1
|
Li XQ, Cai MP, Wang MY, Shi BW, Yang GY, Wang J, Chu BB, Ming SL. Pseudorabies virus manipulates mitochondrial tryptophanyl-tRNA synthetase 2 for viral replication. Virol Sin 2024; 39:403-413. [PMID: 38636706 PMCID: PMC11279775 DOI: 10.1016/j.virs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.
Collapse
Affiliation(s)
- Xiu-Qing Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Meng-Pan Cai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Ming-Yang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Bo-Wen Shi
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China.
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Longhu Advanced Immunization Laboratory, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China.
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Sanz MÁ, Polo M, Rodríguez-Pulido M, Huildore Bommanna R, Sáiz M. The antiviral response triggered by the cGAS/STING pathway is subverted by the foot-and-mouth disease virus proteases. Cell Mol Life Sci 2024; 81:148. [PMID: 38509419 PMCID: PMC10954996 DOI: 10.1007/s00018-024-05190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.
Collapse
Affiliation(s)
| | - Miryam Polo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | | | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
3
|
Shu X, Zhang Y, Zhang X, Zhang Y, Shu Y, Wang Y, Zhang Z, Song C. Therapeutic and immune-regulation effects of Scutellaria baicalensis Georgi polysaccharide on pseudorabies in piglets. Front Vet Sci 2024; 11:1356819. [PMID: 38500605 PMCID: PMC10944897 DOI: 10.3389/fvets.2024.1356819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Pseudorabies virus (PRV) can cause fatal encephalitis in newborn pigs and escape the immune system. While there is currently no effective treatment for PRV, Scutellaria baicalensis Georgi polysaccharides (SGP) and Rodgersia sambucifolia Hemsl flavonoids (RHF) are traditional Chinese herbal medicines with potential preventive and therapeutic effects against PRV infection. In order to explore which one is more effective in the prevention and treatment of PRV infection in piglets. We investigate the therapeutic effects of RHF and SGP in PRV-infected piglets using clinical symptom and pathological injury scoring systems. The immune regulatory effects of RHF and SGP on T lymphocyte transformation rate, cytokines, T cells, and Toll-like receptors were also measured to examine the molecular mechanisms of these effects. The results showed that SGP significantly reduced clinical symptoms and pathological damage in the lungs, liver, spleen, and kidneys in PRV-infected piglets and the T lymphocyte conversion rate in the SGP group was significantly higher than that in the other treatment groups, this potential dose-dependent effect of SGP on T lymphocyte conversation. Serum immunoglobulin and cytokine levels in the SGP group fluctuated during the treatment period, with SGP treatment showing better therapeutic and immunomodulatory effects in PRV-infected piglets than RHF or the combined SGP + RHF treatment. In conclusion, RHF and SGP treatments alleviate the clinical symptoms of PRV infection in piglets, and the immunomodulatory effect of SGP treatment was better than that of the RHF and a combination of both treatments. This study provides evidence for SGP in controlling PRV infection in piglets.
Collapse
Affiliation(s)
- Xianghua Shu
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| | - Ying Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| | - Xue Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| | - Ying Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| | - Yue Shu
- The Faculty of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Yulei Wang
- The Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Zhihui Zhang
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chunlian Song
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Ma YX, Chai YJ, Han YQ, Zhao SB, Yang GY, Wang J, Ming SL, Chu BB. Pseudorabies virus upregulates low-density lipoprotein receptors to facilitate viral entry. J Virol 2024; 98:e0166423. [PMID: 38054618 PMCID: PMC10804996 DOI: 10.1128/jvi.01664-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease in pigs. The low-density lipoprotein receptor (LDLR) is a transcriptional target of the sterol-regulatory element-binding proteins (SREBPs) and participates in the uptake of LDL-derived cholesterol. However, the involvement of LDLR in PRV infection has not been well characterized. We observed an increased expression level of LDLR mRNA in PRV-infected 3D4/21, PK-15, HeLa, RAW264.7, and L929 cells. The LDLR protein level was also upregulated by PRV infection in PK-15 cells and in murine lung and brain. The treatment of cells with the SREBP inhibitor, fatostatin, or with SREBP2-specific small interfering RNA prevented the PRV-induced upregulation of LDLR expression as well as viral protein expression and progeny virus production. This suggested that PRV activated SREBPs to induce LDLR expression. Furthermore, interference in LDLR expression affected PRV proliferation, while LDLR overexpression promoted it. This indicated that LDLR was involved in PRV infection. The study also demonstrated that LDLR participated in PRV invasions. The overexpression of LDLR or inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to LDLR and targets it for lysosomal degradation, significantly enhanced PRV attachment and entry. Mechanistically, LDLR interacted with PRV on the plasma membrane, and pretreatment of cells with LDLR antibodies was able to neutralize viral entry. An in vivo study indicated that the treatment of mice with the PCSK9 inhibitor SBC-115076 promoted PRV proliferation. The data from the study indicate that PRV hijacks LDLR for viral entry through the activation of SREBPs.IMPORTANCEPseudorabies virus (PRV) is a herpesvirus that primarily manifests as fever, pruritus, and encephalomyelitis in various domestic and wild animals. Owing to its lifelong latent infection characteristics, PRV outbreaks have led to significant financial setbacks in the global pig industry. There is evidence that PRV variant strains can infect humans, thereby crossing the species barrier. Therefore, gaining deeper insights into PRV pathogenesis and developing updated strategies to contain its spread are critical. This study posits that the low-density lipoprotein receptor (LDLR) could be a co-receptor for PRV infection. Hence, strategies targeting LDLR may provide a promising avenue for the development of effective PRV vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Ying-Xian Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Ya-Jing Chai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Ya-Qi Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Shi-Bo Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
- Longhu Advanced Immunization Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Su BQ, Yang GY, Wang J, Ming SL, Chu BB. Pseudorabies virus inhibits progesterone-induced inactivation of TRPML1 to facilitate viral entry. PLoS Pathog 2024; 20:e1011956. [PMID: 38295116 PMCID: PMC10829982 DOI: 10.1371/journal.ppat.1011956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Viral infection is a significant risk factor for fertility issues. Here, we demonstrated that infection by neurotropic alphaherpesviruses, such as pseudorabies virus (PRV), could impair female fertility by disrupting the hypothalamus-pituitary-ovary axis (HPOA), reducing progesterone (P4) levels, and consequently lowering pregnancy rates. Our study revealed that PRV exploited the transient receptor potential mucolipin 1 (TRPML1) and its lipid activator, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), to facilitate viral entry through lysosomal cholesterol and Ca2+. P4 antagonized this process by inducing lysosomal storage disorders and promoting the proteasomal degradation of TRPML1 via murine double minute 2 (MDM2)-mediated polyubiquitination. Overall, the study identifies a novel mechanism by which PRV hijacks the lysosomal pathway to evade P4-mediated antiviral defense and impair female fertility. This mechanism may be common among alphaherpesviruses and could contribute significantly to their impact on female reproductive health, providing new insights for the development of antiviral therapies.
Collapse
Affiliation(s)
- Bing-Qian Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, China
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, China
- Longhu Advanced Immunization Laboratory, Zhengzhou, Henan Province, China
| |
Collapse
|
6
|
Li XQ, Zeng L, Liang DG, Qi YL, Yang GY, Zhong K, Chu BB, Wang J. TMEM41B Is an Interferon-Stimulated Gene That Promotes Pseudorabies Virus Replication. J Virol 2023; 97:e0041223. [PMID: 37255475 PMCID: PMC10308899 DOI: 10.1128/jvi.00412-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Pseudorabies virus (PRV) is a double-stranded DNA virus that causes Aujeszky's disease and is responsible for economic loss worldwide. Transmembrane protein 41B (TMEM41B) is a novel endoplasmic reticulum (ER)-localized regulator of autophagosome biogenesis and lipid mobilization; however, the role of TMEM41B in regulating PRV replication remains undocumented. In this study, PRV infection was found to upregulate TMEM41B mRNA and protein levels both in vitro and in vivo. For the first time, we found that TMEM41B could be induced by interferon (IFN), suggesting that TMEM41B is an IFN-stimulated gene (ISG). While TMEM41B knockdown suppressed PRV proliferation, TMEM41B overexpression promoted PRV proliferation. We next studied the specific stages of the virus life cycle and found that TMEM41B knockdown affected PRV entry. Mechanistically, we demonstrated that the knockdown of TMEM41B blocked PRV-stimulated expression of the key enzymes involved in lipid synthesis. Additionally, TMEM41B knockdown played a role in the dynamics of lipid-regulated PRV entry-dependent clathrin-coated pits (CCPs). Lipid replenishment restored the CCP dynamic and PRV entry in TMEM41B knockdown cells. Together, our results indicate that TMEM41B plays a role in PRV infection via regulating lipid homeostasis. IMPORTANCE PRV belongs to the alphaherpesvirus subfamily and can establish and maintain a lifelong latent infection in pigs. As such, an intermittent active cycle presents great challenges to the prevention and control of PRV disease and is responsible for serious economic losses to the pig breeding industry. Studies have shown that lipids play a crucial role in PRV proliferation. Thus, the manipulation of lipid metabolism may represent a new perspective for the prevention and treatment of PRV. In this study, we report that the ER transmembrane protein TMEM41B is a novel ISG involved in PRV infection by regulating lipid synthesis. Therefore, our findings indicate that targeting TMEM41B may be a promising approach for the development of PRV vaccines and therapeutics.
Collapse
Affiliation(s)
- Xiu-Qing Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Dong-Ge Liang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Yan-Li Qi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Kai Zhong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, Henan Province, China
| |
Collapse
|
7
|
Zhang L, Zhang X, Liao J, Xu L, Kang S, Chen H, Sun M, Wu S, Xu Z, Wei S, Qin Q, Wei J. Grouper cGAS is a negative regulator of STING-mediated interferon response. Front Immunol 2023; 14:1092824. [PMID: 36845102 PMCID: PMC9945316 DOI: 10.3389/fimmu.2023.1092824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is one of the classical pattern recognition receptors that recognizes mainly intracytoplasmic DNA. cGAS induces type I IFN responses to the cGAS-STING signaling pathway. To investigate the roles of cGAS-STING signaling pathway in grouper, a cGAS homolog (named EccGAS) was cloned and identified from orange-spotted grouper (Epinephelus coioides). The open reading frame (ORF) of EccGAS is 1695 bp, encodes 575 amino acids, and contains a Mab-21 typical structural domain. EccGAS is homologous to Sebastes umbrosus and humans at 71.8% and 41.49%, respectively. EccGAS mRNA is abundant in the blood, skin, and gills. It is uniformly distributed in the cytoplasm and colocalized in the endoplasmic reticulum and mitochondria. Silencing of EccGAS inhibited the replication of Singapore grouper iridovirus (SGIV) in grouper spleen (GS) cells and enhanced the expression of interferon-related factors. Furthermore, EccGAS inhibited EcSTING-mediated interferon response and interacted with EcSTING, EcTAK1, EcTBK1, and EcIRF3. These results suggest that EccGAS may be a negative regulator of the cGAS-STING signaling pathway of fish.
Collapse
Affiliation(s)
- Luhao Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiaming Liao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaozhu Kang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mengshi Sun
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Laboratory for Marine Biology and Biotechnology, Qingdao, China,Pilot National Laboratory for Marine Science and Technology, Qingdao, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China,*Correspondence: Qiwei Qin, ; Jingguang Wei,
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Department of Biological Sciences, National University of Singapore, Singapore, Singapore,*Correspondence: Qiwei Qin, ; Jingguang Wei,
| |
Collapse
|
8
|
Dai H, Wang Y, Fan Z, Guo Y, Chen J, Meng Y, Tong X, Gao M, Wang J. Bovine cyclic GMP-AMP synthase recognizes exogenous double-stranded DNA and activates the STING-depended interferon β production pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104567. [PMID: 36228808 DOI: 10.1016/j.dci.2022.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) recognizes exogenous double-stranded DNA and produces 2'3'-cyclic GMP-AMP (2'3'-cGAMP), activating the stimulator of interferon genes (STING) and innate immunity. Bovine cGAS functions remain poorly understood. Herein, the coding sequence of the bo-cGAS gene was obtained and its recognition function was investigated. Bo-cGAS consists of 1542 nucleotides and the encoding acid sequence contained high sequence homology to that of other livestock. Bo-cGAS was localized in the endoplasmic reticulum and was abundant in the lung. Bo-cGAS and bo-STING coexistence significantly activated the IFN-β promotor. Synthesized 2'3'-cGAMP activated the STING-dependent pathway. Upon bo-cGAS recognition of poly(dA:dT) and bovine herpesvirus type 1 (BHV-1), Viperin transcription displayed the opposite time-dependent trend. Significant restriction of IFN-β transcription but augmentation of myxovirus resistance protein 1 (Mx1) and Viperin occurred during BHV-1 infection. Thus, bo-cGAS recognized exogenous double-stranded DNA and triggered the STING-dependent IFN-β production pathway.
Collapse
Affiliation(s)
- Haiyue Dai
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yixiao Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhenying Fan
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yongli Guo
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaqi Chen
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ye Meng
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Tong
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Junwei Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
9
|
Nie Z, Zhu S, Wu L, Sun R, Shu J, He Y, Feng H. Progress on innate immune evasion and live attenuated vaccine of pseudorabies virus. Front Microbiol 2023; 14:1138016. [PMID: 36937252 PMCID: PMC10020201 DOI: 10.3389/fmicb.2023.1138016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Pseudorabies virus (PRV) is a highly infectious disease that can infect most mammals, with pigs as the only natural host, has caused considerable economic losses to the pig husbandry of the world. Innate immunity is the first defense line of the host against the attack of pathogens and is essential for the proper establishment of adaptive immunity. The host uses the innate immune response to against the invasion of PRV; however PRV makes use of various strategies to inhibit the innate immunity to promote the virus replication. Currently, live attenuated vaccine is used to prevent pig from infection with the PRV worldwide, such as Bartha K61. However, a growing number of data indicates that these vaccines do not provide complete protection against new PRV variants that have emerged since late 2011. Here we summarized the interactions between PRV and host innate immunity and the current status of live attenuated PRV vaccines to promote the development of novel and more effective PRV vaccines.
Collapse
Affiliation(s)
- Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ruolin Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Huapeng Feng,
| |
Collapse
|
10
|
Jiang D, Jiang C, Sui C, Wu X, Hu Y, Lee C, Cong X, Li J, Du Y, Qi J. Swine NONO is an essential factor to inhibit pseudorabies virus infection. Vet Microbiol 2022; 275:109582. [DOI: 10.1016/j.vetmic.2022.109582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
11
|
Deng L, Xu Z, Li F, Zhao J, Jian Z, Deng H, Lai S, Sun X, Geng Y, Zhu L. Insights on the cGAS-STING Signaling Pathway During Herpesvirus Infections. Front Immunol 2022; 13:931885. [PMID: 35844623 PMCID: PMC9284214 DOI: 10.3389/fimmu.2022.931885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Herpesviruses belong to large double-stranded DNA viruses. They are under a wide range of hosts and establish lifelong infection, which creates a burden on human health and animal health. Innate immunity is the host’s innate defense ability. Activating the innate immune signaling pathway and producing type I interferon is the host’s first line of defense against infectious pathogens. Emerging evidence indicates that the cGAS-STING signaling pathway plays an important role in the innate immunity in response to herpesvirus infections. In parallel, because of the constant selective pressure imposed by host immunity, herpesvirus also evolves to target the cGAS-STING signaling pathway to inhibit or escape the innate immune responses. In the current review, we insight on the classical cGAS-STING signaling pathway. We describe the activation of cGAS-STING signaling pathway during herpesvirus infections and strategies of herpesvirus targeting this pathway to evade host antiviral response. Furthermore, we outline the immunotherapy boosting cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Animal Science, Xichang University, Xichang, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Ling Zhu,
| |
Collapse
|
12
|
Ye G, Liu H, Zhou Q, Liu X, Huang L, Weng C. A Tug of War: Pseudorabies Virus and Host Antiviral Innate Immunity. Viruses 2022; 14:v14030547. [PMID: 35336954 PMCID: PMC8949863 DOI: 10.3390/v14030547] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The non-specific innate immunity can initiate host antiviral innate immune responses within minutes to hours after the invasion of pathogenic microorganisms. Therefore, the natural immune response is the first line of defense for the host to resist the invaders, including viruses, bacteria, fungi. Host pattern recognition receptors (PRRs) in the infected cells or bystander cells recognize pathogen-associated molecular patterns (PAMPs) of invading pathogens and initiate a series of signal cascades, resulting in the expression of type I interferons (IFN-I) and inflammatory cytokines to antagonize the infection of microorganisms. In contrast, the invading pathogens take a variety of mechanisms to inhibit the induction of IFN-I production from avoiding being cleared. Pseudorabies virus (PRV) belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, genus Varicellovirus. PRV is the causative agent of Aujeszky’s disease (AD, pseudorabies). Although the natural host of PRV is swine, it can infect a wide variety of mammals, such as cattle, sheep, cats, and dogs. The disease is usually fatal to these hosts. PRV mainly infects the peripheral nervous system (PNS) in swine. For other species, PRV mainly invades the PNS first and then progresses to the central nervous system (CNS), which leads to acute death of the host with serious clinical and neurological symptoms. In recent years, new PRV variant strains have appeared in some areas, and sporadic cases of PRV infection in humans have also been reported, suggesting that PRV is still an important emerging and re-emerging infectious disease. This review summarizes the strategies of PRV evading host innate immunity and new targets for inhibition of PRV replication, which will provide more information for the development of effective inactivated vaccines and drugs for PRV.
Collapse
Affiliation(s)
- Guangqiang Ye
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Qiongqiong Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Xiaohong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence:
| |
Collapse
|
13
|
Wang Y, Li GL, Qi YL, Li LY, Wang LF, Wang CR, Niu XR, Liu TX, Wang J, Yang GY, Zeng L, Chu BB. Pseudorabies Virus Inhibits Expression of Liver X Receptors to Assist Viral Infection. Viruses 2022; 14:v14030514. [PMID: 35336921 PMCID: PMC8954865 DOI: 10.3390/v14030514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Pseudorabies virus (PRV) is a contagious herpesvirus that causes Aujeszky’s disease and economic losses worldwide. Liver X receptors (LXRs) belong to the nuclear receptor superfamily and are critical for the control of lipid homeostasis. However, the role of LXR in PRV infection has not been fully established. In this study, we found that PRV infection downregulated the mRNA and protein levels of LXRα and LXRβ in vitro and in vivo. Furthermore, we discovered that LXR activation suppressed PRV proliferation, while LXR inhibition promoted PRV proliferation. We demonstrated that LXR activation-mediated reduction of cellular cholesterol was critical for the dynamics of PRV entry-dependent clathrin-coated pits. Replenishment of cholesterol restored the dynamics of clathrin-coated pits and PRV entry under LXR activation conditions. Interestingly, T0901317, an LXR agonist, prevented PRV infection in mice. Our results support a model that PRV modulates LXR-regulated cholesterol metabolism to facilitate viral proliferation.
Collapse
Affiliation(s)
- Yi Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.W.); (G.-L.L.); (Y.-L.Q.); (L.-Y.L.); (L.-F.W.); (C.-R.W.); (X.-R.N.); (T.-X.L.); (J.W.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Zhengzhou 450046, China
| | - Guo-Li Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.W.); (G.-L.L.); (Y.-L.Q.); (L.-Y.L.); (L.-F.W.); (C.-R.W.); (X.-R.N.); (T.-X.L.); (J.W.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Zhengzhou 450046, China
| | - Yan-Li Qi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.W.); (G.-L.L.); (Y.-L.Q.); (L.-Y.L.); (L.-F.W.); (C.-R.W.); (X.-R.N.); (T.-X.L.); (J.W.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Zhengzhou 450046, China
| | - Li-Yun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.W.); (G.-L.L.); (Y.-L.Q.); (L.-Y.L.); (L.-F.W.); (C.-R.W.); (X.-R.N.); (T.-X.L.); (J.W.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Zhengzhou 450046, China
| | - Lu-Fang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.W.); (G.-L.L.); (Y.-L.Q.); (L.-Y.L.); (L.-F.W.); (C.-R.W.); (X.-R.N.); (T.-X.L.); (J.W.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Zhengzhou 450046, China
| | - Cong-Rong Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.W.); (G.-L.L.); (Y.-L.Q.); (L.-Y.L.); (L.-F.W.); (C.-R.W.); (X.-R.N.); (T.-X.L.); (J.W.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Zhengzhou 450046, China
| | - Xin-Rui Niu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.W.); (G.-L.L.); (Y.-L.Q.); (L.-Y.L.); (L.-F.W.); (C.-R.W.); (X.-R.N.); (T.-X.L.); (J.W.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Zhengzhou 450046, China
| | - Tao-Xue Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.W.); (G.-L.L.); (Y.-L.Q.); (L.-Y.L.); (L.-F.W.); (C.-R.W.); (X.-R.N.); (T.-X.L.); (J.W.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Zhengzhou 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.W.); (G.-L.L.); (Y.-L.Q.); (L.-Y.L.); (L.-F.W.); (C.-R.W.); (X.-R.N.); (T.-X.L.); (J.W.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Zhengzhou 450046, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450047, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.W.); (G.-L.L.); (Y.-L.Q.); (L.-Y.L.); (L.-F.W.); (C.-R.W.); (X.-R.N.); (T.-X.L.); (J.W.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Zhengzhou 450046, China
- Correspondence: (L.Z.); (B.-B.C.)
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.W.); (G.-L.L.); (Y.-L.Q.); (L.-Y.L.); (L.-F.W.); (C.-R.W.); (X.-R.N.); (T.-X.L.); (J.W.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
- Correspondence: (L.Z.); (B.-B.C.)
| |
Collapse
|
14
|
Gao L, Zheng S, Wang Y. The Evasion of Antiviral Innate Immunity by Chicken DNA Viruses. Front Microbiol 2021; 12:771292. [PMID: 34777325 PMCID: PMC8581555 DOI: 10.3389/fmicb.2021.771292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
The innate immune system constitutes the first line of host defense. Viruses have evolved multiple mechanisms to escape host immune surveillance, which has been explored extensively for human DNA viruses. There is growing evidence showing the interaction between avian DNA viruses and the host innate immune system. In this review, we will survey the present knowledge of chicken DNA viruses, then describe the functions of DNA sensors in avian innate immunity, and finally discuss recent progresses in chicken DNA virus evasion from host innate immune responses.
Collapse
Affiliation(s)
- Li Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Inhibition of PARP1 Dampens Pseudorabies Virus Infection through DNA Damage-Induced Antiviral Innate Immunity. J Virol 2021; 95:e0076021. [PMID: 34037418 DOI: 10.1128/jvi.00760-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pseudorabies virus (PRV) is the causative pathogen of Aujeszky's disease in pigs. Although vaccination is currently applied to prevent the morbidity of PRV infection, new applications are urgently needed to control this infectious disease. Poly(ADP-ribose) polymerase 1 (PARP1) functions in DNA damage repair. We report here that pharmacological and genetic inhibition of PARP1 significantly influenced PRV replication. Moreover, we demonstrate that inhibition of PARP1 induced DNA damage response and antiviral innate immunity. Mechanistically, PARP1 inhibition-induced DNA damage response resulted in the release of double-stranded DNA (dsDNA) into the cytosol, where dsDNA interacted with cyclic GMP-AMP (cGAMP) synthase (cGAS). cGAS subsequently catalyzed cGAMP production to activate the STING/TBK1/IRF3 innate immune signaling pathway. Furthermore, challenge of mice with PARP1 inhibitor stimulated antiviral innate immunity and protected mice from PRV infection in vivo. Our results demonstrate that PARP1 inhibitors may be used as a new strategy to prevent Aujeszky's disease in pigs. IMPORTANCE Aujeszky's disease is a notifiable infectious disease of pigs and causes economic losses worldwide in the pig industry. The causative pathogen is PRV, which is a member of the subfamily Alphaherpesvirinae of the family Herpesviridae. PRV has a wide range of hosts, such as ruminants, carnivores, and rodents. More seriously, recent reports suggest that PRV can cause human endophthalmitis and encephalitis, which indicates that PRV may be a potential zoonotic pathogen. Although vaccination is currently the major strategy used to control the disease, new applications are also urgently needed for the pig industry and public health. We report here that inhibition of PARP1 induces DNA damage-induced antiviral innate immunity through the cGAS-STING signaling pathway. Therefore, PARP1 is a therapeutic target for PRV infection as well as alphaherpesvirus infection.
Collapse
|
16
|
Inhibition of histone deacetylase 1 suppresses pseudorabies virus infection through cGAS-STING antiviral innate immunity. Mol Immunol 2021; 136:55-64. [PMID: 34087624 DOI: 10.1016/j.molimm.2021.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 01/19/2023]
Abstract
Pseudorabies virus (PRV) is an enveloped double-stranded DNA virus that is the etiological agent of Aujeszky's disease in pigs. Vaccination is currently available to prevent PRV infection, but there is still an urgent need for new strategies to control this infectious disease. Histone deacetylases (HDACs) are epigenetic regulators that regulate the histone tail, chromatin conformation, protein-DNA interaction and even transcription. Viral transcription and protein activities are intimately linked to regulation by histone acetyltransferases and HDACs that remodel chromatin and regulate gene expression. We reported here that genetic and pharmacological inhibition of HDAC1 significantly influenced PRV replication. Moreover, we demonstrated that inhibition of HDAC1 induced a DNA damage response and antiviral innate immunity. Mechanistically, the HDAC1 inhibition-induced DNA damage response resulted in the release of double-strand DNA into the cytosol to activate cyclic GMP-AMP synthase and the downstream STING/TBK1/IRF3 innate immune signaling pathway. Our results demonstrate that an HDAC1 inhibitor may be used as a new strategy to prevent Aujeszky's disease in pigs.
Collapse
|
17
|
Li G, Su B, Fu P, Bai Y, Ding G, Li D, Wang J, Yang G, Chu B. NPC1-regulated dynamic of clathrin-coated pits is essential for viral entry. SCIENCE CHINA-LIFE SCIENCES 2021; 65:341-361. [PMID: 34047913 PMCID: PMC8160554 DOI: 10.1007/s11427-021-1929-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Viruses utilize cellular lipids and manipulate host lipid metabolism to ensure their replication and spread. Therefore, the identification of lipids and metabolic pathways that are suitable targets for antiviral development is crucial. Using a library of compounds targeting host lipid metabolic factors and testing them for their ability to block pseudorabies virus (PRV) and vesicular stomatitis virus (VSV) infection, we found that U18666A, a specific inhibitor of Niemann-Pick C1 (NPC1), is highly potent in suppressing the entry of diverse viruses including pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). NPC1 deficiency markedly attenuates viral growth by decreasing cholesterol abundance in the plasma membrane, thereby inhibiting the dynamics of clathrin-coated pits (CCPs), which are indispensable for clathrin-mediated endocytosis. Significantly, exogenous cholesterol can complement the dynamics of CCPs, leading to efficient viral entry and infectivity. Administration of U18666A improves the survival and pathology of PRV- and influenza A virus-infected mice. Thus, our studies demonstrate a unique mechanism by which NPC1 inhibition achieves broad antiviral activity, indicating a potential new therapeutic strategy against SARS-CoV-2, as well as other emerging viruses.
Collapse
Affiliation(s)
- Guoli Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Bingqian Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Pengfei Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Guangxu Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Dahua Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guoyu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China.
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China.
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
18
|
Pseudorabies virus UL24 antagonizes OASL-mediated antiviral effect. Virus Res 2021; 295:198276. [PMID: 33476694 DOI: 10.1016/j.virusres.2020.198276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022]
Abstract
Oligoadenylate synthetases-like (OASL) protein exerts various effects on DNA and RNA viruses by inhibiting cGAS-mediated IFN production and by enhancing RIG-I-mediated IFN induction, respectively. In this study, we aimed to examine the role of OASL in pseudorabies virus (PRV) proliferation and investigate the function of the PRV UL24 protein in cellular innate immunity. We found that OASL regulates PRV proliferation by enhancing RIG-I signaling. PRV infection decreased the expression of OASL at both the mRNA and protein levels in PK15 and HeLa cells. OASL expression suppressed the proliferation of PRV in a RIG-I-dependent manner and boosted RIG-I-mediated IFN expression as well as IFN-stimulated gene (ISG) induction. In contrast, knockdown of OASL enhanced PRV proliferation and reduced RIG-I signaling. However, the PRV UL24 protein was found to impair RIG-I signaling, thus inhibiting transcription of IFN and ISGs. In addition, the UL24 protein reduced RIG-I-induced expression of endogenous OASL in an IRF3-dependent manner, thereby antagonizing the OASL antiviral effect. Taken together, our findings characterize the role of OASL in PRV proliferation and provide new insights into the role of UL24 in PRV pathogenesis.
Collapse
|
19
|
Rosenthal K, Becker M, Rolf J, Siedentop R, Hillen M, Nett M, Lütz S. Catalytic Promiscuity of cGAS: A Facile Enzymatic Synthesis of 2'-3'-Linked Cyclic Dinucleotides. Chembiochem 2020; 21:3225-3228. [PMID: 32633874 PMCID: PMC7754487 DOI: 10.1002/cbic.202000433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 12/19/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that catalyzes the synthesis of the cyclic GMP-AMP dinucleotide 2'3'-cGAMP. 2'3'-cGAMP functions as inducer for the production of type I interferons. Derivatives of this important second messenger are highly valuable for pharmaceutical applications. However, the production of these analogues requires complex, multistep syntheses. Herein, human cGAS is shown to react with a series of unnatural nucleotides, thus leading to novel cyclic dinucleotides. Most substrate derivatives with modifications at the nucleobase, ribose, and the α-thio phosphate were accepted. These results demonstrate the catalytic promiscuity of human cGAS and its utility for the biocatalytic synthesis of cyclic dinucleotide derivatives.
Collapse
Affiliation(s)
- Katrin Rosenthal
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund University Emil-Figge-Strasse 6644227DortmundGermany
| | - Martin Becker
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund University Emil-Figge-Strasse 6644227DortmundGermany
| | - Jascha Rolf
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund University Emil-Figge-Strasse 6644227DortmundGermany
| | - Regine Siedentop
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund University Emil-Figge-Strasse 6644227DortmundGermany
| | - Michael Hillen
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund University Emil-Figge-Strasse 6644227DortmundGermany
| | - Markus Nett
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| | - Stephan Lütz
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund University Emil-Figge-Strasse 6644227DortmundGermany
| |
Collapse
|
20
|
Zheng W, Zhou R, Li S, He S, Luo J, Zhu M, Chen N, Chen H, Meurens F, Zhu J. Porcine IFI16 Negatively Regulates cGAS Signaling Through the Restriction of DNA Binding and Stimulation. Front Immunol 2020; 11:1669. [PMID: 32922386 PMCID: PMC7456882 DOI: 10.3389/fimmu.2020.01669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
The innate immunity DNA sensors have drawn much attention due to their significant importance against the infections with DNA viruses and intracellular bacteria. Among the multiple DNA sensors, IFI16, and cGAS are the two major ones, subjected to extensive studies. However, these two DNA sensors in livestock animals have not been well defined. Here, we studied the porcine IFI16 and cGAS, and their mutual relationship. We found that both enable STING-dependent signaling to downstream IFN upon DNA transfection and HSV-1 infection, and cGAS plays a major role in DNA signaling. In terms of their relationship, IFI16 appeared to interfere with cGAS signaling as deduced from both transfected and knockout cells. Mechanistically, IFI16 competitively binds with agonist DNA and signaling adaptor STING and thereby influences second messenger cGAMP production and downstream gene transcription. Furthermore, the HIN2 domain of porcine IFI16 harbored most of its activity and mediated cGAS inhibition. Thus, this study provides a unique insight into the porcine DNA sensing system.
Collapse
Affiliation(s)
- Wanglong Zheng
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | - Rongyun Zhou
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | - Shuangjie Li
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | - Shan He
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | - Jia Luo
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | - Meiqin Zhu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | - Nanhua Chen
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Shanghai, China
| | | | - Jianzhong Zhu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,College Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| |
Collapse
|
21
|
Zeng L, Wang MD, Ming SL, Li GL, Yu PW, Qi YL, Jiang DW, Yang GY, Wang J, Chu BB. An effective inactivant based on singlet oxygen-mediated lipid oxidation implicates a new paradigm for broad-spectrum antivirals. Redox Biol 2020; 36:101601. [PMID: 32535542 PMCID: PMC7278711 DOI: 10.1016/j.redox.2020.101601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 02/02/2023] Open
Abstract
Emerging viral pathogens cause substantial morbidity and pose a severe threat to health worldwide. However, a universal antiviral strategy for producing safe and immunogenic inactivated vaccines is lacking. Here, we report an antiviral strategy using the novel singlet oxygen (1O2)-generating agent LJ002 to inactivate enveloped viruses and provide effective protection against viral infection. Our results demonstrated that LJ002 efficiently generated 1O2 in solution and living cells. Nevertheless, LJ002 exhibited no signs of acute toxicity in vitro or in vivo. The 1O2 produced by LJ002 oxidized lipids in the viral envelope and consequently destroyed the viral membrane structure, thus inhibiting the viral and cell membrane fusion necessary for infection. Moreover, the 1O2-based inactivated pseudorabies virus (PRV) vaccine had no effect on the content of the viral surface proteins. Immunization of mice with LJ002-inactiviated PRV vaccine harboring comparable antigen induced more neutralizing antibody responses and efficient protection against PRV infection than conventional formalin-inactivated vaccine. Additionally, LJ002 inactivated a broad spectrum of enveloped viruses. Together, our results may provide a new paradigm of using broad-spectrum, highly effective inactivants functioning through 1O2-mediated lipid oxidation for developing antivirals that target the viral membrane fusion process. LJ002 efficiently generates 1O2 in solution and living cells. LJ002 oxidizes lipids in the viral envelope, thus inhibiting fusion between the virus and cell membrane. LJ002-inactivated PRV vaccine has no effect on the content of antigens on the viral surface. LJ002-inactivated PRV vaccine elicits a strong neutralizing antibody response. LJ002 can inactivate a broad spectrum of enveloped viruses.
Collapse
Affiliation(s)
- Lei Zeng
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Meng-Di Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Sheng-Li Ming
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Guo-Li Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Peng-Wei Yu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Yan-Li Qi
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Da-Wei Jiang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; National Center for International Research, Ministry of Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Guo-Yu Yang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China.
| | - Jiang Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China.
| | - Bei-Bei Chu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China; National Center for International Research, Ministry of Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
22
|
Liu Z, Ji J, Jiang X, Shao T, Fan D, Jiang X, Lin A, Xiang L, Shao J. Characterization of cGAS homologs in innate and adaptive mucosal immunities in zebrafish gives evolutionary insights into cGAS‐STING pathway. FASEB J 2020; 34:7786-7809. [DOI: 10.1096/fj.201902833r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Zhi‐fei Liu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province College of Life Sciences Zhejiang University Hangzhou People's Republic of China
| | - Jian‐fei Ji
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province College of Life Sciences Zhejiang University Hangzhou People's Republic of China
| | - Xiao‐feng Jiang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province College of Life Sciences Zhejiang University Hangzhou People's Republic of China
| | - Tong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province College of Life Sciences Zhejiang University Hangzhou People's Republic of China
| | - Dong‐dong Fan
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province College of Life Sciences Zhejiang University Hangzhou People's Republic of China
| | - Xin‐hang Jiang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province College of Life Sciences Zhejiang University Hangzhou People's Republic of China
| | - Ai‐fu Lin
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province College of Life Sciences Zhejiang University Hangzhou People's Republic of China
| | - Li‐xin Xiang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province College of Life Sciences Zhejiang University Hangzhou People's Republic of China
| | - Jian‐zhong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province College of Life Sciences Zhejiang University Hangzhou People's Republic of China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao People's Republic of China
| |
Collapse
|
23
|
Wang J, Li GL, Ming SL, Wang CF, Shi LJ, Su BQ, Wu HT, Zeng L, Han YQ, Liu ZH, Jiang DW, Du YK, Li XD, Zhang GP, Yang GY, Chu BB. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses. PLoS Pathog 2020; 16:e1008429. [PMID: 32208449 PMCID: PMC7122826 DOI: 10.1371/journal.ppat.1008429] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/03/2020] [Accepted: 02/23/2020] [Indexed: 12/25/2022] Open
Abstract
Chromatin dynamics regulated by epigenetic modification is crucial in genome stability and gene expression. Various epigenetic mechanisms have been identified in the pathogenesis of human diseases. Here, we examined the effects of ten epigenetic agents on pseudorabies virus (PRV) infection by using GFP-reporter assays. Inhibitors of bromodomain protein 4 (BRD4), which receives much more attention in cancer than viral infection, was found to exhibit substantial anti-viral activity against PRV as well as a range of DNA and RNA viruses. We further demonstrated that BRD4 inhibition boosted a robust innate immune response. BRD4 inhibition also de-compacted chromatin structure and induced the DNA damage response, thereby triggering the activation of cGAS-mediated innate immunity and increasing host resistance to viral infection both in vitro and in vivo. Mechanistically, the inhibitory effect of BRD4 inhibition on viral infection was mainly attributed to the attenuation of viral attachment. Our findings reveal a unique mechanism through which BRD4 inhibition restrains viral infection and points to its potent therapeutic value for viral infectious diseases. BRD4 has been well investigated in tumorigenesis for its contribution to chromatin remodeling and gene transcription. BRD4 inhibitors are used as promising chemotherapeutic drugs for cancer therapy. Here, we show a unique mechanism through which BRD4 inhibition broadly inhibits attachment of DNA and RNA viruses through DNA damage-dependent antiviral innate immune activation via the cGAS-STING pathway, in both cell culture and an animal model. STING-associated innate immune signaling has been considered to be a new possibility for cancer therapy, and STING agonists have been tested in early clinical trials. Our data identify BRD4 inhibitors as a potent therapy not only for viral infection but also for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiang Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Guo-Li Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Sheng-Li Ming
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Chun-Feng Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Li-Juan Shi
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Bing-Qian Su
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Hong-Tao Wu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Lei Zeng
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Ying-Qian Han
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Zhong-Hu Liu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Da-Wei Jiang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yong-Kun Du
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Xiang-Dong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Jiangsu Province, P.R. China
| | - Gai-Ping Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Guo-Yu Yang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
- * E-mail: (GYY); (BBC)
| | - Bei-Bei Chu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
- * E-mail: (GYY); (BBC)
| |
Collapse
|
24
|
Cyclic GMP-AMP synthase is essential for cytosolic double-stranded DNA and fowl adenovirus serotype 4 triggered innate immune responses in chickens. Int J Biol Macromol 2020; 146:497-507. [PMID: 31923489 DOI: 10.1016/j.ijbiomac.2020.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a predominant DNA sensor inducing the activation of the innate immune responses that produce proinflammatory cytokines and type I interferons, which has been well-investigated in mammals. However, chicken cGAS (chcGAS), which participates in avian innate immunity, has not been well-investigated. Here, we cloned the complete open reading frame sequence of chcGAS. Multiple sequence alignment and phylogenetic analysis revealed that chcGAS was homologous to mammalian cGAS. The chcGAS mRNA was highly expressed in the bone marrow and ileum. The subcellular localization of chcGAS was mainly in the cytoplasm, and partial co-localization was observed in the endoplasmic reticulum. Through overexpression and RNA interference, we demonstrated that chcGAS responded to exogenous dsDNA, HS-DNA, and poly(dA:dT), and to self dsDNA from the DNA damage response, thereby triggering the activation of STING/TBK1/IRF7-mediated innate immunity in both chicken embryonic fibroblasts and chicken liver cancer cells. Furthermore, downregulation of chcGAS enhanced the infection of fowl adenovirus serotype 4 in LMH cells. Our results demonstrated that chcGAS was an important cytosolic DNA sensor activating innate immune responses and may shed light on a strategy for preventing infectious diseases in the poultry industry.
Collapse
|
25
|
Screening and Identification of Novel cGAS Homologues Using a Combination of in Vitro and In Vivo Protein Synthesis. Int J Mol Sci 2019; 21:ijms21010105. [PMID: 31877895 PMCID: PMC6981698 DOI: 10.3390/ijms21010105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022] Open
Abstract
The cyclic GMP-AMP synthase (cGAS) catalyzes the synthesis of the multifunctional second messenger, cGAMP, in metazoans. Although numerous cGAS homologues are predicted in protein databases, the catalytic activity towards cGAMP synthesis has been proven for only four of them. Therefore, we selected five novel and yet uncharacterized cGAS homologues, which cover a broad range in the field of vertebrates. Cell-free protein synthesis (CFPS) was used for a pre-screening to investigate if the cGAS genes originating from higher organisms can be efficiently expressed in a bacterial expression system. As all tested cGAS variants were expressible, enzymes were synthesized in vivo to supply higher amounts for a subsequent in vitro activity assay. The assays were carried out with purified enzymes and revealed vast differences in the activity of the homologues. For the first time, the cGAS homologues from the Przewalski's horse, naked mole-rat, bald eagle, and zebrafish were proven to catalyze the synthesis of cGAMP. The extension of the list of described cGAS variants enables the acquisition of further knowledge about the structural and molecular mechanism of cGAS, potentially leading to functional improvement of the enzyme.
Collapse
|
26
|
Porcine IFITM1 is a host restriction factor that inhibits pseudorabies virus infection. Int J Biol Macromol 2019; 151:1181-1193. [PMID: 31743714 PMCID: PMC7102536 DOI: 10.1016/j.ijbiomac.2019.10.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
Interferon-inducible transmembrane proteins (IFITMs) restrict infection by several viruses, such as influenza A virus, West Nile virus and dengue virus. It has not been determined whether porcine IFITMs (pIFITMs) inhibit infection by pseudorabies virus (PRV), an enveloped, double-stranded DNA virus, which is the etiological agent of Aujeszky's disease in pigs. Here, we report that PRV infection elicited pIFITM1 expression in PK15 porcine kidney epithelial cells and 3D4/21 alveolar macrophages. pIFITM2 and pIFITM3 expression was only elevated in PK15 cells during PRV infection. Depletion of pIFITM1 using RNA interference, either in PK15 or in 3D4/21 cells, enhanced PRV infection while overexpression of pIFITM1 had the opposite effect. Knockdown of pIFITM2 and pIFITM3 did not influence PRV infection, suggesting that pIFITM2 and pIFITM3 are independent of PRV infection. PRV-induced pIFITM1 expression was dependent on the cGAS/STING/TBK1/IRF3 innate immune pathway and interferon-alpha receptor-1, suggesting that pIFITM1 is up-regulated by the type I interferon signaling pathway. The anti-PRV role of pIFITM1 was inhibited upon PRV entry. Our data demonstrate that pIFITM1 is a host restriction factor that inhibits PRV entry that may shed light on a strategy for prevention of PRV infection.
Collapse
|
27
|
Chen HY, Pang XY, Xu YY, Zhou GP, Xu HG. Transcriptional regulation of human cyclic GMP-AMP synthase gene. Cell Signal 2019; 62:109355. [PMID: 31276766 DOI: 10.1016/j.cellsig.2019.109355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS, cGAMP synthase) plays crucial roles in autoimmune disease, anti-tumor response, anti-senescence and anti-inflammatory response. Many studies have focused on cGAS-mediated signaling pathway. However, transcriptional mechanisms of cGAS gene have remained largely unknown. Here, we cloned the cGAS promoter region and characterized the molecular mechanisms controlling the cGAS transcriptional activity. By a series of 5' deletion and promoter constructions, we showed that the region (-414 to +76 relatives to the transcription start site) was sufficient for promoter activity. Mutation of Sp1 and CREB binding sites in this promoter region led to an apparent reduction of the cGAS promoter activity. Overexpression of Sp1 and CREB could obviously enhance promoter activity, whereas knocking-down of endogenous Sp1 and CREB markedly restrained the cGAS promoter activity. Sp1 and CREB binding to the cGAS promoter region in vivo was verified by Chromatin immunoprecipitation assay. These results pointed out that transcription factors Sp1 and CREB regulate the transcription of the cGAS gene.
Collapse
Affiliation(s)
- Hai-Yan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Xiao-Yu Pang
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Yan-Yan Xu
- Department of Endocrinology Genetics and Metabolism, Xuzhou Children's Hospital, Xuzhou, Jiangsu Province 221000, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Hua-Guo Xu
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
28
|
Murakami S, Morimoto N, Kono T, Sakai M, Hikima JI. Molecular characterization and expression of the teleost cytosolic DNA sensor genes cGAS, LSm14A, DHX9, and DHX36 in Japanese medaka, Oryzias latipes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103402. [PMID: 31141705 DOI: 10.1016/j.dci.2019.103402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Numerous cytosolic DNA sensors (CDSs), which are very important for recognizing cytosolic dsDNA derived from intracellular viruses and bacteria, exist in mammals. However, teleost CDSs are poorly understood. In this study, four CDSs, including the cyclic GMP-AMP synthase (cGAS), Sm-like protein 14 homolog A (LSm14A), DEAH-box helicase (DHX) 9, and DHX36 genes were identified in Japanese medaka, Oryzias latipes, and their expression patterns were elucidated. The expression of these genes was upregulated in the intestines and kidney of CpG-ODN-stimulated medaka. The cGAS and LSm14A genes were significantly induced in the intestines, kidney, and spleen of formalin-killed Edwardsiella tarda-treated medaka; the DHX9 and DHX36 genes were not. cGAS gene expression was induced only in the intestines of live E. tarda-treated medaka. These results suggest that the transcription of four CDS genes of medaka responds to dsDNA stimulation, and cGAS is probably more important for the immune response against E. tarda infection.
Collapse
Affiliation(s)
- Shiori Murakami
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Gakuenkibanadai-nishi 1-1, Miyazaki, Miyazaki, 889-2192, Japan
| | - Natsuki Morimoto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Gakuenkibanadai-nishi 1-1, Miyazaki, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Gakuenkibanadai-nishi 1-1, Miyazaki, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Gakuenkibanadai-nishi 1-1, Miyazaki, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Gakuenkibanadai-nishi 1-1, Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
29
|
Porcine Reproductive and Respiratory Syndrome Virus Activates Lipophagy To Facilitate Viral Replication through Downregulation of NDRG1 Expression. J Virol 2019; 93:JVI.00526-19. [PMID: 31189711 PMCID: PMC6694807 DOI: 10.1128/jvi.00526-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Autophagy maintains cellular homeostasis by degrading organelles, proteins, and lipids in lysosomes. Autophagy is involved in the innate and adaptive immune responses to a variety of pathogens. Some viruses can hijack host autophagy to enhance their replication. However, the role of autophagy in porcine reproductive and respiratory syndrome virus (PRRSV) infection is unclear. Here, we show that N-Myc downstream-regulated gene 1 (NDRG1) deficiency induced autophagy, which facilitated PRRSV replication by regulating lipid metabolism. NDRG1 mRNA is expressed ubiquitously in most porcine tissues and most strongly in white adipose tissue. PRRSV infection downregulated the expression of NDRG1 mRNA and protein, while NDRG1 deficiency contributed to PRRSV RNA replication and progeny virus assembly. NDRG1 deficiency reduced the number of intracellular lipid droplets (LDs), but the expression levels of key genes in lipogenesis and lipolysis were not altered. Our results also show that NDRG1 deficiency promoted autophagy and increased the subsequent yields of hydrolyzed free fatty acids (FFAs). The reduced LD numbers, increased FFA levels, and enhanced PRRSV replication were abrogated in the presence of an autophagy inhibitor. Overall, our findings suggest that NDRG1 plays a negative role in PRRSV replication by suppressing autophagy and LD degradation.IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-positive-stranded RNA virus, causes acute respiratory distress in piglets and reproductive failure in sows. It has led to tremendous economic losses in the swine industry worldwide since it was first documented in the late 1980s. Vaccination is currently the major strategy used to control the disease. However, conventional vaccines and other strategies do not provide satisfactory or sustainable prevention. Therefore, safe and effective strategies to control PRRSV are urgently required. The significance of our research is that we demonstrate a previously unreported relationship between PRRSV, NDRG1, and lipophagy in the context of viral infection. Furthermore, our data point to a new role for NDRG1 in autophagy and lipid metabolism. Thus, NDRG1 and lipophagy will have significant implications for understanding PRRSV pathogenesis for developing new therapeutics.
Collapse
|
30
|
Shinkai H, Terada K, Toki D, Tohno M, Uenishi H. Q969R polymorphism in NLRP3 is associated with immune responses to vaccination against bacterial infections in pigs. Anim Sci J 2018; 89:1043-1050. [DOI: 10.1111/asj.13020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroki Shinkai
- Animal Bioregulation Unit; Division of Animal Sciences; Institute of Agrobiological Sciences; National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki Japan
| | - Kei Terada
- Shizuoka Swine and Poultry Experiment Center; Kikugawa Shizuoka Japan
| | - Daisuke Toki
- Animal Research Division; Institute of Japan Association for Techno-innovation in Agriculture, Forestry and Fisheries (JATAFF); Tsukuba Ibaraki Japan
| | - Masanori Tohno
- Feed Preparation Unit; Division of Animal Feeding and Management Research; Institute of Livestock and Grassland Science; National Agriculture and Food Research Organization (NARO); Nasushiobara Tochigi Japan
| | - Hirohide Uenishi
- Animal Bioregulation Unit; Division of Animal Sciences; Institute of Agrobiological Sciences; National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki Japan
| |
Collapse
|
31
|
Su BQ, Han YQ, Fan SS, Ming SL, Wan B, Lu WF, Chu BB, Yang GY, Wang J. PKM2 knockdown influences SREBP activation and lipid synthesis in bovine mammary-gland epithelial MAC-T cells. Biotechnol Lett 2018; 40:641-648. [PMID: 29383471 DOI: 10.1007/s10529-018-2518-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/19/2018] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The purpose of the article is to evaluate the changes in lipid metabolism in bovine mammary-gland epithelial MAC-T cells after PKM2 knockdown. RESULTS MAC-T cells stably expressing low levels of PKM2 were established with lentivirus-mediated small hairpin RNA. Although the knockdown of PKM2 had no effect on MAC-T cell growth, the reduced expression of PKM2 attenuated the mRNA and protein expression of key enzymes involved in sterol synthesis through the SREBP pathway. CONCLUSIONS The downregulation of PKM2 significantly influenced lipid synthesis in bovine mammary-gland epithelial MAC-T cells. These findings extend our understanding of the crosstalk between glycolysis and lipid metabolism in bovine mammary-gland epithelial cells.
Collapse
Affiliation(s)
- Bing-Qian Su
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, No. 95, Wenhua Road, Zhengzhou, 450002, Henan, People's Republic of China
| | - Ying-Qian Han
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, No. 95, Wenhua Road, Zhengzhou, 450002, Henan, People's Republic of China
| | - Shuang-Shuang Fan
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, No. 95, Wenhua Road, Zhengzhou, 450002, Henan, People's Republic of China
| | - Sheng-Li Ming
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, No. 95, Wenhua Road, Zhengzhou, 450002, Henan, People's Republic of China
| | - Bo Wan
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, No. 95, Wenhua Road, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wei-Fei Lu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, No. 95, Wenhua Road, Zhengzhou, 450002, Henan, People's Republic of China
| | - Bei-Bei Chu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, No. 95, Wenhua Road, Zhengzhou, 450002, Henan, People's Republic of China
| | - Guo-Yu Yang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, No. 95, Wenhua Road, Zhengzhou, 450002, Henan, People's Republic of China
| | - Jiang Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, No. 95, Wenhua Road, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
32
|
Wang J, Lu SF, Wan B, Ming SL, Li GL, Su BQ, Liu JY, Wei YS, Yang GY, Chu BB. Maintenance of cyclic GMP-AMP homeostasis by ENPP1 is involved in pseudorabies virus infection. Mol Immunol 2018; 95:56-63. [PMID: 29407577 DOI: 10.1016/j.molimm.2018.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/04/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022]
Abstract
In a previous study, we demonstrated that porcine cyclic GMP-AMP (cGAMP) synthase (cGAS) catalyzes cGAMP production and is an important DNA sensor for the pseudorabies virus (PRV)-induced activation of interferon β (IFN-β). Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) has recently been identified as the hydrolase of cGAMP in rodents, but its role in porcine cells is not clear. Our recent study demonstrated that porcine ENPP1 is responsible for the homeostasis of cGAMP and is critical for PRV infection. Porcine ENPP1 mRNA is predominantly expressed in muscle. PRV infection was enhanced by ENPP1 overexpression and attenuated by silencing of ENPP1. During PRV infection, the activation of IFN-β and NF-κB was reduced in ENPP1 overexpressed cells and promoted in ENPP1 knockdown cells. Investigation of the molecular mechanisms of ENPP1 during PRV infection showed that ENPP1 hydrolyzed cGAMP in PRV-infected or cGAMP-transfected cells and inhibited IRF3 phosphorylation, reducing IFN-β secretion. These results, combined with those for porcine cGAS, demonstrate that ENPP1 acts coordinately with cGAS to maintain the reservoir of cGAMP and participates in PRV infection.
Collapse
Affiliation(s)
- Jiang Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Shao-Fang Lu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Bo Wan
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Sheng-Li Ming
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Guo-Li Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Bing-Qian Su
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Jiao-Yang Liu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Yu-Shuang Wei
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Guo-Yu Yang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China.
| | - Bei-Bei Chu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China.
| |
Collapse
|
33
|
Zhao M, Wan B, Li H, He J, Chen X, Wang L, Wang Y, Xie S, Qiao S, Zhang G. Porcine 2', 5'-oligoadenylate synthetase 2 inhibits porcine reproductive and respiratory syndrome virus replication in vitro. Microb Pathog 2017; 111:14-21. [PMID: 28804020 DOI: 10.1016/j.micpath.2017.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is acknowledged a fulminating infectious pathogen affecting the pig farming industry, and current vaccines and drugs could hardly inhibit this virus. The 2', 5'-oligoadenylate synthetase (OASs) have antiviral activities, but the role(s) played by porcine OAS2 in protection against PRRSV infection are unknown. Here we found that endogenous expression of the porcine OAS2 gene could be promoted by interferon (IFN)-beta or PRRSV infection in porcine alveolar macrophages. Knockdown of porcine OAS2 led to increases in PRRSV replication, and OAS2 expression suppressed replication of PRRSV in a retinoic acid inducible gene I (RIG-I)-dependent manner, anti-PRRSV activity of porcine OAS2 would be lost if RNase L and OAS2 were both silenced. This discovery illustrates a pathway that porcine OAS2 responses to host anti-PRRSV function.
Collapse
Affiliation(s)
- Mengmeng Zhao
- College of Animal Husbandry and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Bo Wan
- College of Animal Husbandry and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Huawei Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Jian He
- College of Animal Husbandry and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Xinxin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Linjian Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Yinbiao Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Sha Xie
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
| | - Gaiping Zhang
- College of Animal Husbandry and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
34
|
Wang J, Zeng L, Zhang L, Guo ZZ, Lu SF, Ming SL, Li GL, Wan B, Tian KG, Yang GY, Chu BB. Cholesterol 25-hydroxylase acts as a host restriction factor on pseudorabies virus replication. J Gen Virol 2017. [DOI: 10.1099/jgv.0.000797] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jiang Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Lei Zeng
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Li Zhang
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Zhen-Zhen Guo
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Shao-Fang Lu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Sheng-Li Ming
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Guo-Li Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Bo Wan
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Ke-Gong Tian
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Guo-Yu Yang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| | - Bei-Bei Chu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, PR China
| |
Collapse
|