1
|
Zhang L, Liu Y, Xu Y, Pei M, Yao M, Chen X, Cui Y, Han F, Lu Y, Zhang C, Wang Y, Gao P, Zhu L, Wang J. Fluxapyroxad induced toxicity of earthworms: Insights from multi-level experiments and molecular simulation studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135911. [PMID: 39305595 DOI: 10.1016/j.jhazmat.2024.135911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024]
Abstract
Fluxapyroxad, an emerging succinate dehydrogenase inhibitor fungicide, is widely used due to its excellent properties. Given its persistence in soil with a 50 % disappearance time of 183-1000 days, it is crucial to evaluate the long-term effects of low-dose fluxapyroxad on non-target soil organisms such as earthworms (Eisenia fetida). The present study investigated the impacts of fluxapyroxad (0.01, 0.1, and 1 mg kg-1) on Eisenia fetida over 56 days, focusing on oxidative stress, digestive and nervous system functions, and histopathological changes. We also explored the mechanisms of fluxapyroxad-enzyme interactions through molecular docking and dynamics simulations. Results demonstrated a significant dose-response relationship in the integrated biomarker response of 12 biochemical indices. Fluxapyroxad altered expression levels of functional genes and induced histopathological damage in earthworm epidermis and intestines. Molecular simulations revealed that fluxapyroxad is directly bound to active sites of critical enzymes, potentially disrupting their structure and function. Even at low doses, long-term fluxapyroxad exposure significantly impacted earthworm physiology, with effects becoming more pronounced over time. Our findings provide crucial insights into the chronic toxicity of fluxapyroxad and emphasize the importance of long-term, low-dose studies in pesticide risk assessment in soil. This research offers valuable guidance for the responsible management and application of fungicides.
Collapse
Affiliation(s)
- Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yao Liu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengyuan Pei
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengyao Yao
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoni Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yifei Cui
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Fengyang Han
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Yubo Lu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
2
|
Shivakumar, Dinesha P, Udayakumar D. Structure-based drug design and characterization of novel pyrazine hydrazinylidene derivatives with a benzenesulfonate scaffold as noncovalent inhibitors of DprE1 tor tuberculosis treatment. Mol Divers 2024; 28:4221-4239. [PMID: 38448719 DOI: 10.1007/s11030-024-10812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/13/2024] [Indexed: 03/08/2024]
Abstract
In this study, we present a novel series of (E)-4-((2-(pyrazine-2-carbonyl) hydrazineylidene)methyl)phenyl benzenesulfonate (T1-T8) and 4-((E)-(((Z)-amino(pyrazin-2-yl)methylene)hydrazineylidene)methyl)phenyl benzenesulfonate (T9-T16) derivatives which exert their inhibitory effects on decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) through the formation of hydrogen bonds with the pivotal active site Cys387 residue. Their effectiveness against the M. tuberculosis H37Rv strain was examined and notably, three compounds (namely T4, T7, and T12) exhibited promising antitubercular activity, with a minimum inhibitory concentration (MIC) of 1.56 µg/mL. The target compounds were screened for their antibacterial activity against a range of bacterial strains, encompassing S. aureus, B. subtilis, S. mutans, E. coli, S. typhi, and K. pneumoniae. Additionally, their antifungal efficacy against A. fumigatus and A. niger also was scrutinized. Compounds T6 and T12 demonstrated significant antibacterial activity, while compound T6 exhibited substantial antifungal activity. Importantly, all of these active compounds demonstrated exceedingly low toxicity without any adverse effects on normal cells. To deepen our understanding of these compounds, we have undertaken an in silico analysis encompassing Absorption, Distribution, Metabolism, and Excretion (ADME) considerations. Furthermore, molecular docking analyses against the DprE1 enzyme was conducted and Density-Functional Theory (DFT) studies were employed to elucidate the electronic properties of the compounds, thereby enhancing our understanding of their pharmacological potential.
Collapse
Affiliation(s)
- Shivakumar
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, Karnataka, 575025, India
| | - P Dinesha
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, Karnataka, 575025, India
| | - D Udayakumar
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, Karnataka, 575025, India.
| |
Collapse
|
3
|
Shivakumar, Dinesha P, Udayakumar D. Noncovalent inhibitors of DprE1 for tuberculosis treatment: design, synthesis, characterization, in vitro and in silico studies of 4-oxo-1,4-dihydroquinazolinylpyrazine-2-carboxamides. J Biomol Struct Dyn 2024:1-15. [PMID: 39546326 DOI: 10.1080/07391102.2024.2427368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/28/2024] [Indexed: 11/17/2024]
Abstract
In this study, we present a novel series of 4-oxo-1,4-dihydroquinazolinylpyrazine-2-carboxamide derivatives, which exert their inhibitory effect on decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) via the establishment of non-covalent interactions with the pivotal Cys387 residue located within the enzyme's active site. These compounds underwent scrutiny for their efficacy in combatting the Mycobacterium tuberculosis H37Rv strain, and compounds T8 and T13 exhibited promising antitubercular activity, boasting a minimal inhibitory concentration (MIC) of 7.99 and 8.27 µM respectively. Additionally, three compounds, T2, T3 and T12, showcased substantial antibacterial activity whereas compounds T12 and T13 exhibited pronounced antifungal efficacy. Remarkably, all active compounds demonstrated negligible cytotoxicity, and none posed harm to normal cells. To attain a more profound comprehension of the attributes of these compounds, we conducted in silico investigations to evaluate their Absorption, Distribution, Metabolism and Excretion properties. Additionally, molecular docking analyses were executed to elucidate their interactions with the DprE1 enzyme. Finally, Density Functional Theory studies were leveraged to explore the electronic characteristics of these compounds, thereby providing insights into their potential utility in the realm of pharmaceuticals.
Collapse
Affiliation(s)
- Shivakumar
- Organic and Medicinal Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka, India
| | - P Dinesha
- Organic and Medicinal Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka, India
| | - D Udayakumar
- Organic and Medicinal Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka, India
| |
Collapse
|
4
|
Pathak RK, Kim JM. A computational assay for identifying millet-derived compounds that antagonize the interaction between bisphenols and estrogen-related receptor gamma. Front Pharmacol 2024; 15:1435254. [PMID: 39545070 PMCID: PMC11560427 DOI: 10.3389/fphar.2024.1435254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
The use of Bisphenol A (BPA) and its analogs in industries, as well as the products made from them, is becoming a significant concern for human health. Scientific studies have revealed that BPA functions as an endocrine disruptor. While some analogs of BPA (bisphenols) have been used for a longer time, it was later discovered that they are toxic, similar to BPA. Their widespread use ensures their presence in the environment, and thus, everyone is exposed to them. Scientific research has shown that BPA interacts with estrogen-related receptor gamma (ERRγ), affecting its normal function. ERRγ is involved in biological processes including energy metabolism and mitochondrial function. Therefore, continuous exposure to bisphenols increases the risk of various diseases. In our previous study, we observed that some analogs of BPA had a higher binding affinity to ERRγ compared to BPA itself and analyzed the amino acid residues involved in this interaction. We hypothesized that by antagonizing the interaction between bisphenols and ERRγ, we could neutralize their toxic effects. Taking into account the health benefits of millets and their toxin removal properties, virtual screening of millet-derived compounds was conducted along with prediction of their ADMET profiles. Top five candidates were prioritized for Density Functional Theory (DFT) calculations and further analyses. Long-term molecular dynamics simulation (1 µs) were utilized to evaluate their binding, stability, and antagonizing abilities. Furthermore, reevaluation of their binding energy was conducted using the MM-PBSA method. This study reports millet-derived compounds, namely, Tricin 7-rutinoside, Tricin 7-glucoside, Glucotricin, Kaempferol, and Setarin. These compounds are predicted to be potent competitive inhibitors that can antagonize the interactions between bisphenols and ERRγ. These compounds could potentially assist in the development of future therapeutics. They may also be considered for use as food supplements, although further investigations, including wet-lab experiments and clinical studies, are needed.
Collapse
Affiliation(s)
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
5
|
Ezzemani W, Altawalah H, Windisch M, Ouladlahsen A, Saile R, Kettani A, Ezzikouri S. Identification of Zika virus NS2B-NS3 protease and NS5 polymerase inhibitors by structure-based virtual screening of FDA-approved drugs. J Biomol Struct Dyn 2024; 42:8073-8088. [PMID: 37528667 DOI: 10.1080/07391102.2023.2242963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne human flavivirus responsible that causing emergency outbreaks in Brazil. ZIKV is suspected of causing Guillain-Barre syndrome in adults and microcephaly. The NS2B-NS3 protease and NS5 RNA-dependent RNA polymerase (RdRp), central to ZIKV multiplication, have been identified as attractive molecular targets for drugs. We performed a structure-based virtual screening of 2,659 FDA-approved small molecule drugs in the DrugBank database using AutoDock Vina in PyRx v0.8. Accordingly, 15 potential drugs were selected as ZIKV inhibitors because of their high values (binding affinity - binding energy) and we analyzed the molecular interactions between the active site amino acids and the compounds. Among these drugs, tamsulosin was found to interact most efficiently with NS2B/NS3 protease, as indicated by the lowest binding energy value (-8.27 kJ/mol), the highest binding affinity (-5.7 Kcal/mol), and formed H-bonds with amino acid residues TYRB130, SERB135, TYRB150. Furthermore, biotin was found to interact most efficiently with NS5 RdRp with a binding energy of -150.624 kJ/mol, a binding affinity of -5.6 Kcal/mol, and formed H-bonds with the amino acid residues ASPA665 and ASPA540. In vitro, in vivo, and clinical studies are needed to demonstrate anti-ZIKV safety and the efficacy of these FDA-approved drug candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wahiba Ezzemani
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Morocco
| | - Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
- Virology Unit, Yacoub Behbehani Center, Sabah Hospital, Ministry of Health, Kuwait
| | - Marc Windisch
- Applied Molecular Virology Laboratory, Discovery Biology Department, Institut Pasteur Korea, Gyeonggi-do, South Korea
| | - Ahd Ouladlahsen
- Faculté de médecine et de pharmacie, Université Hassan II, Casablanca, Morocco
- Service des maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Rachid Saile
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Morocco
| | - Anass Kettani
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
6
|
Ezzemani W, Ouladlahsen A, Altawalah H, Saile R, Sarih M, Kettani A, Ezzikouri S. Identification of novel T-cell epitopes on monkeypox virus and development of multi-epitopes vaccine using immunoinformatics approaches. J Biomol Struct Dyn 2024; 42:5349-5364. [PMID: 37354141 DOI: 10.1080/07391102.2023.2226733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Monkeypox virus (MPV) is closely related to the smallpox virus, and previous data from Africa suggest that the smallpox vaccine (VARV) is at least 85% effective in preventing MPV. No multi-epitope vaccine has yet been developed to prevent MPV infection. In this work, we used in silico structural biology and advanced immunoinformatic strategies to design a multi-epitope subunit vaccine against MPV infection. The designed vaccine sequence is adjuvanted with CpG-ODN and includes HTL/CTL epitopes for similar proteins between vaccinia virus (VACV) that induced T-cell production in vaccinated volunteers and the first draft sequence of the MPV genome associated with the suspected outbreak in several countries, May 2022. In addition, the specific binding of the modified vaccine and the immune Toll-like receptor 9 (TLR9) was estimated by molecular interaction studies. Strong interaction in the binding groove as well as good docking scores confirmed the stringency of the modified vaccine. The stability of the interaction was confirmed by a classical molecular dynamics simulation and normal mode analysis. Then, the immune simulation also indicated the ability of this vaccine to induce an effective immune response against MPV. Codon optimization and in silico cloning of the vaccine into the pET-28a (+) vector also showed its expression potential in the E. coli K12 system. The promising data obtained from the various in silico studies indicate that this vaccine is effective against MPV. However, additional in vitro and in vivo studies are still needed to confirm its efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wahiba Ezzemani
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahd Ouladlahsen
- Faculté de médecine et de pharmacie, Université Hassan II, Casablanca, Morocco
- Service des maladies infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
- Virology Unit, Yacoub Behbehani Center, Sabah Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Rachid Saile
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - M'hammed Sarih
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Kettani
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
7
|
Panda SK, Karmakar S, Sen Gupta PS, Rana MK. Can Duvelisib and Eganelisib work for both cancer and COVID-19? Molecular-level insights from MD simulations and enhanced samplings. Phys Chem Chem Phys 2024; 26:10961-10973. [PMID: 38526354 DOI: 10.1039/d3cp05934k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
SARS-CoV-2 has caused severe illness and anxiety worldwide, evolving into more dreadful variants capable of evading the host's immunity. Cytokine storms, led by PI3Kγ, are common in cancer and SARS-CoV-2. Naturally, there is a yearning to see whether any drugs could alleviate cytokine storms for both. Upon investigation, we identified two anticancer drugs, Duvelisib and Eganelisib, that could also work against SARS-CoV-2. This report is the first to decipher their synergic therapeutic effectiveness against COVID-19 and cancer with molecular insights from atomistic simulations. In addition to PI3Kγ, these drugs exhibit specificity for the main protease among all SARS-CoV-2 targets, with significant negative binding free energies and small time-dependent conformational changes of the complexes. Complexation makes active sites and secondary structures highly mechanically stiff, with barely any deformation. Replica simulations estimated large pulling forces in enhanced sampling to dissociate the drugs from Mpro's active site. Furthermore, the radial distribution function (RDF) demonstrated that the therapeutic molecules were closest to the His41 and Cys145 catalytic dyad residues. Finally, analyses implied Duvelisib and Eganelisib as promising dual-purposed anti-COVID and anticancer drugs, potentially targeting Mpro and PI3Kγ to stop virus replication and cytokine storms concomitantly. We also distinguished hotspot residues imparting significant interactions.
Collapse
Affiliation(s)
- Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India.
| | - Shaswata Karmakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India.
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India.
| |
Collapse
|
8
|
Ghasemi M, Habibian-Dehkordi S, Farhadian S. Change in thermal stability and molecular structure characteristics of whey protein beta-lactoglobulin upon the interaction with levamisole hydrochloride. Food Chem 2024; 431:137073. [PMID: 37598650 DOI: 10.1016/j.foodchem.2023.137073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
The interaction between beta-lactoglobulin (BLG) and anthelmintic compounds including levamisole (LEV) is a matter of great concern as it not only poses potential health and environmental risks but also has significant implications for food processing and production. The mechanisms of LEV-BLG interaction were investigated through spectral and molecular modeling approaches. Fluorescence and UV-Visible investigations indicated the formation of a spontaneous and stable LEV-BLG complex. Structural changes of BLG were revealed by circular dichroism and Fourier transform infrared studies. The thermal stability of BLG increased in the presence of LEV. Molecular docking studies indicated the best mode of LEV-BLG interaction and molecular dynamics simulation confirmed the stability of the LEV-BLG complex. In conclusion, our study sheds light on the potential of BLG to interact with deleterious substances such as anthelmintic agents, thus highlighting the necessity of further research in this field to assure food safety and prevent any health hazards.
Collapse
Affiliation(s)
- Mohammad Ghasemi
- Department of Pharmacology, School of Veterinary Medicine, Shahrekord University, P. O. Box 115, Shahrekord, Iran
| | - Saied Habibian-Dehkordi
- Department of Pharmacology, School of Veterinary Medicine, Shahrekord University, P. O. Box 115, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
9
|
Asgharzadeh S, Shareghi B, Farhadian S. Structural alterations and inhibition of lysozyme activity upon binding interaction with rotenone: Insights from spectroscopic investigations and molecular dynamics simulation. Int J Biol Macromol 2024; 254:127831. [PMID: 37935297 DOI: 10.1016/j.ijbiomac.2023.127831] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
The pervasive employment of pesticides such as rotenone on a global scale represents a substantial hazard to human health through direct exposure. Therefore, exploring the interactions between such compounds and body macromolecules such as proteins is crucial in comprehending the underlying mechanisms of their detrimental effects. The present study aims to delve into the molecular interaction between rotenone and lysozyme by employing spectroscopic techniques along with Molecular dynamics (MD) simulation in mimicked physiological conditions. The binding interaction resulted in a fluorescence quenching characterized by both dynamic and static mechanisms, with static quenching playing a prominent role in governing this phenomenon. The analysis of thermodynamic parameters indicated that hydrophobic interactions primarily governed the spontaneous bonding process. FT-IR and circular dichroism findings revealed structural alternations of lysozyme upon complexation with rotenone. Also, complexation with rotenone declined the biological activity of lysozyme, thus rotenone could be considered an enzyme inhibitor. Further, the binding interaction substantially decreased the thermal stability of lysozyme. Molecular docking studies showed the binding location and the key residues interacting with rotenone. The findings of the spectroscopic investigations were confirmed and accurately supported by MD simulation studies.
Collapse
Affiliation(s)
- Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
10
|
Moein Najafabadi S, Safaei Ghomi J. Synthesis of COF-SO 3H immobilized on manganese ferrite nanoparticles as an efficient nanocomposite in the preparation of spirooxindoles. Sci Rep 2023; 13:22731. [PMID: 38123668 PMCID: PMC10733289 DOI: 10.1038/s41598-023-49628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
The synthesis of sulfonamide-functionalized magnetic porous nanocomposites is highly significant in chemistry due to their exceptional properties and potential as catalysts. COFs are a new class of organic porous polymers and have significant advantages such as low density, high chemical and thermal stability, and mechanical strength. Therefore, we decided to synthesize COFs based on magnetic nanoparticles, by doing so, we can also prevent the agglomeration of MnFe2O4. MnFe2O4@COF-SO3H possesses a large specific surface area, supermagnetism, and is acidic, making it an optimal catalyst for organic reactions. This particular catalyst was effectively employed in the green and rapid synthesis of various spiro-pyrano chromenes, while several analytical techniques were utilized to analyze its structural integrity and functional groups. The role of a specific site of MnFe2O4@COF-SO3H was confirmed through different control experiments in a one-pot reaction mechanism. It was determined that MnFe2O4@COF-SO3H acts as a bifunctional acid-base catalyst in the one-pot preparation of spirooxindole derivatives. The formation of a spiro skeleton in the multicomponent reaction involved the construction of three new σ bonds (one C-O bond and two C-C bonds) within a single process. The efficiency of the MnFe2O4@COF-SO3H complex is investigated in the synthesis of spirooxindoles of malononitrile, and various isatins with 1,3-dicarbonyles. The nanocatalyst demonstrated excellent catalytic activity that gave the corresponding coupling products good to excellent yields. Furthermore, the heterogeneous magnetic nanocatalyst used in this study demonstrated recoverability after five cycles with minimal loss of activity.
Collapse
Affiliation(s)
- Samira Moein Najafabadi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| | - Javad Safaei Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran.
| |
Collapse
|
11
|
Yadav M, Srivastava R, Naaz F, Sen Gupta PS, Panda SK, Rana MK, Singh RK. Hydroxyalkynyl uracil derivatives as NNRTIs against HIV-1: in silico predictions, synthesis, docking and molecular dynamics simulation studies. J Biomol Struct Dyn 2023; 41:8068-8080. [PMID: 36229234 DOI: 10.1080/07391102.2022.2130980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
To improve rationally the efficacy of the non-nucleoside human immunodeficiency virus (HIV-1) inhibitors, it is important to have a precise and detailed understanding of the HIV-1 reverse transcriptase (RT) and inhibitor interactions. For the 1-[(2-hydroxyethoxy) methyl]-6-(phenylthio) thymine (HEPT) type of nucleoside reverse transcriptase inhibitors (NNRTIs), the H-bond between the N-3H of the inhibitor and the backbone carbonyl group of K101 represents the major hydrophilic interaction. This H-bond contributes to the NNRTI binding affinity. The descriptor analyses of different uracil derivatives proved their good cell internalization. The bioactivity score reflected higher drug likeness score and the ligands showed interesting docking results. All molecules were deeply buried and stabilized into the allosteric site of HIV-1 RT. For majority of molecules, residues Lys101, Lys103, Tyr181 and Tyr188 were identified as key protein residues responsible for generation of H-bond and major interactions were similar to all known NNRTIs while very few molecules interacted with residues Phe227 and Tyr318. The TOPKAT protocol available in Discovery Studio 3.0 was used to predict the pharmacokinetics of the designed uracil derivatives in the human body. The molecular dynamics (MD) and post-MD analyses results reflected that the complex HIVRT:5 appeared to be more stable than the complex HIVRT:HEPT, where HEPT was used as reference. Different uracil derivatives have been synthesized by using uracil as starting material and commercially available propargyl bromide. The N-1 derivative of uracil was further reacted with sodamide and different aldehydes/ketones bearing alkyl and phenyl ring to obtain hydroxyalkynyl uracil derivatives as NNRTIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madhu Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Ritika Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
12
|
Desai N, Jadeja D, Monapara J, Panda SK, Rana MK, Dave B. Design, synthesis, antimicrobial activity, DFT, and molecular docking studies of pyridine-pyrazole-based dihydro-1,3,4-oxadiazoles against various bacterial and fungal targets. J Biochem Mol Toxicol 2023; 37:e23377. [PMID: 37098749 DOI: 10.1002/jbt.23377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/27/2023]
Abstract
Antimicrobial resistance which is increasing at an alarming rate is a severe public health issue worldwide. Hence, the development of novel antibiotics is an urgent need as microbes have developed resistance against available antibiotics. In search of novel antimicrobial agents, a convenient route for the preparation of substituted 3-(1-phenyl-3-(p-tolyl)-1H-pyrazol-4-yl)-1-(2-phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazol-3(2H)-yl)prop-2-en-1-ones (6a-6o) has been adopted by using pyridine-3-carbohydrazide and various aromatic aldehydes. The newly synthesized compounds were characterized by using various spectral techniques, for example, IR, 1 H NMR, 13 C NMR, and mass spectroscopy. Synthesized hybrids were studied for in vitro antimicrobial potency against various bacterial and fungal strains. Antibacterial results revealed that compounds 6e, 6h, 6i, 6l, and 6m were found to be most active against bacterial strains as they showed minimum inhibitory concentration (MIC) value of 62.5 μg/mL while compounds 6d, 6e, and 6h showed MIC value of 200 μg/mL against Candida albicans. The quantum parameters that relate to the bioavailability of the compounds were computed, followed by docking with different bacterial and fungal targets like sortase A, dihydrofolate reductase, thymidylate kinase, gyrase B, sterol 14-alpha demethylase. The experimental and computational results are in good agreement.
Collapse
Affiliation(s)
- Nisheeth Desai
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Dharmpalsinh Jadeja
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Jahnvi Monapara
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, India
| | - Bharti Dave
- School of Science, Indrashil University, Kadi, Gujarat, India
| |
Collapse
|
13
|
Al-Otaibi JS, Mary YS, Mary YS, Thomas R. Evidences of noncovalent interactions between indole and dichloromethane under different solvent conditions. J Mol Model 2023; 29:246. [PMID: 37442832 DOI: 10.1007/s00894-023-05623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
CONTEXT Theoretical investigation of indole (IND) and its binary combination with dichloromethane (DC) in various solvents were computed to track the impact of molecular interactions on spectral characteristics. When transitioning from plain drug to complexes, different modes of IND display a substantial shift in peak location. The 3561.26 cm-1 band shows (~15.58 cm-1) red shift upon dilution. The geometry in various solvents was calculated using quantum chemical calculation utilizing density functional theory (DFT). The highest ALIE values are located at the indole skeleton and on complexation with DC, and the ring atoms become more electron rich. The atom-centered density matrix propagation (ADMP) molecular dynamic (MD) calculation shows that the geometries optimized through the DFT calculation match the global minima effectively. MD simulations indicate that indole is more stable in water and methanol. METHODS DFT studies have been employed to study the interaction between indole and dichloromethane. CAM-B3LYP/6-311++G(d)(6D,7F) level of theory was employed using Gaussian 16 W suite. Quantum topological descriptors were discussed using quantum theory of atoms in molecules (QTAIM) with the help of Multiwfn software. Reduced density gradient (RDG) plot describes the nature of the interaction, while average local ionization energy (ALIE) explained the variation in local ionization energy of the molecular surface before and after complexation.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | | | | | - Renjith Thomas
- Department of Chemistry, St. Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, Kerala, India
| |
Collapse
|
14
|
Puzari U, Goswami M, Rani K, Patra A, Mukherjee AK. Computational and in vitro analyses to identify the anticoagulant regions of Echicetin, a snake venom anticoagulant C-type lectin (snaclec): possibility to develop anticoagulant peptide therapeutics? J Biomol Struct Dyn 2023; 41:15569-15583. [PMID: 36994880 DOI: 10.1080/07391102.2023.2191138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/05/2023] [Indexed: 03/31/2023]
Abstract
Snake venom C-type lectins (Snaclecs) display anticoagulant and platelet-modulating activities; however, their interaction with the critical components of blood coagulation factors was unknown. Computational analysis revealed that Echicetin (Snaclec from Echis carinatus venom) interacted with heavy chain of thrombin, and heavy and light chains of factor Xa (FXa). Based on FXa and thrombin binding regions of Echicetin, the two synthetic peptides (1A and 1B) were designed. The in silico binding studies of the peptides with thrombin and FXa showed that peptide 1B interacted with both heavy and light chains of thrombin and, peptide 1A interacted with only heavy chain of thrombin. Similarly, peptide 1B interacted with both heavy and light chains of FXa; however, peptide 1A interacted only with heavy chain of FXa. Alanine screening predicted the hot-spots residues for peptide 1A (Aspartic acid6, Valine8, Valine9, and Tyrosine17 with FXa, and Isoleucine14, Lysine15 with thrombin) and peptide 1B (Valine16 with FXa). Spectrofluorometric interaction study showed a lower Kd value for peptide 1B binding with both FXa and thrombin than peptide 1A, indicating higher binding strength of the former peptide. The circular dichroism spectroscopy also established the interaction between thrombin and the custom peptides. The in vitro study demonstrated higher anticoagulant activity of peptide 1B than peptide 1A due to higher inhibition of thrombin and FXa. Inhibition of anticoagulant activity of the peptides by respective anti-peptide antibodies corroborates our hypothesis that peptides 1A and 1B represent the anticoagulant regions of Echicetin and may be developed as antithrombotic peptide drug prototypes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Upasana Puzari
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Mahasweta Goswami
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Komal Rani
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Aparup Patra
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
15
|
Panda SK, Gupta PSS, Rana MK. Potential targets of severe acute respiratory syndrome coronavirus 2 of clinical drug fluvoxamine: Docking and molecular dynamics studies to elucidate viral action. Cell Biochem Funct 2023; 41:98-111. [PMID: 36478589 DOI: 10.1002/cbf.3766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued evolving for survival and adaptation by mutating itself into different variants of concern, including omicron. Several studies and clinical trials found fluvoxamine, an Food and Drug Administration-approved antidepressant drug, to be effective at preventing mild coronavirus disease 2019 (COVID-19) from progressing to severe diseases. However, the mechanism of fluvoxamine's direct antiviral action against COVID-19 is still unknown. Fluvoxamine was docked with 11 SARS-CoV-2 targets and subjected to stability, conformational changes, and binding free energy analyses to explore its mode of action. Of the targets, nonstructural protein 14 (NSP14), main protease (Mpro), and papain-like protease (PLpro) had the best docking scores with fluvoxamine. Consistent with the docking results, it was confirmed by molecular dynamics simulations that the NSP14 N7-MTase ((N7-guanine)-methyltransferase)-fluvoxamine, Mpro-fluvoxamine, and PLpro-fluvoxamine complexes are stable, with the lowest binding free energies of -105.1, -82.7, and - 38.5 kJ/mol, respectively. A number of hotspot residues involved in the interaction were also identified. These include Glu166, Asp187, His41, and Cys145 in Mpro, Gly163 and Arg166 in PLpro, and Glu302, Gly333, and Phe426 in NSP14, which could aid in the development of better antivirals against SARS-CoV-2.
Collapse
Affiliation(s)
- Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D. Y. Patil International University (DYPIU), Akurdi, Pune, Maharashtra, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha, India
| |
Collapse
|
16
|
Habibian-Dehkordi S, Farhadian S, Ghasemi M, Evini M. Insight into the binding behavior, structure, and thermal stability properties of β-lactoglobulin/Amoxicillin complex in a neutral environment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Demehin AA, Thamnarak W, Lamtha T, Chatwichien J, Eurtivong C, Choowongkomon K, Chainok K, Ruchirawat S, Thasana N. Siamenflavones A-C, three undescribed biflavonoids from Selaginella siamensis Hieron. and biflavonoids from spike mosses as EGFR inhibitor. PHYTOCHEMISTRY 2022; 203:113374. [PMID: 35964804 DOI: 10.1016/j.phytochem.2022.113374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Three undescribed biflavonoids (BFVs), siamenflavones A-C along with twelve BFVs were isolated from Selaginella siamensis Hieron. and Selaginella bryopteris (L.) Baker (Selaginellaceae). The chemical structures of undescribed compounds were established through comprehensive spectroscopic techniques, chemical correlations, and X-ray crystallography. The ten isolated BFVs, siamenflavones A-C, delicaflavone, chrysocauflavone, robustaflavone, robustaflavone-4-methylether, amentoflavone, tetrahydro-amentoflavone, and sciadopitysin were evaluated for the antiproliferative effects against four human cancer cell lines A549, H1975, HepG2 and T47D. Delicaflavone and robustaflavone 4'-methylether exerted strong effects on the four human cancer cell lines. Siamenflavone B, delicaflavone and robustaflavone 4'-methylether showed potent inhibitory activities against wild-type EGFR. The inhibition of the compounds was further supported by molecular docking and predictive intermolecular interactions. Molecular dynamics simulation studies of siamenflavone B and robustaflavone-4'-methylether complexed to EGFR-TK further supported inhibition of the compounds to the ATP binding site. Finally, analysis of pharmacokinetic and electronic properties using density-functional theory and known drug index calculations suggest that the compounds are pharmaceutically compatible for drug administration.
Collapse
Affiliation(s)
- Adebisi Adunola Demehin
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Wanlaya Thamnarak
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Thomanai Lamtha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Jaruwan Chatwichien
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Chatchakorn Eurtivong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand; Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| | - Nopporn Thasana
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand; Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand.
| |
Collapse
|
18
|
Oselusi S, Fadaka AO, Wyckoff GJ, Egieyeh SA. Computational Target-Based Screening of Anti-MRSA Natural Products Reveals Potential Multitarget Mechanisms of Action through Peptidoglycan Synthesis Proteins. ACS OMEGA 2022; 7:37896-37906. [PMID: 36312373 PMCID: PMC9609086 DOI: 10.1021/acsomega.2c05061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/22/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of bacterial infections in both healthcare and community settings. MRSA can acquire resistance to any current antibiotic, which has major implications for its current and future treatment options. As such, it is globally a major focus for infection control efforts. The mechanical rigidity provided by peptidoglycans in the bacteria cell walls makes it a promising target for broad-spectrum antibacterial drug discovery. The development of drugs that can target different stages of the synthesis of peptidoglycan in MRSA may compromise the integrity of its cell wall and consequently result in the rapid decline of diseases associated with this drug-resistant bacteria. The present study is aimed at screening natural products with known in vitro activities against MRSA to identify their potential to inhibit the proteins involved in the biosynthesis of the peptidoglycan cell wall. A total of 262 compounds were obtained when a literature survey was conducted on anti-MRSA natural products (AMNPs). Virtual screening of the AMNPs was performed against various proteins (targets) that are involved in the biosynthesis of the peptidoglycan (PPC) cell wall using Schrödinger software (release 2020-3) to determine their binding affinities. Nine AMNPs were identified as potential multitarget inhibitors against peptidoglycan biosynthesis proteins. Among these compounds, DB211 showed the strongest binding affinity and interactions with six protein targets, representing three stages of peptidoglycan biosynthesis, and thus was selected as the most promising compound. The MD simulation results for DB211 and its proteins indicated that the protein-ligand complexes were relatively stable over the simulation period of 100 ns. In conclusion, DB211 showed the potential to inhibit six proteins involved in the biosynthesis of the peptidoglycan cell wall in MRSA, thus reducing the chance of MRSA developing resistance to this compound. Therefore, DB211 provided a starting point for the design of new compounds that can inhibit multiple targets in the biosynthesis of the peptidoglycan layer in MRSA.
Collapse
Affiliation(s)
- Samson
Olaitan Oselusi
- University
of the Western Cape, School of Pharmacy,
Faculty of Natural Sciences, Robert Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| | - Adewale Oluwaseun Fadaka
- University
of the Western Cape, Science and Innovation/Mintek
Nanotechnology Innovation Centre, Department of Biotechnology, Faculty
of Natural Sciences, Robert
Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| | - Gerald J. Wyckoff
- University
of Missouri Kansas City, School of Pharmacy,
Division of Pharmacology and Pharmaceutical Sciences, 5000 Holmes Street, Kansas
City, Missouri 64110-2446, United States
| | - Samuel Ayodele Egieyeh
- University
of the Western Cape, School of Pharmacy,
Faculty of Natural Sciences, Robert Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| |
Collapse
|
19
|
Haider K, Sharma S, Pokharel YR, Das S, Joseph A, Najmi AK, Ahmad F, Yar MS. Synthesis, biological evaluation, and in silico studies of indole-tethered pyrazoline derivatives as anticancer agents targeting topoisomerase IIα. Drug Dev Res 2022; 83:1555-1577. [PMID: 35898169 DOI: 10.1002/ddr.21976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022]
Abstract
We herein report a new series of indole-tethered pyrazoline derivatives as potent anticancer agents. A total of 12 compounds were designed and synthesized by conventional as well as microwave-irradiated synthesis methods. The latter method results in a significant reduction in the duration of reaction along with improved yields. All synthesized derivatives (7a-7l) were evaluated for their cytotoxic activity against A431, HeLa, and MDAMB-231 cell lines. Compounds 7a and 7b were found most potent in the series and demonstrated an IC50 value of 3.17 and 5.16 µM against the A431 cell line, respectively, compared to the standard drug doxorubicin. Compounds 7a and 7b significantly suppress colony formation, migration, and S phase cell cycle arrest of A431 cells. Furthermore, compound 7a regulated the expression of apoptotic proteins causing the downregulation of procaspase 3/9, antiapoptotic protein Bcl-xL, and upregulation of proapoptotic protein Bax in a dose-dependent manner. Topoisomerase enzyme inhibition assay confirmed that compounds 7a and 7b can significantly inhibit topoisomerase IIα. In vivo oral acute toxicity of compounds 7a and 7b revealed that both compounds are safe compared to doxorubicin; cardiomyopathy studies showed normal architecture of cardiomyocytes and myofibrils. In addition, molecular docking studies revealed the possible interaction of compounds 7a and 7b within the active binding site of the topoisomerase enzyme. The 100 ns molecular dynamic simulation of compounds 7a and 7b proved that both compounds validate all screening parameters.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shivani Sharma
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Faiz Ahmad
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
20
|
Inhibitors of Heptosyltransferase I to prevent heptose transfer against antibiotic resistance of E. coli: Energetics and stability analysis by DFT and molecular dynamics. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Designing AbhiSCoVac - A single potential vaccine for all ‘corona culprits’: Immunoinformatics and immune simulation approaches. J Mol Liq 2022; 351:118633. [PMID: 35125571 PMCID: PMC8801591 DOI: 10.1016/j.molliq.2022.118633] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
|
22
|
Designing efficient multi-epitope peptide-based vaccine by targeting the antioxidant thioredoxin of bancroftian filarial parasite. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105237. [PMID: 35131521 DOI: 10.1016/j.meegid.2022.105237] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022]
Abstract
Thioredoxin is a low molecular weight redox-active protein of filarial parasite that plays a crucial role in downregulating the host immune response to prolong the survival of the parasite within the host body. It has the ability to cope up with the oxidative challenges posed by the host. Hence, the antioxidant protein of the filarial parasite has been suggested to be a useful target for immunotherapeutic intervention of human filariasis. In this study, we have designed a multi-epitope peptide-based vaccine using thioredoxin of Wuchereria bancrofti. Different MHC-I and MHC-II epitopes were predicted using various web servers to construct the vaccine model as MHC-I and MHC-II epitopes are crucial for the development of both humoral and cellular immune responses. Moreover, TLRs specific adjuvants were also incorporated into the vaccine candidates as TLRs are the key immunomodulator to execute innate immunity. Protein-protein molecular docking and simulation analysis between the vaccine and human TLR was performed. TLR5 is the most potent receptor to convey the vaccine-mediated inductive signal for eliciting an innate immune response. A satisfactory immunogenic report from an in-silico immune simulation experiment directed us to propose our vaccine model for experimental and clinical validation. The reverse translated vaccine sequence was also cloned in pET28a(+) to apply the concept in a wet lab experiment in near future. Taken together, this in-silico study on the design of a vaccine construct to target W. bancrofti thioredoxin is predicted to be a future hope in saving human-being from the threat of filariasis.
Collapse
|
23
|
Ray AK, Sen Gupta PS, Panda SK, Biswal S, Bhattacharya U, Rana MK. Repurposing of FDA-approved drugs as potential inhibitors of the SARS-CoV-2 main protease: Molecular insights into improved therapeutic discovery. Comput Biol Med 2022; 142:105183. [PMID: 34986429 PMCID: PMC8714248 DOI: 10.1016/j.compbiomed.2021.105183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 12/22/2022]
Abstract
With numerous infections and fatalities, COVID-19 has wreaked havoc around the globe. The main protease (Mpro), which cleaves the polyprotein to form non-structural proteins, thereby helping in the replication of SARS-CoV-2, appears as an attractive target for antiviral therapeutics. As FDA-approved drugs have shown effectiveness in targeting Mpro in previous SARS-CoV(s), molecular docking and virtual screening of existing antiviral, antimalarial, and protease inhibitor drugs were carried out against SARS-CoV-2 Mpro. Among 53 shortlisted drugs with binding energies lower than that of the crystal-bound inhibitor α-ketoamide 13 b (-6.7 kcal/mol), velpatasvir, glecaprevir, grazoprevir, baloxavir marboxil, danoprevir, nelfinavir, and indinavir (-9.1 to -7.5 kcal/mol) were the most significant on the list (hereafter referred to as the 53-list). Molecular dynamics (MD) simulations confirmed the stability of their Mpro complexes, with the MMPBSA binding free energy (ΔGbind) ranging between -124 kJ/mol (glecaprevir) and -28.2 kJ/mol (velpatasvir). Despite having the lowest initial binding energy, velpatasvir exhibited the highest ΔGbind value for escaping the catalytic site during the MD simulations, indicating its reduced efficacy, as observed experimentally. Available inhibition assay data adequately substantiated the computational forecast. Glecaprevir and nelfinavir (ΔGbind = -95.4 kJ/mol) appear to be the most effective antiviral drugs against Mpro. Furthermore, the remaining FDA drugs on the 53-list can be worth considering, since some have already demonstrated antiviral activity against SARS-CoV-2. Hence, theoretical pKi (Ki = inhibitor constant) values for all 53 drugs were provided. Notably, ΔGbind directly correlates with the average distance of the drugs from the His41-Cys145 catalytic dyad of Mpro, providing a roadmap for rapid screening and improving the inhibitor design against SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Abhik Kumar Ray
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Uddipan Bhattacharya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India.
| |
Collapse
|
24
|
Khursheed S, Zehra S, Riosnel T, Tabassum S, Arjmand F. Chromone‐Appended Zn(II) tRNA‐Targeted Potential Anticancer Chemotherapeutic Agent: Structural Details, in vitro ct‐DNA/tRNA Binding, Cytotoxicity Studies And Antioxidant Activity. ChemistrySelect 2022; 7. [DOI: 10.1002/slct.202102537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/24/2022] [Indexed: 09/12/2023]
Abstract
AbstractA 3‐formyl‐chromone‐appended zinc(II) intercalator drug candidate of the formulation [bis(chromone)(H 2 O)2 Zn(II)] was prepared as a potent anticancer agent and thoroughly characterized by multi‐spectroscopic and single X‐ray crystallographic studies. Preliminary binding studies of complex 1 with ct‐DNA/tRNA were carried out employing various complementary biophysical techniques and the corroborative results of these experiments suggested strong binding propensity via intercalation binding mode towards ct‐DNA/tRNA therapeutic targets, with higher preference for tRNA as quantified by binding constant { K b , K and K sv } parameters. The cleavage studies with pBR322 DNA were performed which implied that 1 cleaved the DNA by hydrolytic cleavage pathway which was further validated by T4 religation assay. Moreover, 1 was found to exhibit the tRNA cleavage behavior in a concentration and time‐dependent manner. The cytotoxicity of complex 1 was evaluated against Huh‐7, DU‐145 and the PNT2 cell lines by MTT assay. A dose‐dependent growth inhibition of the Huh‐7 and DU‐145 cells at low micromolar concentrations was observed and in another set of experiments, lipid peroxidation & glutathione (GSH) depletion were induced in the presence of the tested drug candidate. Interestingly, drug candidate 1 demonstrated selective cytotoxic activity for the DU‐145 cancer cell line with LC50 value of 3.2 μM which was further visualized by confocal microscopy.
Collapse
Affiliation(s)
| | - Siffeen Zehra
- Department of Chemistry Aligarh Muslim University Aligarh India
| | - Theirry Riosnel
- Institut des Sciences Chimiques de Rennes, UMR 6226 Universite de Rennes 1, Campus de Beaulieu Batiment 10B, Bureau 15335042 Rennes France
| | - Sartaj Tabassum
- Department of Chemistry Aligarh Muslim University Aligarh India
| | - Farukh Arjmand
- Department of Chemistry Aligarh Muslim University Aligarh India
| |
Collapse
|
25
|
Alafeef M, Dighe K, Moitra P, Pan D. Monitoring the Viral Transmission of SARS-CoV-2 in Still Waterbodies Using a Lanthanide-Doped Carbon Nanoparticle-Based Sensor Array. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:245-258. [PMID: 35036178 PMCID: PMC8751013 DOI: 10.1021/acssuschemeng.1c06066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/13/2021] [Indexed: 05/02/2023]
Abstract
The latest epidemic of extremely infectious coronavirus disease 2019 (COVID-19) has created a significant public health concern. Despite substantial efforts to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific location, shortcomings in the surveillance of predominantly asymptomatic infections constrain attempts to identify the epidemiological spread of the virus. Continuous surveillance of wastewater streams, including sewage, offers opportunities to track the spread of SARS-CoV-2, which is believed to be found in fecal waste. To demonstrate the feasibility of SARS-CoV-2 detection in wastewater systems, we herein present a novel facilely constructed fluorescence sensing array based on a panel of three different lanthanide-doped carbon nanoparticles (LnCNPs). The differential fluorescence response pattern due to the counterion-ligand interactions allowed us to employ powerful pattern recognition to effectively detect SARS-CoV-2 and differentiate it from other viruses or bacteria. The sensor results were benchmarked to the gold standard RT-qPCR, and the sensor showed excellent sensitivity (1.5 copies/μL) and a short sample-to-results time of 15 min. This differential response of the sensor array was also explained from the differential mode of binding of the LnCNPs with the surface proteins of the studied bacteria and viruses. Therefore, the developed sensor array provides a cost-effective, community diagnostic tool that could be potentially used as a novel epidemiologic surveillance approach to mitigate the spread of COVID-19.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering
Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Biomedical
Engineering Department, Jordan University
of Science and Technology, Irbid 22110, Jordan
- Departments
of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences
Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201, United
States
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250, United
States
| | - Ketan Dighe
- Bioengineering
Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250, United
States
| | - Parikshit Moitra
- Departments
of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences
Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201, United
States
| | - Dipanjan Pan
- Bioengineering
Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Departments
of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences
Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201, United
States
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250, United
States
| |
Collapse
|
26
|
Panda SK, Saxena S, Gupta PSS, Rana MK. Inhibitors of Plasmepsin X Plasmodium falciparum: Structure-based pharmacophore generation and molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Sabe VT, Ntombela T, Jhamba LA, Maguire GEM, Govender T, Naicker T, Kruger HG. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur J Med Chem 2021; 224:113705. [PMID: 34303871 DOI: 10.1016/j.ejmech.2021.113705] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022]
Abstract
Computer-aided drug design (CADD) is one of the pivotal approaches to contemporary pre-clinical drug discovery, and various computational techniques and software programs are typically used in combination, in a bid to achieve the desired outcome. Several approved drugs have been developed with the aid of CADD. On SciFinder®, we evaluated more than 600 publications through systematic searching and refining, using the terms, virtual screening; software methods; computational studies and publication year, in order to obtain data concerning particular aspects of CADD. The primary focus of this review was on the databases screened, virtual screening and/or molecular docking software program used. Furthermore, we evaluated the studies that subsequently performed molecular dynamics (MD) simulations and we reviewed the software programs applied, the application of density functional theory (DFT) calculations and experimental assays. To represent the latest trends, the most recent data obtained was between 2015 and 2020, consequently the most frequently employed techniques and software programs were recorded. Among these, the ZINC database was the most widely preferred with an average use of 31.2%. Structure-based virtual screening (SBVS) was the most prominently used type of virtual screening and it accounted for an average of 57.6%, with AutoDock being the preferred virtual screening/molecular docking program with 41.8% usage. Following the screening process, 38.5% of the studies performed MD simulations to complement the virtual screening and GROMACS with 39.3% usage, was the popular MD software program. Among the computational techniques, DFT was the least applied whereby it only accounts for 0.02% average use. An average of 36.5% of the studies included reports on experimental evaluations following virtual screening. Ultimately, since the inception and application of CADD in pre-clinical drug discovery, more than 70 approved drugs have been discovered, and this number is steadily increasing over time.
Collapse
Affiliation(s)
- Victor T Sabe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Lindiwe A Jhamba
- HIV Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa; School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thavendran Govender
- Faculty of Science and Agriculture, Department of Chemistry, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
28
|
Elyasi Z, Safaei Ghomi J, Najafi GR, Zand Monfared MR. The influence of the polymerization approach on the catalytic performance of novel porous poly (ionic liquid)s for green synthesis of pharmaceutical spiro-4-thiazolidinones. RSC Adv 2020; 10:44159-44170. [PMID: 35517141 PMCID: PMC9058518 DOI: 10.1039/d0ra08647a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Although poly (ionic liquids) (PILs) have attracted great research interest owing to their various applications, the performance of nanoporous PILs has been rarely developed in the catalysis field. To this end, a micro–mesoporous PIL with acid–base bifunctional active sites was designed and fabricated by two different polymerization protocols including hydrothermal and classical precipitation polymerization in this paper. Based on our observations, hydrothermal conditions (high temperature and pressure) enabled the proposed sonocatalyst to possess a great porous structure with a high specific surface area (SBET: 315 m2 g−1) and thermal stability (around 450 °C for 45% weight loss) through strengthening cross-linking. In a comparative study, the preferred nanoporous PIL was selected and utilized as the sonocatalyst in a multicomponent reaction of isatins, primary amines, and thioglycolic acid. In the following, a variety of new and known pharmaceutical spiro-4-thiazolidinone derivatives were synthesized at room temperature and obtained excellent yields (>90%) within short reaction times (4–12 min) owing to the substantial synergistic effect between ultrasound irradiation and magnetically separable catalyst. Sustainable synthesize of a new mesoporous poly (ionic liquid) as acid–base bifunctional catalyst for environmental being preparation of monospiro derivatives has been developed.![]()
Collapse
Affiliation(s)
- Zahra Elyasi
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran +98 31 55552935 +98 31 55912385
| | - Javad Safaei Ghomi
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran +98 31 55552935 +98 31 55912385.,Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Iran
| | - Gholam Reza Najafi
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran +98 31 55552935 +98 31 55912385
| | - Mohammad Reza Zand Monfared
- Department of Chemistry, Qom Branch, Islamic Azad University Post Box: 37491-13191 Qom I. R. Iran +98 31 55552935 +98 31 55912385
| |
Collapse
|