1
|
Parida L, Paul A, Mohanty J, Sahoo PK. Molecular insights into septin 2 protein in rohu (Labeo rohita): revealing expression dynamics, antimicrobial activity and functional characteristics. Int J Biol Macromol 2024; 293:139353. [PMID: 39743099 DOI: 10.1016/j.ijbiomac.2024.139353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/07/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Septins are evolutionarily conserved GTP-binding proteins mediating innate immunity, autophagy and inflammation in higher animals; however, they are yet to be fully characterized in fish. The study encompasses cloning of complete septin 2 cDNA from the rohu carp (Labeo rohita) that consisted of an open reading frame of 1050 bp and phylogenetic amino acid similarity of 99.43 % to cyprinid Onychostoma macrolepis. Septin 2 was ubiquitously expressed in different tissues of healthy rohu, and during early developmental stages. Septin 2 transcript levels were increased in response to three infection models i.e. Aeromonas hydrophila, poly I:C, and Argulus siamensis, indicating its role in immunity. A synthetic antimicrobial peptide derived from the septin 2 gene revealed in vitro bactericidal activity. A produced recombinant protein of septin 2 (~40 kDa) when injected into rohu modulated the expression of various immune-related genes. Further, in vivo studies of this protein demonstrated protection against A. hydrophila (71 % relative percent survival) and delayed mortality against ectoparasite A. siamensis. A developed sandwich ELISA revealed enhanced septin 2 level post A. hydrophila infection. The present study provides a new understanding of the septin 2 gene's multifunctional role in rohu and its importance in fish antimicrobial defence.
Collapse
Affiliation(s)
- Lopamudra Parida
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India
| | - Anirban Paul
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India
| | - Jyotirmaya Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India
| | - Pramoda Kumar Sahoo
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India.
| |
Collapse
|
2
|
Badhe MR, Das P, Sahoo S, Paul A, Sahoo PK, Reddy RRK, Suryawanshi AR, Nandanpawar PC, Das Mahapatra K, Nagpure NS, Goswami M, Mohanty J. Physiological Responses to Acute Heat Stress in Rohu, Labeo rohita: Insights from Liver Proteomics. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1129-1142. [PMID: 39207653 DOI: 10.1007/s10126-024-10360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Heat stress is a major problem in aquaculture species, causing changes in physiology such as decreased feed intake, growth rate, reproduction, and internal cellular damage, thereby affecting fish's health. The effects of an acute heat stress simulating a daily rise and fall in temperature on summer days were evaluated in the liver proteome of rohu (Labeo rohita) fingerlings in the present study. The fish maintained at 30 °C were gradually exposed to a higher temperature of 36 °C at an increment rate of 1 °C per 1.5 h, and after 3 h at that temperature, it was gradually reduced to 30 °C. The liver tissue samples were collected at 5 am, 5 pm, and 5 am the next day from the exposed and control fish. Protein samples were prepared from the liver tissues, and the extracted proteins were compared using 2-dimensional (2D) gel electrophoresis (2DGE) and mass spectrometry (MS) using a MALDI-TOF/TOF mass spectrometer. A total of 44 differentially expressed protein spots were visualized in 2D gel analysis from heat stress exposed fish at three time points, out of which 21 proteins including one hypothetical protein could be identified by MS. The abundance of five selected differentially expressed proteins (DEPs) was validated using qPCR. The majority of DEPs were found to be involved primarily in lipid, protein and energy metabolism, immune system regulation, cytoskeletal stability, and ROS management. The findings of this study would help in the development of strategies to mitigate heat stress in L. rohita.
Collapse
Affiliation(s)
- Mohan R Badhe
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Priyanka Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Sonalina Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Anirban Paul
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | | | | | | | - Kanta Das Mahapatra
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Naresh S Nagpure
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Mukunda Goswami
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Jyotirmaya Mohanty
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India.
| |
Collapse
|
3
|
Haridevamuthu B, Raj D, Arshad A, Arockiaraj J. Comprehensive review of Argulus infestations in aquaculture: Biological impacts and advanced management strategies. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109851. [PMID: 39173980 DOI: 10.1016/j.fsi.2024.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The aquaculture industry is hindered by various factors. One of the most noticeable factors is infection by parasites and pathogens. Argulus stands out as a prominent and economically significant ectoparasite in freshwater aquaculture. Argulus infestation causes severe immunomodulatory effects on its hosts by promoting argulosis, causing inflammation, extensive tissue damage, and death. Indian aquaculture sector faced a loss of 62.5 million USD due to Argulus infection. However, current control methods, such as pesticides, cause serious environmental damage. Herbal treatment methods are ineffective and have limitations. Hence, a more efficient and cost-effective control method is needed. In recent years, vaccine development has emerged as a promising avenue of research. Understanding the effect of the host-parasite relationship in the host immune system is essential to develop strategies for prevention, control, and management of argulosis. These interactions provide insights into the co-evolutionary dynamics between hosts and parasites. This review provides an overview of the current knowledge on the host-searching behaviour of Argulus, host-parasite interaction and control strategies. This review also highlights the need for further research and the development of sustainable control measures for Argulus infection.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - David Raj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Esteban MÁ. A review of soluble factors and receptors involved in fish skin immunity: The tip of the iceberg. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109311. [PMID: 38128682 DOI: 10.1016/j.fsi.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The immune system of fish possesses soluble factors, receptors, pathways and cells very similar to those of the other vertebrates' immune system. Throughout evolutionary history, the exocrine secretions of organisms have accumulated a large reservoir of soluble factors that serve to protect organisms from microbial pathogens that could disrupt mucosal barrier homeostasis. In parallel, a diverse set of recognition molecules have been discovered that alert the organism to the presence of pathogens. The known functions of both the soluble factors and receptors mentioned above encompass critical aspects of host defense, such as pathogen binding and neutralization, opsonization, or modulation of inflammation if present. The molecules and receptors cooperate and are able to initiate the most appropriate immune response in an attempt to eliminate pathogens before host infection can begin. Furthermore, these recognition molecules, working in coordination with soluble defence factors, collaboratively erect a robust and perfectly coordinated defence system with complementary specificity, activity and tissue distribution. This intricate network constitutes an immensely effective defence mechanism for fish. In this context, the present review focuses on some of the main soluble factors and recognition molecules studied in the last decade in the skin mucosa of teleost fish. However, knowledge of these molecules is still very limited in all teleosts. Therefore, further studies are suggested throughout the review that would help to better understand the functions in which the proteins studied are involved.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
5
|
Parida S, Sahoo PK. Antioxidant Defence in Labeo rohita to Biotic and Abiotic Stress: Insight from mRNA Expression, Molecular Characterization and Recombinant Protein-Based ELISA of Catalase, Glutathione Peroxidase, CuZn Superoxide Dismutase, and Glutathione S-Transferase. Antioxidants (Basel) 2023; 13:18. [PMID: 38275638 PMCID: PMC10812468 DOI: 10.3390/antiox13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
Fish possess numerous enzymatic antioxidant systems as part of their innate immunity. These systems have been poorly studied in Labeo rohita (rohu). The present study characterized and investigated the role of antioxidant genes in the defence mechanisms against two types of stressors, including infection and ammonia stress. Four key genes associated with antioxidant activity-catalase, glutathione peroxidase, glutathione S-transferase, and CuZn superoxide dismutase were successfully cloned and sequenced. These genes were found to be expressed in different tissues and developmental stages of rohu. The expression levels of these antioxidant genes in the liver and anterior kidney tissues of rohu juveniles were modulated in response to bacterial infection (Aeromonas hydrophila), parasite infection (Argulus siamensis), poly I:C stimulation and ammonia stress. Additionally, the recombinant proteins derived from these genes exhibited significant antioxidant and antibacterial activities. These proteins also demonstrated a protective effect against A. hydrophila infection in rohu and had an immunomodulatory role. Furthermore, indirect ELISA assay systems were developed to measure these protein levels in healthy as well as A. hydrophila and ammonia-induced rohu serum. Overall, this study characterized and emphasised the importance of the antioxidant mechanism in rohu's defence against oxidative damage and microbial diseases.
Collapse
Affiliation(s)
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, India;
| |
Collapse
|
6
|
Thakur K, Sharma A, Sharma D, Brar B, Choudhary K, Sharma AK, Mahajan D, Kumar R, Kumar S, Kumar R. An insight into the interaction between Argulus siamensis and Labeo rohita offers future therapeutic strategy to combat argulosis. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2022; 31:1607-1621. [PMID: 36589529 PMCID: PMC9792311 DOI: 10.1007/s10499-022-01043-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/16/2022] [Indexed: 05/29/2023]
Abstract
Aquaculture and fisheries are salient flourishing sectors in the world but their sustainability is often afflicted by several pathogenic diseases. Among all the pathogenic diseases of fish, parasitic diseases are found to be a major cause of concern. Argulosis is one of the dominant parasitic problems encountered in Indian aquaculture practices. Argulus siamensis is the most prevalent argulid species harming the Indian major carp species including Labeo rohita. The major carps respond to parasitic infestation by elevating various immune relevant genes. The therapeutic chemicals, synthetic drugs and other plant extracts have made a progress in the fight against argulosis. However, there is no effective vaccine and drugs are available for this disease. Thus, designing efficient, cost-effective and eco-friendly control and treatment strategies for argulosis is presently needed. Keeping the aforementioned facts in mind, the current review elaborated the immunological interaction between A. siamensis and L. rohita, available combat tactics, highlighted the already identified vaccine candidates to design effective control measures and illustrated the use of omics technology in future to combat argulosis.
Collapse
Affiliation(s)
- Kushal Thakur
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Dixit Sharma
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Bhavna Brar
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Kanika Choudhary
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Amit Kumar Sharma
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Danish Mahajan
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Ranjit Kumar
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Sunil Kumar
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Rakesh Kumar
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| |
Collapse
|
7
|
Huang Y, Zheng Q, Wang Z, Tang J, Lu Y, Qin Q, Cai J, Jian J. Fish natural killer enhancing factor-A (NKEF-A) enhance cytotoxicity of nonspecific cytotoxic cells against bacterial infection. Mol Immunol 2021; 133:184-193. [PMID: 33744653 DOI: 10.1016/j.molimm.2021.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Natural killer enhancing factor (NKEF)-A/B is a member of Peroxiredoxin (Prxs) family, which is named for the function of enhancing NK cells activity. NKEF also plays essential roles in multiple physiology/pathology processes including inflammation regulation, cancer development and redox reactions. However, the regulatory effects of fish NKEF on immune cells remain largely unknown. In this study, the full-length cDNA of NKEF-A (Accession No. MK584553, designated as On-NKEF-A) was identified from Nile tilapia (Oreochromis niloticus). On-NKEF-A encoded a 198 amino acid peptide with molecular mass of 22.085 kDa. On-NKEF-A protein contained a typical 2-Cys family domain, two active sites (51aa and 172aa) that were conserved in mammals, birds, amphibians and fish. Phylogenetic analysis showed that On-NKEF-A had the closest relationship with Zebra mbuna (Maylandia zebra) NKEF. The On-NKEF-A transcription was present in all examined tissues or organs. And the relative high expression levels of On-NKEF-A was found in head kidney leucocytes and nonspecific cytotoxic cells (NCC). After Streptococcus agalactiae stimulation, On-NKEF-A was significantly up-regulated in head kidney, spleen, gill and skin. Also, On-NKEF-A was markedly induced post S. agalactiae, LPS and poly I:C stimulation in head kidney-derived NCC. Moreover, On-NKEF-A was mainly distributed in cytoplasm of fathead minnow cells (FHM cells). The further in vitro analysis found that the recombinant protein of On-NKEF-A (rOn-NKEF-A) could induce the expression of various molecular markers of B cells, macrophages and NCC, enhanced the cytotoxicity of NCC via increasing the effectors expression. The present data collectively indicate that On-NKEF-A participates in anti-bacterial immune response via regulating NCC activity, which will provide new ideas to further explore the defense mechanism of fish against bacteria.
Collapse
Affiliation(s)
- Yu Huang
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qi Zheng
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhiwen Wang
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jufen Tang
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yishan Lu
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jia Cai
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|