1
|
Chaleshtori ZA, Rastegari AA, Nayeri H, Doosti A. Chitosan-LeoA-DNA Nanoparticles Promoted the Efficacy of Novel LeoA-DNA Vaccination on Mice Against Helicobacter pylori. Curr Microbiol 2024; 81:125. [PMID: 38558085 DOI: 10.1007/s00284-024-03642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/18/2024] [Indexed: 04/04/2024]
Abstract
More than half of the world's population is infected with Helicobacter pylori (H. pylori), which may lead to chronic gastritis, peptic ulcers, and stomach cancer. LeoA, a conserved antigen of H. pylori, aids in preventing this infection by triggering specific CD3+ T-cell responses. In this study, recombinant plasmids containing the LeoA gene of H. pylori are created and conjugated with chitosan nanoparticle (CSNP) to immunize BALB/c mice against the H. pylori infection. We used the online Vaxign tool to analyze the genomes of five distinct strains of H. pylori, and we chose the outer membrane as a prospective vaccine candidate. Afterward, the proteins' immunogenicity was evaluated. The DNA vaccine was constructed and then encapsulated in CSNPs. The effectiveness of the vaccine's immunoprotective effects was evaluated in BALB/c mice. Purified activated splenic CD3+ T cells are used to test the anticancer effects in vitro. Nanovaccines had apparent spherical forms, were small (mean size, 150-250 nm), and positively charged (41.3 ± 3.11 mV). A consistently delayed release pattern and an entrapment efficiency (73.35 ± 3.48%) could be established. Compared to the non-encapsulated DNA vaccine, vaccinated BALB/c mice produced higher amounts of LeoA-specific IgG in plasma and TNF-α in splenocyte lysate. Moreover, BALB/c mice inoculated with nanovaccine demonstrated considerable immunity (87.5%) against the H. pylori challenge and reduced stomach injury and bacterial burdens in the stomach. The immunological state in individuals with GC with chronic infection with H. pylori is mimicked by the H. pylori DNA nanovaccines by inducing a shift from Th1 to Th2 in the response. In vitro human GC cell development is inhibited by activated CD3+ T lymphocytes. According to our findings, the H. pylori vaccine-activated CD3+ has potential immunotherapeutic benefits.
Collapse
Affiliation(s)
| | - Ali Asghar Rastegari
- Department of Molecular and Cell Biochemistry, Islamic Azad University, Falavarjan Branch, Isfahan, Iran.
| | - Hashem Nayeri
- Department of Biochemistry, Islamic Azad University, Falavarjan Branch, Isfahan, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
| |
Collapse
|
2
|
Ji Q, Ma J, Wang S, Liu Q. Embedding of exogenous B cell epitopes on the surface of UreB structure generates a broadly reactive antibody response against Helicobacter pylori. Immunology 2024; 171:212-223. [PMID: 37899627 DOI: 10.1111/imm.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Since Helicobacter pylori (H. pylori) resistance to antibiotic regimens has increased, vaccination is becoming an increasingly important alternative therapy to control H. pylori infection. UreB, FlaA, AlpB, SabA, and HpaA proteins of H. pylori were previously proved to be used as candidate vaccine antigens. Here, we developed an engineered antigen based on a recombinant chimeric protein containing a structural scaffold from UreB and B cell epitopes from FlaA, AlpB, SabA, and HpaA. The multi-epitope chimeric antigen, named MECU, could generate a broadly reactive antibody response including antigen-specific antibodies and neutralising antibodies against H. pylori urease and adhesins. Moreover, therapeutic immunisation with MECU could reduce H. pylori colonisation in the stomach and protect the stomach in BALB/c mice. This study not only provides promising immunotherapy to control H. pylori infection but also offers a reference for antigen engineering against other pathogens.
Collapse
Affiliation(s)
- Qianyu Ji
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Junfei Ma
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Shuying Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Li S, Zhao W, Xia L, Kong L, Yang L. How Long Will It Take to Launch an Effective Helicobacter pylori Vaccine for Humans? Infect Drug Resist 2023; 16:3787-3805. [PMID: 37342435 PMCID: PMC10278649 DOI: 10.2147/idr.s412361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Helicobacter pylori infection often occurs in early childhood, and can last a lifetime if not treated with medication. H. pylori infection can also cause a variety of stomach diseases, which can only be treated with a combination of antibiotics. Combinations of antibiotics can cure H. pylori infection, but it is easy to relapse and develop drug resistance. Therefore, a vaccine is a promising strategy for prevention and therapy for the infection of H. pylori. After decades of research and development, there has been no appearance of any H. pylori vaccine reaching the market, unfortunately. This review summarizes the aspects of candidate antigens, immunoadjuvants, and delivery systems in the long journey of H. pylori vaccine research, and also introduces some clinical trials that have displayed encouraging or depressing results. Possible reasons for the inability of an H. pylori vaccine to be available over the counter are cautiously discussed and some propositions for the future of H. pylori vaccines are outlined.
Collapse
Affiliation(s)
- Songhui Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Wenfeng Zhao
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Xia
- Bloomage Biotechnology Corporation Limited, Jinan, People’s Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| |
Collapse
|
4
|
Cheng Z, Zhao X, Jiang X, Zhang J, Li L, Pei C, Zhou Y, Zeng L, Kong X. Contribution of flagellar cap gene in virulence and pathogenicity of Aeromonas veronii. JOURNAL OF FISH DISEASES 2023; 46:247-259. [PMID: 36515399 DOI: 10.1111/jfd.13739] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Aeromonas veronii is an important zoonotic and aquatic pathogen that causes a number of illnesses in both humans and animals. It is related to gastroenteritis, skin and soft tissue infections and bacteremia in humans, as well as causing significant economic losses in aquaculture owing to fish sepsis. Here, we constructed the flagellar cap gene (fliD) mutant strain of A. veronii by suicide plasmid-mediated homologous recombination system and analysed its characteristics. It was found that the deletion of fliD had no effect on growth and biochemical properties and could be inherited stably. However, the motility of A. veronii ΔfliD was significantly reduced, the flagellum was defective and the biofilm formation was attenuated compared with that of A. veronii wild-type strain. In vivo experiments revealed that the colonization capacity of ΔfliD was significantly lower than that of the wild-type strain in the period of first 24 h, and the median lethal dose (LD50 ) was 56 times higher than that of the wild-type strain. The Cyprinus carpio infected with the wild-type strain indicated faster death speed and more severe clinical signs compared to ΔfliD strain. These results suggest that fliD is closely related to the virulence of A. veronii and plays an important role in pathogenicity, providing the foundation for pathogenic mechanism studies of A. veronii.
Collapse
Affiliation(s)
- Zhao Cheng
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
5
|
Ghasemi A, Wang S, Sahay B, Abbott JR, Curtiss R. Protective immunity enhanced Salmonella vaccine vectors delivering Helicobacter pylori antigens reduce H. pylori stomach colonization in mice. Front Immunol 2022; 13:1034683. [PMID: 36466847 PMCID: PMC9716130 DOI: 10.3389/fimmu.2022.1034683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2024] Open
Abstract
Helicobacter pylori is a major cause of gastric mucosal inflammation, peptic ulcers, and gastric cancer. Emerging antimicrobial-resistant H. pylori has hampered the effective eradication of frequent chronic infections. Moreover, a safe vaccine is highly demanded due to the absence of effective vaccines against H. pylori. In this study, we employed a new innovative Protective Immunity Enhanced Salmonella Vaccine (PIESV) vector strain to deliver and express multiple H. pylori antigen genes. Immunization of mice with our vaccine delivering the HpaA, Hp-NAP, UreA and UreB antigens, provided sterile protection against H. pylori SS1 infection in 7 out of 10 tested mice. In comparison to the control groups that had received PBS or a PIESV carrying an empty vector, immunized mice exhibited specific and significant cellular recall responses and antigen-specific serum IgG1, IgG2c, total IgG and gastric IgA antibody titers. In conclusion, an improved S. Typhimurium-based live vaccine delivering four antigens shows promise as a safe and effective vaccine against H. pylori infection.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Jeffrey R. Abbott
- Department of Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL, United States
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| |
Collapse
|
6
|
Luo W, Wang Q, Zhang X, Gu D, Zhang W, Yuan C. Evaluation of the diagnostic value of FliD, a Helicobacter pylori flagellar protein. Jpn J Infect Dis 2022; 75:454-460. [PMID: 35354706 DOI: 10.7883/yoken.jjid.2021.795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Novel immunodominant antigens are urgently required for diagnosis and vaccine of Helicobacter pylori(HP). FliD, an important colonization factor was cloned and expressed(rFliD) to evaluate the levels of specific-IgG, IgM and IgA antibodies in the serum of patients by ELISA. Rabbit anti-rFliD polyclonal antibody (pAb) was obtained by subcutaneous injections of rFliD. The rFliD-specific IFN-γ and IL-4 of peripheral blood mononuclear cells and CD4+ T cells from human were analyzed by enzyme-linked immunospot and flow cytometry. We found that the levels of rFliD-specific IgG, IgM and IgA were significantly higher in HP-infected-patients compared with healthy controls. IgG, IgM and IgA had diagnostic sensitivities of 92.6, 89.8 and 83.2%; specificities of 91.1, 88.7 and 64.6%; and areas under the receiver operating curves of 0.97, 0.96 and 0.92, respectively. Furthermore, rFliD-pAb was used in the immunohistochemical analysis of gastritis and gastric cancer tissues from patients infected with HP. The levels of rFliD-specific IFN-γ and IL-4 were significantly elevated in HP-infected patients and exhibited a T helper type 1-dominant subtype. These findings indicate that rFliD exhibits high validity as a biomarker in HP diagnosis and may also be a potent antigen for vaccine design due to its high cellular and humoral immune response.
Collapse
Affiliation(s)
- Wei Luo
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, China
| | - Qian Wang
- Department of Pathology, Tianjin Haihe Hospital, Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, China
| | - Xiaofang Zhang
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, China
| | - Dongmei Gu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, China
| | - Weifeng Zhang
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital, Huazhong University of Science and Technology, China
| |
Collapse
|
7
|
Peng YM, Tao JJ, Kuang SF, Jiang M, Peng XX, Li H. Identification of Polyvalent Vaccine Candidates From Extracellular Secretory Proteins in Vibrio alginolyticus. Front Immunol 2021; 12:736360. [PMID: 34671354 PMCID: PMC8521057 DOI: 10.3389/fimmu.2021.736360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
Bacterial infections cause huge losses in aquaculture and a wide range of health issues in humans. A vaccine is the most economical, efficient, and environment-friendly agent for protecting hosts against bacterial infections. This study aimed to identify broad, cross-protective antigens from the extracellular secretory proteome of the marine bacterium Vibrio alginolyticus. Of the 69 predicted extracellular secretory proteins in its genome, 16 were randomly selected for gene cloning to construct DNA vaccines, which were used to immunize zebrafish (Danio rerio). The innate immune response genes were also investigated. Among the 16 DNA vaccines, 3 (AT730_21605, AT730_22220, and AT730_22910) were protective against V. alginolyticus infection with 47–66.7% increased survival compared to the control, while other vaccines had lower or no protective effects. Furthermore, AT730_22220, AT730_22910, and AT730_21605 also exhibited cross-immune protective effects against Pseudomonas fluorescens and/or Aeromonas hydrophila infection. Mechanisms for cross-protective ability was explored based on conserved epitopes, innate immune responses, and antibody neutralizing ability. These results indicate that AT730_21605, AT730_22220, and AT730_22910 are potential polyvalent vaccine candidates against bacterial infections. Additionally, our results suggest that the extracellular secretory proteome is an antigen pool that can be used for the identification of cross-protective immunogens.
Collapse
Affiliation(s)
- Yu-Ming Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, China
| | - Jian-Jun Tao
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, China
| | - Su-Fang Kuang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, China
| | - Ming Jiang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Dos Santos Viana I, Cordeiro Santos ML, Santos Marques H, Lima de Souza Gonçalves V, Bittencourt de Brito B, França da Silva FA, Oliveira E Silva N, Dantas Pinheiro F, Fernandes Teixeira A, Tanajura Costa D, Oliveira Souza B, Lima Souza C, Vasconcelos Oliveira M, Freire de Melo F. Vaccine development against Helicobacter pylori: from ideal antigens to the current landscape. Expert Rev Vaccines 2021; 20:989-999. [PMID: 34139141 DOI: 10.1080/14760584.2021.1945450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: The interest of the world scientific community for an effective vaccine against Helicobacter pylori infection arises from its high prevalence and association with many diseases. Moreover, with an immunological response that is not always effective for the eradication of the bacteria and an increasing antibiotic resistance in the treatment of this infection, the search for a vaccine and new therapeutic modalities to control this infection is urgent.Areas covered: We bring an overview of the infection worldwide, discussing its prevalence, increasing resistance to antibiotics used in its therapy, in addition to the response of the immune system to the infection registered so far. Moreover, we address the most used antigens and their respective immunological responses expected or registered up to now. Finally, we address the trials and their partial results in development for such vaccines.Expert opinion: Although several studies for the development of an effective vaccine against this pathogen are taking place, many are still in the preclinical phase or even without updated information. In this sense, taking into account the high prevalence and association with important comorbidities, the interest of the pharmaceutical industry in developing an effective vaccine against this pathogen is questioned.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Davi Tanajura Costa
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Briza Oliveira Souza
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Cláudio Lima Souza
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | | | | |
Collapse
|
9
|
Song WS, Hong HJ, Yoon SI. Structural study of the flagellar junction protein FlgL from Legionella pneumophila. Biochem Biophys Res Commun 2020; 529:513-518. [PMID: 32703460 DOI: 10.1016/j.bbrc.2020.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022]
Abstract
Legionella pneumophila is a flagellated pathogenic bacterium that causes atypical pneumonia called Legionnaires' disease. The flagellum plays a key role in the pathogenesis of L. pneumophila in the host. The protein FlgL forms a junction between the flagellar hook and filament and has been reported to elicit the host humoral immune response. To provide structural insights into FlgL-mediated junction assembly and FlgL-based vaccine design, we performed structural and serological studies on L. pneumophila FlgL (lpFlgL). The crystal structure of a truncated lpFlgL protein that consists of the D1 and D2 domains was determined at 3.06 Å resolution. The D1 domain of lpFlgL adopts a primarily helical, rod-shaped structure, and the D2 domain folds into a β-sandwich structure that is affixed to the upper region of the D1 domain. The D1 domain of lpFlgL exhibits structural similarity to the flagellar filament protein flagellin, allowing us to propose a structural model of the lpFlgL junction based on the polymeric structure of flagellin. Furthermore, the D1 domain of lpFlgL exhibited substantially higher protein stability than the D2 domain and was responsible for most of the antigenicity of lpFlgL, suggesting that the D1 domain of lpFlgL would be a suitable target for the development of an anti-L. pneumophila vaccine.
Collapse
Affiliation(s)
- Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ho Jeong Hong
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Al-Otaibi NS, Taylor AJ, Farrell DP, Tzokov SB, DiMaio F, Kelly DJ, Bergeron JRC. The cryo-EM structure of the bacterial flagellum cap complex suggests a molecular mechanism for filament elongation. Nat Commun 2020; 11:3210. [PMID: 32587243 PMCID: PMC7316729 DOI: 10.1038/s41467-020-16981-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
The bacterial flagellum is a remarkable molecular motor, whose primary function in bacteria is to facilitate motility through the rotation of a filament protruding from the bacterial cell. A cap complex, consisting of an oligomer of the protein FliD, is localized at the tip of the flagellum, and is essential for filament assembly, as well as adherence to surfaces in some bacteria. However, the structure of the intact cap complex, and the molecular basis for its interaction with the filament, remains elusive. Here we report the cryo-EM structure of the Campylobacter jejuni cap complex, which reveals that FliD is pentameric, with the N-terminal region of the protomer forming an extensive set of contacts across several subunits, that contribute to FliD oligomerization. We also demonstrate that the native C. jejuni flagellum filament is 11-stranded, contrary to a previously published cryo-EM structure, and propose a molecular model for the filament-cap interaction. FliD forms a cap complex at the tip of bacterial flagella and is essential for flagellum filament assembly. Here, the authors present the cryo-EM structure of the Campylobacter jejuni cap complex, revealing a pentameric assembly of FliD and further show that the C. jejuni flagellum filament is 11-stranded.
Collapse
Affiliation(s)
- Natalie S Al-Otaibi
- Department of Molecular Biology and Biotechnology, the University of Sheffield, Sheffield, UK
| | - Aidan J Taylor
- Department of Molecular Biology and Biotechnology, the University of Sheffield, Sheffield, UK
| | - Daniel P Farrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Svetomir B Tzokov
- Department of Molecular Biology and Biotechnology, the University of Sheffield, Sheffield, UK
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, the University of Sheffield, Sheffield, UK.
| | - Julien R C Bergeron
- Department of Molecular Biology and Biotechnology, the University of Sheffield, Sheffield, UK. .,Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
11
|
Cho SY, Song WS, Yoon SI. Crystal structure of the flagellar cap protein FliD from Bdellovibrio bacteriovorus. Biochem Biophys Res Commun 2019; 519:652-658. [PMID: 31542231 DOI: 10.1016/j.bbrc.2019.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 01/10/2023]
Abstract
Bdellovibrio bacteriovorus is a predator bacterial species of the Deltaproteobacteria class that requires flagellum-mediated motility to initiate the parasitization of other gram-negative bacteria. The flagellum is capped by FliD, which polymerizes flagellin into a flagellar filament. FliD has been reported to function as a species-specific oligomer, such as a tetramer, a pentamer, or a hexamer, in members of the Gammaproteobacteria class. However, the oligomeric state and structural features of FliD from bacterial species outside the Gammaproteobacteria class are unknown. Based on structural and biochemical analyses, we report here that B. bacteriovorus FliD (bbFliD) forms a tetramer. bbFliD tetramerizes in a circular head-to-tail arrangement by inserting the D2 domain of one subunit into the concave surface of the second subunit generated between the D2 and D3 domains as observed in Serratia marcescens FliD. However, bbFliD adopts a more compact and flat oligomeric structure, which exhibits a more extended tetramerization interface flanked by two additional surfaces due to different intersubunit and interdomain organizations as well as an elongated loop. In conclusion, FliD from B. bacteriovorus, which belongs to the Deltaproteobacteria class, also produces a tetramer similar to FliD from Gammaproteobacterial species but adopts a unique species-specific oligomeric structure.
Collapse
Affiliation(s)
- So Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
12
|
Keikha M, Eslami M, Yousefi B, Ghasemian A, Karbalaei M. Potential antigen candidates for subunit vaccine development against
Helicobacter pylori
infection. J Cell Physiol 2019; 234:21460-21470. [PMID: 31188484 DOI: 10.1002/jcp.28870] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Bu‐Ali Research Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Microbiology and Virology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Eslami
- Cancer Research Center Semnan University of Medical Sciences Semnan Iran
| | - Bahman Yousefi
- Department of Immunology Semnan University of Medical Sciences Semnan Iran
| | - Abdolmajid Ghasemian
- Department of Biology, Tehran Central Branch Islamic Azad University Tehran Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Department of Microbiology and Virology, School of Medicine Jiroft University of Medical Sciences Jiroft Iran
| |
Collapse
|
13
|
Cho SY, Song WS, Oh HB, Kim HU, Jung HS, Yoon SI. Structural analysis of the flagellar capping protein FliD from Helicobacter pylori. Biochem Biophys Res Commun 2019; 514:98-104. [PMID: 31023530 DOI: 10.1016/j.bbrc.2019.04.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023]
Abstract
Helicobacter pylori is a pathogenic flagellated bacterium that infects the gastroduodenal mucosa and causes peptic ulcers in humans. FliD caps the distal end of the flagellar filament and is essential in filament growth. Moreover, FliD has been studied to diagnose and prevent H. pylori infection. Here, we report structure-based molecular studies of H. pylori FliD (hpFliD). A crystal structure of hpFliD at 2.6 Å resolution presents a four-domain (D2-D5) structure, where the D3 domain forms a central platform surrounded by the other three domains (D2, D4, and D5). hpFliD domains D2 and D3 structurally resemble those of FliD orthologs, whereas the D4 and D5 domains are exclusive to hpFliD. Moreover, our ELISA analysis using anti-H. pylori antibodies demonstrated that the hpFliD-specific D4 and D5 domains are highly antigenic compared to the D2 and D3 domains. Collectively, our structural and serological analyses underscore the structural role of hpFliD domains and provide a molecular basis for vaccine and diagnosis development.
Collapse
Affiliation(s)
- So Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Han-Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
14
|
Blosse A, Lehours P, Wilson KT, Gobert AP. Helicobacter: Inflammation, immunology, and vaccines. Helicobacter 2018; 23 Suppl 1:e12517. [PMID: 30277626 PMCID: PMC6310010 DOI: 10.1111/hel.12517] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori infection induces a chronic gastric inflammation which can lead to gastric ulcers and cancer. The mucosal immune response to H. pylori is first initiated by the activation of gastric epithelial cells that respond to numerous bacterial factors, such as the cytotoxin-associated gene A or the lipopolysaccharide intermediate heptose-1,7-bisphosphate. The response of these cells is orchestrated by different receptors including the intracellular nucleotide-binding oligomerization domain-containing protein 1 or the extracellular epidermal growth factor receptor. This nonspecific response leads to recruitment and activation of various myeloid (macrophages and dendritic cells) and T cells (T helper-17 and mucosal-associated invariant T cells), which magnify and maintain inflammation. In this review, we summarize the major advances made in the past year regarding the induction, the regulation, and the role of the innate and adaptive immune responses to H. pylori infection. We also recapitulate efforts that have been made to develop efficient vaccine strategies.
Collapse
Affiliation(s)
- Alice Blosse
- INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université de Bordeaux, Bordeaux, France,French National Reference Centre for Campylobacters and Helicobacters, Bordeaux Hospital, Bordeaux, France
| | - Philippe Lehours
- INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université de Bordeaux, Bordeaux, France,French National Reference Centre for Campylobacters and Helicobacters, Bordeaux Hospital, Bordeaux, France
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Mucosal Inflammation and Cancer, Nashville, TN, USA,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Alain P. Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Mucosal Inflammation and Cancer, Nashville, TN, USA
| |
Collapse
|
15
|
Liu H, Liu W, Tan Z, Zeng Z, Yang H, Luo S, Wang L, Xi T, Xing Y. Promoting Immune Efficacy of the Oral Helicobacter pylori Vaccine by HP55/PBCA Nanoparticles against the Gastrointestinal Environment. Mol Pharm 2018; 15:3177-3186. [PMID: 30011213 DOI: 10.1021/acs.molpharmaceut.8b00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immunogenicity of oral subunit vaccines is poor partly as a result of the harsh milieu of the gastrointestinal (GI) tract. For some pathogens that restrictedly inhabit the GI tract, a vaccine that works in situ may provide more potent protection than vaccines that operate parenterally. Yet, no appropriate delivery system is available for oral subunit vaccines. In this study, we designed HP55/poly( n-butylcyanoacrylate) (PBCA) nanoparticles (NPs) to carry Helicobacter pylori ( H. pylori) subunit vaccine CCF for oral administration in a prophylactic mice model. These NPs, which are synthesized using an interfacial polymerization method, protected the CCF antigen not only from the acidic pH in simulated gastric fluid (SGF, pH 1.2) but also from the proteolysis in simulated intestinal fluid (SIF, pH 7.4). Oral vaccination of mice with HP55/PBCA-CCF NPs promoted the production of serum antigen-specific antibodies, mucosal secretory IgA, and proinflammatory cytokines. Moreover, a Th1/Th17 response and augmented lymphocytes were found in the gastric tissue of HP55/PBCA-CCF NP-immunized mice, which might eventually limit H. pylori colonization. Collectively, these results indicate that HP55/PBCA NPs are promising carriers against the severe situation of the GI tract and thereby may be further utilized for other orally administrated vaccines or drugs.
Collapse
Affiliation(s)
- Hai Liu
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Wei Liu
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Zhoulin Tan
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Zhiqin Zeng
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Huimin Yang
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Shuanghui Luo
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Linlin Wang
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Tao Xi
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Yingying Xing
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| |
Collapse
|
16
|
Ghasemi A, Mohammad N, Mautner J, Taghipour Karsabet M, Amani J, Ardjmand A, Vakili Z. Immunization with a recombinant fusion protein protects mice against Helicobacter pylori infection. Vaccine 2018; 36:5124-5132. [PMID: 30041879 DOI: 10.1016/j.vaccine.2018.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
More than 50% of the world's population is infected with the bacterium Helicobacter pylori. If left untreated, infection with H. pylori can cause chronic gastritis and peptic ulcer disease, which may progress into gastric cancer. Owing to the limited efficacy of anti-H. pylori antibiotic therapy in clinical practice, the development of a protective vaccine to combat this pathogen has been a tempting goal for several years. In this study, a chimeric gene coding for the antigenic parts of H. pylori FliD, UreB, VacA, and CagL was generated and expressed in bacteria and the potential of the resulting fusion protein (rFUVL) to induce humoral and cellular immune responses and to provide protection against H. pylori infection was evaluated in mice. Three different immunization adjuvants were tested along with rFUVL: CpG oligodeoxynucleotides (CpG ODN), Addavax, and Cholera toxin subunit B. Compared to the control group that had received PBS, vaccinated mice showed significantly higher cellular recall responses and antigen-specific IgG2a, IgG1, and gastric IgA antibody titers. Importantly, rFUVL immunized mice exhibited a reduction of about three orders of magnitude in their stomach bacterial loads. Thus, adjuvanted rFUVL might be considered as a promising vaccine candidate for the control of H. pylori infection.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, FL, USA.
| | - Nazanin Mohammad
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Josef Mautner
- Technische Universität München & Helmholtz Zentrum München, Munich, Germany
| | - Mehrnaz Taghipour Karsabet
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Ardjmand
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Zarichehr Vakili
- Department of Pathology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|