1
|
Ma B, Zhu X, Li Z, Chen Q, Shu Q, Liu Y. Enhancement of mannosylerythritol lipid-A on physicochemical stability, antioxidant activity, and bioavailability of bovine lactoferrin emulsion under different pH conditions. Int J Biol Macromol 2024; 283:137669. [PMID: 39547622 DOI: 10.1016/j.ijbiomac.2024.137669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
This study systematically explored the enhancement of mannosylerythritol lipid-A (MEL-A) on physicochemical stability, antioxidant activity, and bioavailability of bovine lactoferrin (BLF) emulsion under different pH conditions by spectroscopic techniques, molecular simulation, and simulated in vitro digestion model. The bovine lactoferrin-MEL-A (BLF-MEL-A) emulsions were prepared and characterized with the Fourier infrared, of which results showed that high concentration MEL-A (1.00 mg/mL) changed the secondary structure of pH-induced BLF and rendered an increase in β-sheet and random coil fractions. Based on the results of fluorescence spectrum and isothermal titration calorimetry, hydrogen bonding, van der Waals forces, and electrostatic force were the interaction forces of BLF and MEL-A, which were similar to the simulated data of molecular docking and molecular dynamics. BLF-MEL-A emulsion also exerted considerable antioxidant activities and had great potential for functional food development. In addition, MEL-A could improve the stability of BLF emulsion in simulated in vitro digestion test, which promoted the bioavailability of BLF. Therefore, this study will facilitate to explore the interaction between BLF and MEL-A and expand the application of MEL-A as a food additive in food industry.
Collapse
Affiliation(s)
- Bohan Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Xiaopeng Zhu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Qin Shu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
2
|
Mikaelian G, Megariotis G, Theodorou DN. Interactions of a Novel Anthracycline with Oligonucleotide DNA and Cyclodextrins in an Aqueous Environment. J Phys Chem B 2024; 128:6291-6307. [PMID: 38899795 PMCID: PMC11228990 DOI: 10.1021/acs.jpcb.4c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Berubicin, a chemotherapy medication belonging to the class of anthracyclines, is simulated in double-stranded DNA sequences and cyclodextrins in an aqueous environment via full-atom molecular dynamics simulations on the time scale of microseconds. The drug is studied in both the neutral and protonated states so as to better comprehend the role of its charge in the formed complexes. The noncovalent berubicin-DNA and berubicin-cyclodextrin complexes are investigated in detail, paying special attention to their thermodynamic description by employing the double decoupling method, the solvent balance method, the weighted solvent accessible surface model, and the linear interaction energy method. A novel approach for extracting the desolvation thermodynamics of the binding process is also presented. Both the binding and desolvation Gibbs energies are decomposed into entropic and enthalpic contributions so as to elucidate the nature of complexation and its driving forces. Selected structural and geometrical properties of all the complexes, which are all stable, are analyzed. Both cyclodextrins under consideration are widely utilized for drug delivery purposes, and a comparative investigation between their bound states with berubicin is carried out.
Collapse
Affiliation(s)
- Georgios Mikaelian
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
| | - Grigorios Megariotis
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
- School
of Engineering, Department of Mineral Resources Engineering, University of Western Macedonia, 50100 Kozani, Greece
| | - Doros N. Theodorou
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
| |
Collapse
|
3
|
Shah S, Famta P, Vambhurkar G, Bagasariya D, Kumar KC, Srinivasarao DA, Begum N, Sharma A, Shahrukh S, Jain N, Khatri DK, Srivastava S. Sulfo-butyl ether β-cyclodextrin inclusion complexes of bosutinib: in silico, in vitro and in vivo evaluation in attenuating the fast-fed variability. Drug Deliv Transl Res 2024; 14:1218-1231. [PMID: 37903963 DOI: 10.1007/s13346-023-01453-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
Bosutinib (BOS) is a BCS class IV drug that shows low oral bioavailability and high fast-fed variability. Various pharmaceutical formulations have been explored thus far in order to improve its bioavailability while avoiding fast-fed variability. In the present study, we explored cyclodextrin (CD) complexation strategy to overcome the aforementioned disadvantages associated with BOS. CD complexation is a simple, versatile and economic approach that enables formation of inclusion complexes, thereby improving aqueous solubility while nullifying pH-dependent solubility and fast-fed variability for poorly soluble drugs. Initially, we performed molecular dynamics and docking studies to select appropriate CD derivative. The results of in silico studies revealed that sulfo-butyl ether β-cyclodextrin (SBE-CD) offered superior binding affinity with BOS. Further, Job's plot revealed that 1:1 stoichiometry of BOS and CD resulted in enhancement of BOS solubility up to ~ 132.6-folds. In vitro release studies in bio-relevant media (fasted and fed state simulated gastric and intestinal fluids) revealed higher drug release while overcoming its pH-dependent solubility. In vitro studies on K562 cells demonstrated a 1.83-fold enhancement in cytotoxicity due to enhanced ROS production and G2/M phase arrest.In vivo pharmacokinetic studies in Sprague-Dawley rats revealed insignificant fast-fed variability with AUCfast/fed 0.9493 and Cmaxfast/fed 0.8291 being closer to 1 in comparison with BOS. Hence, we conclude that SBE-CD complexation could be a promising approach in diminishing fast-fed variability of BOS.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nusrat Begum
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
4
|
Ferrero R, Pantaleone S, Gho CI, Hoti G, Trotta F, Brunella V, Corno M. Unveiling the synergy: a combined experimental and theoretical study of β-cyclodextrin with melatonin. J Mater Chem B 2024; 12:4004-4017. [PMID: 38568714 DOI: 10.1039/d3tb02795c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Melatonin (MT) is a vital hormone controlling biorhythms, and optimizing its release in the human body is crucial. To address MT's unfavorable pharmacokinetics, we explored the inclusion complexes of MT with β-cyclodextrin (β-CD). Nano spray drying was applied to efficiently synthesize these complexes in three molar ratios (MT : β-CD = 1 : 1, 2 : 1, and 1 : 2), reducing reagent use and expediting inclusion. The complex powders were characterized through thermal analyses (TGA and DSC), Fourier transform infrared spectroscopy (FTIR), and in vitro MT release measurements via high-performance liquid chromatography (HPLC). In parallel, computational studies were conducted, examining the stability of MT : β-CD complexes by means of unbiased semi-empirical conformational searches refined by DFT, which produced a distribution of MT : β-CD binding enthalpies. Computational findings highlighted that these complexes are stabilized by specific hydrogen bonds and non-specific dispersive forces, with stronger binding in the 1 : 1 complex, which was corroborated by in vitro release data. Furthermore, the alignment between simulated and experimental FTIR spectra demonstrated the quality of both the structural model and computational methodology, which was crucial to enhance our comprehension of optimizing MT's release for therapeutic applications.
Collapse
Affiliation(s)
- Riccardo Ferrero
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Stefano Pantaleone
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Cecilia Irene Gho
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Gjylije Hoti
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Francesco Trotta
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Valentina Brunella
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Marta Corno
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
5
|
Spasova M, Stoyanova N, Stoilova O. Electrospun Materials Based on Cellulose Acetate Loaded with Rosmarinic Acid with Antioxidant and Antifungal Properties. Biomimetics (Basel) 2024; 9:152. [PMID: 38534837 DOI: 10.3390/biomimetics9030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Fibrous cellulose acetate (CA) materials loaded with rosmarinic acid (RA) were successfully created by one-pot electrospinning. In order to improve the water solubility of the polyphenolic acid and to facilitate its release from the fibrous materials, the non-ionic water-soluble polyethylene glycol (PEG) was added. Detailed characterization of the fabricated fibrous CA/RA and CA/PEG/RA materials was performed using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), UV-Vis spectroscopy and water contact angle analysis. The optimal ratio between CA, RA and PEG for preparation of defect-free and uniform fibers was accomplished by varying their concentrations. Furthermore, the incorporation of the PEG improved the hydrophilicity and wettability of the fibrous CA materials. Moreover, PEG facilitated the RA release and over 360 min, the amount released from fibrous CA/PEG/RA fibers was 91%, while that released from CA/RA materials was 53%. Both of the RA-containing fibrous materials, with and without PEG, manifested high antioxidant activity as determined by the DPPH free radical-scavenging method. In addition, the electrospun CA/PEG/RA materials displayed good antifungal activity against C. albicans. These features make the fibrous CA/PEG/RA materials promising candidates for treatment of wound infections.
Collapse
Affiliation(s)
- Mariya Spasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Olya Stoilova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Song L, García Martín JF, Zhang QA. Encapsulation of Benzaldehyde Produced by the Eco-Friendly Degradation of Amygdalin in the Apricot Kernel Debitterizing Wastewater. Foods 2024; 13:437. [PMID: 38338572 PMCID: PMC10855923 DOI: 10.3390/foods13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In order to fully utilize the by-products of apricot kernel-debitterizing and address the chemical instability of benzaldehyde in the food industry, benzaldehyde was first prepared by adding the apricot kernel powder to degrade the amygdalin present in the apricot kernel-debitterizing water. Subsequently, β-cyclodextrin was employed to encapsulate the benzaldehyde, and its encapsulation efficacy was evaluated through various techniques including Fourier transform infrared spectroscopy, thermogravimetric analysis, release kinetics fitting inhibitory effect and the effect on Botrytis cinerea. Finally, the encapsulation was explored via molecular docking and molecular dynamics simulations. The results indicate that the optimal preparation conditions for the benzaldehyde were 1.8 h, 53 °C and pH 5.8, and the encapsulation of benzaldehyde with β-cyclodextrin (wall-core ratio of 5:1, mL/g) has been verified by the deceleration in the release rate, the enhanced thermal stability and the prolonged inhibition effect against Botrytis cinerea. The encapsulation proceeded spontaneously without steric hindrance in the simulation, which led to a reduction in the hydrophobic cavity of β-cyclodextrin. In conclusion, the amygdalin in the debitterizing wastewater can be degraded in an eco-friendly way to produce benzaldehyde by adding apricot kernel powder, which contains β-glucosidase; the encapsulation of benzaldehyde is stable, thus enhancing the utilization of amygdalin in the debitterizing wastewater of apricot kernels.
Collapse
Affiliation(s)
- Lei Song
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an 710119, China
| | | | - Qing-An Zhang
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
7
|
Chen LH, Hu JN. Development of nano-delivery systems for loaded bioactive compounds: using molecular dynamics simulations. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38206576 DOI: 10.1080/10408398.2023.2301427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Over the past decade, a remarkable surge in the development of functional nano-delivery systems loaded with bioactive compounds for healthcare has been witnessed. Notably, the demanding requirements of high solubility, prolonged circulation, high tissue penetration capability, and strong targeting ability of nanocarriers have posed interdisciplinary research challenges to the community. While extensive experimental studies have been conducted to understand the construction of nano-delivery systems and their metabolic behavior in vivo, less is known about these molecular mechanisms and kinetic pathways during their metabolic process in vivo, and lacking effective means for high-throughput screening. Molecular dynamics (MD) simulation techniques provide a reliable tool for investigating the design of nano-delivery carriers encapsulating these functional ingredients, elucidating the synthesis, translocation, and delivery of nanocarriers. This review introduces the basic MD principles, discusses how to apply MD simulation to design nanocarriers, evaluates the ability of nanocarriers to adhere to or cross gastrointestinal mucosa, and regulates plasma proteins in vivo. Moreover, we presented the critical role of MD simulation in developing delivery systems for precise nutrition and prospects for the future. This review aims to provide insights into the implications of MD simulation techniques for designing and optimizing nano-delivery systems in the healthcare food industry.
Collapse
Affiliation(s)
- Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
8
|
Yang X, Zhao D, Ge S, Bian P, Xue H, Lang Y. Alginate-based edible coating with oregano essential oil/β-cyclodextrin inclusion complex for chicken breast preservation. Int J Biol Macromol 2023; 251:126126. [PMID: 37541460 DOI: 10.1016/j.ijbiomac.2023.126126] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
A sodium alginate (SA) edible coating containing oregano essential oil (OEO)/β-cyclodextrin (β-CD) inclusion complexes (SA/OEO-MP coating) was developed to extend the shelf life of fresh chicken breast during refrigeration storage. First, OEO was inserted into the hydrophobic interior of β-CD to form an inclusion complex (OEO-MP) that maintained its excellent antioxidant and antibacterial activities. The formed OEO-MP was characterized using fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). In addition, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results demonstrated that β-CD could improve the thermal stability of OEO. The encapsulation efficiency reached 71.6 %, and OEO was released continuously from the OEO-MP. The lipid oxidation, total viable count (TVC) and sensory properties of chicken breasts were regularly monitored when OEO-MP was incorporated into the SA coating for chicken breast preservation. Compared with the uncoated group, the SA/OEO-MP-coated groups showed significantly reduced increases in pH, thiobarbituric acid reactive substances (TBARS), total volatile base nitrogen (TVB-N), and TVC, especially in the SA/OEO-MP1 group. In summary, the SA/OEO-MP coating could preserve the chicken breast by reducing lipid oxidation and inhibiting the proliferation of microorganisms. It would be developed as a prospective edible packaging for chicken preservation.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China.
| | - Dongxue Zhao
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Shaohui Ge
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Pengsha Bian
- Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Hongmei Xue
- Department of Clinical Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Yumiao Lang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China.
| |
Collapse
|
9
|
Liu G, Li Z, Li Z, Hao C, Liu Y. Molecular dynamics simulation and in vitro digestion to examine the impact of theaflavin on the digestibility and structural properties of myosin. Int J Biol Macromol 2023; 247:125836. [PMID: 37455005 DOI: 10.1016/j.ijbiomac.2023.125836] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
In this study, the interaction mechanism between theaflavin and myosin was explored to confirm the potential application of theaflavin in the meat protein system. A series of theaflavin and myosin solutions were prepared for spectroscopic studies. Spectroscopy results showed that theaflavins formed complexes with myosin and affected the microenvironment of myosin. And that addition of theaflavin cause static quenching of the myosin solution. Theaflavin and bovine myosin combined through hydrophobic interaction to form a complex, and gradually increasing the temperature was conducive to the binding of theaflavin and bovine myosin. This interaction results in a decrease in the α -helix content of myosin. Molecular dynamics simulation results confirmed that hydrophobic interactions and hydrogen bonds made the protein structure more compact and stable. And the in vitro digestion process was simulated. The results showed that the addition of theaflavin could significantly reduce the digestibility of myosin.
Collapse
Affiliation(s)
- Guanxu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zhixi Li
- College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Changchun Hao
- College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
10
|
Sangkhawasi M, Kerdpol K, Ismail A, Nutho B, Hanpiboon C, Wolschann P, Krusong K, Rungrotmongkol T, Hannongbua S. In Vitro and In Silico Study on the Molecular Encapsulation of α-Tocopherol in a Large-Ring Cyclodextrin. Int J Mol Sci 2023; 24:ijms24054425. [PMID: 36901859 PMCID: PMC10002136 DOI: 10.3390/ijms24054425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
α-tocopherol is the physiologically most active form of vitamin E, with numerous biological activities, such as significant antioxidant activity, anticancer capabilities, and anti-aging properties. However, its low water solubility has limited its potential use in the food, cosmetic, and pharmaceutical industries. One possible strategy for addressing this issue is the use of a supramolecular complex with large-ring cyclodextrins (LR-CDs). In this study, the phase solubility of the CD26/α-tocopherol complex was investigated to assess the possible ratios between host and guest in the solution phase. Next, the host-guest association of the CD26/α-tocopherol complex at different ratios of 1:2, 1:4, 1:6, 2:1, 4:1, and 6:1 was studied by all-atom molecular dynamics (MD) simulations. At 1:2 ratio, two α-tocopherol units interact spontaneously with CD26, forming an inclusion complex, as supported by the experimental data. In the 2:1 ratio, a single α-tocopherol unit was encapsulated by two CD26 molecules. In comparison, increasing the number of α-tocopherol or CD26 molecules above two led to self-aggregation and consequently limited the solubility of α-tocopherol. The computational and experimental results indicate that a 1:2 ratio could be the most suitable stoichiometry to use in the CD26/α-tocopherol complex to improve α-tocopherol solubility and stability in inclusion complex formation.
Collapse
Affiliation(s)
- Mattanun Sangkhawasi
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khanittha Kerdpol
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Abbas Ismail
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Chonnikan Hanpiboon
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.R.); (S.H.); Tel.: +66-2218-5426 (T.R.); +66-8163-61957 (S.H.)
| | - Supot Hannongbua
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.R.); (S.H.); Tel.: +66-2218-5426 (T.R.); +66-8163-61957 (S.H.)
| |
Collapse
|
11
|
Xu PW, Yuan XF, Li H, Zhu Y, Zhao B. Preparation, characterization, and physicochemical property of the inclusion complexes of Cannabisin A with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Liu HN, Jiang XX, Naeem A, Chen FC, Wang L, Liu YX, Li Z, Ming LS. Fabrication and Characterization of β-Cyclodextrin/ Mosla Chinensis Essential Oil Inclusion Complexes: Experimental Design and Molecular Modeling. Molecules 2022; 28:37. [PMID: 36615232 PMCID: PMC9822264 DOI: 10.3390/molecules28010037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Essential oils (EOs) are primarily isolated from medicinal plants and possess various biological properties. However, their low water solubility and volatility substantially limit their application potential. Therefore, the aim of the current study was to improve the solubility and stability of the Mosla Chinensis (M. Chinensis) EO by forming an inclusion complex (IC) with β-cyclodextrin (β-CD). Furthermore, the IC formation process was investigated using experimental techniques and molecular modeling. The major components of M. Chinensis 'Jiangxiangru' EOs were carvacrol, thymol, o-cymene, and terpinene, and its IC with β-CD were prepared using the ultrasonication method. Multivariable optimization was studied using a Plackett-Burman design (step 1, identifying key parameters) followed by a central composite design for optimization of the parameters (step 2, optimizing the key parameters). SEM, FT-IR, TGA, and dissolution experiments were performed to analyze the physicochemical properties of the ICs. In addition, the interaction between EO and β-CD was further investigated using phase solubility, molecular docking, and molecular simulation studies. The results showed that the optimal encapsulation efficiency and loading capacity of EO in the ICs were 86.17% and 8.92%, respectively. Results of physicochemical properties were different after being encapsulated, indicating that the ICs had been successfully fabricated. Additionally, molecular docking and dynamics simulation showed that β-CD could encapsulate the EO component (carvacrol) via noncovalent interactions. In conclusion, a comprehensive methodology was developed for determining key parameters under multivariate conditions by utilizing two-step optimization experiments to obtain ICs of EO with β-CD. Furthermore, molecular modeling was used to study the mechanisms involved in molecular inclusion complexation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Liang-Shan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
13
|
Aksamija A, Tomao V, Dangles O, Plasson R. Encapsulation of phenolic acids into cyclodextrins: A global statistical analysis of the effects of pH, temperature and concentrations on binding constants measured by ACE methods. Electrophoresis 2022; 43:2290-2301. [PMID: 35689604 PMCID: PMC10083966 DOI: 10.1002/elps.202200075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
Affinity capillary electrophoresis was used for the simultaneous measurement of the pKa values and of the binding constants relative to the encapsulation of naturally occurring phenolic acids (rosmarinic and caffeic acids) with cyclodextrins. A thorough study as a function of pH and temperature was coupled to a detailed statistical analysis of the resulting experimental data. A step-by-step curve fitting process was sufficient for obtaining individual binding constant for each experimental condition, but the influence of temperature remained unclear. A quantitative and qualitative gain was then obtained by supplementing this initial analysis with global multiparameter optimization. This leads to the estimation of both entropy and enthalpy of reaction and to the full description of the binding reactions as a function of pH and temperature. The encapsulation was shown to be very sensitive to pH and temperature, with optimal complexation occurring at low pH and low temperature, gaining up to a factor of 3 by cooling from 36 to 15°C, and up to a factor of 10 by lowering the pH from 7 to 2.
Collapse
Affiliation(s)
- Amra Aksamija
- Department of Chemistry, Avignon University, CNRS, UMR5247 CBSA/IBMM, Avignon, France
| | - Valérie Tomao
- Department of Chemistry, Avignon University, INRAE, UMR408 SQPOV, Avignon, France
| | - Olivier Dangles
- Department of Chemistry, Avignon University, INRAE, UMR408 SQPOV, Avignon, France
| | - Raphaël Plasson
- Department of Chemistry, Avignon University, INRAE, UMR408 SQPOV, Avignon, France
| |
Collapse
|
14
|
Veras KS, Fachel FNS, Bassani VL, Teixeira HF, Koester LS. Cyclodextrin-Based Delivery Systems and Hydroxycinnamic Acids: Interactions and Effects on Crucial Parameters Influencing Oral Bioavailability-A Review. Pharmaceutics 2022; 14:pharmaceutics14112530. [PMID: 36432720 PMCID: PMC9699215 DOI: 10.3390/pharmaceutics14112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Hydroxycinnamic acids (HCAs) are a subclass of phenolic acids presenting caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA), and rosmarinic acid (RA) as the major representants, being broadly distributed into vegetal species and showing a range of biological potentials. Due to the low oral bioavailability of the HCAs, the development of delivery systems to promote better administration by the oral route is demanding. Among the systems, cyclodextrin (CD)-based delivery systems emerge as an important technology to solve this issue. Regarding these aspects, in this review, CD-based delivery systems containing HCAs are displayed, described, and discussed concerning the degree of interaction and their effects on crucial parameters that affect the oral bioavailability of HCAs.
Collapse
|
15
|
Wang H, Zhang H, Liu Q, Xia X, Chen Q, Kong B. Exploration of interaction between porcine myofibrillar proteins and selected ketones by GC–MS, multiple spectroscopy, and molecular docking approaches. Food Res Int 2022; 160:111624. [DOI: 10.1016/j.foodres.2022.111624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/14/2023]
|
16
|
Modified β-cyclodextrins: Rosmarinic acid inclusion complexes as functional food ingredients show improved operations (solubility, stability and antioxidant activity). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Wen H, Zhang D, Liu J, Shang X, Liu X, Du Z, Zhang T. Application of γ-cyclodextrin-lysozyme as host materials for encapsulation of curcumin: characterization, stability, and controlled release properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5925-5934. [PMID: 35437803 DOI: 10.1002/jsfa.11943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In this study, a safe and relatively stable γ-cyclodextrin-lysozyme (γ-CD-Lys) was synthesized using epichlorohydrin as the cross-linking agent, and curcumin was successfully encapsulated in γ-CD-Lys. RESULTS The successful Lys grafting onto γ-CD can be demonstrated by a high grafting ratio (79.02%) and was further confirmed by Fourier transform infrared (FTIR) band shifts and the new signal obtained at δ 2.75 in proton nuclear magnetic resonance. The encapsulation efficiency value of γ-CD-Lys was 76.74%, and the successful encapsulation of curcumin into γ-CD-Lys was confirmed by crystal structure change, increased melting point, and FTIR band shifts. The intermolecular bonds results suggested that associative forces between curcumin and γ-CD-Lys were electrostatic interaction, hydrogen bonds interaction, and hydrophobic interaction. The designed nanoparticles had excellent stability at low pH and low salt concentration. The release rate of these nanoparticles was inhibited in simulated gastric conditions, whereas it increased significantly in intestinal media. Simulated gastrointestinal digestion experiments further confirmed that nanoparticles showed higher bioaccessibility (86.05%) compared with curcumin (58.82%). CONCLUSION Overall, our study showed that the nanoparticles were highly promising for delivering curcumin because of their enhanced functional attributes and stabilization in acid or low salt environments. Also, it was an excellent wall material for targeting hydrophobic bioactive compounds in the intestinal tract via oral administration. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hedi Wen
- Jilin Provincial Key Laboratory of Nutrition and Functional Food & College of Food Science and Engineering, Jilin University, Changchun, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food & College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food & College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food & College of Food Science and Engineering, Jilin University, Changchun, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food & College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food & College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
18
|
Molecular simulation and experimental study on the inclusion of rutin with β-cyclodextrin and its derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Technological strategies applied for rosmarinic acid delivery through different routes – A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Deng C, Cao C, Zhang Y, Hu J, Gong Y, Zheng M, Zhou Y. Formation and stabilization mechanism of β-cyclodextrin inclusion complex with C10 aroma molecules. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Molecular encapsulation of emodin with various β-cyclodextrin derivatives: A computational study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Li H, Zhao QS, Chang SL, Chang TR, Tan MH, Zhao B. Development of cannabidiol full-spectrum oil/2,6-di-O-methyl-β-cyclodextrin inclusion complex with enhanced water solubility, bioactivity, and thermal stability. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Li H, Zhao Q, Wang L, Wang P, Zhao B. Cannabidiol/hydroxypropyl-β-cyclodextrin inclusion complex: structure analysis, release behavior, permeability, and bioactivity under in vitro digestion. NEW J CHEM 2022. [DOI: 10.1039/d1nj05998j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The inclusion complex of CBD greatly improved its release performance and bioactivity.
Collapse
Affiliation(s)
- Hang Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingsheng Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peidong Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
24
|
Han X, Zhu P, Zhang G. Novel β-cyclodextrin based copolymers: fabrication, characterization and in vitro release behavior. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:77-92. [PMID: 34602005 DOI: 10.1080/09205063.2021.1980358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A novel cyclodextrin-contained copolymer poly(AAc-co-SA-AC-co-allyl-β-CD) was synthesized based on the method of redox radical polymerization. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR) spectra were used to study the structure of the obtained copolymer. The molecular weight of the copolymer was studied by gel permeation chromatography (GPC). The polymeric nanoparticles (NPs) were fabricated by a solvent evaporation method. The morphology and particle size distribution of the cargo-free NPs were investigated with transmission electron microscope (TEM), atomic force microscope (AFM), and laser particle analyzer, respectively. Curcumin (Cur) was selected as a model drug and encapsulated into the above NPs. The distribution of Cur in the drug-loaded NPs was analyzed by the method of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Moreover, the release profiles of Cur from Cur-loaded NPs were studied in pH 6.8 and 7.4 buffers. The results of FTIR and 1H NMR spectra confirmed the successful synthesis of poly(AAc-co-SA-AC-co-allyl-β-CD). GPC curve proved that the molecular weight of the copolymer was more than 60 kDa. TEM and AFM images illustrated that the cargo-free NPs were in spherical shape with a diameter about 40 nm. XRD patterns and DSC curves indicated that most of Cur distributed in the Cur-loaded NPs with amorphous state. Importantly, the medicated NPs showed sustained release characteristics toward Cur.
Collapse
Affiliation(s)
- Xiao Han
- College of Equipment Management and Supportability, Engineering University of People's Armed Police, Xi'an, Shaanxi, China
| | - Pinpin Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Guoquan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Elucidation of interaction mechanisms between myofibrillar proteins and ethyl octanoate by SPME-GC-MS, molecular docking and dynamics simulation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Wang H, Xia X, Yin X, Liu H, Chen Q, Kong B. Investigation of molecular mechanisms of interaction between myofibrillar proteins and 1-heptanol by multiple spectroscopy and molecular docking methods. Int J Biol Macromol 2021; 193:672-680. [PMID: 34710478 DOI: 10.1016/j.ijbiomac.2021.10.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023]
Abstract
In this study, we investigated the interaction between myofibrillar proteins (MPs) and selected alcohols (1-pentanol, 1-hexanol, and 1-heptanol). Only 1-heptanol exhibited the binding ability to MPs, and the binding ability significantly increased with increasing protein concentration (p < 0.05). In addition, both static and dynamic quenching occurred during the interaction, with a red shift of the maximum absorption peak in the synchronous fluorescence spectra indicating a change in the microenvironment of the MPs. The results of circular dichroism measurements suggested that the interaction between MPs and 1-heptanol altered the secondary structure of the MPs. Furthermore, thermodynamic analysis showed that hydrogen bonding and van der Waals forces dominated the interaction between MPs and 1-heptanol, which was confirmed by the results of molecular docking/dynamics simulations. This study provides an in-depth understanding of the interaction between MPs and alcohols, which can help to improve the flavor control in meat.
Collapse
Affiliation(s)
- Haitang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoyu Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
27
|
Native Cyclodextrins and Their Derivatives as Potential Additives for Food Packaging: A Review. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclodextrins (CDs) have been used by the pharmaceutical and food industries since the 1970s. Their cavities allow the accommodation of several hydrophobic molecules, leading to the formation of inclusion complexes (ICs) increasing the guest molecules’ stability, allowing their controlled release, enhancing their water solubility and biodisponibility. Due to these, CDs and their ICs have been proposed to be used as potential allies in food packaging, especially in active packaging. In this review, we present the many ways in which the CDs can be applied in food packaging, being incorporated into the polymer matrix or as a constituent of sachets and/or pads aiming for food preservation, as well as the diverse polymer matrices investigated. The different types of CDs, natives and derivatives, and the several types of compounds that can be used as guest molecules are also discussed.
Collapse
|
28
|
Marchev AS, Vasileva LV, Amirova KM, Savova MS, Koycheva IK, Balcheva-Sivenova ZP, Vasileva SM, Georgiev MI. Rosmarinic acid - From bench to valuable applications in food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Bayat F, Homami SS, Monzavi A, Talei Bavil Olyai MR. A combined molecular docking and molecular dynamics simulation approach to probing the host–guest interactions of Ataluren with natural and modified cyclodextrins. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1991921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Farhad Bayat
- Deptartment of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran
- Department of Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Saied Homami
- Deptartment of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amirhossein Monzavi
- Deptartment of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
30
|
Rosmarinic Acid and Ulvan from Terrestrial and Marine Sources in Anti-Microbial Bionanosystems and Biomaterials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to increase their sustainability, antimicrobial renewable molecules are fundamental additions to consumer goods. Rosmarinic acid is extracted from several terrestrial plants and represents an effective anti-microbial agent. Ulvan, extracted from algae, is an anti-microbial polysaccharide. The present review is dedicated to discussing the sources and the extraction methodologies for obtaining rosmarinic acid and ulvan. Moreover, the preparation of bioanosystems, integrating the two molecules with organic or inorganic substrates, are reviewed as methodologies to increase their effectiveness and stability. Finally, the possibility of preparing functional biomaterials and anti-microbial final products is discussed, considering scientific literature. The performed analysis indicated that the production of both molecules is not yet performed with mature industrial technologies. Nevertheless, both molecules could potentially be used in the packaging, biomedical, pharmaceutical, cosmetic, sanitary and personal care sectors, despite some research being required for developing functional materials with specific properties to pave the way for many more applications.
Collapse
|
31
|
Rezaeisadat M, Salehi N, Bordbar AK. Inclusion of Levodopa into β-Cyclodextrin: A Comprehensive Computational Study. ACS OMEGA 2021; 6:23814-23825. [PMID: 34568661 PMCID: PMC8459354 DOI: 10.1021/acsomega.1c02637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
This study focused on the inclusion of levodopa (LVDP) into β-cyclodextrin (BCD) using various computational methods such as quantum mechanics (QM), molecular dynamics/steered molecular dynamics (MD/SMD), and QM/molecular mechanics/Poison-Boltzmann surface area (QM/MM/PBSA). The QM results assigned the most significant charge-transfer atoms and the higher stability of LVDP in the aqueous phase. The MD results indicate the formation of a 1:1 complex with a reasonable estimation of the effective radius of the complex, the significant contribution of hydrogen bonding in the binding energy, and the enhancement of the water solubility of LVDP. By accounting for the water hydrogen bonds and their dipolar effects, QM/MM calculations lead to the more accurate IR spectrum and binding energy of the BCD-LVDP complex. By considering carboxylic and amine functional groups' more precise arrangement, QM/MM assigns stronger hydrogen bonds between LVDP and BCD. While all the methods provide a reasonable estimation of the binding energy, the most accurate value (-4.14 kcal/mol) is obtained from QM/MM/PBSA.
Collapse
Affiliation(s)
| | - Nafiseh Salehi
- Department of Chemistry, University
of Isfahan, Isfahan 8174673441, Iran
| | | |
Collapse
|
32
|
Mazurek AH, Szeleszczuk Ł, Gubica T. Application of Molecular Dynamics Simulations in the Analysis of Cyclodextrin Complexes. Int J Mol Sci 2021; 22:9422. [PMID: 34502331 PMCID: PMC8431145 DOI: 10.3390/ijms22179422] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Cyclodextrins (CDs) are highly respected for their ability to form inclusion complexes via host-guest noncovalent interactions and, thus, ensofance other molecular properties. Various molecular modeling methods have found their applications in the analysis of those complexes. However, as showed in this review, molecular dynamics (MD) simulations could provide the information unobtainable by any other means. It is therefore not surprising that published works on MD simulations used in this field have rapidly increased since the early 2010s. This review provides an overview of the successful applications of MD simulations in the studies on CD complexes. Information that is crucial for MD simulations, such as application of force fields, the length of the simulation, or solvent treatment method, are thoroughly discussed. Therefore, this work can serve as a guide to properly set up such calculations and analyze their results.
Collapse
Affiliation(s)
- Anna Helena Mazurek
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Doctoral School, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland;
| | - Tomasz Gubica
- Department of Physical Chemistry, Chair of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-093 Warsaw, Poland;
| |
Collapse
|
33
|
Li H, Chang SL, Chang TR, You Y, Wang XD, Wang LW, Yuan XF, Tan MH, Wang PD, Xu PW, Gao WB, Zhao QS, Zhao B. Inclusion complexes of cannabidiol with β-cyclodextrin and its derivative: Physicochemical properties, water solubility, and antioxidant activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Istifli ES. Chemical Composition, Antioxidant and Enzyme Inhibitory Activities of Onosma bourgaei and Onosma trachytricha and in Silico Molecular Docking Analysis of Dominant Compounds. Molecules 2021; 26:molecules26102981. [PMID: 34069766 PMCID: PMC8157196 DOI: 10.3390/molecules26102981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate the chemical composition, antioxidant and enzyme inhibitory activities of methanol (MeOH) extracts from Onosma bourgaei (Boiss.) and O. trachytricha (Boiss.). In addition, the interactions between phytochemicals found in extracts in high amounts and the target enzymes in question were revealed at the molecular scale by performing in silico molecular docking simulations. While the total amount of flavonoid compounds was higher in O. bourgaei, O. trachytricha was richer in phenolics. Chromatographic analysis showed that the major compounds of the extracts were luteolin 7-glucoside, apigenin 7-glucoside and rosmarinic acid. With the exception of the ferrous ion chelating assay, O. trachytricha exhibited higher antioxidant activity than O. bourgaei. O. bourgaei exhibited also slightly higher activity on digestive enzymes. The inhibitory activities of the Onosma species on tyrosinase were almost equal. In addition, the inhibitory activities of the extracts on acetylcholinesterase (AChE) were stronger than the activity on butyrylcholinesterase (BChE). Molecular docking simulations revealed that luteolin 7-glucoside and apigenin 7-glucoside have particularly strong binding affinities against ChEs, tyrosinase, α-amylase and α-glucosidase when compared with co-crystallized inhibitors. Therefore, it was concluded that the compounds in question could act as effective inhibitors on cholinesterases, tyrosinase and digestive enzymes.
Collapse
Affiliation(s)
- Erman Salih Istifli
- Department of Biology, Faculty of Science and Literature, Cukurova University, TR-01330 Adana, Turkey
| |
Collapse
|
35
|
Surface modification of zero-valent iron nanoparticles with β-cyclodextrin for 4-nitrophenol conversion. J Colloid Interface Sci 2020; 586:655-662. [PMID: 33189327 DOI: 10.1016/j.jcis.2020.10.135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023]
Abstract
Environmental pollution causes irreversible damage to ecosystems and their structure. Therefore, the development of novel remedial techniques is a must for an effective response to emerging contaminants and those already persisting in the environment. The nanosized zero-valent iron (nZVI) is considered as an important nanostructure for the degradation of toxic compounds. Furthermore, the degradative potential of nZVI may be improved by surface modification. In this work nZVI was functionalized with β-cyclodextrin (β-CD), which is considered to be an environmentally-friendly and cheap adsorbent for toxic pollutants. Such a 'green' improvement not only enhances the activity of nZVI but also enables the conversion of 4-nitrophenol to 4-aminophenol, which under standard conditions is persistent and does not significantly react with bare nZVI. This research may help to find a solution to treat persistent organic pollutants (POPs) in aqueous environment.
Collapse
|
36
|
Effect of cyclodextrin types and reagents solvation on the stability of complexes between B-cyclodextrins and rutin in water-ethanol solvents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|