1
|
Gu S, Zhu W, Liu Y, Duo H, Yang Q, Hou X. Ionic liquid-modified magnetic covalent organic framework for the extraction of four pyrethroids in traditional Chinese herbs. J Chromatogr A 2025; 1743:465719. [PMID: 39874742 DOI: 10.1016/j.chroma.2025.465719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Efficient enrichment of analytes and purification of matrices are crucial for the highly sensitive detection and monitoring of pesticides in traditional Chinese herbs. This work prepared magnetic ionic liquid-controlled covalent organic framework (IL-COF@Fe3O4) as the sorbent via a simple in-situ precipitation polymerization and thiolene "click" strategy. The IL-COF@Fe3O4 exhibited remarkable adsorption performance towards pyrethroids within 5 min. The adsorption of four pyrethroids on the surface of IL-COF@Fe3O4 was according with Langmuir model and pseudo-second-order kinetic model. The adsorption energies were theoretically calculated, which were permethrin>cypermethrin>fenvalerate>bifenthrin. The modification of ILs improved extraction capacity mainly because of the interaction of imidazole and Cl or F and the pore size effect. This method was developed for the rapid extraction of four pyrethroids in Codonopsis pilosula and Angelica sinensis. The linear range was 0.05-200 μg L-1. Matrix effects were ranging from -16.14% to 9.53%, indicating the strong matrix anti-interference ability of IL-COF@Fe3O4.
Collapse
Affiliation(s)
- Sitian Gu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenli Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yufei Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huixiao Duo
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257343, China.
| |
Collapse
|
2
|
Yin H, Wang B, Zhang M, Zhang F. Adsorption of Pb(II) in water by modified chitosan-based microspheres and the study of mechanism. Int J Biol Macromol 2024; 277:134062. [PMID: 39043287 DOI: 10.1016/j.ijbiomac.2024.134062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
In this study, a fresh three-dimensional microsphere adsorbent (CATP@SA3) was successfully synthesized by Attapulgite (ATP) and combining Chitosan (CS), incorporating them into a Sodium alginate (SA) solution, and crosslinking them in a CaCl2 solution. Multiple analyses, including XRD, TGA, FTIR, XPS, SEM-EDS, and BET were utilized to comprehensively characterize the structural makeup of CATP@SA3. These analyses revealed the presence of beneficial functional groups like hydroxyl, amino, and carboxyl groups that enhance the adsorption efficiency in adsorption procedures. CATP@SA3 was evaluated by studying different factors, including material ratio, contact time, dosage, solution pH, Pb(II) concentration, temperature, ionic strength, and aqueous environment. Three adsorption models, including kinetic, isotherm, and thermodynamic, were fitted to the experimental data. The findings demonstrated that the maximum Pb(II) adsorption capacity of CATP@SA3 was 1081.36 mg/g, with a removal rate that exceeded 70 % even after 5 cycles of use. Furthermore, correlation adsorption models revealed that the adsorption process of Pb(II) with CATP@SA3 was driven by a chemical predominantly reaction.
Collapse
Affiliation(s)
- Hang Yin
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Bowen Wang
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Miao Zhang
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Fenge Zhang
- School of Urban Construction, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
3
|
Cakin I, Morrissey B, Marcello L, Gaffney PPJ, Pap S, Taggart MA. A comparison between constructed wetland substrates: Impacts on microbial community and wastewater treatment. CHEMOSPHERE 2024; 364:143179. [PMID: 39209035 DOI: 10.1016/j.chemosphere.2024.143179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Constructed wetlands (CWs) can play a crucial role in treating wastewater, and in the context of this study, the distillation byproduct of the whisky industry known as 'spent lees'. Here, we assess several different CW substrates (pea gravel, LECA and Alfagrog), with and without the addition of 20% biochar, in mesocosms set up to treat spent lees. Among the substrates tested, LECA + biochar and gravel + biochar showed promising results, with greater dissolved copper (dissCu) reduction, chemical oxygen demand (COD) removal, organic carbon (OC) reduction, and pH modulation. These findings indicate a potentially beneficial role for biochar in enhancing treatment efficacy, particularly in facilitating dissCu remediation and the removal of organic pollutants. In terms of microbial diversity, mesocosms including biochar generally had reduced bacterial alpha diversity, suggesting that 'fresh' (uncolonized) biochar may negatively affect microbial diversity in wetland ecosystems in the short term. After continuously supplying spent lees to mesocosms for 2-months, microbial diversity in each mesocosm dropped substantially, and moderate levels of bacterial community differentiation and high levels of fungal community differentiation were detected among mesocosms. The bacterial and fungal communities were also found to differ between the substrate and outlet water samples. Among the bacterial classes present in the mesocosms that may play a crucial role in water treatment performance, Gammaproteobacteria, Bacteroidia and Alphaproteobacteria should be further investigated. In terms of fungal classes, the role of Sordariomycetes should be explored in greater depth.
Collapse
Affiliation(s)
- Ilgaz Cakin
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, KW14 7JD, Scotland, UK.
| | - Barbara Morrissey
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, 1 Inverness Campus, Inverness, IV2 5NA, Scotland, UK
| | - Lucio Marcello
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, 1 Inverness Campus, Inverness, IV2 5NA, Scotland, UK; Biomathematics and Statistics Scotland, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, Scotland, UK
| | - Paul P J Gaffney
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, KW14 7JD, Scotland, UK; Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sabolc Pap
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, KW14 7JD, Scotland, UK
| | - Mark A Taggart
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, KW14 7JD, Scotland, UK
| |
Collapse
|
4
|
Nain K, Dhillayan D, Bansal S, Hundal Q, Saharan P, Bhukal S. Adsorption potential of ionic liquid-modified ZnO nanoparticles for highly efficient removal of azo dye: detailed isotherms and kinetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40083-40099. [PMID: 37335507 DOI: 10.1007/s11356-023-28175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
In this study, bare and ionic liquid-modified ZnO nanoparticles have been fabricated using microwave irradiation method. The fabricated nanoparticles were characterized by different techniques, viz. XRD, FT-IR, FESEM, and UV-Visible spectroscopy, and were explored as adsorbent for effective sequestration of azo dye (Brilliant Blue R-250) from aqueous media. Various factors affecting the adsorption efficiency of synthesized nanoparticles (bare/ionic liquid-modified) such as concentration of dye, pH of reaction media, dose of nanoparticles, and reaction time were thoroughly investigated with varying experimental conditions; on a magnetic stirrer and in a sonicator. The results exhibited a high adsorption efficiency of ionic liquid-modified nanoparticles for removal of dye as compared to the bare one. Also, an enhanced adsorption was observed via sonication in comparison with magnetic stirring. Different isotherms such as Langmuir, Freundlich, and Tempkin were elaborated. Evaluation of adsorption kinetics showed a linear pseudo-second-order equation for adsorption process. The exothermic and spontaneous nature of adsorption was further confirmed by thermodynamic investigations. As per the results obtained, it is suggested that the fabricated ionic liquid-modified ZnO nanoparticles could successfully remediate the toxic anionic dye from aqueous media. Hence, this system can be utilized for large-scale industrial applications.
Collapse
Affiliation(s)
- Karmjeet Nain
- Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Divya Dhillayan
- Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Shafila Bansal
- Mehr Chand Mahajan DAV College for Women-36, Chandigarh, 160036, India
| | - Qudrat Hundal
- Mehr Chand Mahajan DAV College for Women-36, Chandigarh, 160036, India
| | - Priya Saharan
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science & Technology, Murthal Sonipat, 131001, India
| | - Santosh Bhukal
- Guru Jambheshwar University of Science and Technology, Hisar, 125001, India.
| |
Collapse
|
5
|
Majeed F, Razzaq A, Rehmat S, Azhar I, Mohyuddin A, Rizvi NB. Enhanced dye sequestration with natural polysaccharides-based hydrogels: A review. Carbohydr Polym 2024; 330:121820. [PMID: 38368085 DOI: 10.1016/j.carbpol.2024.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Due to the expansion of industrial activities, the concentration of dyes in water has been increasing. The dire need to remove these pollutants from water has been heavily discussed. This study focuses on the reproducible and sustainable solution for wastewater treatment and dye annihilation challenges. Adsorption has been rated the most practical way of the several decolorization procedures due to its minimal initial investment, convenient utility, and high-performance caliber. Hydrogels, which are three-dimensional polymer networks, are notable because of their potential to regenerate, biodegrade, absorb bulky amounts of water, respond to stimuli, and have unique morphologies. Natural polysaccharide hydrogels are chosen over synthetic ones because they are robust, bioresorbable, non-toxic, and cheaply accessible. This study has covered six biopolymers, including chitosan, cellulose, pectin, sodium alginate, guar gum, and starch, consisting of their chemical architecture, origins, characteristics, and uses. The next part describes these polysaccharide-based hydrogels, including their manufacturing techniques, chemical alterations, and adsorption effectiveness. It is deeply evaluated how size and shape affect the adsorption rate, which has not been addressed in any prior research. To assist the readers in identifying areas for further research in this subject, limitations of these hydrogels and future views are provided in the conclusion.
Collapse
Affiliation(s)
- Fiza Majeed
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Ammarah Razzaq
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Shabnam Rehmat
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan; School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Irfan Azhar
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, Multan 60000, Pakistan
| | | |
Collapse
|
6
|
Chamani F, Tanhaei B, Chenar MP. Innovative strategies for enhancing gas separation: Ionic liquid-coated PES membranes for improved CO 2/N 2 selectivity and permeance. CHEMOSPHERE 2024; 351:141179. [PMID: 38224753 DOI: 10.1016/j.chemosphere.2024.141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
As a cost-effective advancement in membrane technology, this study investigates the impact of PEG additive and CBT on the structural, stability, and gas permeance properties of PES-coated membranes, utilizing 1-dodecyl-3-methylimidazolium chloride ionic liquid ([DDMI][Cl] IL) as a carrier liquid. BET and FT-IR analyses highlight the significant enhancement in performance through the immobilization of pores with [DDMIM][Cl] IL. The investigation focuses on PES-M5-coated membranes, revealing excellent stability in finger-like pore structures prepared through direct immersion and nitrogen pressure immobilization. PES-M5-coated membranes with [DDMIM][Cl] IL via direct immersion experience lower weight loss than those coated using nitrogen pressure, with critical pressures at 1.4 and 1.25 bar, respectively. The study identifies PES-coated membranes, particularly PES-M25 (20.88 GPU) with macro-void pores and PES-M5 (29 GPU) with finger-like pores, exhibiting the highest CO2 permeance and CO2/N2 selectivity. As a cost-effective advancement in membrane technology, ionic liquids are employed in support membranes to enhance gas separation. Employing pure PES membranes with varying pore structures, created through the NIPS method, the study immobilizes [DDMI][Cl] IL in membrane pores through nitrogen pressure and direct immersion. Results underscore the successful application of porous support materials coated with ionic liquids for continuous CO2 and sulfur compound separation, showcasing competitive permeability and selectivity compared to traditional polymer membranes.
Collapse
Affiliation(s)
- Fatemeh Chamani
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Mahdi Pourafshari Chenar
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Alwael H, Alsulami AN, Abduljabbar TN, Oubaha M, El-Shahawi MS. Innovative Sol-gel functionalized polyurethane foam for sustainable water purification and analytical advances. Front Chem 2024; 12:1324426. [PMID: 38389725 PMCID: PMC10881768 DOI: 10.3389/fchem.2024.1324426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Nanomaterial combined polymeric membranes such as polyurethane foams (PUFs) have garnered enormous attention in the field of water purification due to their ease of management and surface modification, cost-effectiveness, and mechanical, chemical, and thermal properties. Thus, this study reports the use of novel Sol-gel impregnated polyurethane foams (Sol-gel/PUFs) as new dispersive solid phase microextractors (d- µ SPME) for the efficient separation and subsequent spectrophotometric detection of Eosin Y (EY) textile dye in an aqueous solution with a pH of 3-3.8. The Sol gel, PUFs, and Sol gel-impregnated PUFs were characterized using scanning electron microscopy (SEM), goniometry measurements, dynamic light scattering (DLS), energy dispersive spectroscopy (EDS), UV-Visible, and FTIR spectra. Batch experiment results displayed a remarkable removal percentage (96% ± 5.4%) of the EY from the aqueous solution, with the total sorption time not exceeding 60 min. These data indicate rate-limited sorption via diffusion and/or surface complex ion associate formations after the rapid initial sorption steps. A pseudo-second order kinetic model thoroughly explained the sorption kinetics, providing a sorption capacity (qe) of 37.64 mg g-1, a half-life time (t1/2) of 0.8 ± 0.01 min, and intrinsic penetration control dye retention. The thermodynamic results revealed a negative value for ΔG⁰ (-78.07 kJ mol-1 at 293 K), clearly signifying that the dye uptake was spontaneous, as well as a negative value for ΔH⁰ (-69.58 kJ mol-1) and a positive value for ΔS⁰ (147.65 J mol-1 K-1), making clear the exothermic nature of EY adsorption onto the sorbent, with a growth in randomness at the molecular level. A ternary retention mechanism is proposed, involving the "weak base anion exchanger" of {(-CH2-OH+ -CH2-) (Dye anion)-}Sol-gel/PUF and/or {(-NH2 + -COO-) (Dye anion)-}Sol-gel/PUF via solvent extraction and "surface adsorption" of the dye anion on/in the Sol-gel/PUFs membranes in addition to H-bonding, including surface complexation and electrostatic π-π interaction, between the dye and the silicon/zirconium oxide (Si-O-Zr) and siloxane (Si-O-Si) groups on the sorbent. Complete extraction and recovery (93.65 ± 0.2, -102.28 ± 2.01) of EY dye with NaOH (0.5 M) as a proper eluting agent was achieved using a sorbent-packed mini column. In addition, the established extractor displayed excellent reusability and does not require organic solvents for EY enrichment in water samples, making it a talented nominee as a novel sorbent for EY sorption from wastewater. This study is of great consequence for expanding the applicatio1n of Sol-gel/PUFs in developing innovative spectrophotometric sensing strategies for dye determination. In view of this, it would also be remarkable to perform future studies to explore the analytical implications of this extractor regarding safety and environmental and public health issues associated to the pollutant.
Collapse
Affiliation(s)
- H Alwael
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A N Alsulami
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - T N Abduljabbar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Oubaha
- Centre for Research in Engineering Surface Technologies (CREST), FOCAS Institute, Technological University Dublin, Dublin, Ireland
| | - M S El-Shahawi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Ghandourah MA, Orif MI, Al-Farawati RK, El-Shahawi MS, Abu-Zied RH. Sol-Gel Functionalized Polyurethane Foam-Packed Mini-Column as an Efficient Solid Extractor for the Rapid and Ultra-Trace Detection of Textile Dyes in Water. Gels 2023; 9:884. [PMID: 37998974 PMCID: PMC10670804 DOI: 10.3390/gels9110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Textile dyes widely used in industrial products are known as a major threat to human health and water ecological security. On the other hand, sol gel represents a principal driver of the adoption of dispersive solid-phase microextractors (d-µ SPME) for pollutants residues in water. Thus, the current study reports a new and highly rapid and highly efficient hybrid sol-gel-based sponge polyurethane foam as a dispersive solid-phase microextractor (d-µ-SPME) platform packed mini-column for complete preconcentration and subsequent spectrophotometric detection of eosin Y textile dye in wastewater. The unique porous structure of the prepared sol-gel immobilized polyurethane foams (sol-gel/PUF) has suggested its use for the complete removal of eosin Y dye (EY) from water. In the mini-column, the number (N) of plates, the height equivalent to the theoretical plates (HETP), the critical capacity (CC), and the breakthrough capacities (BC) of the hybrid sol-gel-treated polyurethane foams towards EY dye were determined via the breakthrough capacity curve at various flow rates. Under the optimum condition using the matrix match strategy, the linear range of 0.01-5 µg L-1, LODs and LOQs in the range of 0.006 µg L-1, and 0.01 µg L-1 for wastewater were achieved. The intra-day and inter-day precisions were evaluated at two different concentration levels (0.05 and 5 μg L-1 of dye) on the same day and five distinct days, respectively. The analytical utility of the absorbents packed in pulses and mini-columns to extract and recover EY dye was attained by 98.94%. The column could efficiently remove different dyes from real industrial effluents, and hence the sol-gel/PUF is a good competitor for commercial applications. The findings of this research work have strong potential in the future to be used in selecting the most suitable lightweight growing medium for a green roof based on stakeholder requirements. Therefore, this study has provided a convenient pathway for the preparation of compressible and reusable sponge materials from renewable biomass for efficient removal of EY from the water environment.
Collapse
Affiliation(s)
- Mohammed A. Ghandourah
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (M.I.O.); (R.K.A.-F.); (R.H.A.-Z.)
| | - Mohammad I. Orif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (M.I.O.); (R.K.A.-F.); (R.H.A.-Z.)
| | - Radwan K. Al-Farawati
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (M.I.O.); (R.K.A.-F.); (R.H.A.-Z.)
| | - Mohammad S. El-Shahawi
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia;
| | - Ramadan H. Abu-Zied
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (M.I.O.); (R.K.A.-F.); (R.H.A.-Z.)
| |
Collapse
|
9
|
Basirun AA, Karim WAWA, Wei NC, Wu J, Wilfred CD. Manganese Removal Using Functionalised Thiosalicylate-Based Ionic Liquid: Water Filtration System Application. Molecules 2023; 28:5777. [PMID: 37570745 PMCID: PMC10420996 DOI: 10.3390/molecules28155777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Aiming at the generation of new functionalised thiosalicylate-based ionic liquids, a polymeric hydrogel consisting of 1-hexylimidazole propionitrile thiosalicylate [HIMP][TS], with a solid biomaterial support based on polyvinyl alcohol (PVA)-alginate beads, was produced. This study aimed to develop a treatment method for removing manganese (Mn) heavy metal from industrial wastewater, which is known to be toxic and harmful towards the environment and human health. The method utilised an adsorption-based approach with an alginate adsorbent that incorporated a functionalised thiosalicylate-based ionic liquid. The synthesised smooth round beads of PVA-alginate-[HIMP][TS] adsorbent were structurally characterised using Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The Mn concentration and removal efficiency were evaluated using atomic absorption spectroscopy (AAS). Three important parameters were evaluated: pH, adsorbent dosage, and contact time. During optimisation using the interactive factor design of experiments through the Box-Behnken model, the results showed that the system achieved a maximum Mn removal efficiency of 98.91% at an initial pH of 7.15, with a contact time of 60 min, using a bead dosage of 38.26 g/L. The beads were also tested in an available water filtration prototype system to illustrate their industrial application, and the performance showed a removal efficiency of 99.14% with 0 NTU total suspended solid (TSS) and 0.13 mg/L turbidity analysis. The recyclability of PVA-alginate-[HIMP][TS] beads using 0.5 M HCl resulted in four cycles with constant 99% Mn removal. The adsorption capacity of Mn was also determined in optimum conditions with 56 mg/g. Therefore, the alginate-thiosalicylate-based ionic liquid system is considered an effective and environmentally friendly method for removing Mn heavy metal due to the high removal efficiency achieved.
Collapse
Affiliation(s)
- Ain Aqilah Basirun
- Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | | | - Ng Cheah Wei
- Camfil Malaysia Sdn Bhd, Plot 9A & 9B, Lorong Bemban 1, Bemban Industrial Estate, Batu Gajah 31000, Perak, Malaysia; (N.C.W.); (J.W.)
| | - Jiquan Wu
- Camfil Malaysia Sdn Bhd, Plot 9A & 9B, Lorong Bemban 1, Bemban Industrial Estate, Batu Gajah 31000, Perak, Malaysia; (N.C.W.); (J.W.)
| | - Cecilia Devi Wilfred
- Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
10
|
Yang H, Ping Q, Zhang Y. Highly efficient degradation of ofloxacin and diclofenac by composite photocatalyst aloe-emodin/PMMA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27530-z. [PMID: 37178304 DOI: 10.1007/s11356-023-27530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Photocatalysis is one of the most effective methods to remove pollutants from water. Photocatalyst is the core of photocatalysis. The composite photocatalyst combines the photosensitizer with the support and uses the photosensitivity of the photosensitizer and the stability and adsorption of the support to achieve efficient and rapid degradation of pharmaceuticals in water. In this study, natural aloe-emodin with π-conjugated structure was used as photosensitizer to react with macroporous resin polymethylmethacrylate (PMMA) under mild conditions to prepare composite photocatalysts AE/PMMAs. The photocatalyst underwent photogenerated electron migration under visible light to form •O2- and holes with high oxidation activity, which could realize efficient photocatalytic degradation of ofloxacin and diclofenac sodium and showed excellent stability, recyclability and industrial feasibility. This research has developed an efficient method of composite photocatalyst and realized the application of a natural photosensitizer in pharmaceutical degradations.
Collapse
Affiliation(s)
- Haifan Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qian Ping
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. CHEMOSPHERE 2023; 323:138241. [PMID: 36841446 DOI: 10.1016/j.chemosphere.2023.138241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Over the last decade, the removal of pharmaceuticals from aquatic bodies has garnered substantial attention from the scientific community. Ibuprofen (IBP), a non-steroidal anti-inflammatory drug, is released into the environment in pharmaceutical waste as well as medical, hospital, and household effluents. Adsorption technology is a highly efficient approach to reduce the IBP in the aquatic environment, particularly at low IBP concentrations. Due to the exceptional surface properties of carbonaceous materials, they are considered ideal adsorbents for the IBP removal of, with high binding capacity. Given the importance of the topic, the adsorptive removal of IBP from effluent using various carbonaceous adsorbents, including activated carbon, biochar, graphene-based materials, and carbon nanostructures, has been compiled and critically reviewed. Furthermore, the adsorption behavior, binding mechanisms, the most effective parameters, thermodynamics, and regeneration methods as well as the cost analysis were comprehensively reviewed for modified and unmodified carbonaceous adsorbents. The compiled studies on the IBP adsorption shows that the IBP uptake of some carbon-based adsorbents is significantly than that of commercial activated carbons. In the future, much attention is needed for practical utilization and upscaling of the research findings to aid the management and sustainability of water resource.
Collapse
Affiliation(s)
- Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia.
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Hossein Beiki
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Elena Krivoshapkina
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Chantal Tracey
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
12
|
Benettayeb A, Seihoub FZ, Pal P, Ghosh S, Usman M, Chia CH, Usman M, Sillanpää M. Chitosan Nanoparticles as Potential Nano-Sorbent for Removal of Toxic Environmental Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:447. [PMID: 36770407 PMCID: PMC9920024 DOI: 10.3390/nano13030447] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Adsorption is the most widely used technique for advanced wastewater treatment. The preparation and application of natural renewable and environmentally friendly materials makes this process easier and more profitable. Chitosan is often used as an effective biomaterial in the adsorption world because of its numerous functional applications. Chitosan is one of the most suitable and functionally flexible adsorbents because it contains hydroxyl (-OH) and amine (-NH2) groups. The adsorption capacity and selectivity of chitosan can be further improved by introducing additional functions into its basic structure. Owing to its unique surface properties and adsorption ability of chitosan, the development and application of chitosan nanomaterials has gained significant attention. Here, recent research on chitosan nanoparticles is critically reviewed by comparing various methods for their synthesis with particular emphasis on the role of experimental conditions, limitations, and applications in water and wastewater treatment. The recovery of pollutants using magnetic nanoparticles is an important treatment process that has contributed to additional development and sustainable growth. The application of such nanoparticles in the recovery metals, which demonstrates a "close loop technology" in the current scenarios, is also presented in this review.
Collapse
Affiliation(s)
- Asmaa Benettayeb
- Laboratoire de Génie Chimique et Catalyse Hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M’NAOUAR, Oran 31000, Algeria
| | - Fatima Zohra Seihoub
- Laboratoire de Génie Chimique et Catalyse Hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M’NAOUAR, Oran 31000, Algeria
| | - Preeti Pal
- Accelerated Cleaning Systems India Private Limited, Sundervan Complex, Andheri West, Mumbai 400053, India
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Muhammad Usman
- School of Civil Engineering, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany
| | - Chin Hua Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein 2028, South Africa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg 2050, South Africa
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), No. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu 611731, China
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
13
|
Han Y, Ma Z, Cong H, Wang Q, Wang X. Surface Chitosan-coated Fe3O4 immobilized lignin for adsorbed phosphate radicals in solution. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Zhang Y, Wang L, Lu L, Liu M, Yuan Z, Yang L, Liu C, Huang S, Rao Y. Highly efficient decontamination of tetracycline and pathogen by a natural product-derived Emodin/HAp photocatalyst. CHEMOSPHERE 2022; 305:135401. [PMID: 35738405 DOI: 10.1016/j.chemosphere.2022.135401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
To address the water pollution induced by pharmaceuticals, especially antibiotics, and pathogens, natural product emodin, a traditional Chinese medicine with the characteristic large π-conjugation anthraquinone structure, was used to rationally develop a novel Emodin/HAp photocatalyst by integrating with a thermally stable and recyclable support material hydroxyapatite (HAp) through a simple preparation method. It was found that its photocatalytic activity to generate reactive oxygen species (ROS) was greatly improved due to the migration of photogenerated electrons and holes between emodin and HAp upon visible light irradiation. Thus, this Emodin/HAp photocatalyst not only quickly photodegraded tetracycline with 99.0% removal efficiency but also exhibited complete photodisinfection of pathogenic bacteria Staphylococcus aureus upon visible light irradiation. Therefore, this study offers a new route for the design and preparation of multifunctional photocatalysts using widely available natural products for environmental remediation.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Lijun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Liushen Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Meiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Lifeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Shuping Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
15
|
Shi R, Liu T, Lu J, Liang X, Ivanets A, Yao J, Su X. Fe/C materials prepared by one-step calcination of acidified municipal sludge and their excellent adsorption of Cr(VI). CHEMOSPHERE 2022; 304:135303. [PMID: 35691392 DOI: 10.1016/j.chemosphere.2022.135303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Biochar derived from municipal sludge can be applied to adsorption. But it usually requires activation and pickling due to the generation of impurities such as metal oxide particles, which is uneconomical. Here, a facile strategy, acidification-one-step calcination, was developed and sludge-based Fe-C materials with good Cr(VI) removal effect were obtained by regulating the amount of hydrochloric acid. The results show that the adsorption capacity of Fe/C-5 (the best sample) for Cr(VI) was 150.84 mg g-1. According to the Langmuir isotherm and pseudo-second-order kinetic model, the removal of Cr(VI) by Fe/C-5 is spontaneous and endothermic chemisorption process. In addition, Fe/C-5 has good ability to remove Cr(VI) under the interference of coexisting ions, and has good cycle stability. The removal of Cr(VI) by Fe/C-5 is considered to be synergistic process of adsorption and reduction. The Fe atoms were highly dispersed in Fe/C-5 and tightly bonded with C atoms, which not only strengthened the Cr(VI) adsorption by electrostatic attraction, but also activated the C atoms in the biochar material, so that the C atoms can reduce Cr(VI) to Cr(III) under acidic conditions. This may be due to the fact that acid pretreatment converted the iron in municipal sludge in the form of Fe-O/OH to free Fe3+ and entered the C lattice during the calcination process. In this work, Fe-C materials with excellent Cr(VI) adsorption capacity were prepared by one-step calcination method, which has important reference significance for the resource utilization of municipal sludge.
Collapse
Affiliation(s)
- Ruixue Shi
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, 830011, PR China
| | - Tianbao Liu
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Jing Lu
- Geologic Party No.216, CNNC, Urumqi, Xinjiang, 830011, PR China
| | - Xiangjing Liang
- Guangzhou Haitao Environmental Protection Technology Company Limited, Guangzhou, Guangdong, 511340, PR China
| | - Andrei Ivanets
- Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus, Surganova St., 9/1, 220072, Minsk, Belarus
| | - Junqin Yao
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, 830011, PR China.
| | - Xintai Su
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
16
|
Wang D, Ge H. Preparation and characterization of polyethyleneimine functionalized magnetic graphene oxide as high uptake and fast removal for Hg (II). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1373-1387. [PMID: 36178812 DOI: 10.2166/wst.2022.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polyethyleneimine functionalized magnetic graphene oxide adsorbent (PEI-mGO) was synthesized by introducing polyethyleneimine onto Fe3O4/graphene oxide. The structures and morphologies of PEI-mGO was identified by using Fourier-tranform infrared (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) methods. Quantities of bar-like Fe3O4 nanoparticles were observed on the surfaces of PEI-mGO. The adsorption of PEI-mGO for Cu(II), Pb(II), Hg(II), Co(II) and Cd(II) was compared. The adsorption results indicated that PEI-mGO showed higher uptake for Hg(II) than the other ions. The influence of various variables for the adsorption of Hg(II) on PEI-mGO was explored. The adsorption kinetics and isotherm could be described well by the pseudo-second-order and Langmuir models. The maximal uptake of PEI-mGO for Hg(II) from Langmuir model was 857.3 mg g-1, which was higher than that reported previously. The adsorption removal was a fast and endothermic process governed by the chemical process. The uptake increased with increasing temperature. PEI-mGO showed an excellent performance for removal of Hg(II) with 93.3% removal efficiency from simulated wastewater. Adsorption-desorption cycled experiments indicated that PEI-mGO could be recycled. PEI-mGO could be easily separated from the adsorbed solution by using a magnet. Hence, this novel adsorbent would be promising for the removal of Hg(II) from wastewater.
Collapse
Affiliation(s)
- Deqi Wang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China E-mail:
| | - Huacai Ge
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China E-mail:
| |
Collapse
|
17
|
Mishra K, Devi N, Siwal SS, Zhang Q, Alsanie WF, Scarpa F, Thakur VK. Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202187. [PMID: 35853696 PMCID: PMC9475560 DOI: 10.1002/advs.202202187] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Indexed: 05/19/2023]
Abstract
Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical-based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL-based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL-based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer-based composites' ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs-based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy-related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided.
Collapse
Affiliation(s)
- Kirti Mishra
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Nishu Devi
- Mechanics and Energy LaboratoryDepartment of Civil and Environmental EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Samarjeet Singh Siwal
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids MetallurgyFaculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunming650093P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan ProvinceKunming650093P. R. China
| | - Walaa F. Alsanie
- Department of Clinical Laboratories SciencesThe Faculty of Applied Medical SciencesTaif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Fabrizio Scarpa
- Bristol Composites InstituteUniversity of BristolBristolBS8 1TRUK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterScotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburghEH9 3JGUK
- School of EngineeringUniversity of Petroleum and Energy Studies (UPES)DehradunUttarakhand248007India
| |
Collapse
|
18
|
Sahebi H, Massoud Bahrololoomi Fard S, Rahimi F, Jannat B, Sadeghi N. Ultrasound-assisted dispersive magnetic solid-phase extraction of cadmium, lead and copper ions from water and fruit juice samples using DABCO-based poly (ionic liquid) functionalized magnetic nanoparticles. Food Chem 2022; 396:133637. [PMID: 35853377 DOI: 10.1016/j.foodchem.2022.133637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/05/2022] [Accepted: 07/03/2022] [Indexed: 11/04/2022]
Abstract
A poly (ionic liquid) (PIL) functionalized magnetic nanoparticles methodology was developed and utilized as an efficient adsorbent for the simultaneous extraction of cadmium, lead, and copper ions from water and fruit juice samples. The novel adsorbent was fabricated by grafting DABCO-based PIL onto silica-coated Fe3O4 nanoparticles via copper (0)-mediated reversible-deactivation radical polymerization. Different techniques properly characterized the developed nanoparticles. The central composite design was used to analyze the simultaneous effects of various parameters on the extraction efficiency. The detection limits for water samples ranged between 3.2 and 9.2 ng.L-1, and fruit juice samples varied from 0.0103 to 0.1082 μg.kg-1. The recovery ranged from 94.1 to 101.3% and 93.6 to 105.1% for water and fruit juice samples, respectively. The relive measurement uncertainty ranged from 7.7 to 13.6%. The proposed method is rapid, sensitive, environmentally friendly, and useful for monitoring the residues of heavy metal ions in water and fruit juice samples.
Collapse
Affiliation(s)
- Hamed Sahebi
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | | | - Farnaz Rahimi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Behrooz Jannat
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Nafiseh Sadeghi
- Department of Food and Drug Control, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Pandey DK, Kuddushi M, Kumar A, Singh DK. Iron Oxide Nanoparticles Loaded Smart Hybrid Hydrogel for Anti-Inflammatory Drug Delivery: Preparation and Characterizations. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Dzieniszewska A, Nowicki J, Rzepa G, Kyziol-Komosinska J, Semeniuk I, Kiełkiewicz D, Czupioł J. Adsorptive removal of fluoride using ionic liquid-functionalized chitosan - Equilibrium and mechanism studies. Int J Biol Macromol 2022; 210:483-493. [PMID: 35500782 DOI: 10.1016/j.ijbiomac.2022.04.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/04/2022] [Accepted: 04/24/2022] [Indexed: 01/04/2023]
Abstract
In this study, novel biosorbents, based on chitosan and imidazolium ionic liquid, were prepared for the removal of fluoride from aqueous solutions. The adsorbents were characterized by FTIR, SEM-EDS and low-temperature nitrogen adsorption-desorption. To investigate the adsorption mechanism and behavior of chitosan adsorbents, batch experiments were conducted under different adsorbent dosages (2, 4, 10 g/L), pH (4, 7, 9) and initial concentration (0.5-25.0 mg/L). The influence of the method of synthesis of ionic liquid on the adsorption performance were also studied. Experimental data were evaluated by Freundlich, Langmuir and Sips models. The introduction of ionic liquid significantly improved the uptake of fluoride compared to pure chitosan. The adsorption was influenced by the experimental conditions, as well as the method of ionic liquid synthesis. The highest fluoride removal was observed at pH 4 and found to decrease with increasing pH. The removal efficiency and adsorption capacity values indicated that the dose of 4 g/L was the optimum adsorbent dosage. The equilibrium data fitted best with the Sips isotherm and the maximum adsorption capacity reached 8.068 mg/g for modified chitosan beads. The mechanism of fluoride adsorption onto ionic liquid-modified chitosan involves electrostatic attraction, ion exchange and ion pair interaction.
Collapse
Affiliation(s)
- A Dzieniszewska
- Institute of Environmental Engineering PAS, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland.
| | - J Nowicki
- Łukasiewicz Research Network Institute of Heavy Organic Synthesis "Blachownia", 9 Energetykow Str., 47-225 Kedzierzyn-Kozle, Poland.
| | - G Rzepa
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - J Kyziol-Komosinska
- Institute of Environmental Engineering PAS, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland.
| | - I Semeniuk
- Łukasiewicz Research Network Institute of Heavy Organic Synthesis "Blachownia", 9 Energetykow Str., 47-225 Kedzierzyn-Kozle, Poland.
| | - D Kiełkiewicz
- Łukasiewicz Research Network Institute of Heavy Organic Synthesis "Blachownia", 9 Energetykow Str., 47-225 Kedzierzyn-Kozle, Poland.
| | - J Czupioł
- Institute of Environmental Engineering PAS, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland.
| |
Collapse
|
21
|
Preparation of 5-methyl-3,5-dipropyl-2-pyrazoline catalyzed by chloroaluminate ionic liquids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
22
|
Patil T, Dharaskar S, Sinha M, Jampa SS. Effectiveness of ionic liquid-supported membranes for carbon dioxide capture: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35723-35745. [PMID: 35260978 DOI: 10.1007/s11356-022-19586-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The world's population explosion creates a need for natural resources for energy, which will become a significant contributor to global climate change. As we all know, carbon dioxide (CO2) is one of the most critical elements of the global greenhouse gas effect. CO2 capture and storage innovations have piqued researchers' attention in recent decades. Compared to other methods, membrane separation has some positive performance in CO2 capture. CO2 capture with membrane separation using enhanced ionic liquids (ILs) is described in this review. ILs have made an appearance in CO2 capture work as the potential additive, and companies and academics have been interested in CO2 separation for the past two decades. This article comprehensively analyzes the current modern approach in ILs and IL-based membranes for gas separation processes. Based on the latest literature and performance data, this work provides a complete compressive examination of types of ILs and IL-supported membrane performances. ILs for CO2 capture were also explored, and IL-based membranes for different ILs were also studied. This study emphasizes the supremacy of novel ILs for CO2 capture in membrane separation.
Collapse
Affiliation(s)
- Tushar Patil
- CO2 Research Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, 382426, Raisan, Gandhinagar, India
| | - Swapnil Dharaskar
- CO2 Research Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, 382426, Raisan, Gandhinagar, India.
| | - Manishkumar Sinha
- CO2 Research Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, 382426, Raisan, Gandhinagar, India
| | - Surendra Sasikumar Jampa
- CO2 Research Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, 382426, Raisan, Gandhinagar, India
| |
Collapse
|
23
|
Yan X, Yao Y, Zhang H, Xie J, Xiao C, Zhang S, Qi J, Sun X, Li J. Zeolitic imidazolate framework (ZIF-8)/polyacrylonitrile derived millimeter-sized hierarchical porous carbon beads for peroxymonosulfate catalysis. ENVIRONMENTAL RESEARCH 2022; 206:112618. [PMID: 34954145 DOI: 10.1016/j.envres.2021.112618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Well dispersed nanocatalysts on porous substrate with macroscopic morphology are highly desired for the application of heterogeneous catalysis. Traditional fabrication process suffers from multiple steps for controlling the structure on nanocatalysts and matrix or both. Herein, we report a facile strategy for the synthesis of millimeter-sized hierarchical porous carbon beads (HPCBs) which containing well dispersed hollow-nano carbon boxes for peroxymonosulfate catalysis. Specially, the precursors of HPCBs were prepared by phase inversion method, which involving introduction of zeolitic imidazolate framework (ZIF-8) nanocubes into polyacrylonitrile (PAN) solutions followed by solidification of the mixture. After pyrolysis, nitrogen doped and hierarchical porous HPCBs with diameter of about 1.2 mm were obtained. The merits of our synthesis strategy lie in that synchronizes the hollow microstructure evolution with the shaping of ZIF-8 nanocubes into millimeter scale beads. Attribute to its special structure feature and the appropriate chemical composition, the resultant millimeter-sized HPCBs exhibit enhanced catalytic performance by activation of peroxymonosulfate (PMS) for tetracycline degradation. The degradation efficiency of TC is up to 85.1% within 120 min, which is 18% higher than that of ZIF8-Solid/PAN carbon bead (SPCBs). In addition, the possible decomposition pathways, main reactive oxygen species, and reasonable enhanced mechanism for the HPCBs/PMS system are systematically investigated by quenching experiments, electron paramagnetic resonance (EPR) and liquid chromatography-mass spectrometry (LC-MS). This work addresses the issue of easy aggregation and recycling of carbon materials in industrial productions and extends the prospects of carbon materials in engineering applications.
Collapse
Affiliation(s)
- Xin Yan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Jia Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
24
|
Li Y, Du N, Song S, Hou W. Adsorption of Cetylpyridinium Chloride at Silica Nanoparticle/Water Interfaces (II): Dependence of Surface Aggregation on Particle Size. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4048-4058. [PMID: 35313104 DOI: 10.1021/acs.langmuir.2c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we report a thermodynamic model that relates the adsorption (aggregation) parameters of surfactants at solid/liquid interfaces to particle radius (r). The adsorption (aggregation) parameters include adsorption amounts, equilibrium constants (or the standard Gibbs free energy changes), the critical surface micelle concentration (csmc), and the average aggregation number of surface micelles (n). The model predicts the size dependence of the surface aggregation of surfactants, which is determined by the changes in the interfacial tension and the molar volume of surface components caused by adsorption. In addition, the adsorption of cetylpyridinium chloride (CPyCl), a cationic surfactant, on silica nanoparticles with different r values (ca. 6-61 nm) was determined at 298 K and pH 4, showing an obvious size dependence, consistent with the prediction of the model. With an increase in r, the adsorption isotherm changes from the double-plateau type to the Langmuir type, accompanied by obvious changes in the adsorption parameters. The size-dependent adsorption data can be well described using the model equations, indicating that the model presented here is acceptable. In addition, the model can extract information on the interfacial tensions from adsorption data. We think that the model deepens the understanding of the aggregation phenomena of surfactants at solid/liquid interfaces.
Collapse
|
25
|
Francisco R, Almeida C, Sousa ACA, Neves MC, Freire MG. High Performance of Ionic-Liquid-Based Materials to Remove Insecticides. Int J Mol Sci 2022; 23:ijms23062989. [PMID: 35328411 PMCID: PMC8950405 DOI: 10.3390/ijms23062989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Neonicotinoids are systemic insecticides commonly used for pest control in agriculture and veterinary applications. Due to their widespread use, neonicotinoid insecticides (neonics) are found in different environmental compartments, including water, soils, and biota, in which their high toxicity towards non-target organisms is a matter of great concern. Given their widespread use and high toxicity, the development of strategies to remove neonics, while avoiding further environmental contamination is of high priority. In this work, ionic-liquid-based materials, comprising silica modified with tetraalkylammonium cations and the chloride anion, were explored as alternative adsorbent materials to remove four neonics insecticides, namely imidacloprid, acetamiprid, thiacloprid, and thiamethoxam, from aqueous media. These materials or supported ionic liquids (SILs) were first synthesized and chemically characterized and further applied in adsorption studies. It was found that the equilibrium concentration of the adsorbate in the solid phase decreases with the decrease in the SIL cation alkyl chain length, reinforcing the relevance of hydrophobic interactions between ionic liquids (ILs) and insecticides. The best-identified SIL for the adsorption of the studied insecticides corresponds to silica modified with propyltrioctylammonium chloride ([Si][N3888]Cl). The saturation of SILs was reached in 5 min or less, showing their fast adsorption rate towards all insecticides, in contrast with activated carbon (benchmark) that requires 40 to 60 min. The best fitting of the experimental kinetic data was achieved with the Pseudo Second-Order model, meaning that the adsorption process is controlled at the solid-liquid interface. On the other hand, the best fitting of the experimental isotherm data is given by the Freundlich isotherm model, revealing that multiple layers of insecticides onto the SIL surface may occur. The continuous removal efficiency of the best SIL ([Si][N3888]Cl) by solid-phase extraction was finally appraised, with the maximum adsorption capacity decreasing in the following sequence: imidacloprid > thiacloprid > thiamethoxam > acetamiprid. Based on real reported values, under ideal conditions, 1 g of [Si][N3888]Cl is able to treat at least 106 m3 of wastewater and water from wetland contaminated with the studied neonics. In summary, the enhanced adsorption capacity of SILs for a broad diversity of neonics was demonstrated, reinforcing the usefulness of these materials for their removal from aqueous matrices and thus contributing to preventing their introduction into the ecosystems and reducing their detrimental effects in the environment and human health.
Collapse
Affiliation(s)
- Rafael Francisco
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.F.); (C.A.); (M.C.N.)
| | - Catarina Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.F.); (C.A.); (M.C.N.)
| | - Ana C. A. Sousa
- Department of Biology, School of Science and Technology, University of Évora, 7006-554 Évora, Portugal;
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-671 Évora, Portugal
| | - Márcia C. Neves
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.F.); (C.A.); (M.C.N.)
| | - Mara G. Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.F.); (C.A.); (M.C.N.)
- Correspondence:
| |
Collapse
|
26
|
Tabrizi SH, Tanhaei B, Ayati A, Ranjbari S. Substantial improvement in the adsorption behavior of montmorillonite toward Tartrazine through hexadecylamine impregnation. ENVIRONMENTAL RESEARCH 2022; 204:111965. [PMID: 34453900 DOI: 10.1016/j.envres.2021.111965] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In the present work, the surface of montmorillonite K10 was successfully modified by hexadecylamine surfactant (Mt-HDA) and its intercalation and characteristics were assessed by XRD, FTIR, SEM, EDX and BET methods. Also, its adsorption performance was systematically examined in the removal of Tartrazine (TZ), as a sulfonated azo dye model, from aqueous phase. Our results showed that the HDA modification remarkably improved the adsorption ability of montmorillonite toward TZ molecules. The highest adsorption efficiency was achieved >98% at the pH range of 4-6 within a fast process (less than 30 min). The maximum adsorption capacity Mt-HDA toward TZ molecules was found to be ~59 mg/g at 45 °C. The kinetic study indicated that the adsorption kinetic follows pseudo-second-order model, which shows the chemisorption process between Mt-HDA and TZ molecules. Besides, the adsorption isotherm showed the monolayer coverage of Mt-HDA surface adsorption sites, which was fitted with the Langmuir isotherm model in an exothermic process. The adsorption mechanism was studied.
Collapse
Affiliation(s)
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ali Ayati
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Sara Ranjbari
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
27
|
Ranjbari S, Ayati A, Tanhaei B, Al-Othman A, Karimi F. The surfactant-ionic liquid bi-functionalization of chitosan beads for their adsorption performance improvement toward Tartrazine. ENVIRONMENTAL RESEARCH 2022; 204:111961. [PMID: 34492277 DOI: 10.1016/j.envres.2021.111961] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the ionic liquid (Aliquat-336) and anionic surfactant (cetyltrimethylammonium bromide, CTAB) bi-functionalized chitosan beads were prepared and characterised using different techniques, including FTIR, XRD, SEM, EDS and BET surface area analysis. The characteristic analysis confirmed the successful conjugation of chitosan beads with both surfactant and ionic liquid. The novel fabricated beads (CS-CTAB-AL) were efficiently employed, as a high-performance adsorbent, for the removal of Tartrazine (TZ), an anionic food dye, from polluted water. The optimum adsorption of TZ onto the CS-CTAB-AL was found at 2 g L-1 of adsorbent in the wide pH range of 4-11, whereas just 45 min was required to reach more than 90% adsorption efficiency in the studied conditions. Also, the adsorption and kinetic studies showed that the experimental data well fitted the pseudo-first-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity of prepared beads was found to be 45.95 mg g-1 at 45 °C. The adsorption properties of enabling CS-CTAB-AL conjugation introduced a new type of adsorbents, exploited the combination of ionic liquid and surfactant capabilities for wastewater treatment.
Collapse
Affiliation(s)
- Sara Ranjbari
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, PO. Box 26666, United Arab Emirates
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| |
Collapse
|
28
|
Li Y, Hou W. A Model for the Structure of Adsorbed Layers at Solid/Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2267-2275. [PMID: 35134293 DOI: 10.1021/acs.langmuir.1c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the structure of adsorbed layers, including their composition (the mole fraction of sorbate, xA) and thickness (dal), is of great significance for revealing the nature of adsorption and guiding its applications. Many techniques have been used to estimate the structure of adsorbed layers of organics at solid/liquid interfaces. However, there is still a lack of feasible thermodynamic models to describe the correlation between the structure (more precisely, xA and dal) and the equilibrium adsorption amount (Γe). Herein, a thermodynamic model, called the dynamic bonding equilibrium (DBE) model, was developed on the basis of the adsorption equilibrium thermodynamics with an assumption that, at adsorption equilibrium, the sorbate and solvent within the adsorbed layer both exist in different bonding states. The DBE model relates xA and dal with Γe and thus can predict or describe the structure (xA and dal) of adsorbed layers from Γe. Its rationale was confirmed by the literature-reported adsorption data of organics, including surfactants, proteins, and polymers, on hydrophilic and hydrophobic surfaces in water. This work provides a feasible approach for obtaining information about the structure of adsorbed layers at solid/liquid interfaces.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Wanguo Hou
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
- National Engineering Technology Research Center of Colloidal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
29
|
Asadollahzadeh M, Torkaman R. Extraction of dysprosium from waste neodymium magnet solution with ionic liquids and ultrasound irradiation procedure. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Karimi F, Ayati A, Tanhaei B, Sanati AL, Afshar S, Kardan A, Dabirifar Z, Karaman C. Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment. ENVIRONMENTAL RESEARCH 2022; 203:111753. [PMID: 34331923 DOI: 10.1016/j.envres.2021.111753] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 05/02/2023]
Abstract
In this study, a magnetic chitosan/Al2O3/Fe3O4 (M-Cs) nanocomposite was developed by ethylenediaminetetraacetic acid (EDTA) functionalization to enhance its adsorption behavior for the removal of Cd(II), Cu(II) and Zn(II) metal ions from aqueous solution. The results revealed that the EDTA functionalization of M-Cs increased its adsorption capacity ~9.1, ~5.6 and ~14.3 times toward Cu, Cd and Zn ions. The maximum adsorption capacity followed the order of Cd(II) > Cu(II) > Zn(II) and the maximum adsorption efficiency was achieved at pH of 5.3 with the removal percentage of 99.98, 93.69 and 83.81 %, respectively, for the removal of Cu, Cd and Zn ions. The metal ions adsorption kinetic obeyed pseudo-second-order equation and the Langmuir isothermal was found the most fitted model for their adsorption isothermal experimental data. In addition, the thermodynamic study illustrated that the adsorption process was exothermic and spontaneous in nature.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal
| | - Safoora Afshar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Alireza Kardan
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Zeynab Dabirifar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| |
Collapse
|
31
|
Gao M, Xu D, Gao Y, Chen G, Zhai R, Huang X, Xu X, Wang J, Yang X, Liu G. Mussel-inspired triple bionic adsorbent: Facile preparation of layered double hydroxide@polydopamine@metal-polyphenol networks and their selective adsorption of dyes in single and binary systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126609. [PMID: 34329113 DOI: 10.1016/j.jhazmat.2021.126609] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
To effectively address the serious human health challenges and ecological damage caused by organic dyes in wastewater, we developed a novel bionic adsorbent (LDH@PDA@MPNs) for the selective adsorption and removal of malachite green (MG) and crystalline violet (CV). The adsorbent was prepared using a facile two-step method based on mussel-inspired chemistry and metal complexation. The physicochemical structure, surface morphology, and composition of the LDH@PDA@MPNs were characterized by scanning electron microscopy, Fourier-transform infrared spectrometry, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Adsorption of MG and CV with the LDH@PDA@MPNs was evaluated. Under optimal conditions, the maximum adsorption of MG and CV by the adsorbent was 89.608 and 40.481 mg/g, respectively. The adsorption kinetics showed that the experimental data were in good agreement with the pseudo-second-order kinetic model, and the equilibrium adsorption isotherm data fitted well with the Freundlich model. The thermodynamic results indicated that the adsorption of the dyes on LDH@PDA@MPNs was a spontaneous endothermic process. Importantly, the bionic adsorbent not only shows high removal efficiency by easy regeneration with low-cost reagents but also exhibits high selectivity for dyes in both single and binary systems. Therefore, LDH@PDA@MPNs have the potential to adsorb and remove dyes from complex wastewater solutions.
Collapse
Affiliation(s)
- Mingkun Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China; Institute of Quality Standard and Testing Technology for Agro, Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture Beijing, 100081 Beijing, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, No.92, West Dazhi Street, Nangang District, Harbin, China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China.
| | - Yuhang Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Rongqi Zhai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro, Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture Beijing, 100081 Beijing, China.
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, No.92, West Dazhi Street, Nangang District, Harbin, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, 100081 Beijing, China.
| |
Collapse
|
32
|
Spectroscopic characterization andthermal decomposition kinetics of 1,3-dibutyl-imidazolium bromide synthesized through a solvent-free and one-pot method. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Bibi A, Naz S, Uroos M. Evaluating the Effect of Ionic Liquid on Biosorption Potential of Peanut Waste: Experimental and Theoretical Studies. ACS OMEGA 2021; 6:22259-22271. [PMID: 34497915 PMCID: PMC8412927 DOI: 10.1021/acsomega.1c02957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Peanut skin having polyphenols as major constituents is a natural, abundant, and environmentally friendly potent biosorbent for aquatic pollutants such as heavy metals. Its natural potential can be enhanced several times by treating it with ionic liquids-the green solvents. This report presents a complete study on biosorption of divalent cadmium ions using ionic liquid-treated peanut skin. Initially, both peanut biomasses, skin and shells, were tested, and peanut skin was used for thorough experimentation because of its higher adsorption potential (q e values). Ionic liquids are highly green and designed solvents with vast adjustable striking features such as high thermal and chemical stability, insignificant vapor pressure, wide electrochemical assortment, non-volatility, non-flammability, less toxicity, and high recycling ability. Peanut skin after treatment with ionic liquids was characterized via FTIR, TGA, SEM, and XRD. The biosorption process was optimized with respect to time, temperature, metal ion concentrations, agitation speed, pH, and adsorbent dose. Data obtained were interpreted by kinetic, isothermal, and thermodynamic models. The biosorbent and ionic liquid both are regenerated and recycled up to three times, so cost effectiveness is a promising thing.
Collapse
|
34
|
Shang J, Guo Y, He D, Qu W, Tang Y, Zhou L, Zhu R. A novel graphene oxide-dicationic ionic liquid composite for Cr(VI) adsorption from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125706. [PMID: 33813290 DOI: 10.1016/j.jhazmat.2021.125706] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
A novel graphene oxide-dicationic ionic liquid composite (GO-DIL) was prepared by modifying graphene oxide (GO) with a dicationic ionic liquid (DIL), 3,3'-(butane-1,4-diyl) bis (1-methyl-1H-imidazol-3-ium) chloride ([C4(MIM)2]Cl2). GO and GO-DIL were characterized by SEM, BET, FTIR, and XPS, and the materials were used for Cr(VI) adsorption. Batch adsorption studies showed that adsorption reached equilibrium within 40 min, and the optimal pH was 3, where the electrostatic attraction between GO-DIL and Cr(VI) was maximized. The maximum theoretical Cr(VI) adsorption capacity (qm) was 271.08 mg g-1, and qm remained above 228.00 mg g-1 after five cycles. The adsorption data were fitted well by both the pseudo-first-order kinetic model and the Langmuir model. Furthermore, thermodynamics calculations revealed that adsorption was a spontaneous endothermic process. Importantly, electrostatic attraction between Cr(VI) and the protonated imidazole N+ of GO-DIL played a critical role in Cr(VI) adsorption, and Cr(VI) was reduced to Cr(III). Thus, GO-DIL is predicted to be an effective adsorbent for Cr(VI) and other heavy metal ions in wastewater.
Collapse
Affiliation(s)
- Jun Shang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yanni Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Deliang He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Wei Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yining Tang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Rilong Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
35
|
Fallah Z, Zare EN, Khan MA, Iftekhar S, Ghomi M, Sharifi E, Tajbakhsh M, Nikfarjam N, Makvandi P, Lichtfouse E, Sillanpaa M, Varma RS. Ionic liquid-based antimicrobial materials for water treatment, air filtration, food packaging and anticorrosion coatings. Adv Colloid Interface Sci 2021; 294:102454. [PMID: 34102390 DOI: 10.1016/j.cis.2021.102454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
Efforts to widen the scope of ionic liquids applications across diverse research areas have flourished in the last two decades with developments in understanding and tailoring their physical, chemical, and biological properties. The promising applications of ionic liquids-based materials as antimicrobial systems is due to their ability and flexibility to be tailored in varying sizes, morphologies, and surface charges. Ionic liquids are also considered as greener materials. Common methods for the preparation of ionic liquid-based materials include crosslinking, loading, grafting, and combination of ionic liquids with other polymeric materials. Recent research focuses on the tuning of the biological properties to design novel ionic liquids-based antimicrobial materials. Here, the properties, synthesis and applications of ionic liquids and ionic liquids-based materials are reviewed with focus on antimicrobial activities applied to water treatment, air filtration, food packaging, and anticorrosion.
Collapse
|
36
|
Li Y, Du N, Song S, Hou W. Adsorption of Cetylpyridinium Chloride at Silica Nanoparticle/Water Interfaces (I): Dependence of Adsorption Equilibrium on Particle Size. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7966-7974. [PMID: 34156245 DOI: 10.1021/acs.langmuir.1c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the current work, a size-effect model was developed to describe the particle size-dependence of adsorption at solid/liquid interfaces. A parameter, ΔQad, was introduced, defined as the change of the product of the solid/liquid interfacial tension and the molar volume of solid surface components caused by adsorption. The model predicts that with a decrease in particle radius (r), the saturation adsorption amount per unit area (Γm, mol/m2) decreases, while the change of the adsorption equilibrium constant (Kad) is determined by the ΔQad, namely, it decreases if ΔQad > 0 but increases if ΔQad < 0. There exists a critical r at which the saturation adsorption amount per unit mass (Γmg, mol/g) attains a maximum. In addition, the adsorption of cetylpyridinium chloride (CPyCl), a cationic surfactant, on silica nanoparticles with different r (ca. 6-61 nm) values was determined at 298 K and pH 9, showing an obvious size-dependence. With a decrease in r, Kad and Γm decrease, indicating a decrease in the affinity of silica particles toward CPyCl. The size-dependent adsorption data can be well described using our model. Adsorption can affect the molar volume of the solid surface phase, which plays an important role in the size-dependence of adsorption. This work provides a better understanding of the size-dependent adsorption phenomenon at solid/liquid interfaces.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Na Du
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Shue Song
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Wanguo Hou
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
- National Engineering Technology Research Center of Colloidal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
37
|
Fu Y, Wang F, Sheng H, Hu F, Wang Z, Xu M, Bian Y, Jiang X, Tiedje JM. Removal of extracellular antibiotic resistance genes using magnetic biochar/quaternary phosphonium salt in aquatic environments: A mechanistic study. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125048. [PMID: 33429312 DOI: 10.1016/j.jhazmat.2021.125048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
The proliferation and spread of antibiotic resistance genes (ARGs) is becoming a worldwide crisis. Extracellular DNA encoding ARGs (eARGs) in aquatic environment plays a critical role in the dispersion of antimicrobial resistance genes. Strategies to control the dissemination of eARGs are urgently required for ecological safety and human health. Towards this goal, magnetic biochar/quaternary phosphonium salt (MBQ), was used to investigate the efficiency and removal mechanism for eARGs. Magnetic biochar modified by quaternary phosphonium salt enhanced the adsorption capacity of extracellular DNA to approximately 9 folds, compared to that of the unmodified. DNA adsorption by MBQ was mainly dominated by chemisorption in heterogeneous systems and was promoted in acidic and low-salt environment. The generation of •OH and MBQ colloid jointly cleaved DNA into fragments, facilitating the adsorption of the phosphate backbone of DNA onto MBQ through electrostatic force as well as the conformational transition of DNA. Furthermore, quantification of extracellular DNA after MBQ was applied in water demonstrated that over 92.7% of resistance genes were removed, indicating a significantly reduced risk of propagation of antimicrobial resistance in aquatic environments. These findings have a practical significance in the application of MBQ in mitigating the spread of ARGs in aquatic environment.
Collapse
Affiliation(s)
- Yuhao Fu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongjie Sheng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Xu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| |
Collapse
|
38
|
Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115062] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Karimi-Maleh H, Ranjbari S, Tanhaei B, Ayati A, Orooji Y, Alizadeh M, Karimi F, Salmanpour S, Rouhi J, Sillanpää M, Sen F. Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study. ENVIRONMENTAL RESEARCH 2021; 195:110809. [PMID: 33515581 DOI: 10.1016/j.envres.2021.110809] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
In the present study, a novel 1-butyl-3-methylimidazolium bromide (BmImBr) impregnated chitosan beads were prepared and characterized using different methods, including XRD, FT-IR, EDX, SEM and BET. The FTIR analysis revealed that the BmImBr was successfully conjugated with the chitosan in the beads structure. The prepared beads were used as an efficient sorbent for the fast removal of methylene blue, as cationic dye model, from aqueous solution, whereas just 25 min was required to reach 86% removal efficiency. The increasing of BmImBr amount improved the adsorption performance of prepared beads. Also, it was found that the dye can be higher adsorbed on the beads surface by increasing the sorbent dosage and pH of solution, while the optimum dosage and pH were obtained 3 mg/L and 11, respectively. The kinetic study showed that the MB adsorption onto the CS-BmImBr beads follows the pseudo-fist order model and the intrinsic penetration controls the adsorption process. The properties of prepared chitosan- BmImBr IL conjugation confirmed that it can be exploited as an efficient adsorbent in the wastewater treatment.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa.
| | - Sara Ranjbari
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ali Ayati
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University 159 Longpan Road, Nanjing, 210037, China.
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari, Iran
| | - Jalal Rouhi
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran, 19839, Iran
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| |
Collapse
|
40
|
Khoshkho SM, Tanhaei B, Ayati A, Kazemi M. Preparation and characterization of ionic and non-ionic surfactants impregnated κ-carrageenan hydrogel beads for investigation of the adsorptive mechanism of cationic dye to develop for biomedical applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Friess K, Izák P, Kárászová M, Pasichnyk M, Lanč M, Nikolaeva D, Luis P, Jansen JC. A Review on Ionic Liquid Gas Separation Membranes. MEMBRANES 2021; 11:97. [PMID: 33573138 PMCID: PMC7911519 DOI: 10.3390/membranes11020097] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023]
Abstract
Ionic liquids have attracted the attention of the industry and research community as versatile solvents with unique properties, such as ionic conductivity, low volatility, high solubility of gases and vapors, thermal stability, and the possibility to combine anions and cations to yield an almost endless list of different structures. These features open perspectives for numerous applications, such as the reaction medium for chemical synthesis, electrolytes for batteries, solvent for gas sorption processes, and also membranes for gas separation. In the search for better-performing membrane materials and membranes for gas and vapor separation, ionic liquids have been investigated extensively in the last decade and a half. This review gives a complete overview of the main developments in the field of ionic liquid membranes since their first introduction. It covers all different materials, membrane types, their preparation, pure and mixed gas transport properties, and examples of potential gas separation applications. Special systems will also be discussed, including facilitated transport membranes and mixed matrix membranes. The main strengths and weaknesses of the different membrane types will be discussed, subdividing them into supported ionic liquid membranes (SILMs), poly(ionic liquids) or polymerized ionic liquids (PILs), polymer/ionic liquid blends (physically or chemically cross-linked 'ion-gels'), and PIL/IL blends. Since membrane processes are advancing as an energy-efficient alternative to traditional separation processes, having shown promising results for complex new separation challenges like carbon capture as well, they may be the key to developing a more sustainable future society. In this light, this review presents the state-of-the-art of ionic liquid membranes, to analyze their potential in the gas separation processes of the future.
Collapse
Affiliation(s)
- Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Pavel Izák
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Magda Kárászová
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Mariia Pasichnyk
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Marek Lanč
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
| | - Daria Nikolaeva
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | - Patricia Luis
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | | |
Collapse
|
42
|
Hassan AA, Sajid M, Tanimu A, Abdulazeez I, Alhooshani K. Removal of methylene blue and rose bengal dyes from aqueous solutions using 1-naphthylammonium tetrachloroferrate (III). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114966] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Castillo-Cervantes JN, Gómora-Herrera DR, Navarrete-Bolaños J, Likhanova NV, Olivares-Xometl O, Lijanova IV. A complete in-situ analysis of UV–vis and 2D-FTIR spectra of the molecular interaction between RO16 (azo dye) and synthesized ammonium-based ionic liquids. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Imidazolium functionalized cellulose filter paper derived from waste newspaper and its application in removal of chromium(VI). REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Tanhaei B, Ayati A, Iakovleva E, Sillanpää M. Efficient carbon interlayed magnetic chitosan adsorbent for anionic dye removal: Synthesis, characterization and adsorption study. Int J Biol Macromol 2020; 164:3621-3631. [DOI: 10.1016/j.ijbiomac.2020.08.207] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/22/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022]
|
46
|
Ge H, Du J. Selective adsorption of Pb(II) and Hg(II) on melamine-grafted chitosan. Int J Biol Macromol 2020; 162:1880-1887. [DOI: 10.1016/j.ijbiomac.2020.08.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
|
47
|
Sadiq AC, Rahim NY, Suah FBM. Adsorption and desorption of malachite green by using chitosan-deep eutectic solvents beads. Int J Biol Macromol 2020; 164:3965-3973. [PMID: 32910963 DOI: 10.1016/j.ijbiomac.2020.09.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Chitosan-deep eutectic solvent (DES) beads were prepared from chitosan and DESs. The DESs used were choline chloride-urea (DES A) and choline chloride-glycerol (DES B). Both chitosan-DES beads were used to remove malachite green (MG) dye from an aqueous solution. The optimum pH for chitosan-DES A was recorded at pH 8.0 while optimum pH for chitosan-DES B was pH 9.0. The maximum adsorption capacity obtained for chitosan-DES A and chitosan-DES B were 6.54 mg/g and 8.64 mg/g, respectively. The optimum conditions for both chitosan-DES beads to remove MG were 0.08 g of adsorbent and 20 min of agitation time. Five kinetic models were applied to analyse the data and the results showed that the pseudo-second-order and intraparticle diffusion model fitted best with R2 > 0.999. For the adsorption capacity, results show that the Freundlich and Langmuir adsorption isotherms fitted well with chitosan-DES A and chitosan-DES B, respectively. The maximum adsorption capacities (qmax) obtained from chitosan-DES A and chitosan-DES B were 1.43 mg/g and 17.86 mg/g, respectively. Desorption indicated good performance in practical applications.
Collapse
Affiliation(s)
- Abubakar Chadi Sadiq
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; Department of Chemistry, Bauchi State University, P.M.B. 065, Gadau, Nigeria
| | - Nurul Yani Rahim
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| | - Faiz Bukhari Mohd Suah
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| |
Collapse
|
48
|
Kuddushi M, Patel NK, Rajput S, El Seoud OA, Mata JP, Malek NI. Temperature‐Responsive Low Molecular Weight Ionic Liquid Based Gelator: An Approach to Fabricate an Anti‐Cancer Drug‐Loaded Hybrid Ionogel. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.201900053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Muzammil Kuddushi
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007 Gujarat India
| | - Nehal K. Patel
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007 Gujarat India
| | - Sargam Rajput
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007 Gujarat India
| | - Omar A. El Seoud
- Institute of ChemistryThe University of São Paulo P. O. Box 26077 05513-970 São Paulo, SP Brazil
| | - Jitendra P. Mata
- Australian Centre for Neutron ScatteringAustralian Nuclear Science and Technology Organisation Lucas Heights NSW 2234 Australia
| | - Naved I. Malek
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007 Gujarat India
| |
Collapse
|
49
|
Effect of radiation on interfacial properties and phase behavior of ionic liquid-based microemulsions. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Qi W, Li M, Zhao L. One-step fabrication of photoluminescent SiC quantum dots through a radiation technique. NEW J CHEM 2020. [DOI: 10.1039/d0nj03019h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fabrication of PL SiC-QDs by using ionic liquid-based microemulsions combined with electron beam radiation.
Collapse
Affiliation(s)
- Wei Qi
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- China
- Institute of Applied Electromagnetic Engineering
| | - Mengjie Li
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- China
- Institute of Applied Electromagnetic Engineering
| | - Long Zhao
- Institute of Applied Electromagnetic Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| |
Collapse
|