1
|
Farag AA, Al-Shomar SM, Abdelshafi NS. Eco-friendly modified chitosan as corrosion inhibitor for carbon steel in acidic medium: Experimental and in-depth theoretical approaches. Int J Biol Macromol 2024; 279:135408. [PMID: 39265910 DOI: 10.1016/j.ijbiomac.2024.135408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The industrial and medical sectors have a great interest in chitosan due to its unique properties, such as abundance, renewability, non-toxicity, antibacterial activity, biodegradability, and polyfunctionality. In this work, two modified chitosan Schiff bases (ChSB-1 and ChSB-2) were made using condensation methods, and their potential as corrosion inhibitor for carbon steel in 1 M HCl was investigated using chemical and electrochemical techniques. The ChSB-1 and ChSB-2 inhibitors exhibited remarkable inhibitory performance, as evidenced by the mass loss data, which showed 89.3 % and 91.5 % efficacy at 1 mM concentration, respectively. Because of the electron-donor substituent of methoxy (-OCH3), ChSB-2's active sites have more delocalized electrons than ChSB-1's. The PDP results showed that both ChSB-1 and ChSB-2 inhibitors have anti-corrosion characteristics because heteroatoms caused a protective layer to develop that functioned as mixed-typed inhibitors. The calculated adsorption-free energy ∆Gadso for ChSB-1 and ChSB-2, respectively, was found -36.1 and - 37.1 kJ mol-1. The ChSB-1 and ChSB-2 inhibitors adsorb on carbon steel in acidic conditions through physisorption and chemisorption interactions, and their adsorption is in line with the Langmuir adsorption model. Inhibited and uninhibited metallic surfaces were subjected to surface morphological assessments using contact angle (CA), the scanning electron microscopy and the energy dispersive X-ray (SEM/EDX) analysis. The DMol3 part of Materials Studio 7.0 software was used to perform the quantum chemical calculations based on DFT to visualize the structural features. Studies from quantum chemistry suggest the possibility of surface interaction between the unoccupied orbitals of the metal surface and the inhibitors ChSB-1, ChSB-2, ChSB-1H+, and ChSB-2H+. The results clearly show that the two inhibitors work well as environmentally friendly carbon steel corrosion inhibitors in acidic medium. This could be advantageous for industrial procedures such as pickling, cleaning, acidizing oil drilling in oil wells, and using citrus to de-sediment boilers.
Collapse
Affiliation(s)
- Ahmed A Farag
- Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt.
| | - S M Al-Shomar
- Physics Department, Faculty of Science, Ha'il University, Hail, Saudi Arabia
| | - N S Abdelshafi
- Chemistry Department, Faculty of Education, Ain Shams University, Roxy, Cairo 11711, Egypt
| |
Collapse
|
2
|
Kumar P, Holmberg K, Soni I, Islam N, Kumar M, Shandilya P, Sillanpää M, Chauhan V. Advancements in ionic liquid-based corrosion inhibitors for sustainable protection strategies: from experimental to computational insights. Adv Colloid Interface Sci 2024; 333:103303. [PMID: 39303355 DOI: 10.1016/j.cis.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
The global corrosion cost is estimated to be around 2.5 trillion USD, which is more than 3 % of the global GDP. Against this background, large efforts have been made to find effective corrosion inhibitors. Ionic liquids (ILs) are nowadays regarded as reliable functional materials and one of the most promising classes of anticorrosion agents. Not only are they efficient in preventing corrosion of iron and other metals, but they are also relatively inexpensive, need no solvents, and are non-toxic to humans This review addresses both experimental and theoretical investigations conducted to IL-based corrosion inhibitors (CIs). It covers various ILs used, synthesis methods, and their performance in diverse corrosive environments. Electrochemical techniques like EIS and potentiodynamic polarization, along with computational approaches including quantum chemical calculations and DFT, provide valuable insights into corrosion inhibition mechanisms and the interactions between anticorrosion agents-surfaces. The synergistic combination of experimental and theoretical approaches enhances our understanding of corrosion inhibition, enabling the design and optimization of effective and sustainable corrosion protection strategies. This review consolidates the existing knowledge on ionic liquid-based corrosion inhibitors, highlights the key findings from both experimental and theoretical investigations, and points out possible directions for further studies in this area.
Collapse
Affiliation(s)
- Pankaj Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, India
| | - Krister Holmberg
- Applied Surface Chemistry, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Isha Soni
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, India
| | - Nasarul Islam
- Department of Chemistry, Government Degree College, 193502 Bandipora, India
| | - Manish Kumar
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, HP 176215, India
| | - Pooja Shandilya
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Mika Sillanpää
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India; Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093 Kuwait, Kuwait; Centre of Research Impact and Outcome, Chitkara University, Institute of Engineering and Technology, Rajpura 140401, Punjab, India
| | - Vinay Chauhan
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, India.
| |
Collapse
|
3
|
Zhong M, Chen Y, Jian H, Gao F, Wang X, Li H. Helmet-Roled Molecules Carrying Double Metronidazole Frameworks and Phenyl Ring for Strengthening Adsorption and Anticorrosion on Mild Steel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16615-16634. [PMID: 39052933 DOI: 10.1021/acs.langmuir.4c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
This study prepared new helmet-roled molecules (HMs) carrying metronidazole frameworks and a phenyl ring for strengthening adsorption and anticorrosion on mild steel. The adsorption of the HMs on the copper surface was understood by material simulation computation. Furthermore, the surface analysis experiments suggest that the studied molecules could be adsorbed to a mild steel surface through the chemical coordination bonding. The remarkable corrosion resistance of the HMs for mild steel in HCl was surveyed by potentiodynamic polarization and electrochemical impedance spectroscopy at 298 K. The HMs including two metronidazole skeletons displayed the stronger corrosion inhibition effect on mild steel than the HM1 bearing one single metronidazole part (the corrosion inhibition efficiency, HM3, 98.03%, HM2, 95.14%, HM1, 88.72%). The results presented in this study provided an efficient strategy to develop new clinical medicine-based corrosion inhibitors for metal in acid medium through molecular preconstruction.
Collapse
Affiliation(s)
- Minghui Zhong
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Yufeng Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Huilong Jian
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Fang Gao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Xinchao Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
- College of Pharmacy, Heze University, Heze, Shandong Province 274000, China
| | - Hongru Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Wang J, An L, Wang J, Gu J, Sun J, Wang X. Frontiers and advances in N-heterocycle compounds as corrosion inhibitors in acid medium: Recent advances. Adv Colloid Interface Sci 2023; 321:103031. [PMID: 37907032 DOI: 10.1016/j.cis.2023.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
The acid solution is widely used in chemical cleaning, oil well acidifying, and other fields, which also brings the problem of metal corrosion that cannot be underestimated. However, adding an inhibitor is one of the most convenient and effective ways to slow down metal corrosion. N-heterocyclic compounds with high stability and durability, in line with the strategy of sustainable development, have been widely studied in an acidic environment. Imidazole, pyridine, and quinoline compounds, as the most commonly used corrosion inhibitors, can form a compact protective film via π electron cloud shifting towards the N atoms to generate coordination function. In particular, flexible modifiability makes N-heterocyclic compounds adapt to different corrosion environments readily, conducive to the formation of chemical bonds between compounds with metal surfaces to be better adsorption, so as to avoid the blemish of traditional inhibitors (such as inorganic salt and organic amines inhibitors) due to excessive usage, surface roughness of metal or environmental factor (for instance, temperature, pH and metallic) causing loose bonding between film and metal surface. More importantly, the efficient corrosion inhibition and toxicity of N-heterocyclic compounds have close to do with their own functional groups. Combined with the latest research achievement, the effects of different substituents on the corrosion inhibition and corrosion inhibition mechanisms were systematically reviewed in the acid-corrosive solution of imidazole, pyridine, and quinoline and their derivatives in this review article, respectively. In addition, the application and function of density functional theory in predicting the corrosion inhibition effect of corrosion inhibitors are also discussed. The future development trend was prospected according to the summarized research results.
Collapse
Affiliation(s)
- Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Chen MF, Chen Y, Jia Lim Z, Wah Wong M. Adsorption of Imidazolium-Based Ionic Liquids on the Fe(100) Surface for Corrosion Inhibition: Physisorption or Chemisorption? J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
4-phenyl-decahydro-1H-1,5-benzodiazepin-2-one as novel and effective corrosion inhibitor for carbon steel in 1 M HCl solution: A combined experimental and empirical studies. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Nady H, Elgendy A, Arafa WAA, Gad ES. Insight into the inhibition performance of thiosemicarbazones as efficient inhibitors for copper in acidic environment: Combined experimental and computational investigations. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Ionic macromolecules based on non-halide counter anions for super prevention of copper corrosion. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Koundal M, Singh A, Sharma C. Study on the effect of imidazolium ionic liquid as a modulator of corrosion inhibition of anionic surfactant sodium dodecyl sulfate (SDS) on mild steel in sodium chloride solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
|
11
|
N-heterocycle compounds as aqueous phase corrosion inhibitors: A robust, effective and economic substitute. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Ardakani EK, Kowsari E, Ehsani A, Ramakrishna S. Performance of all ionic liquids as the eco-friendly and sustainable compounds in inhibiting corrosion in various media: A comprehensive review. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Tasić ŽZ, Petrović Mihajlović MB, Radovanović MB, Simonović AT, Antonijević MM. Experimental and theoretical studies of paracetamol as a copper corrosion inhibitor. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
A highly-effective/durable metal-organic anti-corrosion film deposition on mild steel utilizing Malva sylvestris (M.S) phytoextract-divalent zinc cations. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Synthesis of CoOx from ethaline on a stainless steel mesh for supercapacitor applications. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01512-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Verma C, Alrefaee SH, Quraishi M, Ebenso EE, Hussain CM. Recent developments in sustainable corrosion inhibition using ionic liquids: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Akbarzadeh S, Ramezanzadeh M, Ramezanzadeh B, Bahlakeh G. Detailed atomic/molecular-level/electronic-scale computer modeling and electrochemical explorations of the adsorption and anti-corrosion effectiveness of the green nitrogen-based phytochemicals on the mild steel surface in the saline solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
To evaluate an ionic liquid for anticorrosive impact on iron–carbon steel: synthesis, computational and experimental mechanism. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01341-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Akbarzadeh S, Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M. Molecular/electronic/atomic-level simulation and experimental exploration of the corrosion inhibiting molecules attraction at the steel/chloride-containing solution interface. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111809] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Tasić ZZ, Mihajlović MBP, Simonović AT, Radovanović MB, Antonijević MM. Ibuprofen as a corrosion inhibitor for copper in synthetic acid rain solution. Sci Rep 2019; 9:14710. [PMID: 31604987 PMCID: PMC6789168 DOI: 10.1038/s41598-019-51299-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/23/2019] [Indexed: 12/04/2022] Open
Abstract
It is known that if unused drugs are improperly disposed, they can pollute the environment. Furthermore, researchers are still trying to find an environmentally friendly corrosion inhibitor. These factors lead to the possible application of unused pharmaceutical compounds as corrosion inhibitors. The feasibility of an anti-inflammatory, analgesic and antipyretic drug, ibuprofen, was evaluated as a potential copper corrosion inhibitor in synthetic acid rain solution. This investigation was performed by applying electrochemical and weight loss measurements and quantum chemical calculations. The results obtained by these techniques revealed the ability of ibuprofen to protect copper from corrosion. The inhibition efficiency of ibuprofen rises with increase in its concentration and can reach a value of 97.3%. The results of surface analysis of treated coupons by scanning electron microscopy and theoretical calculations are consistent with the experimental results.
Collapse
Affiliation(s)
- Zaklina Z Tasić
- University of Belgrade, Technical Faculty in Bor P.O. Box 50, 19210, Bor, Serbia
| | | | - Ana T Simonović
- University of Belgrade, Technical Faculty in Bor P.O. Box 50, 19210, Bor, Serbia
| | - Milan B Radovanović
- University of Belgrade, Technical Faculty in Bor P.O. Box 50, 19210, Bor, Serbia
| | - Milan M Antonijević
- University of Belgrade, Technical Faculty in Bor P.O. Box 50, 19210, Bor, Serbia.
| |
Collapse
|
21
|
The Protection Role of Cysteine for Cu-5Zn-5Al-1Sn Alloy Corrosion in 3.5 wt.% NaCl Solution. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work, the corrosion mechanism of a Cu-5Zn-5Al-1Sn alloy was examined in a 3.5 wt.% NaCl solution. At the same time, the effect of a cysteine inhibitor was also investigated through a multi-analytical approach. Electrochemical results suggested that inhibition efficiency increased with the increase of cysteine concentration. From potentiodynamic polarization (PD) analysis, a decrease in corrosion current and corrosion potential shift toward a more negative direction was observed. The potential difference between the blank and inhibited surface was found to be 46 mV, which is less than 85 mV, revealing a mixed type inhibition effect of cysteine for the Cu-5Zn-5Al-1Sn alloy. The inhibition mechanism of cysteine (Cys) and the effect of alloying elements were investigated by fitting experimental impedance data according to a projected equivalent circuit for the alloy/electrolyte interface. A Langmuir adsorption isotherm was proposed to explain the inhibition phenomenon of cysteine on the Cu-5Zn-5Al-1Sn alloy surface. Surface morphology observation confirmed that the Cu-5Zn-5Al-1Sn alloy was damaged in 3.5 wt.% NaCl solution and could be inhibited by using the cysteine inhibitor. The impact of alloying elements on the corrosion mechanism was further examined by surface analysis techniques such as X-Ray photoelectron spectroscopy (XPS)/Auger spectra, the results of which indicated that the corrosion inhibition was realized by the adsorption of the inhibitor molecules at the alloy/solution interface.
Collapse
|
22
|
Dehghani A, Bahlakeh G, Ramezanzadeh B, Ramezanzadeh M. Detailed macro-/micro-scale exploration of the excellent active corrosion inhibition of a novel environmentally friendly green inhibitor for carbon steel in acidic environments. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Novel cost-effective and high-performance green inhibitor based on aqueous Peganum harmala seed extract for mild steel corrosion in HCl solution: Detailed experimental and electronic/atomic level computational explorations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.086] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Ali SM, Emran KM, Messali M. Improved protection performance of modified sol-gel coatings with pyridinium-based ionic liquid for cast iron corrosion in 0.5 M HCl solution. PROGRESS IN ORGANIC COATINGS 2019; 130:226-234. [DOI: 10.1016/j.porgcoat.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Farag AA, Migahed MA, Badr EA. Thiazole Ionic Liquid as Corrosion Inhibitor of Steel in 1 M HCl Solution: Gravimetrical, Electrochemical, and Theoretical Studies. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40735-019-0246-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
|
27
|
Likhanova NV, Arellanes-Lozada P, Olivares-Xometl O, Hernández-Cocoletzi H, Lijanova IV, Arriola-Morales J, Castellanos-Aguila J. Effect of organic anions on ionic liquids as corrosion inhibitors of steel in sulfuric acid solution. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.126] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
DFT analysis, reaction kinetics and mechanism of esterification using pyridinium nitrate as a green catalyst. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Lin B, Zuo Y. Corrosion inhibition of carboxylate inhibitors with different alkylene chain lengths on carbon steel in an alkaline solution. RSC Adv 2019; 9:7065-7077. [PMID: 35519962 PMCID: PMC9061107 DOI: 10.1039/c8ra10083g] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/25/2019] [Indexed: 11/21/2022] Open
Abstract
The inhibition effects of five organic carboxylate compounds with different alkylene chain lengths on Q235 steel in a simulated carbonation concrete pore solution (pH 11.5) were studied using quantum chemical calculations, electrochemical measurement and surface analysis. The results show that the adsorption capacity of the inhibitors increases with increasing distance between the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond and COO– group. As the alkylene chain length increases, the absolute surface charge value increases and the inhibition effectiveness tends to increase. C11 shows the best inhibition. The carboxylate inhibitors adsorb on a steel surface by forming Fe–OOC–Cx compounds and the CC bonds could enhance the adsorption process. The inhibition effects of carboxylate compounds with different alkylene chain lengths on Q235 steel in simulated carbonation concrete pore solution were studied using quantum chemical calculations, electrochemical measurement and surface analysis.![]()
Collapse
Affiliation(s)
- Bing Lin
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yu Zuo
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|