1
|
Cao H, Li Y, Feng J, Cao Y, Xiang Y, Li Y. Boronic acid-functionalized magnetic covalent organic frameworks based solid-phase extraction coupled with hydrophilic interaction chromatography-tandem mass spectrometry for the determination of trace gentamicin residues in milk. Talanta 2024; 279:126678. [PMID: 39116731 DOI: 10.1016/j.talanta.2024.126678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Boric acid-functionalized magnetic covalent organic frameworks (Fe3O4-TpBD-B) with large surface area and high porosity were prepared and applied for magnetic solid-phase extraction adsorbent of gentamicin from milk before UPLC-MS/MS detection. By utilizing a new HILIC chromatographic column with zwitterionic sulfoalkyl betaine stationary phase based on ethyl bridged hybrid particles (BEH), isomers of gentamicin (C1, C1a, and C2+C2a components). The developed methods demonstrated good linearity (R2 > 0.99), acceptable accuracy and good precision (<10 %), and low limit of quantitation (1.59 ng mL⁻1 for C1, 1.52 ng mL⁻1 for C1a and 2.72 ng mL⁻1 for C2+C2a). In addition, this method has been effectively applied to the analysis of real milk samples.
Collapse
Affiliation(s)
- Hao Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jianan Feng
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, 201318, China
| | - Yiqing Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yangjiayi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Department of Pharmacy, Jing'an District Central Hospital of Shanghai, Shanghai, 200040, China
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201203, China.
| |
Collapse
|
2
|
Yuan N, Ma H, Li B, Zhang X, Tan K, Chen T, Yuan L. When covalent organic frameworks meet zeolites: Enhancing rhodamine B removal through the synergy in the emerging organic-inorganic nanoadsorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124191. [PMID: 38782164 DOI: 10.1016/j.envpol.2024.124191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The development of new porous materials has attracted intense attention as adsorbents for removing pollutants from wastewater. However, pure inorganic and organic porous materials confront various problems in purifying the wastewater. In this work, we integrated a covalent organic framework (TpPa-1) with an inorganic zeolite (TS-1) for the first time via a solvothermal method to fabricate new-type nanoadsorbents. The covalent organic framework/zeolite (TpPa-1/TS-1) nanoadsorbents combined the merits of the zeolite and COF components and possessed efficient adsorptive removal of organic contaminants from solution. Structural morphology and chemical composition characterization by powder X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis demonstrated the successful preparation of TpPa-1/TS-1 composite nanoadsorbents. The resultant composite adsorbent TpPa-1/TS-1 removed rhodamine B at 1.7 and 2.6 times the efficiency of TpPa-1 and TS-1, respectively. Additional investigation revealed that the Freundlich adsorption isotherm and the pseudo-second-order kinetic model could be employed to represent the adsorption process more appropriately. Thermodynamic calculation analysis showed that the adsorption process proceeded spontaneously and exothermically. Besides, the effects of pH, absorbent mass and ionic strength on the adsorption performance were systematically investigated. The prepared composite adsorbent showed a slight decrease in removal efficiency after eight cycles of repeated use, and real water environment experiments also showed the high stability of the adsorbent. The enhanced performance can be attributed to electrostatic interaction, acid-base interaction, hydrogen bonding and π-π interactions.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Huiying Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Bowen Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Kaiqi Tan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Tianxiang Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Lili Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|
3
|
Zhang Q, Zhu N, Lu Z, He M, Chen B, Hu B. Magnetic covalent organic frameworks as sorbents in the chromatographic analysis of environmental organic pollutants. J Chromatogr A 2024; 1728:465034. [PMID: 38824842 DOI: 10.1016/j.chroma.2024.465034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Covalent organic frameworks (COFs) are featured with large specific surface areas, good thermal stability, and abundant pores. These properties are exactly what the sorbents used for extraction or adsorption of interest substances are desired with. While, the low density and hydrophobicity of COFs often makes them difficult to be dispersed evenly and recovered from the aqueous solution. Magnetic covalent organic frameworks (MCOFs) inherit magnetic property of the magnetic particles and porous structure of COFs. They have improved dispersity in aqueous solution and phase separation can be rapidly achieved via external magnetic fields. This review summarized the synthesis strategies for MCOFs, and their application in trace environmental organic pollutants analysis by chromatography techniques. The selection of COFs types and modification with active groups for a certain adsorption purpose is discussed, along with the exploration of adsorption mechanisms, which is beneficial for the design and synthesis of MCOFs.
Collapse
Affiliation(s)
- Qiulin Zhang
- Department of Chemistry, Wuhan University, China
| | - Ning Zhu
- Department of Chemistry, Wuhan University, China
| | - Ziyang Lu
- Department of Chemistry, Wuhan University, China
| | - Man He
- Department of Chemistry, Wuhan University, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, China.
| |
Collapse
|
4
|
Zhao C, Yao W, Zhen Y, Ai Y, Liang L, Ai Y. New insight into the mechanism of biofouling-resistant thiazole-linked covalent organic frameworks for selective uranium capture from seawater. WATER RESEARCH 2024; 255:121470. [PMID: 38493744 DOI: 10.1016/j.watres.2024.121470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
The extraction of uranium from seawater is crucial for the sustainable production of nuclear fuel. Traditional amidoxime-functionalized adsorbents suffer from competitive adsorption of vanadium ion and biofouling. These challenges motivate the development of novel adsorbents for selective uranium extraction from seawater. Herein, four kinds of thiazole-linked covalent organic frameworks (COFs) were investigated to harvest uranium from seawater. The selectivity and anti-biofouling performance were systematically investigated through the molecular dynamics (MD) simulations. Driven by the pore size sieving effect and electrostatic interaction, the Ca2UO2(CO3)3 complex and vanadate anions were selectively separated by different COFs in special areas. On one hand, benefits from the small steric partition factor, the Ca2UO2(CO3)3 complex can stick on the surface of COFs. On the other hand, the dispersive negatively and positively charged areas of studied COFs work as potential binding sites for the Ca2UO2(CO3)3 complex and vanadate anions, respectively. Moreover, an analysis of pulling force and desorption time between uranium and vanadium ions further confirmed the selectivity of various thiazole-linked COFs. The anti-biofouling property was comparatively investigated by dynamic trajectory and solvent accessible surface area. Our outcomes illustrate that the hydroxyl and zwitterionic groups in the thiazole-linked COFs endow their strong surface hydrations to resist marine biofouling. In particular, the TpBdsaPa is identified as a promising candidate due to charge dispersed zwitterionic group as well as remarkable anti-biofouling ability. The present study sheds an atomic-level understanding of the thiazole-linked COFs for selective uranium uptaking from seawater, which will provide aid to design novel adsorbent with highly selective uranium extraction capacity and strong anti-biofouling property.
Collapse
Affiliation(s)
- Chaofeng Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Wencheng Yao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yongkang Zhen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yuqing Ai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Yuejie Ai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
5
|
Huo Y, Guo R, Zhao C, Ma X, Wen T, Ai Y. Alkyl modified cationic COFs for preferential trapping of charge dispersed perrhenate: Synergistic hydrophobicity and anion-recognition effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169000. [PMID: 38040349 DOI: 10.1016/j.scitotenv.2023.169000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Charge dispersed oxoanionic pollutants (such as TcO4- and ReO4-) with low hydrophilicity are typically difficult to be preferentially extracted. Recently, cationic covalent organic frameworks (COFs) have received considerable attention for anions trapping. Two cationic COFs, denoted as Tp-S and Tp-D, were synthesized by incorporating ethyl and cyclic alkylated diquats into 2,2'-bipyridine-based COF. A synergistic effect of hydrophobic channel and anion-recognition sites were achieved by branched chains, which effectively surmounted the Hofmeister bias. Both Tp-S and Tp-D exhibited raising removal performance for surrogate ReO4- at high acidity with adsorption capacities of 435.6 and 291.4 mg g-1, respectively. Obvious variations caused by side chains were displayed in microstructures and adsorption performance. Specially, compared with Tp-D, Tp-S demonstrated desirable priority in uptake capacity and selectivity. In a real-scenario experiment, Tp-S could remove 72.8 % of ReO4- in a simulated Hanford LAW stream, which was attributed to the spatial effects and charge distribution arising from the open and flexible side chains of Tp-S. Otherwise, the rigid cyclic chains endowed pyridine-base Tp-D material an unprecedented alkaline stability. Spectra and theoretical calculations revealed a mechanism of preferential capture based on electrostatic interaction and hydrogen bonding between charge dispersed ReO4-/TcO4- and Tp-S/Tp-D. This work provides an innovative perspective to tailored materials for the treatment of oxoanionic contaminants.
Collapse
Affiliation(s)
- Yingzhong Huo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Ruoxuan Guo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chaofeng Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xinjie Ma
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Tao Wen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yuejie Ai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
6
|
Ma Z, Fang L, Liu L, Hu B, Wang S, Yu S, Wang X. Efficient decontamination of organic pollutants from wastewater by covalent organic framework-based materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166453. [PMID: 37607627 DOI: 10.1016/j.scitotenv.2023.166453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/23/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Covalent organic frameworks (COFs), assembling through covalent bonds, are a rising class of porous materials. Nowadays, various COFs are widely applied in organic pollutants decontamination due to the outstanding capabilities of large surface area, multiple functional groups, porous structure, excellent absorptivity, flexible design and so on. This review concentrates on the applications of COFs in different decontamination technologies such as solid-phase extraction, membrane filtration and sieving, adsorption, and catalysis reaction. The factors influencing water chemistry, such as pH, temperature, salt concentration and natural organic matter, are summarized in terms of their impact on decontamination performance and the extraction mechanisms for the diverse analytes. The interaction mechanisms between COFs and organic pollutants were hydrogen bonding, π-π stacking, hydrophilic, hydrophobic, and electrostatic interactions. Furthermore, a perspective on current obstacles and upcoming developments of COFs for organic pollutant removal has been provided. Due to their adaptable and versatile design as well as elaborate and diverse functionalization, COFs possess significant possibility in ameliorating environmental pollution.
Collapse
Affiliation(s)
- Zixuan Ma
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Lin Fang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China.
| | - Lijie Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
7
|
Bai Y, Wang C, Lu W, Xie C, Song W, Zhang Z, Wang J. Exploration of the Performance and Mechanism of Uranium Adsorption by a Covalent Organic Framework Possessing the Thiazole Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16163-16173. [PMID: 37922413 DOI: 10.1021/acs.langmuir.3c02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
This study prepared an active 2-D covalent organic skeleton (HDU-27) with a network structure, high crystallinity, considerable specific surface area, excellent pore structure, and excellent stability. Kinetic studies manifested that HDU-27 could effectively capture uranium as monolayer chemisorption within a very short kinetic equilibrium time (10 min). In particular, the temperature significantly and positively impacted the uranium adsorption performance of HDU-27. At 298, 313, and 328 K, the adsorption capacity reached 269.2, 488.8, and 576.2 mg g-1, respectively, suggesting the potential to treat high-temperature industrial wastewater containing uranium. HDU-27 had high stability and recoverability with an adsorption efficiency of 98.5% after five adsorption-desorption cycles. According to X-ray photoelectron spectroscopy, the mechanism of interaction between U(VI) and HDU-27 was mainly the chelation of UO22+ by the N atom in the thiazole structure and the strong coordination of the O atom in the keto structure with UO22+. More excitingly, HDU-27 could chemically reduce soluble U(VI) to insoluble U(IV) and release binding sites for the adsorption of additional U(VI). In conclusion, HDU-27 has outstanding potential for uranium adsorption from industrial wastewater containing uranium.
Collapse
Affiliation(s)
- Yuxuan Bai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chen Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Wen Lu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chengde Xie
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Wenhui Song
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhixiong Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianjun Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| |
Collapse
|
8
|
Paz R, Viltres H, Gupta NK, Phung V, Srinivasan S, Rajabzadeh AR, Leyva C. Covalent organic frameworks as highly versatile materials for the removal and electrochemical sensing of organic pollutants. CHEMOSPHERE 2023; 342:140145. [PMID: 37714485 DOI: 10.1016/j.chemosphere.2023.140145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
The presence of persistent organic compounds in water has become a worldwide issue due to its resistance to natural degradation, inducing its environmental resilience. Therefore, the accumulation in water bodies, soils, and humans produces toxic effects. Also, low levels of organic pollutants can lead to serious human health issues, such as cancer, chronic diseases, thyroid complications, immune system suppression, etc. Therefore, developing efficient and economically viable remediation strategies motivates researchers to delve into novel domains within material science. Moreover, finding approaches to detect pollutants in drinking water systems is vital for safeguarding water safety and security. Covalent organic frameworks (COFs) are valuable materials constructed through strong covalent interactions between blocked monomers. These materials have tremendous potential in removing and detecting persistent organic pollutants due to their high adsorption capacity, large surface area, tunable porosity, porous structure, and recyclability. This review discusses various synthesis routes for constructing non-functionalized and functionalized COFs and their application in the remediation and electrochemical sensing of persistent organic compounds from contaminated water sources. The development of COF-based materials has some major challenges that need to be addressed for their suitability in the industrial configuration. This review also aims to highlight the importance of COFs in the environmental remediation application with detailed scrutiny of their challenges and outcomes in the current research scenario.
Collapse
Affiliation(s)
- Roxana Paz
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Nishesh Kumar Gupta
- Department of Environmental Research, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Vivian Phung
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Carolina Leyva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico.
| |
Collapse
|
9
|
Liu L, Zhao B, Wu D, Wang X, Yao W, Ma Z, Hou H, Yu S. Rational design of MOF@COF composites with multi-site functional groups for enhanced elimination of U(VI) from aqueous solution. CHEMOSPHERE 2023; 341:140086. [PMID: 37678593 DOI: 10.1016/j.chemosphere.2023.140086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Both environment and human beings were menaced by the widespread application of radioactive uranium, high-performance and effective elimination of uranium from wastewater is of important meaning for development of environmental sustainability in the future. In this study, the water-stable MOF material and the highly crystalline COF were compounded by a mild hydrothermal strategy, which achieved efficient removal of U(VI) through the synergistic effect. The composites showed the characteristics of both COFs and MOFs, which will possess higher stability, larger surface area and faster adsorption efficiency that cannot be carried out by a single component. Batch experiments and characterizations (SEM, TEM, XRD, FT-IR, BET, XPS, etc.) indicated that UiO-66-NH2@LZU1 had more stable and multi-layer pore structure and rich active functional groups. The Langmuir model and the pseudo-second-order kinetics fitting was more suitable for the U(VI) elimination process. The greatest uranium adsorbing capacity of UiO-66-NH2@LZU1 (180.4 mg g-1) was observed to exceed the UiO-66-NH2 (108.8 mg g-1) and COF-LZU1 (65.8 mg g-1), which reached the excellent hybrid effects. Furthermore, FT-IR and XPS analyses confirmed that the most nitrogen-containing group from COF-LZU1 and oxygen-containing group of UiO-66-NH2 could be combined with U(VI). In addition, electrostatic interaction was also a mechanism during the removal process. This work displayed that UiO-66-NH2@LZU1 was a prospective hybrid material for radioactive waste remediation. The compound method and application mentioned in this work had provided a theoretical basis for designing and developing multi-functional composite adsorbents, which contributed to the development of new materials for radioactive wastewater treatment technologies.
Collapse
Affiliation(s)
- Lijie Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Bing Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Dedong Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Wen Yao
- School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Zixuan Ma
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Hairui Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
10
|
Yang J, Huang L, You J, Yamauchi Y. Magnetic Covalent Organic Framework Composites for Wastewater Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301044. [PMID: 37156746 DOI: 10.1002/smll.202301044] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Covalent organic frameworks (COFs) with high specific surface area, tailored structure, easy functionalization, and excellent chemical stability have been extensively exploited as fantastic materials in various fields. However, in most cases, COFs prepared in powder form suffer from the disadvantages of tedious operation, strong tendency to agglomerate, and poor recyclability, greatly limiting their practical application in environmental remediation. To tackle these issues, the fabrication of magnetic COFs (MCOFs) has attracted tremendous attention. In this review, several reliable strategies for the fabrication of MCOFs are summarized. In addition, the recent application of MCOFs as outstanding adsorbents for the removal of contaminants including toxic metal ions, dyes, pharmaceuticals and personal care products, and other organic pollutants is discussed. Moreover, in-depth discussions regarding the structural parameters affecting the practical potential of MCOFs are highlighted in detail. Finally, the current challenges and future prospects of MCOFs in this field are provided with the expectation to boost their practical application.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, LiuFang Campus, No. 206, Donghu New & High Technology Development Zone Wuhan, Guanggu 1st Road, Wuhan, Hubei, 430205, P. R. China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Jungmok You
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Yusuke Yamauchi
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
11
|
Xie Y, Du G, Pang J, Kong L, Lu L. One-step preparation of magnetic N-doped sodium alginate-based porous carbon and efficient adsorption of bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99842-99854. [PMID: 37615913 DOI: 10.1007/s11356-023-29346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
To resourcefully utilize algal biomass and effectively remove bisphenol A (BPA) from water, sodium alginate (SA) was prepared as the nitrogen-doped magnetic porous carbon material (SAC/N/Fe) with well-developed pore structure according to a one-step method using K2CO3, melamine, Fe(NO3)3·9H2O as the activator, nitrogen dopant, and magnetic precursor, respectively, in this study. The best product, SAC/N/Fe-0.2, was obtained by adjusting the mass ratio of raw materials, and its specific surface area and pore volume were 2240.65 m2 g-1 and 1.44 cm3 g-1, respectively, with a maximum adsorption capacity of 1248.23 mg g-1 for BPA at 308 K. SEM, XRD, XPS, VSM, and FT-IR characterization confirmed that the iron was successfully doped, giving the porous carbon a magnetic separation function. The adsorption process of BPA was more consistent with the Langmuir model and the proposed secondary kinetics, and the adsorption effect was stable and efficient in a wide pH range and under the interference of different metal ions. At the same time, the porous carbon was easy to separate and recover with good regeneration performance.
Collapse
Affiliation(s)
- Yaping Xie
- Shandong Transportation Research Institute, Jinan, 25100, China
| | - Guoxing Du
- Shandong Road and Bridge Engineering Design Consulting Co., Ltd., Jinan, 250014, China
| | - Jiaju Pang
- Shandong High Speed Engineering Construction Group Co., Ltd., Jinan, 250014, China
| | - Linghan Kong
- Shandong Transportation Research Institute, Jinan, 25100, China
| | - Linguo Lu
- Shandong Transportation Research Institute, Jinan, 25100, China.
| |
Collapse
|
12
|
Cuautli C, Loeza-Ruano M, Palomino-Asencio L, García-Hernández E. DFT analysis of the adsorption of bisphenol A (BPA) on pristine and oxidized phosphorene. J Mol Model 2023; 29:279. [PMID: 37581842 DOI: 10.1007/s00894-023-05687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
CONTEXT Bisphenol A is an endocrine disruptor that may cause harmful effects on human health. Some residues of this compound have been found in water bodies, alerting for its possible risk as an environmental pollutant. Thus, this work proposes the use of pristine and oxidized phosphorene as removers of bisphenol A, through an adsorption mechanism. Our results indicate that the main interactions exhibited by the complexes are hydrogen bonds, van der Waals, and n-π stacking. All complexes show adsorption energies less than -1.08 eV for the gas phase, and -0.65 eV for the aqueous environment, suggesting that the models may be good capturers of this pollutant. According to the electronic properties, the systems are good donators/acceptors of charge; likewise, they are suitable to sense bisphenol A, because of their changes in |LUMO-HOMO| gap energy. The values obtained suggest that the number of oxygen atoms in the models is important for their adsorption capabilities; hence, the modulation in the oxidation is significant to enhance such properties. METHODOLOGY Density functional theory calculations were implemented at the PBE-D3/TZVP level of theory in the ORCA 5.0 program, to evaluate the adsorption of bisphenol A on pristine and oxidized phosphorene models and propose the last as removers of this molecule. The visualization of the structures was done in the VMD code.
Collapse
Affiliation(s)
- Cristina Cuautli
- División de Mecatrónica, Subdirección de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico Superior de Zacapoaxtla, 73680, Zacapoaxtla, Puebla, México
| | - Melany Loeza-Ruano
- División de Mecatrónica, Subdirección de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico Superior de Zacapoaxtla, 73680, Zacapoaxtla, Puebla, México
| | - Luz Palomino-Asencio
- División de Ingeniería Civil, Tecnológico Nacional de México / Instituto Tecnológico Superior de Tlatlauquitepec, 73906, Tlatlauquitepec, Puebla, México
| | - Erwin García-Hernández
- División de Mecatrónica, Subdirección de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico Superior de Zacapoaxtla, 73680, Zacapoaxtla, Puebla, México.
| |
Collapse
|
13
|
Cortés-Arriagada D, Ortega DE, Miranda-Rojas S. Mechanistic insights into the adsorption of endocrine disruptors onto polystyrene microplastics in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121017. [PMID: 36610654 DOI: 10.1016/j.envpol.2023.121017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Microplastics and endocrine disruptors (EDs) are contaminants of emerging concerns and ubiquitously present in aquatic ecosystems, establishing interactions that still are the subject of investigation due to their implications in the cotransport of pollutants. Then, we conducted mechanistic studies based on state-of-art computational chemistry methods to quantitatively understand the interaction mechanisms whereby polystyrene micro or nanoplastics (PS-MPs) interact with representative classes of EDs in water (Ethynylestradiol, Estradiol, and Bisphenol A). The results showed that PS-MPs increase their charge distribution when forming microparticles in water, giving a permanent dipole that explains their increasing solubility in aqueous conditions. In agreement with experimental assessments, the PS-MPs favorably adsorb EDs with adsorption energies larger than 15 kcal/mol, even with comparable stability to nanostructured materials for adsorption, removal, and/or analysis of pollutants. The adsorption occurs via physisorption without covalent binding, bond breaking, or structural preparation energies, where the molecular structure of EDs can favor inner or outer surface adsorption depending on the molecular structure of the adsorbates. A balanced contribution of dispersion and electrostatic stabilizing effects determines the interaction mechanisms, accounting for a whole contribution of 88-90%. The electrostatic contribution emerges from the favorable alignment of the PS-MPs and EDs dipoles upon interaction due to the mild charge transfer between them in solution. In contrast, the dispersion contribution emerges from electron-electron interactions due to the permanent dipoles in adsorbates and adsorbents. Furthermore, thermochemical analyses clarify the role of temperature and pressure effects on the relative adsorption stability among EDs in aquatic environments. Therefore, modeling the adsorption process contributes to new knowledge on the sorption properties of PS-MPs, providing a mechanistic basis to understand the cotransport of pollutants in water environments and their impacts on environmental pollution.
Collapse
Affiliation(s)
- Diego Cortés-Arriagada
- Programa Institucional de Fomento a La Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
| | - Daniela E Ortega
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, 8370854, Chile
| | - Sebastián Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago, Chile
| |
Collapse
|
14
|
Zhang Y, Liu D, Guo W, Ding Y. Less-precious nitrogen-rich covalent organic frameworks capable of effective rare earth recovery from water. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Zhang A, Liu X, Hong J, Guo R, Zhou Y, Ai Y. A mussel-pearl side chain interaction in mercury(II) and phenol removal by sulfur-functionalized covalent organic frameworks: A DFT study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156082. [PMID: 35618120 DOI: 10.1016/j.scitotenv.2022.156082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The covalent organic framework materials (COFs) with excellent chemical and physical characteristics have been rapidly developed as adsorbents in the application of environmental remediation. In the design of COFs, the selection of functional groups and side chains is of great significance. Herein, density function theory (DFT) method is used to illustrate the adsorption behavior and mechanism of three sulfur-functionalized COFs (S-COFs) for the adsorption of mercury(II) and phenol. According to the analysis of geometric configurations and electronic properties, it demonstrated that the side chains of S-COFs with high flexibility and concentrated sulfur-functional groups, acting like a closed mussel which tightly confined the contaminants, the highest adsorption was -24.32 kcal/mol. The adsorption mechanism of phenol and mercury(II) on S-COFs was elucidated. For phenol, hydrogen bonds and π-π stacking interaction played an important role in the adsorption process, while the coordination interaction was dominated for the adsorption of mercury(II). This research explains the importance of selecting appropriate functional groups and side chains for COFs in the removal of contaminants in the molecular scale, and reveals the great potential of COFs in environmental remediation applications.
Collapse
Affiliation(s)
- Anrui Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xuewei Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jiahui Hong
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Ruoxuan Guo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yueying Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yuejie Ai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
16
|
Rasheed T. Covalent organic frameworks as promising adsorbent paradigm for environmental pollutants from aqueous matrices: Perspective and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155279. [PMID: 35429563 DOI: 10.1016/j.scitotenv.2022.155279] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging class of new porous crystalline polymers materials having robust framework, outstanding structural regularity, highly ordered aperture size, inherent porosity, and chemical stability with designer properties, making them an ideal material for adsorbing a variety of contaminants from water bodies. Presented study focusses on the current advances and progress of pristine COFs as well as COFs based composites as an emerging substitute for the adsorption and removal of a variety of pollutants including water desalination technique, heavy metals, pharmaceuticals, dyes and organic pollutants. The absorption capabilities of COFs-derived architecture are evaluated and equated with those of other commonly used adsorbents. The interaction between sorption ability and structural property as well as some regularly utilized ways to improve the adsorption performance of COFs-based materials are also reviewed. Finally, perspective and a summary about the challenges and opportunities of COFs and COFs-derived materials are discussed to deliver some exciting data for fabricating and designing of COFs and COFs-derived materials for remediation of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
17
|
Gendy EA, Oyekunle DT, Ifthikar J, Jawad A, Chen Z. A review on the adsorption mechanism of different organic contaminants by covalent organic framework (COF) from the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32566-32593. [PMID: 35194714 DOI: 10.1007/s11356-022-18726-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Recently, covalent organic frameworks (COFs) have gained significant attention as a promising material for the elimination of various organic pollutants due to their distinctive characteristics such as high surface area, adjustable porosity, high removal efficiency, and recyclability. The efficiency and selectivity of COFs depend on the decorated functional group and the pore size of the chemical structure. Hence, this review highlights the adsorption removal mechanism of different organic contaminants such as (pharmaceutical and personal care products, pesticides, dyes, and industrial by-products) by COFs from an aqueous solution. Spectroscopic techniques and theoretical calculation methods are introduced to understand the mechanism of the adsorption process. Also, a comparison between the performance of COFs and other adsorbents was discussed. Furthermore, future research directions and challenges encountered in the removal of organic contaminants by COFs are discussed.
Collapse
Affiliation(s)
- Eman Abdelnasser Gendy
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Chemistry Department, Faculty of Science, Kafrelsheikh University, El-Geish Street, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Daniel Temitayo Oyekunle
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jerosha Ifthikar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Ali Jawad
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
18
|
Guo R, Liu Y, Huo Y, Zhang A, Hong J, Ai Y. Chelating effect between uranyl and pyridine N containing covalent organic frameworks: A combined experimental and DFT approach. J Colloid Interface Sci 2022; 606:1617-1626. [PMID: 34500163 DOI: 10.1016/j.jcis.2021.08.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Covalent organic frameworks (COFs) are promising adsorbents for removing heavy metal ions, and have high crystallinity, a porous structure, and conjugated stability. N-containing functional groups are known to have great affinity for uranyl ions. In this work, to explore the peculiarity of the pyridine N structure as an efficient adsorbent, we chose 2,2'-dipyridine-5,5'-diamine (Bpy) and pyridine-2,5'-diamine (Py) as the core skeletons, and 1,3,5-triformylphloroglucinol (Tp) as the linker to synthesize two crystalline and stable N-containing COFs named TpBpy and TpPy, respectively, through a facile solvothermal method. Characterization results demonstrated that TpBpy and TpPy possessed regularly growing pore sizes, large specific surface areas and relatively strong thermal resistances. The results of batch experiments showed that both COF materials were capable of the effective removal of uranyl with uptake capacities of 115.45 mg g-1 and 291.79 mg g-1, respectively. In addition, density functional theory (DFT) simulations highlighted the beneficial chelation effect of the double N structure in pyridine monomers for removing uranyl ions. Combining systematic experimental and theoretical analyses, the adsorption process and interaction mode of porous COFs and UO22+ were revealed, to provide predictable support for the application of pyridine N-containing COFs in the field of environmental remediation.
Collapse
Affiliation(s)
- Ruoxuan Guo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yang Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yingzhong Huo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Anrui Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jiahui Hong
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yuejie Ai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
19
|
He M, Liang Q, Tang L, Liu Z, Shao B, He Q, Wu T, Luo S, Pan Y, Zhao C, Niu C, Hu Y. Advances of covalent organic frameworks based on magnetism: Classification, synthesis, properties, applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Current advances in treatment technologies for removal of emerging contaminants from water – A critical review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213993] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Bagheri AR, Aramesh N, Sher F, Bilal M. Covalent organic frameworks as robust materials for mitigation of environmental pollutants. CHEMOSPHERE 2021; 270:129523. [PMID: 33422996 DOI: 10.1016/j.chemosphere.2020.129523] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Today, one of the main leading global problems is the presence of different pollutants in the environment. These pollutants not only affect human health but also overshadow the life of other creatures. Thus, pollutant treatment has become a challenging issue among the researchers and the scientific community. Different adsorbents and catalysts have been applied to the removal of pollutants. However, the associated limitations like poor chemical and physical stability, low surface area and low binding capacity revived researchers' attention to exploring alternative materials. Covalent organic frameworks (COFs) are versatile materials created based on the strong covalent interactions between blocked monomers. Unique features, including high specific surface area, high chemical-physical stability and crystallinity render COFs an intriguing sorbent and catalyst in treating pollutants. This review spotlights the applications of COFs as distinguished adsorbents to remove hazardous pollutants from the environment. At first, COFs and their properties as alternative materials were introduced. Then, different synthesis approaches of COFs and their advantages and disadvantages were discussed. Furthermore, the applications of COFs outlined to remove a wide variety of pollutants based on adsorption and degradation. Finally, the prospects of COFs for the treatment of pollutants were evaluated.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Farooq Sher
- School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry, CV1 5FB, UK
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
22
|
Lu F, Lin J, Lin C, Qi G, Lin X, Xie Z. Heteroporous 3D covalent organic framework-based magnetic nanospheres for sensitive detection of bisphenol A. Talanta 2021; 231:122343. [PMID: 33965019 DOI: 10.1016/j.talanta.2021.122343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022]
Abstract
Covalent organic frameworks (COFs) showed great promise in effective adsorption of target molecule via size selectivity. Although various magnetic 2D COFs composites have been studied and exhibited the intensive applications, the incorporation of 3D COFs and magnetic nanoparticles to form a new class of magnetic adsorbents with enhanced function still has no reports. Herein, a novel Fe3O4@3D COF with heteroporous structure matching to the sizes of bisphenol A (BPA) was firstly synthesized for better adsorption of BPA than common magnetic 2D-COFs. Three Fe3O4@3D COFs nanospheres were synthesized under the solvothermal conditions in autoclave, and the optimum Fe3O4@3D-COF denoted as Fe3O4@COF-TpTAM (Tp, 1,3,5-triformylphloroglucinol; TAM, tetra(p-aminophenyl)-methane) was selected and employed. Detailed characteristics of Fe3O4@COF-TpTAM were evaluated via various techniques including TEM, FTIR, TGA, XRD and BET. Excellent chemical and thermal stability, high surface area (294.6 m2 g-1) and pore volume (0.2 m3 g-1) with multiple pore sizes comparable with the simulated three-dimensional sizes of BPA were exhibited. A high adsorption capacity of BPA up to 209.9 mg/g that was better than common 2D-COFs was achieved, and the sensitive MSPE-LC-MS method with wide linear range (10-5000 pg/mL), low detection limit (4 pg/mL, S/N = 3) was built. Satisfactory recoveries of BPA as 93.8 ± 1.4%-101.4 ± 5.1% (n = 3) and 100.4 ± 1.9% ~ 107.3 ± 1.2% (n = 3) were obtained in milk and river water samples, respectively. This work demonstrates the promising application of Fe3O4@3D COF as efficient adsorbents of trace BPA, and opens up a new access for the efficient MSPE in sample pretreatment for food or environmental safety analysis.
Collapse
Affiliation(s)
- Feifei Lu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Jian Lin
- Forensic Science Division, Fujian Provincial Department of Public Security, Fuzhou, China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Guomin Qi
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
23
|
Zhong X, Liang W, Wang H, Xue C, Hu B. Aluminum-based metal-organic frameworks (CAU-1) highly efficient UO 22+ and TcO 4- ions immobilization from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124729. [PMID: 33333387 DOI: 10.1016/j.jhazmat.2020.124729] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
In this research, an Al-based metal-organic framework (MOFs), CAU-1 was prepared through complexation between 2-aminoterephthalic acid and Al (III) by solvothermal approach, and simple operation and cost-effective synthetic route. The objective was to immobilize the typical positive/negative radionuclide ions (UO22+/TcO4-) in aqueous solution. The synthesized CAU-1 was characterized by XRD, FT-IR, TGA, FESEM, TEM-SAED, pHpzc, XPS and N2 physisorption analysis. The structure of CAU-1 possessed excellent thermostability, rich functional groups (‒NH2 and ‒OH groups), as well as large surface area (1636.3 m2/g) and the micropore volume (0.51 m3/g). Furthermore, batch experiments demonstrated that CAU-1 with superior adsorption capacity was 648.37 (UO22+) mg/g and 692.33 (ReO4-) mg/g calculating from Langmuir isotherm model, respectively. Thermodynamic investigation showed the adsorption process was endothermic and spontaneous. In addition, the adsorption mechanism of ReO4- ion onto CAU-1 could be electrostatic attraction and chelation effect, while for UO22+ ion, was mainly chelation effect induced by nitrogen-containing and oxygen-containing functional groups. Hence, the inexpensive and high-capacity CAU-1 could be considered as a practical material for sequestrations of radioactive pollutants from water environment.
Collapse
Affiliation(s)
- Xin Zhong
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Wen Liang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Huifang Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Chao Xue
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian Province 350007, PR China.
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| |
Collapse
|
24
|
Zhong X, Liu Y, Liang W, Zhu Y, Hu B. Construction of Core-Shell MOFs@COF Hybrids as a Platform for the Removal of UO 22+ and Eu 3+ Ions from Solution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13883-13895. [PMID: 33689268 DOI: 10.1021/acsami.1c03151] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The binary nanocomposites of metal/covalent-organic frameworks (NH2-MIL-125(Ti)@TpPa-1) were constructed by solvothermal method, which was developed as a multifunctional platform with adsorption and photocatalysis for radionuclides removal. The batch experiments and physicochemical property (FT-IR, XRD, SEM, TEM, XPS, etc.) corroborated: (i) core-shell NH2-MIL-125(Ti)@TpPa-1 had a more stable, multilayer pore structure and abundant active functional groups; (ii) NH2-MIL-125(Ti)@TpPa-1 had fast a removal rate, as well as a high adsorption capacity of 536.73 mg (UO22+)/g and 593.97 mg (Eu3+)/g; (iii) the pseudo-second-order and Langmuir model provided a more reasonable description, indicating the immobilization process was endothermic, spontaneous chemisorption; (iv) the adsorption mechanism was chelation and electrostatic attraction, ascribed to the nitrogen/oxygen-containing functional groups. These results illustrated that NH2-MIL-125(Ti)@TpPa-1 was a prospective adsorbent for the remediation polluted by radionuclides. In addition, the research provided the theoretical basis for further investigation on the UO22+(VI) photoreduction.
Collapse
Affiliation(s)
- Xin Zhong
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P. R. China
| | - Yuxin Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P. R. China
| | - Wen Liang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P. R. China
| | - Yuling Zhu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P. R. China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P. R. China
| |
Collapse
|
25
|
Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions. Innovation (N Y) 2021; 2:100076. [PMID: 34557733 PMCID: PMC8454561 DOI: 10.1016/j.xinn.2021.100076] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/03/2021] [Indexed: 11/05/2022] Open
Abstract
Covalent organic frameworks (COFs) are a new type of crystalline porous polymers known for chemical stability, excellent structural regularity, robust framework, and inherent porosity, making them promising materials for capturing various types of pollutants from aqueous solutions. This review thoroughly presents the recent progress and advances of COFs and COF-based materials as superior adsorbents for the efficient removal of toxic heavy metal ions, radionuclides, and organic pollutants. Information about the interaction mechanisms between various pollutants and COF-based materials are summarized from the macroscopic and microscopic standpoints, including batch experiments, theoretical calculations, and advanced spectroscopy analysis. The adsorption properties of various COF-based materials are assessed and compared with other widely used adsorbents. Several commonly used strategies to enhance COF-based materials' adsorption performance and the relationship between structural property and sorption ability are also discussed. Finally, a summary and perspective on the opportunities and challenges of COFs and COF-based materials are proposed to provide some inspiring information on designing and fabricating COFs and COF-based materials for environmental pollution management.
Collapse
Affiliation(s)
- Xiaolu Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Hongwei Pang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Xuewei Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Qian Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Ning Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, P.R. China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| |
Collapse
|
26
|
Cortés-Arriagada D. Elucidating the co-transport of bisphenol A with polyethylene terephthalate (PET) nanoplastics: A theoretical study of the adsorption mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116192. [PMID: 33338957 DOI: 10.1016/j.envpol.2020.116192] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 05/20/2023]
Abstract
Polyethylene terephthalate (PET) is a possible key component of nanoplastics in water environments, which can migrate pollutants through co-transport. In this regard, the co-transport of endocrine disruptors (such as bisphenol A, BPA) by nanoplastics is of emergent concern because of its cytotoxicity/bioaccumulation effects in aquatic organisms. In this work, a computational study is performed to reveal the BPA adsorption mechanism onto PET nanoplastics (nanoPET). It is found that the outer surface of nanoPET has a nucleophilic nature, allowing to increase the mass transfer and intraparticle diffusion into the nanoplastic to form stable complexes by inner and outer surface adsorption. The maximum adsorption energy is similar (even higher) in magnitude with respect to nanostructured adsorbents such as graphene, carbon nanotubes, activated carbon, and inorganic surfaces, indicating the worrying adsorption properties of nanoPET. The adsorption mechanism is driven by the interplay of dispersion (38-49%) and electrostatics effects (43-50%); specifically, dispersion effects dominate the inner surface adsorption, while electrostatics energies dominate the outer surface adsorption. It is also determined that π-π stacking is not a reliable interaction mechanism for aromatics on nanoPET. The formed complexes are also highly soluble, and water molecules behave as non-competitive factors, establishing the high risk of nanoPET to adsorb and migrate pollutants in water ecosystems. Furthermore, the adsorption performance is decreased (but not inhibited) at high ionic strength in salt-containing waters. Finally, these results give relevant information for environmental risk assessment, such as quantitative data and interaction mechanisms for non-biodegradable nanoplastics that establish strong interactions with pollutants in water.
Collapse
Affiliation(s)
- Diego Cortés-Arriagada
- Programa Institucional de Fomento a La Investigación, Desarrollo e Innovación. Universidad Tecnológica Metropolitana. Ignacio Valdivieso, 2409, San Joaquín, Santiago, Chile.
| |
Collapse
|
27
|
Ghahghaey Z, Hekmati M, Darvish Ganji M. Theoretical investigation of phenol adsorption on functionalized graphene using DFT calculations for effective removal of organic contaminants from wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions. Innovation (N Y) 2021; 2:100076. [DOI: https:/doi.org/10.1016/j.xinn.2021.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
|
29
|
Du XC, Zhu JH, Quan ZJ, Wang XC. Adsorption of rhodamine B by organic porous materials rich in nitrogen, oxygen, and sulfur heteroatoms. NEW J CHEM 2021. [DOI: 10.1039/d0nj05750a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rhodamine B is a non-degradable carcinogenic dye, so it is of great significance to remove rhodamine B from wastewater.
Collapse
Affiliation(s)
- Xiao-Cheng Du
- International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Ji-Hua Zhu
- International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Zheng-Jun Quan
- International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Xi-Cun Wang
- International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|
30
|
Mazurek AH, Szeleszczuk Ł, Simonson T, Pisklak DM. Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens. Int J Mol Sci 2020; 21:E6411. [PMID: 32899216 PMCID: PMC7504198 DOI: 10.3390/ijms21176411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, applications of various molecular modelling methods in the study of estrogens and xenoestrogens are summarized. Selected biomolecules that are the most commonly chosen as molecular modelling objects in this field are presented. In most of the reviewed works, ligand docking using solely force field methods was performed, employing various molecular targets involved in metabolism and action of estrogens. Other molecular modelling methods such as molecular dynamics and combined quantum mechanics with molecular mechanics have also been successfully used to predict the properties of estrogens and xenoestrogens. Among published works, a great number also focused on the application of different types of quantitative structure-activity relationship (QSAR) analyses to examine estrogen's structures and activities. Although the interactions between estrogens and xenoestrogens with various proteins are the most commonly studied, other aspects such as penetration of estrogens through lipid bilayers or their ability to adsorb on different materials are also explored using theoretical calculations. Apart from molecular mechanics and statistical methods, quantum mechanics calculations are also employed in the studies of estrogens and xenoestrogens. Their applications include computation of spectroscopic properties, both vibrational and Nuclear Magnetic Resonance (NMR), and also in quantum molecular dynamics simulations and crystal structure prediction. The main aim of this review is to present the great potential and versatility of various molecular modelling methods in the studies on estrogens and xenoestrogens.
Collapse
Affiliation(s)
- Anna Helena Mazurek
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| | - Łukasz Szeleszczuk
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91-120 Palaiseau, France;
| | - Dariusz Maciej Pisklak
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| |
Collapse
|
31
|
Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1923-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Mo C, Faheem M, Aziz S, Jian S, Xue W, Yuyang T, Shuang D, Guangshan Z. Hydroxyl porous aromatic frameworks for efficient adsorption of organic micropollutants in water. RSC Adv 2020; 10:26335-26341. [PMID: 35519788 PMCID: PMC9055414 DOI: 10.1039/d0ra04222f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/30/2020] [Indexed: 12/02/2022] Open
Abstract
Environmental pollution is an important issue in sustainable human development. People give great importance to environmental protection, especially with regards to increasingly scarce water resources. Water pollution is becoming more and more serious due to the existence of organic micropollutants. As a platform with good stability, porous aromatic frameworks (PAFs) have been widely studied. Because of their high surface area and thermal stability, they are considered to be a good sewage treatment agent. However, the aromatic nature of PAFs makes their skeletons mostly hydrophobic. This characteristic of PAFs seriously affects their diffusion rate in water as an adsorbent, resulting in a low adsorption rate. In this work, we synthesized a series of hydroxyl functionalized porous aromatic frameworks (PAF-80, PAF-81, and PAF-82) via the Sonogashira–Hagihara cross-coupling reaction, which created polar motifs on the hydrophobic surfaces, and carried out adsorption tests on typical organic micropollutants in water such as bisphenol A (BPA), 2-naphthol (2-NO) and p-chloroxylenol (PCMX). Among the three PAFs, PAF-82 exhibited the highest BET surface area, polar active sites, and a high degree of conjugation, which led to the best adsorption performance compared to that of PAF-80 and PAF-81. The Langmuir adsorption capacity of PAF-82 for BPA, 2-NO, and PCMX is 689 mg g−1, 431 mg g−1, and 480 mg g−1, respectively, which surpasses most previously reported adsorbents. In addition, after 5 cycles of regeneration, it still maintained a high removal rate for pollutants. The obtained results reveal that micropollutant adsorption in water is not controlled by a single factor, but is the result of a synergy of multiple factors, including specific surface area, polar functional groups, pore size distribution, and skeleton conjugation. Our study has revealed the great potential of hydroxyl PAFs for efficient adsorption of organic micropollutants in water. A series of hydroxyl functionalized PAF materials (PAF-80, PAF-81, and PAF-82) were synthesized, which create polar channels to the hydrophobic surfaces and explored as efficient adsorption of organic micropollutants in water.![]()
Collapse
Affiliation(s)
- Chen Mo
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Muhammad Faheem
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Saba Aziz
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Song Jian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Wang Xue
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Tian Yuyang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Ding Shuang
- Institute for Interdisciplinary Biomass Functional Materials Studies
- Jilin Engineering Normal University
- Changchun 130052
- P. R. China
| | - Zhu Guangshan
- Key Laboratory of Polyoxometalate Science of the Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|