1
|
Lee H, Jeon JH, Kim ES. Mitochondrial dysfunctions in T cells: focus on inflammatory bowel disease. Front Immunol 2023; 14:1219422. [PMID: 37809060 PMCID: PMC10556505 DOI: 10.3389/fimmu.2023.1219422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Mitochondria has emerged as a critical ruler of metabolic reprogramming in immune responses and inflammation. In the context of colitogenic T cells and IBD, there has been increasing research interest in the metabolic pathways of glycolysis, pyruvate oxidation, and glutaminolysis. These pathways have been shown to play a crucial role in the metabolic reprogramming of colitogenic T cells, leading to increased inflammatory cytokine production and tissue damage. In addition to metabolic reprogramming, mitochondrial dysfunction has also been implicated in the pathogenesis of IBD. Studies have shown that colitogenic T cells exhibit impaired mitochondrial respiration, elevated levels of mROS, alterations in calcium homeostasis, impaired mitochondrial biogenesis, and aberrant mitochondria-associated membrane formation. Here, we discuss our current knowledge of the metabolic reprogramming and mitochondrial dysfunctions in colitogenic T cells, as well as the potential therapeutic applications for treating IBD with evidence from animal experiments.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
2
|
Tang R, Zhong T, Lei K, Lin X, Li X. Recovery of intracellular glucose uptake in T cells during partial remission of type 1 diabetes. Diabetologia 2023; 66:1532-1543. [PMID: 37300581 DOI: 10.1007/s00125-023-05938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/21/2023] [Indexed: 06/12/2023]
Abstract
AIMS/HYPOTHESIS Notwithstanding the irreversible beta cell failure seen in type 1 diabetes, some individuals may experience a special phase named 'partial remission' or 'the honeymoon period', in which there is a transient recovery of beta cell function. Importantly, this stage of partial remission shows spontaneous immune downregulation, although the exact mechanisms are unclear. Intracellular energy metabolism is crucial for the differentiation and function of T cells, and provides promising targets for immunometabolic intervention strategies, but its role during partial remission is unknown. In this study, we aim to investigate the association between T cell intracellular glucose and fatty acid metabolism and the partial remission phase. METHODS This is a cross-sectional study with a follow-up component. Intracellular uptake of glucose and fatty acids by T cells was detected in participants with either new-onset type 1 diabetes or type 1 diabetes that was already in partial remission, and compared with heathy individuals and participants with type 2 diabetes. Subsequently, the participants with new-onset type 1 diabetes were followed up to determine whether they experienced a partial remission (remitters) or not (non-remitters). The trajectory of changes in T cell glucose metabolism was observed in remitters and non-remitters. Expression of programmed cell death-1 (PD-1) was also analysed to investigate possible mechanisms driving altered glucose metabolism. Partial remission was defined when patients had convalescent fasting or 2 h postprandial C-peptide >300 pmol/l after insulin treatment. RESULTS Compared with participants with new-onset type 1 diabetes, intracellular glucose uptake by T cells decreased significantly in individuals with partial remission. The trajectory of these changes during follow-up showed that intracelluar glucose uptake in T cells fluctuated during different disease stages, with a decreased uptake during partial remission that rebounded after remission. This dynamic in T cell glucose uptake was only detected in remitters and not in non-remitters. Further analysis demonstrated that changes of intracellular glucose uptake were found in subsets of CD4+ and CD8+ T cells, including Th17, Th1, CD8+ naive T cells (Tn) and CD8+ terminally differentiated effector memory T cells (Temra). Moreover, glucose uptake in CD8+ T cells was negatively related to PD-1 expression. The intracellular metabolism of fatty acids was not found to be different between new-onset participants and those in partial remission. CONCLUSIONS/INTERPRETATION Intracellular glucose uptake in T cells was specifically decreased during partial remission in type 1 diabetes and may be related to PD-1 upregulation, which may be involved in the down-modulation of immune responses during partial remission. This study suggests that altered immune metabolism could be a target for interventions at the point of diagnosis of type 1 diabetes.
Collapse
Affiliation(s)
- Rong Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ting Zhong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Kang Lei
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxi Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Mohan D, Sherman HL, Mitra A, Lawlor R, Shanthalingam S, Ullom J, Pobezinskaya EL, Zhang G, Osborne BA, Pobezinsky LA, Tew GN, Minter LM. LKB1 isoform expression modulates T cell plasticity downstream of PKCθ and IL-6. Mol Immunol 2023; 157:129-141. [PMID: 37018939 DOI: 10.1016/j.molimm.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023]
Abstract
Following activation, CD4 T cells undergo metabolic and transcriptional changes as they respond to external cues and differentiate into T helper (Th) cells. T cells exhibit plasticity between Th phenotypes in highly inflammatory environments, such as colitis, in which high levels of IL-6 promote plasticity between regulatory T (Treg) cells and Th17 cells. Protein Kinase C theta (PKCθ) is a T cell-specific serine/threonine kinase that promotes Th17 differentiation while negatively regulating Treg differentiation. Liver kinase B1 (LKB1), also a serine/threonine kinase and encoded by Stk11, is necessary for Treg survival and function. Stk11 can be alternatively spliced to produce a short variant (Stk11S) by transcribing a cryptic exon. However, the contribution of Stk11 splice variants to Th cell differentiation has not been previously explored. Here we show that in Th17 cells, the heterogeneous ribonucleoprotein, hnRNPLL, mediates Stk11 splicing into its short splice variant, and that Stk11S expression is diminished when Hnrnpll is depleted using siRNA knock-down approaches. We further show that PKCθ regulates hnRNPLL and, thus, Stk11S expression in Th17 cells. We provide additional evidence that exposing induced (i)Tregs to IL-6 culminates in Stk11 splicing downstream of PKCθAltogether our data reveal a yet undescribed outside-in signaling pathway initiated by IL-6, that acts through PKCθ and hnRNPLL to regulate Stk11 splice variants and facilitate Th17 cell differentiation. Furthermore, we show for the first time, that this pathway can also be initiated in developing iTregs exposed to IL-6, providing mechanistic insight into iTreg phenotypic stability and iTreg to Th17 cell plasticity.
Collapse
|
4
|
Yang F, Zhou L, Shen Y, Zhao S, Zheng Y, Men R, Fan X, Yang L. Metabolic heterogeneity caused by HLA-DRB1*04:05 and protective effect of inosine on autoimmune hepatitis. Front Immunol 2022; 13:982186. [PMID: 35990653 PMCID: PMC9389112 DOI: 10.3389/fimmu.2022.982186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an autoimmune disease caused by disruption of liver immune homeostasis. Genetic studies have revealed the predisposition of AIH with the human leukocyte antigen (HLA) region. Recently, metabolomics integrated with genomics has identified many genetic loci of biomedical interest. However, there is no related report in AIH. In the present study, we found that HLA-DRB1*04:05 was linked to the clinical features and prognosis of AIH in Chinese patients. Furthermore, our patients were divided into DRB1*04:05 positive and DRB1*04:05 negative groups and the metabolic profiling was done by HPLC/MS. We chose inosine, one of the highly altered metabolites, to explore the effect on an acute severe hepatitis murine model. The results showed that inosine treatment attenuated hepatocyte apoptosis, enhanced antioxidant ability and inhibited the activation and glycolysis of CD4+ T cell. We propose that inosine participates in the regulation of AIH through its protective effect on hepatocytes and inhibition of overactivated immune cells, which might provide a potential novel approach in treating acute form of AIH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Yang
- *Correspondence: Li Yang, ; Xiaoli Fan,
| |
Collapse
|
5
|
Tang R, Zhong T, Fan L, Xie Y, Li J, Li X. Enhanced T Cell Glucose Uptake Is Associated With Progression of Beta-Cell Function in Type 1 Diabetes. Front Immunol 2022; 13:897047. [PMID: 35677051 PMCID: PMC9168918 DOI: 10.3389/fimmu.2022.897047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Abnormal intracellular glucose/fatty acid metabolism of T cells has tremendous effects on their immuno-modulatory function, which is related to the pathogenesis of autoimmune diseases. However, the association between the status of intracellular metabolism of T cells and type 1 diabetes is unclear. This study aimed to investigate the uptake of glucose and fatty acids in T cells and its relationship with disease progression in type 1 diabetes. Methods A total of 86 individuals with type 1 diabetes were recruited to detect the uptake of glucose and fatty acids in T cells. 2-NBDG uptake and expression of glucose transporter 1 (GLUT1); or BODIPY uptake and expression of carnitine palmitoyltransferase 1A(CPT1A) were used to assess the status of glucose or fatty acid uptake in T cells. Patients with type 1 diabetes were followed up every 3-6 months for 36 months, the progression of beta-cell function was assessed using generalized estimating equations, and survival analysis was performed to determine the status of beta-cell function preservation (defined as 2-hour postprandial C-peptide >200 pmol/L). Results Patients with type 1 diabetes demonstrated enhanced intracellular glucose uptake of T cells as indicated by higher 2NBDG uptake and GLUT1 expression, while no significant differences in fatty acid uptake were observed. The increased T cells glucose uptake is associated with lower C-peptide and higher hemoglobin A1c levels. Notably, patients with low T cell glucose uptake at onset maintained high levels of C-peptide within 36 months of the disease course [fasting C-petite and 2-hour postprandial C-peptide are 60.6 (95%CI: 21.1-99.8) pmol/L and 146.3 (95%CI: 14.1-278.5) pmol/L higher respectively], And they also have a higher proportion of beta-cell function preservation during this follow-up period (P<0.001). Conclusions Intracellular glucose uptake of T cells is abnormally enhanced in type 1 diabetes and is associated with beta-cell function and its progression.
Collapse
Affiliation(s)
- Rong Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ting Zhong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Fan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuting Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Zhang M, Zhou Y, Xie Z, Luo S, Zhou Z, Huang J, Zhao B. New Developments in T Cell Immunometabolism and Therapeutic Implications for Type 1 Diabetes. Front Endocrinol (Lausanne) 2022; 13:914136. [PMID: 35757405 PMCID: PMC9226440 DOI: 10.3389/fendo.2022.914136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease mediated by T cells and is becoming a serious public health threat. Despite the increasing incidence rate of T1D worldwide, our understanding of why T1D develops and how T cells lose their self-tolerance in this process remain limited. Recent advances in immunometabolism have shown that cellular metabolism plays a fundamental role in shaping T cell responses. T cell activation and proliferation are supported by metabolic reprogramming to meet the increased energy and biomass demand, and deregulation in immune metabolism can lead to autoimmune disorders. Specific metabolic pathways and factors have been investigated to rectify known deficiencies in several autoimmune diseases, including T1D. Most therapeutic strategies have concentrated on aerobic glycolysis to limit T cell responses, whereas glycolysis is the main metabolic pathway for T cell activation and proliferation. The use of metabolic inhibitors, especially glycolysis inhibitors may largely leave T cell function intact but primarily target those autoreactive T cells with hyperactivated metabolism. In this review, we provide an overview of metabolic reprogramming used by T cells, summarize the recent findings of key metabolic pathways and regulators modulating T cell homeostasis, differentiation, and function in the context of T1D, and discuss the opportunities for metabolic intervention to be employed to suppress autoreactive T cells and limit the progression of β-cell destruction.
Collapse
Affiliation(s)
- Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanyan Zhou
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;
| |
Collapse
|
7
|
Tian M, Hao F, Jin X, Sun X, Jiang Y, Wang Y, Li D, Chang T, Zou Y, Peng P, Xia C, Liu J, Li Y, Wang P, Feng Y, Wei M. ACLY ubiquitination by CUL3-KLHL25 induces the reprogramming of fatty acid metabolism to facilitate iTreg differentiation. eLife 2021; 10:62394. [PMID: 34491895 PMCID: PMC8423445 DOI: 10.7554/elife.62394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
Inducible regulatory T (iTreg) cells play a central role in immune suppression. As iTreg cells are differentiated from activated T (Th0) cells, cell metabolism undergoes dramatic changes, including a shift from fatty acid synthesis (FAS) to fatty acid oxidation (FAO). Although the reprogramming in fatty acid metabolism is critical, the mechanism regulating this process during iTreg differentiation is still unclear. Here we have revealed that the enzymatic activity of ATP-citrate lyase (ACLY) declined significantly during iTreg differentiation upon transforming growth factor β1 (TGFβ1) stimulation. This reduction was due to CUL3-KLHL25-mediated ACLY ubiquitination and degradation. As a consequence, malonyl-CoA, a metabolic intermediate in FAS that is capable of inhibiting the rate-limiting enzyme in FAO, carnitine palmitoyltransferase 1 (CPT1), was decreased. Therefore, ACLY ubiquitination and degradation facilitate FAO and thereby iTreg differentiation. Together, we suggest TGFβ1-CUL3-KLHL25-ACLY axis as an important means regulating iTreg differentiation and bring insights into the maintenance of immune homeostasis for the prevention of immune diseases.
Collapse
Affiliation(s)
- Miaomiao Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Fengqi Hao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ying Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Chang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yingying Zou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Pinghui Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chaoyi Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yuanxi Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
8
|
Phloretin Modulates Human Th17/Treg Cell Differentiation In Vitro via AMPK Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6267924. [PMID: 32802861 PMCID: PMC7411462 DOI: 10.1155/2020/6267924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 01/06/2023]
Abstract
Objective We conducted studies to explore the effect of phloretin on glucose uptake, proliferation, and differentiation of human peripheral blood CD4+ T cells and investigated the mechanism of phloretin on inducing Th17/Treg development. Methods Naïve CD4+ T cells were purified from peripheral blood of healthy volunteers, stimulated with anti-CD3/CD28 antibodies, and polarized in vitro to generate Th17 or Treg cells. Glucose uptake, proliferation, cell cycle, protein expression (phospho-Stat3, phospho-Stat5), and Th17 and Treg cell numbers were analyzed by flow cytometry. AMP-activated protein kinase (AMPK) signaling was analyzed by western blot. Results and Discussion. Phloretin could inhibit the glucose uptake and proliferation of activated CD4+ T cells. The proliferation inhibition was due to the G0/G1 phase arrest. Phloretin decreased Th17 cell generation and phospho-Stat3 expression as well as increased Treg cell generation and phospho-Stat5 expression in the process of inducing Th17/Treg differentiation. The phosphorylation level of AMPK was significantly enhanced, while the phosphorylation level of mTOR was significantly decreased in activated CD4+ T cells under phloretin treatment. The AMPK signaling inhibitor compound C (Com C) could neutralize the effect of phloretin, while the agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) could impact the Th17/Treg balance similar to phloretin during Th17/Treg induction. Conclusion Our results suggest that phloretin can mediate the Th17/Treg balance by regulating metabolism via the AMPK signal pathway.
Collapse
|
9
|
Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm Sin B 2020; 10:61-78. [PMID: 31993307 PMCID: PMC6977534 DOI: 10.1016/j.apsb.2019.12.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/29/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Solute carrier (SLC) transporters meditate many essential physiological functions, including nutrient uptake, ion influx/efflux, and waste disposal. In its protective role against tumors and infections, the mammalian immune system coordinates complex signals to support the proliferation, differentiation, and effector function of individual cell subsets. Recent research in this area has yielded surprising findings on the roles of solute carrier transporters, which were discovered to regulate lymphocyte signaling and control their differentiation, function, and fate by modulating diverse metabolic pathways and balanced levels of different metabolites. In this review, we present current information mainly on glucose transporters, amino-acid transporters, and metal ion transporters, which are critically important for mediating immune cell homeostasis in many different pathological conditions.
Collapse
Key Words
- 3-PG, 3-phosphoglyceric acid
- ABC, ATP-binding cassette
- AIF, apoptosis-inducing factor
- AP-1, activator protein 1
- ASCT2, alanine serine and cysteine transporter system 2
- ATP, adenosine triphosphate
- BCR, B cell receptor
- BMDMs, bone marrow-derived macrophages
- CD45R, a receptor-type protein tyrosine phosphatase
- CTL, cytotoxic T lymphocytes
- DC, dendritic cells
- EAATs, excitatory amino acid transporters
- ER, endoplasmic reticulum
- ERRα, estrogen related receptor alpha
- FFA, free fatty acids
- G-6-P, glucose 6-phosphate
- GLUT, glucose transporters
- GSH, glutathione
- Glucose
- Glutamine
- HIF-1α, hypoxia-inducible factor 1-alpha
- HIV-1, human immunodeficiency virus type 1
- Hk1, hexokinase-1
- IFNβ, interferon beta
- IFNγ, interferon gamma
- IKK, IκB kinase
- IKKβ, IκB kinase beta subunit
- IL, interleukin
- LDHA, lactate dehydrogenase A
- LPS, lipopolysaccharide
- Lymphocytes
- Lyn, tyrosine-protein kinase
- MAPK, mitogen-activated protein kinase
- MCT, monocarboxylate transporters
- MS, multiple sclerosis
- Metal ion
- NADPH, nicotinamide adenine dinucleotide phosphate
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NO, nitric oxide
- NOD2, nucleotide-binding oligomerization domain containing 2
- PEG2, prostaglandin E2
- PI-3K/AKT, phosphatidylinositol-3-OH kinase/serine–threonine kinase
- PPP, pentose phosphate pathway
- Pfk, phosphofructokinase
- RA, rheumatoid arthritis
- RLR, RIG-I-like receptor
- ROS, reactive oxygen species
- SLC, solute carrier
- SLE, systemic lupus erythematosus
- SNAT, sodium-coupled neutral amino acid transporters
- STAT, signal transducers and activators of transcription
- Solute carrier
- TAMs, tumor-associated macrophages
- TCA, tricarboxylic acid
- TCR, T cell receptor
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TRPM7, transient receptor potential cation channel subfamily M member 7
- Teffs, effector T cells
- Th1/2/17, type 1/2/17 helper T cells
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- ZIP, zrt/irt-like proteins
- iNOS, inducible nitric oxide synthase
- iTregs, induced regulatory T cells
- mTORC1, mammalian target of rapamycin complex 1
- α-KG, α-ketoglutaric acid
Collapse
|
10
|
Kunkl M, Sambucci M, Ruggieri S, Amormino C, Tortorella C, Gasperini C, Battistini L, Tuosto L. CD28 Autonomous Signaling Up-Regulates C-Myc Expression and Promotes Glycolysis Enabling Inflammatory T Cell Responses in Multiple Sclerosis. Cells 2019; 8:cells8060575. [PMID: 31212712 PMCID: PMC6628233 DOI: 10.3390/cells8060575] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
The immunopathogenesis of multiple sclerosis (MS) depend on the expansion of specific inflammatory T cell subsets, which are key effectors of tissue damage and demyelination. Emerging studies evidence that a reprogramming of T cell metabolism may occur in MS, thus the identification of stimulatory molecules and associated signaling pathways coordinating the metabolic processes that amplify T cell inflammation in MS is pivotal. Here, we characterized the involvement of the cluster of differentiation (CD)28 and associated signaling mediators in the modulation of the metabolic programs regulating pro-inflammatory T cell functions in relapsing-remitting MS (RRMS) patients. We show that CD28 up-regulates glycolysis independent of the T cell receptor (TCR) engagement by promoting the increase of c-myc and the glucose transporter, Glut1, in RRMS CD4+ T cells. The increase of glycolysis induced by CD28 was important for the expression of inflammatory cytokines related to T helper (Th)17 cells, as demonstrated by the strong inhibition exerted by impairing the glycolytic pathway. Finally, we identified the class 1A phosphatidylinositol 3-kinase (PI3K) as the critical signaling mediator of CD28 that regulates cell metabolism and amplify specific inflammatory T cell phenotypes in MS.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| | - Manolo Sambucci
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00185 Rome, Italy.
| | - Serena Ruggieri
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
| | - Carla Tortorella
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Claudio Gasperini
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00185 Rome, Italy.
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
11
|
Previte DM, Piganelli JD. Reactive Oxygen Species and Their Implications on CD4 + T Cells in Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1399-1414. [PMID: 28990401 DOI: 10.1089/ars.2017.7357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous work has indicated that type 1 diabetes (T1D) pathology is highly driven by reactive oxygen species (ROS). One way in which ROS shape the autoimmune response demonstrated in T1D is by promoting CD4+ T cell activation and differentiation. As CD4+ T cells are a significant contributor to pancreatic β cell destruction in T1D, understanding how ROS impact their development, activation, and differentiation is critical. Recent Advances: CD4+ T cells themselves generate ROS via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression and electron transport chain activity. Moreover, T cells can also be exposed to exogenous ROS generated by other immune cells (e.g., macrophages and dendritic cells) and β cells. Genetically modified animals and ROS inhibitors have demonstrated that ROS blockade during activation results in CD4+ T cell hyporesponsiveness and reduced diabetes incidence. Critical Issues and Future Directions: Although the majority of studies with regard to T1D and CD4+ T cells have been done to examine the influence of redox on CD4+ T cell activation, this is not the only circumstance in which a T cell can be impacted by redox. ROS and redox have also been shown to play roles in CD4+ T cell-related tolerogenic mechanisms, including thymic selection and regulatory T cell-mediated suppression. However, the effect of these mechanisms with respect to T1D pathogenesis remains elusive. Therefore, pursuing these avenues may provide valuable insight into the global role of ROS and redox in autoreactive CD4+ T cell formation and function.
Collapse
Affiliation(s)
- Dana M Previte
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Jon D Piganelli
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Qin HQ, Shi SS, Fu YJ, Yan YQ, Wu S, Tang XL, Chen XY, Hou GH, Jiang ZY. Effects of Gui Zhi Ma Huang Ge Ban Tang on the TLR7 Pathway in Influenza Virus Infected Mouse Lungs in a Cold Environment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5939720. [PMID: 29849712 PMCID: PMC5937621 DOI: 10.1155/2018/5939720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We wished to investigate the effects of the traditional Chinese medicine Gui Zhi Ma Huang Ge Ban Tang on controlling influenza A virus (IAV) infection and improving inflammation in mouse lungs. METHOD Mice were maintained in normal and cold environments and infected with IAV by intranasal application, respectively. Real-time quantitative polymerase chain reaction was used to measure mRNA expression of TLR7, myeloid differentiation primary response 88 (MyD88), and nuclear factor-kappa B (NF-κB)p65 in the TLR7 signaling pathway and virus replication in lungs. Western blotting was used to measure expression levels of TLR7, MyD88, and NF-κB p65 proteins. Flow cytometry was used to detect the proportion of T-helper (Th)1/Th2 and Th17/T-regulatory (Treg) cells. RESULTS Application of Gui Zhi Ma Huang Ge Ban Tang in influenza-infected mice in a cold environment showed (i) downregulation of TLR7, MyD88, and NF-κBp65; (ii) inhibition of transcriptional activities of promoters coding for TLR7, MyD88, and NF-κBp65; (iii) reduction in the proportion of Th1/Th2 and Th17/Treg cells. CONCLUSIONS Gui Zhi Ma Huang Ge Ban Tang had a good therapeutic effect on mice infected with IAV, especially in the cold environment. It could reduce lung inflammation in mice significantly and elicit an anti-influenza effect by downregulating expression of the key factors in TLR7 signaling pathway.
Collapse
Affiliation(s)
- Hong-Qiong Qin
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shan-Shan Shi
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying-Jie Fu
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yu-Qi Yan
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Sha Wu
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiao-Long Tang
- Medical College, Anhui University of Science & Technology, Huainan 232001, China
| | - Xiao-Yin Chen
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guang-Hui Hou
- Department of Ophthalmic Center, People's Hospital of Zhuhai City, Affiliated Hospital of Zhuhai Medical College, Jinan University, Zhuhai 519000, China
| | - Zhen-You Jiang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Zhang J, Shan J, Chen X, Li S, Long D, Li Y. Celastrol mediates Th17 and Treg cell generation via metabolic signaling. Biochem Biophys Res Commun 2018; 497:883-889. [DOI: 10.1016/j.bbrc.2018.02.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 11/27/2022]
|
14
|
Kunkl M, Porciello N, Mastrogiovanni M, Capuano C, Lucantoni F, Moretti C, Persson JL, Galandrini R, Buzzetti R, Tuosto L. ISA-2011B, a Phosphatidylinositol 4-Phosphate 5-Kinase α Inhibitor, Impairs CD28-Dependent Costimulatory and Pro-inflammatory Signals in Human T Lymphocytes. Front Immunol 2017; 8:502. [PMID: 28491063 PMCID: PMC5405084 DOI: 10.3389/fimmu.2017.00502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
Phosphatidylinositol 4,5-biphosphate (PIP2) is a membrane phospholipid that controls the activity of several proteins regulating cytoskeleton reorganization, cytokine gene expression, T cell survival, proliferation, and differentiation. Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) are the main enzymes involved in PIP2 biosynthesis by phosphorylating phosphatidylinositol 4-monophosphate (PI4P) at the D5 position of the inositol ring. In human T lymphocytes, we recently found that CD28 costimulatory molecule is pivotal for PIP2 turnover by recruiting and activating PIP5Kα. We also found that PIP5Kα is the main regulator of both CD28 costimulatory signals integrating those delivered by TCR as well as CD28 autonomous signals regulating the expression of pro-inflammatory genes. Given emerging studies linking alterations of PIP2 metabolism to immune-based diseases, PIP5Kα may represent a promising target to modulate immunity and inflammation. Herewith, we characterized a recently discovered inhibitor of PIP5Kα, ISA-2011B, for its inhibitory effects on T lymphocyte functions. We found that the inhibition of PIP5Kα lipid-kinase activity by ISA-2011B significantly impaired CD28 costimulatory signals necessary for TCR-mediated Ca2+ influx, NF-AT transcriptional activity, and IL-2 gene expression as well as CD28 autonomous signals regulating the activation of NF-κB and the transcription of pro-inflammatory cytokine and chemokine genes. Moreover, our data on the inhibitory effects of ISA-2011B on CD28-mediated upregulation of inflammatory cytokines related to Th17 cell phenotype in type 1 diabetes patients suggest ISA-2011B as a promising anti-inflammatory drug.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Nicla Porciello
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marta Mastrogiovanni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Chiara Moretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Jenny L Persson
- Division of Experimental Cancer Research, Department of Laboratory Medicine, Clinical Research Center, Lund University, Malmö, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
15
|
Bone marrow mesenchymal stem cells inhibit dendritic cells differentiation and maturation by microRNA-23b. Biosci Rep 2017; 37:BSR20160436. [PMID: 28096318 PMCID: PMC5398252 DOI: 10.1042/bsr20160436] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/23/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Research on regulation and its mechanism of bone marrow mesenchymal stem cells (BMSCs) on dendritic cells (DCs), which is the initiating factor in immune response has applicable clinical value. Although BMSCs have a significant regulatory effect on the maturation of DCs, its molecular mechanism is still unclear. BMSCs and DCs, were co-cultured by different concentration ratios. Flow cytometry was used to detect the expression of DC markers (CD83, CD11c). Quantitative reverse transcription PCR (qRT-PCR) was used to measure the expression of related genes in RNA level. Expression of the target proteins was detected with using Western blot assay. miRNA inhibitor and miRNA mimic were used to suppress and up-regulate the expression of the target gene. In this research, our results demonstrated that BMSCs notably inhibited maturation of DCs in the co-culture system of BMSCs and DCs and confirmed that this inhibition is due to overexpression of miR-23b. Furthermore, this research found that miR-23b overexpression inhibited the expression of p50/p65, thus blocked the activation of the NF-κB pathway. In conclusion, BMSCs affected the activation of NF-κB pathway through miR-23b overexpression resulting in inhibition of the maturation and differentiation of DCs.
Collapse
|
16
|
Li X, Wang X, Jiang H, Zhang G, Tan R, Sun Y, Wu X, Tan R, Xu Q. Herpetol ameliorates allergic contact dermatitis through regulating T-lymphocytes. Int Immunopharmacol 2016; 40:131-138. [DOI: 10.1016/j.intimp.2016.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 01/16/2023]
|
17
|
Porciello N, Kunkl M, Viola A, Tuosto L. Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation. Front Immunol 2016; 7:186. [PMID: 27242793 PMCID: PMC4865508 DOI: 10.3389/fimmu.2016.00186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 11/21/2022] Open
Abstract
Phosphatidylinositol 4,5-biphosphate kinases (PIP5Ks) are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2). PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen-presenting cells, spatial organization of the immunological synapse, and co-stimulation. Moreover, PIP2 also serves as a precursor for the second messengers inositol triphosphate, diacylglycerol, and phosphatidylinositol 3,4,5-triphosphate, which are essential for the activation of signaling pathways regulating cytokine production, cell cycle progression, survival, metabolism, and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation.
Collapse
Affiliation(s)
- Nicla Porciello
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University , Rome , Italy
| | - Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University , Rome , Italy
| |
Collapse
|
18
|
Deng L, Pang P, Zheng K, Nie J, Xu H, Wu S, Chen J, Chen X. Forsythoside A Controls Influenza A Virus Infection and Improves the Prognosis by Inhibiting Virus Replication in Mice. Molecules 2016; 21:molecules21050524. [PMID: 27128889 PMCID: PMC6273045 DOI: 10.3390/molecules21050524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The objective of this study was to observe the effects of forsythoside A on controlling influenza A virus (IAV) infection and improving the prognosis of IAV infection. METHODS Forty-eight SPF C57BL/6j mice were randomly divided into the following four groups: Group A: normal control group (normal con); Group B: IAV control group (V con); Group C: IAV+ oseltamivir treatment group (V oseltamivir; 0.78 mg/mL, 0.2 mL/mouse/day); Group D: IAV+ forsythoside A treatment group (V FTA; 2 μg/mL, 0.2 mL/mouse/day). Real-time fluorescence quantitative PCR (RT-qPCR) was used to measure mRNA expression of the TLR7, MyD88, TRAF6, IRAK4 and NF-κB p65 mRNA in TLR7 signaling pathway and the virus replication level in lung. Western blot was used to measure TLR7, MyD88 and NF-κB p65 protein. Flow cytometry was used to detect the proportion of the T cell subsets Th1/Th2 and Th17/Treg. RESULTS The body weight began to decrease after IAV infection, while FTA and oseltamivir could reduce the rate of body weight loss. The pathological damages in the FTA and oseltamivir group were less serious. TLR7, MyD88, TRAF6, IRAK4 and NF-κB p65 mRNA were up-regulated after virus infection (p < 0.01) while down-regulated after oseltamivir and FTA treatment (p < 0.01). The results of TLR7, MyD88 and NF-κB p65 protein consisted with correlative mRNA. Flow cytometry showed the Th1/Th2 differentiated towards Th2, and the Th17/Treg cells differentiated towards Treg after FTA treatment. CONCLUSIONS Our study suggests forsythoside A can control influenza A virus infection and improve the prognosis of IAV infection by inhibiting influenza A virus replication.
Collapse
Affiliation(s)
- Li Deng
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Peng Pang
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Ke Zheng
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiao Nie
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Huachong Xu
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Sizhi Wu
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Jia Chen
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Xiaoyin Chen
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
19
|
Wang R, Solt LA. Metabolism of murine TH 17 cells: Impact on cell fate and function. Eur J Immunol 2016; 46:807-16. [PMID: 26893133 DOI: 10.1002/eji.201545788] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/04/2016] [Accepted: 02/11/2016] [Indexed: 12/19/2022]
Abstract
An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a variety of insults. In T lymphocytes, this response includes cell growth, clonal expansion, differentiation, and cytokine production, all of which place a significant energy burden on the cell. Recent evidence shows that T-cell metabolic reprogramming is an essential component of the adaptive immune response and specific metabolic pathways dictate T-cell fate decisions, including the development of TH 17 versus T regulatory (Treg) cells. TH 17 cells have garnered significant attention due to their roles in the pathology of immune-mediated inflammatory diseases. Attempts to characterize TH 17 cells have demonstrated that they are highly dynamic, adjusting their function to environmental cues, which dictate their metabolic program. In this review, we highlight recent data demonstrating the impact of cellular metabolism on the TH 17/Treg balance and present factors that mediate TH 17-cell metabolism. Some examples of these include the differential impact of the mTOR signaling complexes on T-helper-cell differentiation, hypoxia inducible factor 1 alpha (HIF1α) promotion of glycolysis to favor TH 17-cell development, and ACC1-dependent de novo fatty acid synthesis favoring TH 17-cell development over Treg cells. Finally, we discuss the potential therapeutic options and the implications of modulating TH 17-cell metabolism for the treatment of TH 17-mediated diseases.
Collapse
Affiliation(s)
- Ran Wang
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - Laura A Solt
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|