumatoid arthritis, psoriasis, polycythemia vera, and myeloproliferative diseases. Although once thought to reside strictly in the cytoplasm, recent evidence shows that JAK1 and JAK2 are present in the nucleus of certain cells often under conditions associated with high rates of cell growth. Nuclear JAKs have now been shown to affect gene expression by activating other transcription factors besides the STATs and exerting epigenetic actions, for example, by phosphorylating histone H3. The latter action derepresses global gene expression and has been implicated in leukemogenesis. Nuclear JAKs may have a role as well in stem cell biology. Here we describe recent developments in understanding the noncanonical nuclear actions of JAK1 and JAK2.
Collapse
Affiliation(s)
- Fouad A. Zouein
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA
- The Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Roy J. Duhé
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA
- University of Mississippi Cancer Institute, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA
- The Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
13
|
Hildebrand D, Walker P, Dalpke A, Heeg K, Kubatzky KF. Pasteurella multocida Toxin-induced Pim-1 expression disrupts suppressor of cytokine signalling (SOCS)-1 activity. Cell Microbiol 2011; 12:1732-45. [PMID: 20633028 DOI: 10.1111/j.1462-5822.2010.01504.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pasteurella multocida Toxin (PMT) is a mitogenic protein toxin that manipulates signal transduction cascades of mammalian host cells and upregulates Janus kinase (JAK) and signal transducers of transcription (STAT) activity. Here we show that in the presence of PMT, increased levels of suppressors of cytokine signalling-1 (SOCS-1) proteins significantly enhance STAT activity. This occurs via PMT-induced expression of the serine/threonine kinase Pim-1 and subsequent threonine phosphorylation of SOCS-1. The ability of SOCS-1 to act as an E3 ubiquitin ligase is regulated by its phosphorylation status. Thus, the tyrosine kinase JAK2 cannot be marked for proteasomal degradation by threonine phosphorylated SOCS-1. Consequently, the expression levels of JAK2 are increased, eventually leading to hyperactivity of JAK2 and its target, the transcription factor STAT3. Eventually this causes increased anchorage-independent cell growth that correlates with the expression levels of SOCS-1. Interestingly, endogenous SOCS-1 production after Toll-like receptor activation also causes STAT3 hyperactivation. Thus we hypothesize that P. multocida Toxin alters host cell signalling using mechanisms that have so far only been known to be employed by oncogenic viral kinases to avoid host immune defence mechanisms.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Department für Infektiologie, Medizinische Mikrobiologie und Hygiene, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
14
|
Mallette FA, Calabrese V, Ilangumaran S, Ferbeyre G. SOCS1, a novel interaction partner of p53 controlling oncogene-induced senescence. Aging (Albany NY) 2010; 2:445-52. [PMID: 20622265 PMCID: PMC2933891 DOI: 10.18632/aging.100163] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Members of the signal transducers and activators of transcription (STATs) family of proteins, which connect cytokine signaling to activation of transcription, are frequently activated in human cancers. Suppressors of cytokine signaling (SOCS) are transcriptional targets of activated STAT proteins that negatively control STAT signaling. SOCS1 expression is silenced in multiple human cancers suggesting a tumor suppressor role for this protein. However, SOCS1 not only regulates STAT signaling but can also localize to the nucleus and directly interact with the p53 tumor suppressor through its central SH2 domain. Furthermore, SOCS1 contributes to p53 activation and phosphorylation on serine 15 by forming a ternary complex with ATM or ATR. Through this mechanism SOCS1 regulates the process of oncogene-induced senescence, which is a very important tumor suppressor response. A mutant SOCS1 lacking the SOCS box cannot interact with ATM/ATR, stimulate p53 or induce the senescence phenotype, suggesting that the SOCS box recruits DNA damage activated kinases to its interaction partners bound to its SH2 domain. Proteomic analysis of SOCS1 interaction partners revealed other potential targets of SOCS1 in the DNA damage response. These newly discovered functions of SOCS1 help to explain the increased susceptibility of Socs1 null mice to develop cancer as well as their propensity to develop autoimmune diseases. Consistently, we found that mice lacking SOCS1 displayed defects in the regulation of p53 target genes including Mdm2, Pmp22, PUMA and Gadd45a. The involvement of SOCS1 in p53 activation and the DNA damage response defines a novel tumor suppressor pathway and intervention point for future cancer therapeutics.
Collapse
|
15
|
Strebovsky J, Walker P, Lang R, Dalpke AH. Suppressor of cytokine signaling 1 (SOCS1) limits
NFκB
signaling by decreasing p65 stability within the cell nucleus. FASEB J 2010; 25:863-74. [DOI: 10.1096/fj.10-170597] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julia Strebovsky
- Department of Infectious Diseases–Medical Microbiology and Hygiene University of Heidelberg Heidelberg Germany
| | - Patrick Walker
- Department of Infectious Diseases–Medical Microbiology and Hygiene University of Heidelberg Heidelberg Germany
| | - Roland Lang
- Institute of Clinical Microbiology Immunology and Hygiene University Hospital Erlangen Erlangen Germany
| | - Alexander H. Dalpke
- Department of Infectious Diseases–Medical Microbiology and Hygiene University of Heidelberg Heidelberg Germany
| |
Collapse
|
16
|
Madonna S, Scarponi C, Sestito R, Pallotta S, Cavani A, Albanesi C. The IFN-gamma-dependent suppressor of cytokine signaling 1 promoter activity is positively regulated by IFN regulatory factor-1 and Sp1 but repressed by growth factor independence-1b and Krüppel-like factor-4, and it is dysregulated in psoriatic keratinocytes. THE JOURNAL OF IMMUNOLOGY 2010; 185:2467-81. [PMID: 20644166 DOI: 10.4049/jimmunol.1001426] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidermal keratinocytes can counteract the detrimental effects of IFN-gamma by inducing the expression of suppressor of cytokine signaling (SOCS)1, which plays an important anti-inflammatory and self-protective role. To date, limited information exists on its expression and regulation in human diseased keratinocytes. In this study, we compared the expression levels of SOCS1 in keratinocytes isolated from skin affected by psoriasis with cells obtained from healthy donors, unveiling that keratinocytes are more prone than healthy cells to upregulate SOCS1 mRNA expression in response to IFN-gamma. We explored the regulatory mechanisms involved in socs1 gene transcription, and found that Sp1 and IFN regulatory factor-1 transcription factors are, respectively, responsible for the basal and IFN-gamma-induced activity of human socs1 promoter. In parallel, we demonstrated that socs1 promoter is negatively regulated by two transcriptional repressors, namely, growth factor independence-1b and Krüppel-like factor 4, which tightly control SOCS1 transcription on IFN-gamma stimulation. Interestingly, although the expression of Sp1 and IFN regulatory factor-1 activators of socs1 promoter is unaltered, growth factor independence-1b and Krüppel-like factor 4 are significantly reduced in psoriatic compared with healthy keratinocytes. This reduction and the consequent unbalanced binding of transcriptional activators and repressors to socs1 promoter after IFN-gamma stimulation might be responsible for the enhanced expression of SOCS1 in psoriatic cells. We suggest that SOCS1 exaggerated upregulation in psoriatic keratinocytes could represent a mechanism through which these cells attempt to protect themselves from IFN-gamma effects. However, the SOCS1 increased levels in psoriatic keratinocytes are not sufficient to completely inhibit the expression of proinflammatory genes.
Collapse
Affiliation(s)
- Stefania Madonna
- Laboratorio di Immunologia Sperimentale, Istituto Dermopatico dell'Immacolata, Rome, Italy
| | | | | | | | | | | |
Collapse
|