1
|
Kadian LK, Verma D, Lohani N, Yadav R, Ranga S, Gulshan G, Pal S, Kumari K, Chauhan SS. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem 2024; 479:3229-3254. [PMID: 38413478 DOI: 10.1007/s11010-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.
Collapse
Affiliation(s)
- Lokesh K Kadian
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Dept of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | - Deepika Verma
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Lohani
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Yadav
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Shalu Ranga
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Sanghapriya Pal
- Dept of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, 110002, India
| | - Kiran Kumari
- Dept of Forensic Science, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Shyam S Chauhan
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Fang K, Xu H, Yuan S, Li X, Chen X, Fan X, Gao X, Zhang L, Sun S, Zhu X. LncRNA mediated metabolic reprogramming: the chief culprits of solid tumor malignant progression: an update review. Nutr Metab (Lond) 2024; 21:89. [PMID: 39516895 PMCID: PMC11549785 DOI: 10.1186/s12986-024-00866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolism reprogramming (MR) is one of the top ten hallmarks of malignant tumors. The aberrant activation of MR has been recognized as a critical contributory factor to the malignant progression of solid tumors. Moreover, various long non-coding RNAs (lncRNAs) are implicated in the aberrant activation of MR in solid tumor cells. Therefore, in this review, we mainly focus on summarizing the functional relevance and molecular mechanistic underpinnings of lncRNAs in modulating MR of solid tumors by targeting glucose metabolism, lipid metabolism, affecting mitochondrial function, and regulating interactions between tumor and non-tumor cells in tumor microenvironment. Besides, we also underscore the potential for constructing lncRNAs-centered tumor metabolic regulation networks and developing novel anti-tumor strategies by targeting lncRNAs and abnormal MR. Ultimately, this review seeks to offer new targets and avenues for the clinical treatment of solid tumors in the future.
Collapse
Affiliation(s)
- Kun Fang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Huizhe Xu
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Shuai Yuan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoyu Chen
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiushi Fan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoxin Gao
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Lu Zhang
- Department of Human Resources, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
| | - Shulan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
3
|
Garcia-Rodriguez P, Hidalgo L, Rodriguez-Milla MA, Somovilla-Crespo B, Garcia-Castro J. LIN28 upregulation in primary human T cells impaired CAR T antitumoral activity. Front Immunol 2024; 15:1462796. [PMID: 39478867 PMCID: PMC11521810 DOI: 10.3389/fimmu.2024.1462796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
LIN28, a highly conserved RNA-binding protein that acts as a posttranscriptional modulator, plays a vital role in the regulation of T-cell development, reprogramming, and immune activity in infectious diseases and T-cell-based immunotherapies. LIN28 inhibit the expression of let-7 miRNAs, the most prevalent family of miRNAs in lymphocytes. Recently it has been suggested that let-7 enhances murine anti-tumor immune responses. Here, we investigated the impact of LIN28 upregulation on human T cell functions, focusing on its influence on CAR T cell therapy. LIN28 lentiviral transduction of human T cells led to a stable expression of LIN28 that significantly downregulated the let-7 miRNA family without affecting cell viability or expansion potential. LIN28 overexpression maintained human T cell phenotype markers and functionality but impaired the antitumoral cytotoxicity of NKG2D-CAR T cells both in vitro and in vivo. These findings highlight the intricate relationship between LIN28/let-7 axis and human T cell functionality, including in CAR T cell therapy.
Collapse
Affiliation(s)
- Patricia Garcia-Rodriguez
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain
- Universidad Nacional de Educación a (UNED), Madrid, Spain
| | - Laura Hidalgo
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Javier Garcia-Castro
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación de Enfermedades Raras (IIER) & Departamento de Desarrollo de Medicamentos de Terapias Avanzadas (DDMTA), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Zhang D, Zhang M, Zhang L, Wang W, Hua S, Zhou C, Sun X. Long non-coding RNAs and immune cells: Unveiling the role in viral infections. Biomed Pharmacother 2024; 170:115978. [PMID: 38056234 DOI: 10.1016/j.biopha.2023.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Viral infections present significant challenges to human health, underscoring the importance of understanding the immune response for effective therapeutic strategies. Immune cell activation leads to dynamic changes in gene expression. Numerous studies have demonstrated the crucial role of long noncoding RNAs (lncRNAs) in immune activation and disease processes, including viral infections. This review provides a comprehensive overview of lncRNAs expressed in immune cells, including CD8 T cells, CD4 T cells, B cells, monocytes, macrophages, dendritic cells, and granulocytes, during both acute and chronic viral infections. LncRNA-mediated gene regulation encompasses various mechanisms, including the modulation of viral replication, the establishment of latency, activation of interferon pathways and other critical signaling pathways, regulation of immune exhaustion and aging, and control of cytokine and chemokine production, as well as the modulation of interferon-stimulated genes. By highlighting specific lncRNAs in different immune cell types, this review enhances our understanding of immune responses to viral infections from a lncRNA perspective and suggests potential avenues for exploring lncRNAs as therapeutic targets against viral diseases.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengna Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liqin Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Weijuan Wang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Stéphane Hua
- Laboratory of Cellular Immunology and Biotechnology, Molecular Engineering for Health Unit CEA Saclay, 91191 Gif-sur-Yvette cedex, France
| | - Chan Zhou
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xiaoming Sun
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
5
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
6
|
Roe K. Pathogen regulatory RNA usage enables chronic infections, T-cell exhaustion and accelerated T-cell exhaustion. Mol Cell Biochem 2023; 478:2505-2516. [PMID: 36941498 PMCID: PMC10027582 DOI: 10.1007/s11010-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/15/2023] [Indexed: 03/23/2023]
Abstract
Pathogens evade or disable cellular immune defenses using regulatory ribonucleic acids (RNAs), including microRNAs and long non-coding RNAs. Pathogenic usage of regulatory RNA enables chronic infections. Chronic infections, using host regulatory RNAs and/or creating pathogenic regulatory RNAs against cellular defenses, can cause T-cell exhaustion and latent pathogen reactivations. Concurrent pathogen infections of cells enable several possibilities. A first pathogen can cause an accelerated T-cell exhaustion for a second pathogen cellular infection. Accelerated T-cell exhaustion for the second pathogen weakens T-cell targeting of the second pathogen and enables a first-time infection by the second pathogen to replicate quickly and extensively. This can induce a large antibody population, which may be inadequately targeted against the second pathogen. Accelerated T-cell exhaustion can explain the relatively short median and average times from diagnosis to mortality in some viral epidemics, e.g., COVID-19, where the second pathogen can lethally overwhelm individuals' immune defenses. Alternatively, if an individual survives, the second pathogen could induce a very high titer of antigen-antibody immune complexes. If the antigen-antibody immune complex titer quickly becomes very high, it can exceed the immune system's phagocytic capability in immuno-deficient individuals, resulting in a Type III hypersensitivity immune reaction. Accelerated T-cell exhaustion in immuno-deficient individuals can be a fundamental cause of several hyperinflammatory diseases and autoimmune diseases. This would be possible when impaired follicular helper CD4+ T-cell assistance to germinal center B-cell somatic hypermutation, affinity maturation and isotype switching of antibodies results in high titers of inadequate antibodies, and this initiates a Type III hypersensitivity immune reaction with proteinase releases which express or expose autoantigens.
Collapse
|
7
|
Wells AC, Hioki KA, Angelou CC, Lynch AC, Liang X, Ryan DJ, Thesmar I, Zhanybekova S, Zuklys S, Ullom J, Cheong A, Mager J, Hollander GA, Pobezinskaya EL, Pobezinsky LA. Let-7 enhances murine anti-tumor CD8 T cell responses by promoting memory and antagonizing terminal differentiation. Nat Commun 2023; 14:5585. [PMID: 37696797 PMCID: PMC10495470 DOI: 10.1038/s41467-023-40959-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/17/2023] [Indexed: 09/13/2023] Open
Abstract
The success of the CD8 T cell-mediated immune response against infections and tumors depends on the formation of a long-lived memory pool, and the protection of effector cells from exhaustion. The advent of checkpoint blockade therapy has significantly improved anti-tumor therapeutic outcomes by reversing CD8 T cell exhaustion, but fails to generate effector cells with memory potential. Here, using in vivo mouse models, we show that let-7 miRNAs determine CD8 T cell fate, where maintenance of let-7 expression during early cell activation results in memory CD8 T cell formation and tumor clearance. Conversely, let-7-deficiency promotes the generation of a terminal effector population that becomes vulnerable to exhaustion and cell death in immunosuppressive environments and fails to reject tumors. Mechanistically, let-7 restrains metabolic changes that occur during T cell activation through the inhibition of the PI3K/AKT/mTOR signaling pathway and production of reactive oxygen species, potent drivers of terminal differentiation and exhaustion. Thus, our results reveal a role for let-7 in the time-sensitive support of memory formation and the protection of effector cells from exhaustion. Overall, our data suggest a strategy in developing next-generation immunotherapies by preserving the multipotency of effector cells rather than enhancing the efficacy of differentiation.
Collapse
Affiliation(s)
- Alexandria C Wells
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Kaito A Hioki
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
- UMass Biotech Training Program (BTP), Amherst, MA, USA
| | - Constance C Angelou
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Adam C Lynch
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Xueting Liang
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Daniel J Ryan
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Iris Thesmar
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Saule Zhanybekova
- Pediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel, Switzerland
| | - Saulius Zuklys
- Pediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel, Switzerland
| | - Jacob Ullom
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Agnes Cheong
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA
| | - Georg A Hollander
- Pediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel, Switzerland
| | - Elena L Pobezinskaya
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA.
| | - Leonid A Pobezinsky
- Department of Veterinary and Animal science, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
8
|
Han XY, Li X, Zhao RY, Ma HZ, Yu M, Niu XD, Jin HJ, Wang YF, Liu DM, Cai H. Comprehensive analysis of prognostic value and immunotherapy prospect of brain cytoplasmic RNA1 in hepatocellular carcinoma. World J Gastrointest Oncol 2023; 15:644-664. [PMID: 37123057 PMCID: PMC10134208 DOI: 10.4251/wjgo.v15.i4.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/18/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND The expression of brain cytoplasmic RNA1 (BCYRN1) is linked to the clinicopathology and prognosis of several types of cancers, among which hepatocellular carcinoma (HCC) is one of the most frequent types of cancer worldwide.
AIM To explore the prognostic value and immunotherapeutic potential of BCYRN1 in HCC by bioinformatics and meta-analysis.
METHODS Information was obtained from the Cancer Genome Atlas database. First, the correlation between BCYRN1 expression and prognosis and clinicopathologic characteristics of HCC patients was explored. Univariate and multivariate regression analyses were employed to examine the relationship between BCYRN1 and HCC prognosis. Secondly, potential functions and pathways were explored by means of enrichment analysis of differentially-expressed genes. The relationships between BCYRN1 expression and tumor microenvironment, immune cell infiltration, immune checkpoint, drug sensitivity and immunotherapy effect were also investigated. Finally, three major databases were searched and used to conduct a meta-analysis on the relationship between BCYRN1 expression and patient prognosis.
RESULTS BCYRN1 expression was significantly higher in HCC compared to normal tissues and was linked to a poor prognosis and clinicopathological characteristics. Enrichment analysis showed that BCYRN1 regulates the extracellular matrix and transmission of signaling molecules, participates in the metabolism of nutrients, such as proteins, and participates in tumor-related pathways. BCYRN1 expression was linked to the tumor microenvironment, immune cell infiltration, drug sensitivity and the efficacy of immunotherapy. Furthermore, the meta-analysis in this study showed that BCYRN1 overexpression was related to a worse outcome in HCC patients.
CONCLUSION Overexpression of BCYRN1 relates to poor prognosis and may be a potential prognostic factor and immunotherapeutic target in HCC.
Collapse
Affiliation(s)
- Xiao-Yong Han
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Graduate School, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiong Li
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Graduate School, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Rang-Yin Zhao
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hai-Zhong Ma
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Miao Yu
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiang-Dong Niu
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Hao-Jie Jin
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yong-Feng Wang
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - De-Ming Liu
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Hui Cai
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
9
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
10
|
Lei Z, Feng G, Wang Z, Ning Z. Noncoding RNAs and Virus and Treatment in Allergic Rhinitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1979447. [PMID: 36285160 PMCID: PMC9588333 DOI: 10.1155/2022/1979447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Allergic rhinitis (AR) is a type I hypersensitivity reaction disease caused by inhaled allergens and immunoglobulin E (IgE)-mediated. Noncoding RNA (ncRNA) is an important regulator involved in gene expression and can be detected in the cytoplasm or extracellular fluid, which mainly includes microRNAs (miRNA, length 22-24 nucleotides), long noncoding RNAs (lncRNA, length >200 nucleotides), and circRNAs. LncRNA and miRNA both participate in the regulation of immune function. Some respiratory viral infections can aggravate allergic rhinitis, such as a respiratory syncytial virus (RSV) and human metapneumovirus (hMPV). However, the interaction between viral infection and allergy is complex and the mechanism is still unclear. In this review, we summarized the interactions of noncoding RNAs and viruses in the occurrence and development of AR, along with the treatments focusing on the noncoding RNAs in the past five years.
Collapse
Affiliation(s)
- Zhu Lei
- Otolaryngology Department, Xianning First People's Hospital, Xianning 437100, Hubei, China
| | - Guangrui Feng
- Cardiovascular Medicine Department, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, Hubei, China
| | - Zhiguo Wang
- Dermatology Department, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, Hubei, China
| | - Zhifeng Ning
- Human Anatomy Department, Basic Medicine College, Hubei University of Science and Technology, Xianning 437100, Hubei, China
| |
Collapse
|
11
|
Hu C, Cai D, Zhong ME, Fan D, Li CH, Lv MY, Huang ZP, Wang W, Wu XJ, Gao F. Predicting prognosis and immunotherapy response among colorectal cancer patients based on a tumor immune microenvironment-related lncRNA signature. Front Genet 2022; 13:993714. [PMID: 36159987 PMCID: PMC9489948 DOI: 10.3389/fgene.2022.993714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) remodel the tumor immune microenvironment (TIME) by regulating the functions of tumor-infiltrating immune cells. It remains uncertain the way that TIME-related lncRNAs (TRLs) influence the prognosis and immunotherapy response of colorectal cancer (CRC). Aiming at providing survival and immunotherapy response predictions, a CRC TIME-related lncRNA signature (TRLs signature) was developed and the related potential regulatory mechanisms were explored with a comprehensive analysis on gene expression profiles from 97 immune cell lines, 61 CRC cell lines and 1807 CRC patients. Stratifying CRC patients with the TRLs signature, prolonged survival was observed in the low-risk group, while the patients in the high-risk group had significantly higher pro-tumor immune cells infiltration and higher immunotherapy response rate. Through the complex TRLs-mRNA regulation network, immunoregulation pathways and immunotherapy response pathways were found to be differently activated between the groups. In conclusion, the CRC TRLs signature is capable of making prognosis and immunotherapy response predictions, which may find application in stratifying patients for immunotherapy in the bedside.
Collapse
Affiliation(s)
- Chuling Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Du Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min-Er Zhong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dejun Fan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng-Hang Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min-Yi Lv
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Ping Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiao-Jian Wu, ; Feng Gao,
| | - Feng Gao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiao-Jian Wu, ; Feng Gao,
| |
Collapse
|
12
|
Yang J, Liu F, Wang Y, Qu L, Lin A. LncRNAs in tumor metabolic reprogramming and immune microenvironment remodeling. Cancer Lett 2022; 543:215798. [PMID: 35738332 DOI: 10.1016/j.canlet.2022.215798] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Evidence accumulated over the past decade has verified that long non-coding RNAs (lncRNAs) exert important functions in multiple cell programs. As a novel class of cellular regulatory molecules, lncRNAs interact with different molecules, such as DNA, RNA or proteins, depending on their subcellular distribution, to modulate gene transcription and kinase cascades. It has been widely clarified that lncRNAs play important roles in modulating metabolic reprogramming and reshaping the immune landscape and serve as hinges bridging tumor metabolism and anti-tumor immunity. Given these facts, lncRNAs, as putative regulators of tumor initiation and progression, have attracted extensive attention in recent years. In this review, we summarized the current research progress on the role of lncRNAs in tumor metabolic reprogramming and tumor-immune microenvironment remodeling, and conclude with our laboratory's contributions in advancing the clinical applications of lncRNAs.
Collapse
Affiliation(s)
- Jiecheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China; Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China; International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China; ZJU-QILU Joint Research Institute, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
13
|
Stelekati E, Cai Z, Manne S, Chen Z, Beltra JC, Buchness LA, Leng X, Ristin S, Nzingha K, Ekshyyan V, Niavi C, Abdel-Hakeem MS, Ali MA, Drury S, Lau CW, Gao Z, Ban Y, Zhou SK, Ansel KM, Kurachi M, Jordan MS, Villarino AV, Ngiow SF, Wherry EJ. MicroRNA-29a attenuates CD8 T cell exhaustion and induces memory-like CD8 T cells during chronic infection. Proc Natl Acad Sci U S A 2022; 119:e2106083119. [PMID: 35446623 PMCID: PMC9169946 DOI: 10.1073/pnas.2106083119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
CD8 T cells mediate protection against intracellular pathogens and tumors. However, persistent antigen during chronic infections or cancer leads to T cell exhaustion, suboptimal functionality, and reduced protective capacity. Despite considerable work interrogating the transcriptional regulation of exhausted CD8 T cells (TEX), the posttranscriptional control of TEX remains poorly understood. Here, we interrogated the role of microRNAs (miRs) in CD8 T cells responding to acutely resolved or chronic viral infection and identified miR-29a as a key regulator of TEX. Enforced expression of miR-29a improved CD8 T cell responses during chronic viral infection and antagonized exhaustion. miR-29a inhibited exhaustion-driving transcriptional pathways, including inflammatory and T cell receptor signaling, and regulated ribosomal biogenesis. As a result, miR-29a fostered a memory-like CD8 T cell differentiation state during chronic infection. Thus, we identify miR-29a as a key regulator of TEX and define mechanisms by which miR-29a can divert exhaustion toward a more beneficial memory-like CD8 T cell differentiation state.
Collapse
Affiliation(s)
- Erietta Stelekati
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Zhangying Cai
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lance Alec Buchness
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Xuebing Leng
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Svetlana Ristin
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Kito Nzingha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Viktoriya Ekshyyan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Christina Niavi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mohamed S. Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mohammed-Alkhatim Ali
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sydney Drury
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Chi Wai Lau
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Zhen Gao
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Simon K. Zhou
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143
| | - K. Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143
| | - Makoto Kurachi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Martha S. Jordan
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
14
|
Zhang Z, Huang Q, Yu L, Zhu D, Li Y, Xue Z, Hua Z, Luo X, Song Z, Lu C, Zhao T, Liu Y. The Role of miRNA in Tumor Immune Escape and miRNA-Based Therapeutic Strategies. Front Immunol 2022; 12:807895. [PMID: 35116035 PMCID: PMC8803638 DOI: 10.3389/fimmu.2021.807895] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor immune escape is a critical step in the malignant progression of tumors and one of the major barriers to immunotherapy, making immunotherapy the most promising therapeutic approach against tumors today. Tumor cells evade immune surveillance by altering the structure of their own, or by causing abnormal gene and protein expression, allowing for unrestricted development and invasion. These genetic or epigenetic changes have been linked to microRNAs (miRNAs), which are important determinants of post-transcriptional regulation. Tumor cells perform tumor immune escape by abnormally expressing related miRNAs, which reduce the killing effect of immune cells, disrupt the immune response, and disrupt apoptotic pathways. Consequently, there is a strong trend toward thoroughly investigating the role of miRNAs in tumor immune escape and utilizing them in tumor treatment. However, because of the properties of miRNAs, there is an urgent need for a safe, targeted and easily crossed biofilm vehicle to protect and deliver them in vivo, and exosomes, with their excellent biological properties, have successfully beaten traditional vehicles to provide strong support for miRNA therapy. This review summarizes the multiple roles of miRNAs in tumor immune escape and discusses their potential applications as an anti-tumor therapy. Also, this work proposes exosomes as a new opportunity for miRNA therapy, to provide novel ideas for the development of more effective tumor-fighting therapeutic approaches based on miRNAs.
Collapse
Affiliation(s)
- Zhengjia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yuanyan Liu, ; Cheng Lu, ; Ting Zhao,
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yuanyan Liu, ; Cheng Lu, ; Ting Zhao,
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yuanyan Liu, ; Cheng Lu, ; Ting Zhao,
| |
Collapse
|
15
|
Morrison TA, Hudson WH, Chisolm DA, Kanno Y, Shih HY, Ahmed R, Henao-Mejia J, Hafner M, O'Shea JJ. Evolving Views of Long Noncoding RNAs and Epigenomic Control of Lymphocyte State and Memory. Cold Spring Harb Perspect Biol 2022; 14:a037952. [PMID: 34001528 PMCID: PMC8725624 DOI: 10.1101/cshperspect.a037952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Not simply an attribute of the adaptive immune system, immunological memory can be viewed on multiple levels. Accordingly, the molecular basis of memory comprises multiple mechanisms. The advent of new sequencing technologies has greatly enhanced the understanding of gene regulation and lymphocyte specification, and improved measurement of chromatin states affords new insights into the epigenomic and transcriptomic programs that underlie memory. Beyond canonical genes, the involvement of long noncoding RNAs (lncRNAs) is becoming increasingly apparent, and it appears that there are more than two to three times as many lncRNAs as protein-coding genes. lncRNAs can directly interact with DNA, RNA, and proteins, and a single lncRNA can contain multiple modular domains and thus interact with different classes of molecules. Yet, most lncRNAs have not been tested for function, and even fewer knockout mice have been generated. It is therefore timely to consider new potential mechanisms that may contribute to immune memory.
Collapse
Affiliation(s)
- Tasha A Morrison
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - William H Hudson
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Danielle A Chisolm
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Han-Yu Shih
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jorge Henao-Mejia
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Eptaminitaki GC, Wolff N, Stellas D, Sifakis K, Baritaki S. Long Non-Coding RNAs (lncRNAs) in Response and Resistance to Cancer Immunosurveillance and Immunotherapy. Cells 2021; 10:cells10123313. [PMID: 34943820 PMCID: PMC8699382 DOI: 10.3390/cells10123313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulatory elements in cellular functions in states of both normalcy and disease, including cancer. LncRNAs can influence not only tumorigenesis but also cancer features such as metastasis, angiogenesis and resistance to chemo-and immune-mediated apoptotic signals. Several lncRNAs have been demonstrated to control directly or indirectly the number, type and activities of distinct immune cell populations of adaptive and innate immunities within and without the tumor microenvironment. The disruption of lncRNA expression in both cancer and immune cells may reflect alterations in tumor responses to cancer immunosurveillance and immunotherapy, thus providing new insights into lncRNA biomarker-based prognostic and therapeutic cancer assessment. Here we present an overview on lncRNAs’ functions and underlying molecular mechanisms related to cancer immunity and conventional immunotherapy, with the expectation that any elucidations may lead to a better understanding and management of cancer immune escape and response to current and future immunotherapeutics.
Collapse
Affiliation(s)
- Giasemi C. Eptaminitaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (G.C.E.); (N.W.); (K.S.)
| | - Nora Wolff
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (G.C.E.); (N.W.); (K.S.)
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Ave., GR-11635 Athens, Greece;
| | - Konstantinos Sifakis
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (G.C.E.); (N.W.); (K.S.)
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (G.C.E.); (N.W.); (K.S.)
- Correspondence: ; Tel.: +30-2810-39-4727
| |
Collapse
|
17
|
Yee Mon KJ, Zhu H, Daly CWP, Vu LT, Smith NL, Patel R, Topham DJ, Scheible K, Jambo K, Le MTN, Rudd BD, Grimson A. MicroRNA-29 specifies age-related differences in the CD8+ T cell immune response. Cell Rep 2021; 37:109969. [PMID: 34758312 DOI: 10.1016/j.celrep.2021.109969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of cell fate in the CD8+ T cell response to infection. Although there are several examples of miRNAs acting on effector CD8+ T cells after infection, it is unclear whether differential expression of one or more miRNAs in the naive state is consequential in altering their long-term trajectory. To answer this question, we examine the role of miR-29 in neonatal and adult CD8+ T cells, which express different amounts of miR-29 only prior to infection and adopt profoundly different fates after immune challenge. We find that manipulation of miR-29 expression in the naive state is sufficient for age-adjusting the phenotype and function of CD8+ T cells, including their regulatory landscapes and long-term differentiation trajectories after infection. Thus, miR-29 acts as a developmental switch by controlling the balance between a rapid effector response in neonates and the generation of long-lived memory in adults.
Collapse
Affiliation(s)
- Kristel J Yee Mon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Hongya Zhu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ciarán W P Daly
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Luyen T Vu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Ravi Patel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kristin Scheible
- Department of Pediatrics, Division of Neonatology, University of Rochester, Rochester, NY 14642, USA
| | - Kondwani Jambo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, Chen P, Yang J, Fan X, Liang Y, Lin H. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol 2021; 14:169. [PMID: 34654454 PMCID: PMC8518176 DOI: 10.1186/s13045-021-01179-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immunosuppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the transcriptional output of human cells and have been shown to regulate numerous cellular processes under developmental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remodeling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with tumor metabolism and immune cell infiltration based on a bioinformatic approach.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
19
|
Grimaldi A, Pietropaolo G, Stabile H, Kosta A, Capuano C, Gismondi A, Santoni A, Sciumè G, Fionda C. The Regulatory Activity of Noncoding RNAs in ILCs. Cells 2021; 10:cells10102742. [PMID: 34685721 PMCID: PMC8534545 DOI: 10.3390/cells10102742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are innate lymphocytes playing essential functions in protection against microbial infections and participate in both homeostatic and pathological contexts, including tissue remodeling, cancer, and inflammatory disorders. A number of lineage-defining transcription factors concurs to establish transcriptional networks which determine the identity and the activity of the distinct ILC subsets. However, the contribution of other regulatory molecules in controlling ILC development and function is also recently emerging. In this regard, noncoding RNAs (ncRNAs) represent key elements of the complex regulatory network of ILC biology and host protection. ncRNAs mostly lack protein-coding potential, but they are endowed with a relevant regulatory activity in immune and nonimmune cells because of their ability to control chromatin structure, RNA stability, and/or protein synthesis. Herein, we summarize recent studies describing how distinct types of ncRNAs, mainly microRNAs, long ncRNAs, and circular RNAs, act in the context of ILC biology. In particular, we comment on how ncRNAs can exert key effects in ILCs by controlling gene expression in a cell- or state-specific manner and how this tunes distinct functional outputs in ILCs.
Collapse
Affiliation(s)
- Alessio Grimaldi
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Helena Stabile
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Andrea Kosta
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Angela Gismondi
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, 86077 Pozzilli, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Cinzia Fionda
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
- Correspondence: ; Tel.: +39-0649255118; Fax: +39-0644340632
| |
Collapse
|
20
|
Mi QS, Wang J, Liu Q, Wu X, Zhou L. microRNA dynamic expression regulates invariant NKT cells. Cell Mol Life Sci 2021; 78:6003-6015. [PMID: 34236444 PMCID: PMC11073247 DOI: 10.1007/s00018-021-03895-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Invariant natural killer T cells (iNKT) are a prevalent population of innate-like T cells in mice, but quite rare in humans that are critical for regulation of the innate and adaptive immune responses during antimicrobial immunity, tumor rejection, and inflammatory diseases. Multiple transcription factors and signaling molecules that contribute to iNKT cell selection and functional differentiation have been identified. However, the full molecular network responsible for regulating and maintaining iNKT populations remains unclear. MicroRNAs (miRNAs) are an abundant class of evolutionarily conserved, small, non-coding RNAs that regulate gene expression post-transcriptionally. Previous reports uncovered the important roles of miRNAs in iNKT cell development and function using Dicer mutant mice. In this review, we discuss the emerging roles of individual miRNAs in iNKT cells reported by our group and other groups, including miR-150, miR-155, miR-181, let-7, miR-17 ~ 92 cluster, and miR-183-96-182 cluster. It is likely that iNKT cell development, differentiation, homeostasis, and functions are orchestrated through a multilayered network comprising interactions among master transcription factors, signaling molecules, and dynamically expressed miRNAs. We provide a comprehensive view of the molecular mechanisms underlying iNKT cell differentiation and function controlled by dynamically expressed miRNAs.
Collapse
Affiliation(s)
- Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA.
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.
| | - Jie Wang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Queping Liu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Xiaojun Wu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA.
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.
| |
Collapse
|
21
|
Luo X, Xu J, Yu J, Yi P. Shaping Immune Responses in the Tumor Microenvironment of Ovarian Cancer. Front Immunol 2021; 12:692360. [PMID: 34248988 PMCID: PMC8261131 DOI: 10.3389/fimmu.2021.692360] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Reciprocal signaling between immune cells and ovarian cancer cells in the tumor microenvironment can alter immune responses and regulate disease progression. These signaling events are regulated by multiple factors, including genetic and epigenetic alterations in both the ovarian cancer cells and immune cells, as well as cytokine pathways. Multiple immune cell types are recruited to the ovarian cancer tumor microenvironment, and new insights about the complexity of their interactions have emerged in recent years. The growing understanding of immune cell function in the ovarian cancer tumor microenvironment has important implications for biomarker discovery and therapeutic development. This review aims to describe the factors that shape the phenotypes of immune cells in the tumor microenvironment of ovarian cancer and how these changes impact disease progression and therapy.
Collapse
Affiliation(s)
- Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States.,Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Diurnal Variation of Plasma Extracellular Vesicle Is Disrupted in People Living with HIV. Pathogens 2021; 10:pathogens10050518. [PMID: 33923310 PMCID: PMC8145918 DOI: 10.3390/pathogens10050518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Several types of extracellular vesicles (EVs) secreted by various immune and non-immune cells are present in the human plasma. We previously demonstrated that EV abundance and microRNA content change in pathological conditions, such as HIV infection. Here, we investigated daily variations of large and small EVs, in terms of abundance and microRNA contents in people living with HIV (PLWH) receiving antiretroviral therapy (HIV+ART) and uninfected controls (HIV-). METHODS Venous blood samples from n = 10 HIV+ART and n = 10 HIV- participants were collected at 10:00 and 22:00 the same day. Large and small plasma EVs were purified, counted, and the mature miRNAs miR-29a, miR-29b, miR-92, miR-155, and miR-223 copies were measured by RT-PCR. RESULTS Large EVs were significantly bigger in the plasma collected at 10:00 versus 22:00 in both groups. There was a significant day-night increase in the quantity of 5 miRNAs in HIV- large EVs. In HIV+ART, only miR-155 daily variation has been observed in large EVs. Finally, EV-miRNA content permits to distinguish HIV- to HIV+ART in multivariate analysis. CONCLUSION These results point that plasma EV amount and microRNA contents are under daily variation in HIV- people. This new dynamic measure is disrupted in PLWH despite viral-suppressive ART. This study highlights a significant difference concerning EV abundance and their content measured at 22:00 between both groups. Therefore, the time of blood collection must be considered in the future for the EV as biomarkers.
Collapse
|
23
|
Khan S, Masood M, Gaur H, Ahmad S, Syed MA. Long non-coding RNA: An immune cells perspective. Life Sci 2021; 271:119152. [PMID: 33548285 DOI: 10.1016/j.lfs.2021.119152] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) were considered as accumulated genetic waste until they were found to be gene expression regulators by highly sensitive modern genomics platforms. It is a huge class of non-coding transcripts with an arbitrary length of >200 nucleotides, which has gained much attention in the past few years. Increasing evidence from several experimental studies unraveled the expression of lncRNA linked to immune response and disease progression. However, only a small number of lncRNAs have robust evidence of their function. Differential expression of lncRNAs in different immune cells is also evident. In this review, we focused on how lncRNAs expression assist in shaping immune cells (Macrophages, Dendritic cells, NK cells, T cells, B cells, eosinophils, neutrophils, and microglial cells) function and their response to the diseased conditions. Emerging evidence revealed lncRNAs may serve as key regulators in the innate and adaptive immune response system. So, the molecular mechanism insight into the function of lncRNAs in immune response may contribute to the development of potential therapeutic targets for various disease treatments. Therefore, it is imperative to explore the expression of lncRNAs and understand its relevance associated with the immune system.
Collapse
Affiliation(s)
- Salman Khan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Masood
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Harshita Gaur
- Department of Life Sciences, University of Glasgow, United Kingdom
| | - Shaniya Ahmad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
24
|
Ciuman RR. Understanding Human Body Maintenance, Protection, and Modification: Antibodies, Genetics, Stem Cells and Connected Artificial Intelligence Applications—Where Are We? Health (London) 2021. [DOI: 10.4236/health.2021.137059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Catalfamo M, Reali E. The latest advances on CD8 T cell biology in health and disease. Mol Immunol 2020; 124:198-199. [PMID: 32593783 DOI: 10.1016/j.molimm.2020.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington D.C., USA.
| | - Eva Reali
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|
26
|
Li Z, Cheng Y, Wu F, Wu L, Cao H, Wang Q, Tang W. The emerging landscape of circular RNAs in immunity: breakthroughs and challenges. Biomark Res 2020; 8:25. [PMID: 32665846 PMCID: PMC7348111 DOI: 10.1186/s40364-020-00204-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently linked RNAs that exhibit individual strand with a closed-loop framework compared with a conserving, steady and abundant linear counterpart. In recent years, as high-throughput sequencing advancement has been developing, functional circRNAs have been increasingly recognized, and more extensive analyses expounded their effect on different diseases. However, the study on the function of circRNAs in the immune system remains insufficient. This study discusses the basic principles of circRNAs regulation and the systems involved in physiology-related and pathology-related processes. The effect of circRNAs on immune regulation is elucidated. The ongoing development of circRNAs and basic immunology has multiplied their potential in treating diseases. Such perspective will summarize the status and effect of circRNAs on various immune cells in cancer, autoimmune diseases and infections. Moreover, this study will primarily expound the system of circRNAs in T lymphocytes, macrophages and other immune cells, which creates a novel perspective and lay a theoretical basis for treating diseases.
Collapse
Affiliation(s)
- Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Qian Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| |
Collapse
|