1
|
Liang H, Zhou B, Li P, Zhang X, Zhang S, Zhang Y, Yao S, Qu S, Chen J. Stemness regulation in prostate cancer: prostate cancer stem cells and targeted therapy. Ann Med 2025; 57:2442067. [PMID: 39711287 DOI: 10.1080/07853890.2024.2442067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Increasing evidence indicates that cancer stem cells (CSCs) and cancer stem-like cells form a special subpopulation of cells that are ubiquitous in tumors. These cells exhibit similar characteristics to those of normal stem cells in tissues; moreover, they are capable of self-renewal and differentiation, as well as high tumorigenicity and drug resistance. In prostate cancer (PCa), it is difficult to kill these cells using androgen signaling inhibitors and chemotherapy drugs. Consequently, the residual prostate cancer stem cells (PCSCs) mediate tumor recurrence and progression. OBJECTIVE This review aims to provide a comprehensive and up-to-date overview of PCSCs, with a particular emphasis on potential therapeutic strategies targeting these cells. METHODS After searching in PubMed and Embase databases using 'prostate cancer' and 'cancer stem cells' as keywords, studies related were compiled and examined. RESULTS In this review, we detail the origin and characteristics of PCSCs, introduce the regulatory pathways closely related to CSC survival and stemness maintenance, and discuss the link between epithelial-mesenchymal transition, tumor microenvironment and tumor stemness. Furthermore, we introduce the currently available therapeutic strategies targeting CSCs, including signaling pathway inhibitors, anti-apoptotic protein inhibitors, microRNAs, nanomedicine, and immunotherapy. Lastly, we summarize the limitations of current CSC research and mention future research directions. CONCLUSION A deeper understanding of the regulatory network and molecular markers of PCSCs could facilitate the development of novel therapeutic strategies targeting these cells. Previous preclinical studies have demonstrated the potential of this treatment approach. In the future, this may offer alternative treatment options for PCa patients.
Collapse
Affiliation(s)
- Hao Liang
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Bin Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Peixin Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyi Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shijie Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaozhong Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shengwen Yao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Sifeng Qu
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Jun Chen
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
2
|
Verner EL, Jackson JB, Maddox C, Valkenburg KC, White JR, Occean J, Morris L, Karandikar A, Gerding KMR, Sausen M, Koohestani F, Severson EA, Jensen TJ, Caveney BJ, Eisenberg M, Ramkissoon SH, Greer AE. Analytical Validation of the Labcorp Plasma Complete Test, a Cell-Free DNA Comprehensive Genomic Profiling Tool for Precision Oncology. J Mol Diagn 2025; 27:216-231. [PMID: 39818317 DOI: 10.1016/j.jmoldx.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025] Open
Abstract
To help guide treatment decisions and trial matching, tumor genomic profiling is an essential precision oncology tool. Liquid biopsy, a complementary approach to tissue testing, can assess tumor-specific DNA alterations circulating in the blood. Labcorp Plasma Complete is a next-generation sequencing, cell-free DNA comprehensive genomic profiling test that identifies clinically relevant somatic variants across 521 genes in advanced and metastatic solid cancers. Over 800 unique sequencing libraries across 27 cancer types were evaluated to establish analytical sensitivity, specificity, accuracy, and precision, reproducibility, and repeatability (PRR). Sensitivity was verified for each variant type, with a median variant allele frequency (VAF) of 1.25% and 1.27% for panel-wide single nucleotide variants (SNVs) and insertions/deletions (indels) (sequence mutations), respectively, with <1% VAF sensitivity observed for clinically actionable variants, 1.72-fold for copy number amplifications (CNAs), 0.48% fusion read fraction for translocations, and 0.47% sequence mutation VAF for microsatellite instability-high (MSI-H). Specificity was 99.9999% for SNVs and 100% for other variant types. PRR resulted in 94.9% average positive agreement (APA) and 99.9% average negative agreement (ANA) for sequence mutations and 100% APA and ANA for CNAs, translocations, and MSI-H. Orthogonal assays were utilized to assess accuracy, demonstrating concordance of 97.4% positive percent agreement and >99.99997% negative percent agreement across all variants. Overall, the test demonstrates high sensitivity, specificity, accuracy, and robustness to enable informed clinical decision-making.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mark Sausen
- Labcorp Oncology (PGDx), Baltimore, Maryland
| | | | | | | | | | | | - Shakti H Ramkissoon
- Labcorp Oncology, Durham, North Carolina; Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
3
|
Alix-Panabières C, Pantel K. Advances in liquid biopsy: From exploration to practical application. Cancer Cell 2025; 43:161-165. [PMID: 39672165 DOI: 10.1016/j.ccell.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
Liquid biopsy has received tremendous attention as a non-invasive approach for detecting and tracking cancer. Here, we discuss the latest work on circulating tumor DNA and circulating tumor cells with respect to clinical applications, including cancer screening, early detection of relapse, real-time monitoring of therapeutic efficacy, and detection of therapeutic targets and resistance mechanisms.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH) and Liquid Biopsy, University Medical Centre of Montpellier, Montpellier, France; CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; European Liquid Biopsy Society (ELBS), Hamburg, Germany; Department of Tumor Biology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany.
| | - Klaus Pantel
- European Liquid Biopsy Society (ELBS), Hamburg, Germany; Department of Tumor Biology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Bergmann L, Afflerbach AK, Yuan T, Pantel K, Smit DJ. Lessons (to be) learned from liquid biopsies: assessment of circulating cells and cell-free DNA in cancer and pregnancy-acquired microchimerism. Semin Immunopathol 2025; 47:14. [PMID: 39893314 PMCID: PMC11787191 DOI: 10.1007/s00281-025-01042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Tumors constantly shed cancer cells that are considered the mediators of metastasis via the blood stream. Analysis of circulating cells and circulating cell-free DNA (cfDNA) in liquid biopsies, mostly taken from peripheral blood, have emerged as powerful biomarkers in oncology, as they enable the detection of genomic aberrations. Similarly, liquid biopsies taken from pregnant women serve as prenatal screening test for an abnormal number of chromosomes in the fetus, e.g., via the analysis of microchimeric fetal cells and cfDNA circulating in maternal blood. Liquid biopsies are minimally invasive and, consequently, associated with reduced risks for the patients. However, different challenges arise in oncology and pregnancy-acquired liquid biopsies with regard to the analyte concentration and biological (background) noise among other factors. In this review, we highlight the unique biological properties of circulating tumor cells (CTC), summarize the various techniques that have been developed for the enrichment, detection and analysis of CTCs as well as for analysis of genetic and epigenetic aberrations in cfDNA and highlight the range of possible clinical applications. Lastly, the potential, but also the challenges of liquid biopsies in oncology as well as their translational value for the analysis of pregnancy-acquired microchimerism are discussed.
Collapse
Affiliation(s)
- Lina Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Ann-Kristin Afflerbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Tingjie Yuan
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
5
|
Janjua D, Chaudhary A, Joshi U, Tripathi T, Bharti AC. Circulating tumor cells in solid malignancies: From advanced isolation technologies to biological understanding and clinical relevance in early diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 2025; 1880:189236. [PMID: 39662757 DOI: 10.1016/j.bbcan.2024.189236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Circulating tumor cells (CTCs) are shed from primary tumors and travel through the body via circulation, eventually settling to form micrometastases under favorable conditions. Numerous studies have identified CTCs as a negative prognostic indicator for survival across various cancer types. CTCs mirror the current heterogeneity and genetic and biological state of tumors, making their study invaluable for understanding tumor progression, cell senescence, and cancer dormancy. However, their isolation and characterization still poses a major challenge that limits their clinical translation. A wide array of methods, each with different levels of specificity, utility, cost, and sensitivity, have been developed to isolate and characterize CTCs. Moreover, innovative techniques are emerging to address the limitations of existing methods. In this review, we provide insights into CTC biology addressing spectra of markers employed for molecular analysis and functional characterization. It also emphasizes current label-dependent and label-independent isolation procedures, addressing their strengths and limitations. SIGNIFICANCE: A comprehensive overview of CTC biology, their molecular and functional characterization, along with their current clinical utility will help in understanding the present-day extent to which the clinical potential of CTCs is getting tapped in personalized medicine.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
6
|
Xu N, Gao Z, Wu D, Chen H, Zhang Z, Zhang L, Wang Y, Lu X, Yao X, Liu X, Huang Y, Qiu M, Wang S, Liang J, Mao C, Zhang F, Xu H, Wang Y, Li X, Chen Z, Huang D, Shi J, Huang W, Lei F, Yang Z, Chen L, He C, Zhu H, Luo H, Gu J, Lin J. 5-hydroxymethylcytosine features of portal venous blood predict metachronous liver metastases of colorectal cancer and reveal phosphodiesterase 4 as a therapeutic target. Clin Transl Med 2025; 15:e70189. [PMID: 39956959 PMCID: PMC11830572 DOI: 10.1002/ctm2.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/24/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025] Open
Abstract
Metachronous liver metastases (MLM) are characterised by high incidence and high mortality in clinical colorectal cancer treatment. Currently traditional clinical methods cannot effectively predict and prevent the occurrence of metachronous liver metastasis in colorectal cancer. Based on 5hmC-Seal analysis of blood and tissue samples, this study found that portal venous blood was more relevant to tumour gDNA than peripheral blood. We performed a novel epigenetic liquid biopsy strategy using the 10 5hmC epigenetic alterations, to accurately distinguish MLM patients from patients without metastases. Among these epigenetic alterations, phosphodiesterase 4 (PDE4D) was highly increased in MLM patients and correlated with poor survival. Moreover, our studies demonstrated that PDE4D was a key metastasis-driven target for drug development. Interfering with the function of PDE4D significantly repressed liver metastases. Similarly, roflumilast, a PDE4 inhibitor for chronic obstructive pulmonary disease (COPD) therapy, also inhibits liver metastases. Further studies indicate that blocking the function of PDE4D can affect CRC invasion through the HIF-1α-CCN2 pathway. To develop a more efficient PDE4 inhibitor and reduce the occurrence of adverse events, we also designed several new compounds based on 2-arylbenzofurans and discovered lead L11 with potent affinity for PDE4D and significant suppression of liver metastases. In this work, our study provides a promising strategy for predicting metachronous liver metastasis and discovers L11 as a potential repurposed drug for inhibiting liver metastasis, which have the potential to benefit patients with CRC in the future. KEY POINTS: 5hmC epigenetic markers derived from portal venous blood could accurately predict metachronous metastasis of colorectal cancer. PDE4D was a key metastasis-driven target that promoted metachronous metastasis via the HIF-1α-CCN2 pathway. The newly synthesised compound L11 could specifically inhibit PDE4D and abolish metachronous metastasis of colorectal cancer without obvious toxic side effects.
Collapse
|
7
|
Wu J, Wang H, Nie Y, Wang Y, He W, Wang G, Li Z, Chen J, Xu W. CTCNet: a fine-grained classification network for fluorescence images of circulating tumor cells. Med Biol Eng Comput 2025:10.1007/s11517-025-03297-y. [PMID: 39841310 DOI: 10.1007/s11517-025-03297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/12/2025] [Indexed: 01/23/2025]
Abstract
The identification and categorization of circulating tumor cells (CTCs) in peripheral blood are imperative for advancing cancer diagnostics and prognostics. The intricacy of various CTCs subtypes, coupled with the difficulty in developing exhaustive datasets, has impeded progress in this specialized domain. To date, no methods have been dedicated exclusively to overcoming the classification challenges of CTCs. To address this deficit, we have developed CTCDet, a large-scale dataset meticulously annotated based on the distinctive pathological characteristics of CTCs, aimed at advancing the application of deep learning techniques in oncological research. Furthermore, we introduce CTCNet, an innovative hybrid architecture that merges the capabilities of CNNs and Transformers to achieve precise classification of CTCs. This architecture features the Parallel Token mixer, which integrates local window self-attention with large-kernel depthwise convolution, enhancing the network's ability to model intricate channel and spatial relationships. Additionally, the Deformable Large Kernel Attention (DLKAttention) module leverages deformable convolution and large-kernel operations to adeptly delineate the nuanced features of CTCs, substantially boosting classification efficacy. Comprehensive evaluations on the CTCDet dataset validate the superior performance of CTCNet, confirming its ability to outperform other general methods in accurate cell classification. Moreover, the generalizability of CTCNet has been established across various datasets, establishing its robustness and applicability. What is more, our proposed method can lead to clinical applications and provide some help in assisting cancer diagnosis and treatment. Code and Data are available at https://github.com/JasonWu404/CTCs_Classification .
Collapse
Affiliation(s)
- Juntao Wu
- School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei, 230601, Anhui, China
- Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Han Wang
- Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Yuman Nie
- Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
| | - Yaoxiong Wang
- Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Wei He
- Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, 230031, Anhui, China
| | - Guoxing Wang
- Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, 230031, Anhui, China
| | - Zeng Li
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiajun Chen
- Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, 230031, Anhui, China
| | - Wenliang Xu
- Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, 230031, Anhui, China
| |
Collapse
|
8
|
Samaha R, El Sayed R, Alameddine R, Florescu M, Tehfe M, Routy B, Elkrief A, Belkaid W, Desilets A, Weng X, Nassabein R, Blanc-Durand F, Kenth G, Kasymjanova G, Agulnik J, Blais N. Clinical Utility of Liquid Biopsy for the Early Diagnosis of EGFR-Mutant Advanced Lung Cancer Patients in a Real-Life Setting (CLEAR Study). Curr Oncol 2025; 32:57. [PMID: 39996857 PMCID: PMC11854366 DOI: 10.3390/curroncol32020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Lung cancer remains the leading cause of cancer mortality globally with EGFR mutations representing a significant driver in advanced non-small cell lung cancer (aNSCLC). The timely detection of these mutations is critical for initiating targeted therapy, yet tissue biopsy limitations often delay treatment. Methods: This multicenter prospective study evaluated the clinical utility of liquid biopsy (LBx) in real-life settings for the early diagnosis of EGFR mutations in patients with suspected aNSCLC. Circulating tumor DNA (ctDNA) was analyzed using the Cobas EGFR Mutation Test and compared to tissue-based next-generation sequencing (NGS). Results: Among 366 aNSCLC patients tested, LBx demonstrated a significantly shorter median turnaround time (TAT) of 3 days compared to 26 days for tissue NGS (p < 0.001) with 100% specificity and 65% sensitivity for EGFR mutation detection. LBx identified actionable EGFR mutations in cases where tissue biopsy was insufficient or unavailable, enabling 43.7% of patients to commence targeted therapy based on ctDNA results prior to biopsy confirmation. Conclusions: These findings highlight the potential of LBx to reduce diagnostic delays and improve access to personalized therapies in a real-world setting. Integrating LBx into routine diagnostic workflows may address current gaps in molecular testing, ensuring timely and precise treatment for aNSCLC patients.
Collapse
Affiliation(s)
- Ramy Samaha
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
| | - Rola El Sayed
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
| | - Raafat Alameddine
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
| | - Marie Florescu
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
| | - Mustapha Tehfe
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
| | - Bertrand Routy
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
- Axe Cancer, CRCHUM—Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Arielle Elkrief
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
- Axe Cancer, CRCHUM—Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Wiam Belkaid
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
- Axe Cancer, CRCHUM—Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Antoine Desilets
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
- Axe Cancer, CRCHUM—Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Xiaoduan Weng
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
| | - Rami Nassabein
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
| | - Félix Blanc-Durand
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
| | - Gurvinder Kenth
- Oncology, AstraZeneca Canada, Inc., Mississauga, ON L4Y 1M4, Canada;
| | - Goulnar Kasymjanova
- The Anne and Peter Brojde Lung Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada;
| | - Jason Agulnik
- Pulmonary and Medical Oncology, Jewish General Hospital, Montreal, QC H3T 1E2, Canada;
| | - Normand Blais
- Hematology/Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 3E4, Canada; (R.S.); (R.E.S.); (R.A.); (M.F.); (M.T.); (B.R.); (A.E.); (W.B.); (A.D.); (X.W.); (R.N.); (F.B.-D.)
- Axe Cancer, CRCHUM—Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
9
|
Smolle MA, Seidel MG, Kashofer K, Liegl-Atzwanger B, Sadoghi P, Müller DA, Leithner A. Precision medicine in diagnosis, prognosis, and disease monitoring of bone and soft tissue sarcomas using liquid biopsy: a systematic review. Arch Orthop Trauma Surg 2025; 145:121. [PMID: 39797974 PMCID: PMC11724793 DOI: 10.1007/s00402-024-05711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/27/2024] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Liquid biopsy as a non-invasive method to investigate cancer biology and monitor residual disease has gained significance in clinical practice over the years. Whilst its applicability in carcinomas is well established, the low incidence and heterogeneity of bone and soft tissue sarcomas explains the less well-established knowledge considering liquid biopsy in these highly malignant mesenchymal neoplasms. MATERIALS AND METHODS A systematic literature review adhering to the PRISMA guidelines initially identified 920 studies, of whom 68 original articles could be finally included, all dealing with clinical applicability of liquid biopsy in sarcoma. Studies were discussed within two main chapters, i.e. translocation-associated and complex-karyotype sarcomas. RESULTS Overall, data on clinical applicability of liquid biopsy in 2636 patients with > 10 different entities of bone and soft tissue sarcomas could be summarised. The five most frequent tumour entities included osteosarcoma (n = 602), Ewing sarcoma (n = 384), gastrointestinal stromal tumour (GIST; n = 203), rhabdomyosarcoma (n = 193), and leiomyosarcoma (n = 145). Of 11 liquid biopsy analytes, largest evidence was present for ctDNA and cfDNA, investigated in 26 and 18 studies, respectively. CONCLUSIONS This systematic literature review provides an extensive up-to-date overview about the current and potential future uses of different liquid biopsy modalities as diagnostic, prognostic, and disease monitoring markers in sarcoma.
Collapse
Affiliation(s)
- Maria Anna Smolle
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Markus G Seidel
- Research Unit for Cancer and Inborn Errors of the Blood and Immunity in Children, Division of Paediatric and Adolescent Haematology/Oncology, Department of Paediatric and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Patrick Sadoghi
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Daniel A Müller
- Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria.
| |
Collapse
|
10
|
Hoshi Y, Matsuda S, Takeuchi M, Kawakubo H, Kitagawa Y. Liquid Biopsy and Multidisciplinary Treatment for Esophageal Cancer. Cancers (Basel) 2025; 17:196. [PMID: 39857978 PMCID: PMC11763614 DOI: 10.3390/cancers17020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Esophageal cancer (EC) is one of the leading causes of cancer-related deaths globally. Surgery is the standard treatment for resectable EC after preoperative chemoradiotherapy or chemotherapy, followed by postoperative adjuvant chemotherapy in certain cases. Upper gastrointestinal endoscopy and computed tomography (CT) are predominantly performed to evaluate the efficacy of these treatments, but their sensitivity and accuracy for evaluating minimal residual disease remain unsatisfactory, thereby requiring the development of alternative methods. In recent years, interest has been increasing in using liquid biopsy to assess treatment responses. Liquid biopsy is a noninvasive technology for detecting cell components in the blood and other body fluids. It involves collecting a small sample of body fluid, which is then analyzed for the presence of components, including circulating tumor DNA (ctDNA), microRNA (miRNA), or circulating tumor cells (CTCs). Further, ctDNA and miRNA are analyzed with various techniques, including digital polymerase chain reaction (dPCR) and next-generation sequencing (NGS). CTCs are isolated by determining surface antigens using immunomagnetic techniques or by filtering the blood according to cell size and rigidity. Several studies indicate that investigating these materials helps predict EC prognosis and recurrence and possibly stratifies high-risk groups. Liquid biopsy may also apply to the selection of cases that have achieved a complete response through preoperative treatment to prevent surgery and preserve the esophagus, as well as identifying the suitability of postoperative chemotherapy and the timing of conversion surgery for unresectable EC. The potential of liquid biopsy to enhance treatment decisions will further advance EC treatment.
Collapse
Affiliation(s)
| | - Satoru Matsuda
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | |
Collapse
|
11
|
Long Y, Zhao R, Du X. Diagnostic accuracy of MRI-based radiomic features for EGFR mutation status in non-small cell lung cancer patients with brain metastases: a meta-analysis. Front Oncol 2025; 14:1428929. [PMID: 39834943 PMCID: PMC11743156 DOI: 10.3389/fonc.2024.1428929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025] Open
Abstract
Objective This meta-analysis aims to evaluate the diagnostic accuracy of magnetic resonance imaging (MRI) based radiomic features for predicting epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients with brain metastases. Methods We systematically searched PubMed, Embase, Cochrane Library, Web of Science, Scopus, Wanfang, and China National Knowledge Infrastructure (CNKI) for studies published up to April 30, 2024. We included those studies that utilized MRI-based radiomic features to detect EGFR mutations in NSCLC patients with brain metastases. Sensitivity, specificity, positive and negative likelihood ratios (PLR, NLR), and area under the curve (AUC) were calculated to evaluate the accuracy. Quality assessment was performed using the quality assessment of prognostic accuracy studies 2 (QUADAS-2) tool. Meta-analysis was conducted using random-effects models. Results A total of 13 studies involving 2,348 patients were included. The pooled sensitivity and specificity of MRI-based radiomic features for detecting EGFR mutations were 0.86 (95% CI: 0.74-0.93) and 0.83 (95% CI: 0.72-0.91), respectively. The PLR and NLR were calculated as 5.14 (3.09, 8.55) and 0.17 (0.10, 0.31), respectively. Substantial heterogeneity was observed, with I² values exceeding 50% for all parameters. The AUC for the receiver operating characteristic analysis was 0.91 (95% CI: 0.88-0.93). Subgroup analysis indicated that deep learning models and studies conducted in Asian showed higher diagnostic accuracy compared to their respective counterparts. Conclusions MRI-based radiomic features demonstrate a high potential for accurately detecting EGFR mutations in NSCLC patients with brain metastases, particularly when advanced deep learning techniques were employed. However, the variability in diagnostic performance across different studies underscores the need for standardized radiomic protocols to enhance reproducibility and clinical utility. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024544131.
Collapse
Affiliation(s)
- Yuqin Long
- Department of Respiratory and Critical Care Medicine, The Affiliated Dazu’s Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Zhao
- Department of Radiology, The Affiliated Dazu’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xianfeng Du
- Department of Oncology, The Affiliated Dazu’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Gautam D, Clarke EM, Roweth HG, Smith MR, Battinelli EM. Platelets and circulating (tumor) cells: partners in promoting metastatic cancer. Curr Opin Hematol 2025; 32:52-60. [PMID: 39508182 DOI: 10.1097/moh.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW Despite being discovered decades ago, metastasis remains a formidable challenge in cancer treatment. During the intermediate phase of metastasis, tumor cells detach from primary tumor or metastatic sites and travel through the bloodstream and lymphatic system to distant tissues. These tumor cells in the circulation are known as circulating tumor cells (CTCs), and a higher number of CTCs has been linked to poor prognoses in various cancers. The blood is an inhospitable environment for any foreign cells, including CTCs, as they face numerous challenges, such as the shear stress within blood vessels and their interactions with blood and immune cells. However, the exact mechanisms by which CTCs survive the hostile conditions of the bloodstream remain enigmatic. Platelets have been studied for their interactions with tumor cells, promoting their survival, growth, and metastasis. This review explores the latest clinical methods for enumerating CTCs, recent findings on platelet-CTC crosstalk, and current research on antiplatelet therapy as a potential strategy to inhibit metastasis, offering new therapeutic insights. RECENT FINDINGS Laboratory and clinical data have provided insights into the role of platelets in promoting CTC survival, while clinical advancements in CTC enumeration offer improved prognostic tools. SUMMARY CTCs play a critical role in metastasis, and their interactions with platelets aid their survival in the hostile environment of the bloodstream. Understanding this crosstalk offers insights into potential therapeutic strategies, including antiplatelet therapy, to inhibit metastasis and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Deepa Gautam
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Emily M Clarke
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
| | - Harvey G Roweth
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret R Smith
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elisabeth M Battinelli
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Chang C, Cai Z, Cheng K, Shen C, Zhang B, Chen Z, Yin Y, Cao D. Efficacy and safety of S-1 plus oxaliplatin combined with apatinib and camrelizumab as neoadjuvant therapy for patients with locally advanced gastric or gastroesophageal junction adenocarcinoma: a protocol for a single-arm phase II trial. Updates Surg 2025; 77:165-174. [PMID: 39738886 DOI: 10.1007/s13304-024-02052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/27/2024] [Indexed: 01/02/2025]
Abstract
Gastric cancer, as the fifth most diagnosed malignancy and the fourth leading cause of cancer-related death globally, remains a significant health concern. The potential effect of the programmed death-1 (PD-1) inhibitor, when used alongside chemotherapy and antiangiogenic agents in neoadjuvant therapy for gastric cancer, has yet to be explored in the published literature. This study aims to evaluate the efficacy and safety of the S-1 plus oxaliplatin (SOX) regimen when combined with apatinib and camrelizumab (SOXAC) as neoadjuvant therapy for patients with locally advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma. A single-arm, open-label, single-center phase II clinical trial has been designed to evaluate the safety and efficacy of the SOXAC regimen as neoadjuvant therapy for patients diagnosed with locally advanced gastric or GEJ adenocarcinoma (cT2-3N + M0 or T4NxM0). Eligible patients are to receive 2 cycles of SOXAC and 1 cycle of SOX regimen with camrelizumab (SOXC) as neoadjuvant therapy prior to radical surgery, and 3 cycles of SOXC as postoperative adjuvant therapy. The primary endpoint is major pathological remission (MPR), while secondary endpoints include pathological complete response (pCR) rate, R0 resection rate, objective response rate (ORR), operation-related outcomes, and safety. The SOX regimen remains a leading choice for neoadjuvant chemotherapy in Eastern countries. Recent studies suggest that combining chemotherapy, targeted agents, and immune checkpoint inhibitors can enhance the antitumor immune response. This phase II clinical trial seeks to assess the safety and efficacy of the SOXAC regimen as neoadjuvant therapy for patients with locally advanced resectable gastric or GEJ adenocarcinoma, while also exploring the correlation between biomarkers and efficacy.Trial Registration Chinese Clinical Trial Registry (ChiCTR): ChiCTR2200062285 ( https://www.chictr.org.cn/ ).
Collapse
Affiliation(s)
- Chen Chang
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhaolun Cai
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Ke Cheng
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chaoyong Shen
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Bo Zhang
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhixin Chen
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yuan Yin
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Dan Cao
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Kumar NM, Navaneeth N, Shettar A, Chelimeswamy A. Elements of liquid biopsies: isolation, analysis, and clinical application in cancer diagnosis to prognosis. Expert Rev Mol Diagn 2024:1-12. [PMID: 39695357 DOI: 10.1080/14737159.2024.2445111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION The liquid biopsy is a breakthrough in the field of medical diagnostics. It serves as a sentinel that can quietly detect even the subtlest aberrations that indicate the presence of disease. They make it possible to uncover relevant genetic factors of tumors with minimal to no risk to cancer patients. Liquid biopsies allow detailed diagnosis, dynamic treatment monitoring, and accurate prognosis. They are also invaluable in diagnosing other diseases such as infectious diseases and aberrant gene mutations. AREAS COVERED The present review undertakes an in-depth analysis of the existing status of liquid biopsy diagnostic tools, focusing on their principal components. Furthermore, the review highlights pertinent and recent research in this field to provide a comprehensive understanding of the current state of this technology and its prospects. EXPERT OPINION Despite new and upcoming research in liquid biopsies, multiple areas need to be further explored before the viable transition into the clinical arena. With the advancements in tools such as artificial intelligence and machine learning and the integration of these technologies with liquid biopsies, these challenges are being addressed and will eventually lead to the development of a highly evolved liquid biopsy diagnostic tools.
Collapse
Affiliation(s)
| | - Niyati Navaneeth
- Department of Biotechnology, M.S Ramaiah Institute of Technology, Bengaluru, India
| | - Abhijith Shettar
- Department of Biotechnology, M.S Ramaiah Institute of Technology, Bengaluru, India
| | - Anupama Chelimeswamy
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| |
Collapse
|
15
|
Solhi R, Pourhamzeh M, Zarrabi A, Hassan M, Mirzaei H, Vosough M. Novel biomarkers for monitoring and management of hepatocellular carcinoma. Cancer Cell Int 2024; 24:428. [PMID: 39719624 DOI: 10.1186/s12935-024-03600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
Due to current challenges in the early detection, less than 40% of individuals diagnosed with hepatocellular carcinoma (HCC) are viable candidates for surgical intervention. Therefore, validating and launching of a novel precise diagnostic approach is essential for early diagnosis. Based on developing evidence using circulating tumor cells and their derivatives, circulating miRNAs, and extracellular vesicles (EVs), liquid biopsy may offer a reliable platform for the HCC's early diagnosis. Each liquid biopsy analyte may provide significant areas for diagnosis, prognostic assessment, and treatment monitoring of HCC patients depending on its kind, sensitivity, and specificity. The current review addresses potential clinical applications, current research, and future developments for liquid biopsy in HCC management.
Collapse
Affiliation(s)
- Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
16
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024; 9:336. [PMID: 39617822 PMCID: PMC11609310 DOI: 10.1038/s41392-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer has a high mortality rate across the globe, and tissue biopsy remains the gold standard for tumor diagnosis due to its high level of laboratory standardization, good consistency of results, relatively stable samples, and high accuracy of results. However, there are still many limitations and drawbacks in the application of tissue biopsy in tumor. The emergence of liquid biopsy provides new ideas for early diagnosis and prognosis of tumor. Compared with tissue biopsy, liquid biopsy has many advantages in the diagnosis and treatment of various types of cancer, including non-invasive, quickly and so on. Currently, the application of liquid biopsy in tumor detection has received widely attention. It is now undergoing rapid progress, and it holds significant potential for future applications. Around now, liquid biopsies encompass several components such as circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. In addition, advances in the identification of liquid biopsy indicators have significantly enhanced the possibility of utilizing liquid biopsies in clinical settings. In this review, we will discuss the application, advantages and challenges of liquid biopsy in some common tumors from the perspective of diverse systems of tumors, and look forward to its future development prospects in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Yunxiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Chenran Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Jiahao Bu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
18
|
Bonstingl L, Zinnegger M, Sallinger K, Pankratz K, Müller CT, Pritz E, Odar C, Skofler C, Ulz C, Oberauner-Wappis L, Borrás-Cherrier A, Somođi V, Heitzer E, Kroneis T, Bauernhofer T, El-Heliebi A. Advanced single-cell and spatial analysis with high-multiplex characterization of circulating tumor cells and tumor tissue in prostate cancer: Unveiling resistance mechanisms with the CoDuCo in situ assay. Biomark Res 2024; 12:140. [PMID: 39550585 PMCID: PMC11568690 DOI: 10.1186/s40364-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Metastatic prostate cancer is a highly heterogeneous and dynamic disease and practicable tools for patient stratification and resistance monitoring are urgently needed. Liquid biopsy analysis of circulating tumor cells (CTCs) and circulating tumor DNA are promising, however, comprehensive testing is essential due to diverse mechanisms of resistance. Previously, we demonstrated the utility of mRNA-based in situ padlock probe hybridization for characterizing CTCs. METHODS We have developed a novel combinatorial dual-color (CoDuCo) assay for in situ mRNA detection, with enhanced multiplexing capacity, enabling the simultaneous analysis of up to 15 distinct markers. This approach was applied to CTCs, corresponding tumor tissue, cancer cell lines, and peripheral blood mononuclear cells for single-cell and spatial gene expression analysis. Using supervised machine learning, we trained a random forest classifier to identify CTCs. Image analysis and visualization of results was performed using open-source Python libraries, CellProfiler, and TissUUmaps. RESULTS Our study presents data from multiple prostate cancer patients, demonstrating the CoDuCo assay's ability to visualize diverse resistance mechanisms, such as neuroendocrine differentiation markers (SYP, CHGA, NCAM1) and AR-V7 expression. In addition, druggable targets and predictive markers (PSMA, DLL3, SLFN11) were detected in CTCs and formalin-fixed, paraffin-embedded tissue. The machine learning-based CTC classification achieved high performance, with a recall of 0.76 and a specificity of 0.99. CONCLUSIONS The combination of high multiplex capacity and microscopy-based single-cell analysis is a unique and powerful feature of the CoDuCo in situ assay. This synergy enables the simultaneous identification and characterization of CTCs with epithelial, epithelial-mesenchymal, and neuroendocrine phenotypes, the detection of CTC clusters, the visualization of CTC heterogeneity, as well as the spatial investigation of tumor tissue. This assay holds significant potential as a tool for monitoring dynamic molecular changes associated with drug response and resistance in prostate cancer.
Collapse
Affiliation(s)
- Lilli Bonstingl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
- European Liquid Biopsy Society (ELBS), 20246, Hamburg, Germany
| | - Margret Zinnegger
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
| | - Katja Sallinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Karin Pankratz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Christin-Therese Müller
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Elisabeth Pritz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Corinna Odar
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Christina Skofler
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Christine Ulz
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Lisa Oberauner-Wappis
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Anatol Borrás-Cherrier
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Višnja Somođi
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Ellen Heitzer
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Human Genetics, Medical University of Graz, 8010, Graz, Austria
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, 8010, Graz, Austria
| | - Thomas Kroneis
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Thomas Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8010, Graz, Austria
- University Comprehensive Cancer Center (CCC) Graz, 8010, Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria.
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria.
- European Liquid Biopsy Society (ELBS), 20246, Hamburg, Germany.
| |
Collapse
|
19
|
Kurozumi S, Ball GR. Research on biomarkers using innovative artificial intelligence systems in breast cancer. Int J Clin Oncol 2024; 29:1669-1675. [PMID: 39181953 DOI: 10.1007/s10147-024-02602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Cancer is highly diverse and heterogeneous. Accurate and rapid analysis of the characteristics of individual cancer cells, using a complex array of big data that includes various clinicopathological features and molecular mechanisms, is crucial for advancing precision medicine. In recent years, experts in biomedical sciences and data sciences have explored the potential of artificial intelligence (AI) to analyze such extensive data sets. The next phase of AI-based medical research on cancer should focus on the practical applications of AI tools and how they can be effectively used in actual medical research settings. Recently, translational research that leverages AI and comprehensive genetic analysis data has emerged as a significant research focus. This field represents an opportunity for groundbreaking discoveries to be shared globally. To further precision medicine in clinical practice, it is vital to develop sophisticated AI tools for cancer research. These tools should not only identify potential therapeutic targets through comprehensive genetic analysis but also predict therapeutic outcomes in clinical settings.
Collapse
Affiliation(s)
- Sasagu Kurozumi
- Department of Breast Surgery, School of Medicine, International University of Health and Welfare, 852, Hatakeda, Narita, Chiba, 286-8520, Japan.
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan.
| | - Graham R Ball
- Medical Technology Research Centre, Michael Salmon Building, Anglia Ruskin University, Chelmsford, UK
| |
Collapse
|
20
|
Banerjee S, Booth CM, Bruera E, Büchler MW, Drilon A, Fry TJ, Ghobrial IM, Gianni L, Jain RK, Kroemer G, Llovet JM, Long GV, Pantel K, Pritchard-Jones K, Scher HI, Tabernero J, Weichselbaum RR, Weller M, Wu YL. Two decades of advances in clinical oncology - lessons learned and future directions. Nat Rev Clin Oncol 2024; 21:771-780. [PMID: 39354161 DOI: 10.1038/s41571-024-00945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Affiliation(s)
- Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, UK.
- The Institute of Cancer Research, London, UK.
| | | | - Eduardo Bruera
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer, Unit 1414, Houston, TX, USA.
| | - Markus W Büchler
- Botton-Champalimaud Pancreatic Cancer, Champalimaud Foundation, Lisbon, Portugal.
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA.
| | - Terry J Fry
- Department of Paediatrics and Immunology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Aurora, CO, USA.
| | - Irene M Ghobrial
- Center for Prevention of Progression of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Harvard Medical School, Boston, MA, USA.
| | | | - Rakesh K Jain
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia.
| | - Klaus Pantel
- Institute of Tumour Biology, University Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | - Kathy Pritchard-Jones
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain.
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA.
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Xu Z, Jiang G, Dai J. Tumor therapeutics in the era of "RECIST": past, current insights, and future prospects. Oncol Rev 2024; 18:1435922. [PMID: 39493769 PMCID: PMC11527623 DOI: 10.3389/or.2024.1435922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 11/05/2024] Open
Abstract
In recent years, advancements in medical treatment and imaging technologies have revolutionized the assessment of tumor response. However, the Response Evaluation Criteria in Solid Tumors (RECIST) has long been established as the gold standard for evaluating tumor treatment. As treatment modalities evolve, the need for continuous refinement and adaptation of RECIST becomes increasingly apparent. This review explores the historical evolution, current applications, limitations, and future directions of RECIST. It discusses the challenges of distinguishing true progression from pseudo-progression in ICIs (immune checkpoint inhibitors), the integration of advanced imaging tools, and the necessity for RECIST criteria tailored to specific therapies like neoadjuvant treatments. The review highlights the ongoing efforts to enhance RECIST's accuracy and reliability in clinical decision-making and the potential for developing new standards to better evaluate treatment efficacy in the rapidly evolving landscape of oncology.
Collapse
Affiliation(s)
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Dai
- *Correspondence: Gening Jiang, ; Jie Dai,
| |
Collapse
|
22
|
Barbosa JMG, Filho NRA. The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. Metabolomics 2024; 20:113. [PMID: 39375265 DOI: 10.1007/s11306-024-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids. AIM OF REVIEW This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
23
|
Fu SW, Tang C, Tan X, Srivastava S. Liquid biopsy for early cancer detection: technological revolutions and clinical dilemma. Expert Rev Mol Diagn 2024; 24:937-955. [PMID: 39360748 DOI: 10.1080/14737159.2024.2408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Liquid biopsy is an innovative advancement in oncology, offering a noninvasive method for early cancer detection and monitoring by analyzing circulating tumor cells, DNA, RNA, and other biomarkers in bodily fluids. This technique has the potential to revolutionize precision oncology by providing real-time analysis of tumor dynamics, enabling early detection, monitoring treatment responses, and tailoring personalized therapies based on the molecular profiles of individual patients. AREAS COVERED In this review, the authors discuss current methodologies, technological challenges, and clinical applications of liquid biopsy. This includes advancements in detecting minimal residual disease, tracking tumor evolution, and combining liquid biopsy with other diagnostic modalities for precision oncology. Key areas explored are the sensitivity, specificity, and integration of multi-omics, AI, ML, and LLM technologies. EXPERT OPINION Liquid biopsy holds great potential to revolutionize cancer care through early detection and personalized treatment strategies. However, its success depends on overcoming technological and clinical hurdles, such as ensuring high sensitivity and specificity, interpreting results amidst tumor heterogeneity, and making tests accessible and affordable. Continued innovation and collaboration are crucial to fully realize the potential of liquid biopsy in improving early cancer detection, treatment, and monitoring.
Collapse
Affiliation(s)
- Sidney W Fu
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Cong Tang
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Xiaohui Tan
- Division of LS Research, LSBioscience, LLC, Frederick, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
24
|
Zhang X, Dumčius P, Mikhaylov R, Qi J, Stringer M, Sun C, Nguyen VD, Zhou Y, Sun X, Liang D, Liu D, Yan B, Feng X, Mei C, Xu C, Feng M, Fu Y, Clayton A, Zhi R, Tian L, Dong Z, Yang X. Surface Acoustic Wave-Enhanced Multi-View Acoustofluidic Rotation Cytometry (MARC) for Pre-Cytopathological Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403574. [PMID: 39136049 PMCID: PMC11497091 DOI: 10.1002/advs.202403574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/20/2024] [Indexed: 10/25/2024]
Abstract
Cytopathology, crucial in disease diagnosis, commonly uses microscopic slides to scrutinize cellular abnormalities. However, processing high volumes of samples often results in numerous negative diagnoses, consuming significant time and resources in healthcare. To address this challenge, a surface acoustic wave-enhanced multi-view acoustofluidic rotation cytometry (MARC) technique is developed for pre-cytopathological screening. MARC enhances cellular morphology analysis through comprehensive and multi-angle observations and amplifies subtle cell differences, particularly in the nuclear-to-cytoplasmic ratio, across various cell types and between cancerous and normal tissue cells. By prioritizing MARC-screened positive cases, this approach can potentially streamline traditional cytopathology, reducing the workload and resources spent on negative diagnoses. This significant advancement enhances overall diagnostic efficiency, offering a transformative vision for cytopathological screening.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Povilas Dumčius
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Roman Mikhaylov
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Jiangfa Qi
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Mercedes Stringer
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Chao Sun
- School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Van Dien Nguyen
- Systems Immunity University Research InstituteCardiff UniversityCardiffCF14 4XNUK
- Division of Infection and ImmunityCardiff UniversityCardiffCF14 4XNUK
| | - You Zhou
- Systems Immunity University Research InstituteCardiff UniversityCardiffCF14 4XNUK
- Division of Infection and ImmunityCardiff UniversityCardiffCF14 4XNUK
| | - Xianfang Sun
- School of Computer Science and InformaticsCardiff UniversityCardiffCF24 4AGUK
| | - Dongfang Liang
- Department of EngineeringUniversity of CambridgeCambridgeCB2 1PZUK
| | - Dongge Liu
- Department of PathologyBeijing HospitalBeijing100730P. R. China
| | - Bing Yan
- Department of Information ManagementBeijing HospitalBeijing100730P. R. China
| | - Xi Feng
- Department of PathologyHubei Cancer HospitalWuhan430079P. R. China
| | - Changjun Mei
- Department of PathologyXiangzhou District People's Hospital of XiangyangXiangyang441000P. R. China
| | - Cong Xu
- Department of PathologyXiangzhou District People's Hospital of XiangyangXiangyang441000P. R. China
| | - Mingqian Feng
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Yongqing Fu
- Faculty of Engineering and EnvironmentNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Aled Clayton
- School of MedicineCardiff UniversityCardiffCF14 4XNUK
| | - Ruicong Zhi
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory of Knowledge Engineering for Materials ScienceBeijing100083P.R. China
| | - Liangfei Tian
- Department of Biomedical EngineeringMOE Key Laboratory of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Zhiqiang Dong
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| |
Collapse
|
25
|
Massey S, Kongchan N, Gao Y, Chaudhury A, Olokpa E, Karch J, Malovannaya A, Cheng C, Zhang X, Neilson JR. PKC-mediated phosphorylation governs the stability and function of CELF1 as a driver of EMT in breast epithelial cells. J Biol Chem 2024; 300:107826. [PMID: 39343007 PMCID: PMC11585768 DOI: 10.1016/j.jbc.2024.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024] Open
Abstract
Epithelial to mesenchymal transition (EMT) is believed to be a principal factor contributing to cancer metastasis. The post-transcriptional and post-translational mechanisms underlying EMT are comparatively underexplored. We previously demonstrated that the CELF1 RNA binding protein is necessary and sufficient to drive the EMT of breast epithelial cells, and that the relative protein expression of CELF1 in this context was dictated at the post-translational level. Here, we elucidate the mechanism of this regulation. Mass spectrometric analysis of CELF1 isolated from mesenchymal MCF-10A cells identified multiple sites of serine and threonine phosphorylation on the protein, correlating with the increased stability of this protein in this cellular state. Analysis of phosphomimetic and serine/threonine-to-alanine phosphomutant variants of CELF1 revealed that these phosphorylation sites indeed dictate CELF1 stability, ubiquitination state, and function in vitro. Via co-immunoprecipitation and in vitro kinase assays, we identified the protein kinase C alpha and epsilon isozymes as the kinases responsible for CELF1 phosphorylation in a breast cell line. Genetic epistasis experiments confirmed that these PKCs function upstream of CELF1 in this EMT program, and CELF1 phosphorylation impacts tumor metastasis in a xenograft model. This work is the first to formally establish the mechanisms underlying post-translational control of CELF1 expression and function during EMT of breast epithelial cells. Given the broad dysregulation of CELF1 expression in human breast cancer, our results may ultimately provide knowledge that may be leveraged for novel therapeutic interventions in this context.
Collapse
Affiliation(s)
- Shebna Massey
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Natee Kongchan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Yang Gao
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Arindam Chaudhury
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Emuejevoke Olokpa
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; McNair Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Joel R Neilson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
26
|
Sebutsoe XM, Tsotetsi NJN, Jantjies ZE, Raphela-Choma PP, Choene MS, Motadi LR. Therapeutic Strategies in Advanced Cervical Cancer Detection, Prevention and Treatment. Onco Targets Ther 2024; 17:785-801. [PMID: 39345275 PMCID: PMC11439348 DOI: 10.2147/ott.s475132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is ranked the fourth most common cause of cancer related deaths amongst women. The situation is particularly dire in low to lower middle-income countries. It continues to affect these countries due to poor vaccine coverage and screening. Cervical cancer is mostly detected in the advanced stages leading to poor outcomes. This review focuses on the progress made to date to improve early detection and targeted therapy using both circulating RNA. Vaccine has played a major role in cervical cancer control in vaccinated young woman in mainly developed countries yet in low-income countries with challenges of 3 dose vaccination affordability, cervical cancer continues to be the second most deadly amongst women. In this review, we show the progress made in reducing cervical cancer using vaccination that in combination with other treatments that might improve survival in cervical cancer. We further show with both miRNA and siRNA that targeted therapy and specific markers might be ideal for early detection of cervical cancer in low-income countries. These markers are either upregulated or down regulated in cancer providing clue to the stage of the cancer.
Collapse
Affiliation(s)
- Xolisiwe M Sebutsoe
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | | | - Zodwa Edith Jantjies
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Portia Pheladi Raphela-Choma
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Mpho S Choene
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Lesetja R Motadi
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| |
Collapse
|
27
|
Rivandi M, Franken A, Yang L, Abramova A, Stamm N, Eberhardt J, Gierke B, Beer M, Fehm T, Niederacher D, Pawlak M, Neubauer H. Miniaturized protein profiling permits targeted signaling pathway analysis in individual circulating tumor cells to improve personalized treatment. J Transl Med 2024; 22:848. [PMID: 39304879 DOI: 10.1186/s12967-024-05616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/18/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Traditional genomic profiling and mutation analysis of single cells like Circulating Tumor Cells (CTCs) fails to capture post-translational and functional alterations of proteins, often leading to limited treatment efficacy. To overcome this gap, we developed a miniaturized 'protein analysis on the single cell level' workflow-baptized ZeptoCTC. It integrates established technologies for single-cell isolation with sensitive Reverse Phase Protein Array (RPPA) analysis, thus enabling the comprehensive assessment of multiple protein expression and activation in individual CTCs. METHODS The ZeptoCTC workflow involves several critical steps. Firstly, individual cells are labeled and isolated. This is followed by cell lysis and the printing of true single cell lysate preparations onto a ZeptoChip using a modified micromanipulator, CellCelector™. The printed lysates then undergo fluorescence immunoassay RPPA protein detection using a ZeptoReader. Finally, signal quantification is carried out with Image J software, ensuring precise measurement of multiple protein levels. RESULTS The efficacy of ZeptoCTC was demonstrated through various applications. Initially, it was used for measuring EpCAM protein expression, a standard marker for CTC detection, revealing higher levels in single MCF-7 over MDA-MB-231 tumor cells. Furthermore, in Capivasertib (Akt-inhibitor)-treated MCF-7 single cells, ZeptoCTC detected a 2-fold increase in the pAkt/Akt ratio compared to control cells, and confirmed co-performed bulk-cell western blot analysis results. Notably, when applied to individual CTCs from metastasized breast cancer patients, ZeptoCTC revealed significant differences in protein activation levels, particularly in measured pAkt and pErk levels, compared to patient-matched WBCs. Moreover, it successfully differentiated between CTCs from patients with different Akt1 genotypes, highlighting its potential to determine the activation status of druggable cancer driving proteins for individual and targeted treatment decision making. CONCLUSIONS The ZeptoCTC workflow represents a valuable tool in single cell cancer research, crucial for personalized medicine. It permits detailed analysis of key proteins and their activation status of targeted, cancer-driven signaling pathways in single cell samples, aiding in understanding tumor response, progression, and treatment efficacy beyond bulk analysis. The method significantly advances clinical investigations in cancer, improving treatment precision and effectiveness. The workflow will be applicable to protein analysis on other types of single cells like relevant in stem cell, neuropathology and hemopoietic cell research.
Collapse
Affiliation(s)
- Mahdi Rivandi
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - Liwen Yang
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - Anna Abramova
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - Nadia Stamm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | | | | | - Meike Beer
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | | | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany.
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany.
| |
Collapse
|
28
|
Nassar SI, Suk A, Nguyen SA, Adilbay D, Pang J, Nathan CAO. The Role of ctDNA and Liquid Biopsy in the Diagnosis and Monitoring of Head and Neck Cancer: Towards Precision Medicine. Cancers (Basel) 2024; 16:3129. [PMID: 39335101 PMCID: PMC11430155 DOI: 10.3390/cancers16183129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Recent data have shown a continued rise in the worldwide annual incidence and mortality rates of head and neck cancers. The present standard for diagnosis and monitoring for disease recurrence or progression involves clinical examination, imaging, and invasive biopsy techniques of lesions suspected of being malignant. In addition to limitations relating to cost, time, and patient discomfort, these methodologies have inherent inaccuracies for detecting recurrence. In view of these limitations, the analysis of patient bodily fluid samples via liquid biopsy proposes a cost-effective and convenient alternative, which provides insight on the biogenetic and biomolecular underpinnings of oncologic disease processes. The monitoring of biomarkers for head and neck cancer via liquid biopsy, including circulating tumor DNA, circulating tumor cells, and circulating cell-free RNA, has shown clinical utility in the screening, diagnosis, prognostication, and monitoring of patients with various forms of head and neck cancer. The present review will provide an update on the current literature examining the use of liquid biopsy in head and neck cancer care and the clinical applicability of potential biomarkers, with a focus on viral and non-viral circulating tumor DNA. Possible future avenues for research to address specific shortcomings of liquid biopsy will be discussed.
Collapse
Affiliation(s)
- Sami I. Nassar
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Amber Suk
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Shaun A. Nguyen
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Dauren Adilbay
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - John Pang
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Cherie-Ann O. Nathan
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| |
Collapse
|
29
|
Cai J, Chen B, He M, Yuan G, Hu B. An Integrated Inertial-Magnetophoresis Microfluidic Chip Online-Coupled with ICP-MS for Rapid Separation and Precise Detection of Circulating Tumor Cells. Anal Chem 2024; 96:14222-14229. [PMID: 39159467 DOI: 10.1021/acs.analchem.4c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Circulating tumor cells (CTCs) are recognized as promising targets for liquid biopsy, which play an important role in early diagnosis and efficacy monitoring of cancer. However, due to the extreme scarcity of CTCs and partial size overlap between CTCs and white blood cells (WBCs), the separation and detection of CTCs from blood remain a big challenge. To address this issue, we fabricated a microfluidic chip by integrating a passive contraction-expansion array (CEA) inertial sorting zone and an active magnetophoresis zone with the trapezoidal groove and online coupled it with inductively coupled plasma mass spectrometry (ICP-MS) for rapid separation and precise detection of MCF-7 cells (as a model CTC) in blood samples. In the integrated microfluidic chip, most of the small-sized WBCs can be rapidly removed in the circular CEA inertial sorter, while the rest of the magnetically labeled WBCs can be further captured in the trapezoidal groove under the magnetic field. As a result, the rapid separation of MCF-7 cells from blood samples was achieved with an average recovery of 91.6% at a sample flow rate of 200 μL min-1. The developed online integrated inertial-magnetophoresis microfluidic chip-ICP-MS system has been applied for the detection of CTCs in real clinical blood samples with a fast analysis speed (5 min per 1 mL blood). CTCs were detected in all 24 blood samples from patients with different types of cancer, exhibiting excellent application potential in clinical diagnosis.
Collapse
Affiliation(s)
- Jing Cai
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Guolin Yuan
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
30
|
Reese KL, Pantel K, Smit DJ. Multibiomarker panels in liquid biopsy for early detection of pancreatic cancer - a comprehensive review. J Exp Clin Cancer Res 2024; 43:250. [PMID: 39218911 PMCID: PMC11367781 DOI: 10.1186/s13046-024-03166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is frequently detected in late stages, which leads to limited therapeutic options and a dismal overall survival rate. To date, no robust method for the detection of early-stage PDAC that can be used for targeted screening approaches is available. Liquid biopsy allows the minimally invasive collection of body fluids (typically peripheral blood) and the subsequent analysis of circulating tumor cells or tumor-associated molecules such as nucleic acids, proteins, or metabolites that may be useful for the early diagnosis of PDAC. Single biomarkers may lack sensitivity and/or specificity to reliably detect PDAC, while combinations of these circulating biomarkers in multimarker panels may improve the sensitivity and specificity of blood test-based diagnosis. In this narrative review, we present an overview of different liquid biopsy biomarkers for the early diagnosis of PDAC and discuss the validity of multimarker panels.
Collapse
Affiliation(s)
- Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
31
|
Huang G, Zheng W, Zhou Y, Wan M, Hu T. Recent advances to address challenges in extracellular vesicle-based applications for lung cancer. Acta Pharm Sin B 2024; 14:3855-3875. [PMID: 39309489 PMCID: PMC11413688 DOI: 10.1016/j.apsb.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 09/25/2024] Open
Abstract
Lung cancer, highly prevalent and the leading cause of cancer-related death globally, persists as a significant challenge due to the lack of definitive tumor markers for early diagnosis and personalized therapeutic interventions. Recently, extracellular vesicles (EVs), functioning as natural carriers for intercellular communication, have received increasing attention due to their ability to traverse biological barriers and deliver diverse biological cargoes, including cytosolic proteins, cell surface proteins, microRNA, lncRNA, circRNA, DNA, and lipids. EVs are increasingly recognized as a valuable resource for non-invasive liquid biopsy, as well as drug delivery platforms, and anticancer vaccines for precision medicine in lung cancer. Herein, given the diagnostic and therapeutic potential of tumor-associated EVs for lung cancer, we discuss this topic from a translational standpoint. We delve into the specific roles that EVs play in lung cancer carcinogenesis and offer a particular perspective on how advanced engineering technologies can overcome the current challenges and expedite and/or enhance the translation of EVs from laboratory research to clinical settings.
Collapse
Affiliation(s)
- Gaigai Huang
- Department of Clinical Laboratory, the First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yu Zhou
- Department of Clinical Laboratory, the First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610200, China
- The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
32
|
Wang ZY, Li R, Li RZ, Pei KG, Sun LF, Wang HJ. Prognostic value of human papillomavirus cell-free DNA in cervical cancer patients: A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2024; 300:211-218. [PMID: 39029243 DOI: 10.1016/j.ejogrb.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/02/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE This meta-analysis aimed to investigate the association between circulating human papillomavirus (HPV) cell-free DNA and oncological outcomes of cervical cancer patients. METHODS Searches were performed in MEDLINE, Embase, and CENTRAL from their inception until 26 November 2023. Inclusion criteria were: (1) pathologically confirmed cervical cancer with available HPV test results; (2) detection of HPV cell-free DNA was performed in serum/plasma before or at end of treatment; (3) studies reported oncological outcomes of cervical cancer patients according to the levels of HPV cell-free DNA. Data extraction and study quality assessment were performed independently by two authors. Pooled hazard ratios and 95% confidence intervals were calculated using the inverse-variance method for survival outcomes. RESULTS Five studies were finally included in this meta-analysis. Blood samples were collected from 167 patients before treatment, with 150 individuals available for analysis at the end of treatment. Furthermore, 82 patients with available samples at 3 months post-treatment were included in the analysis. The pooled results indicated a significant association between positive HPV cell-free DNA at end of treatment and worse progression-free survival in patients with cervical cancer (pooled hazard ratio: 5.49; 95 % confidence interval: 2.85-10.58; I2: 0 %). Similar findings were observed in patients with detectable HPV cell-free DNA at 3 months post-treatment (pooled hazard ratio: 7.86; 95 % confidence interval: 3.32-18.60; I2: 0 %). However, the detection of HPV cell-free DNA before treatment was not significantly associated with progression-free survival (pooled hazard ratio: 0.97; 95 % confidence interval: 0.55-1.71; I2: 0 %). CONCLUSION Cervical cancer patients testing positive for HPV cell-free DNA at the end of treatment or 3 months post-treatment displayed significantly poorer oncological outcomes compared to those testing negative. Thus, personalized monitoring of HPV cell-free DNA holds promise as a prognostic biomarker for patients with cervical cancer.
Collapse
Affiliation(s)
- Zhao-Yun Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 20, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Rui Li
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 20, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Rui-Zhe Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Road, Haidian District 100191, Beijing, China
| | - Kai-Ge Pei
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 20, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Li-Fei Sun
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 20, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China.
| | - Hong-Jing Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 20, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
33
|
Suri S, Boora GS, Kaur R, Chauhan A, Ghoshal S, Pal A. Recent advances in minimally invasive biomarkers of OSCC: from generalized to personalized approach. FRONTIERS IN ORAL HEALTH 2024; 5:1426507. [PMID: 39157206 PMCID: PMC11327221 DOI: 10.3389/froh.2024.1426507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Oral cancer is the 6th most common type of cancer worldwide, and oral squamous cell carcinoma (OSCC) accounts for >90% of oral cancers. It is a major health problem, particularly in low- and middle-income countries (LMICs), due to both its high incidence and significant mortality and morbidity. Despite being a global burden, and even with the significant advancement in the management of OSCC, the overall outcome of the disease is still abysmal. With the advent of time, advanced diagnostic and treatment approaches have come into practice, but the burden of the disease has not improved significantly. Major reasons attributed to the poor outcome are delay in diagnosis, locoregional recurrence and resistance to the currently available treatment regimen. In this review, we have highlighted the existing challenges in the diagnosis and have emphasized the advancements in minimally invasive biomarkers. Additionally, the importance of collaborative multidimensional approaches involving clinicians and researchers has been discussed, as well as the need to redefine and establish better utility and management of existing diagnostic and treatment protocols along with the minimally invasive/non-invasive biomarkers.
Collapse
Affiliation(s)
- Smriti Suri
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh,India
| | - Geeta S. Boora
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh,India
| | - Rajandeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh,India
| | - Anshika Chauhan
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh,India
| | - Sushmita Ghoshal
- Department of Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh,India
| |
Collapse
|
34
|
Smit DJ, Schneegans S, Pantel K. Clinical applications of circulating tumor cells in patients with solid tumors. Clin Exp Metastasis 2024; 41:403-411. [PMID: 38281256 PMCID: PMC11374849 DOI: 10.1007/s10585-024-10267-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
The concept of liquid biopsy analysis has been established more than a decade ago. Since the establishment of the term, tremendous advances have been achieved and plenty of methods as well as analytes have been investigated in basic research as well in clinical trials. Liquid biopsy refers to a body fluid-based biopsy that is minimal-invasive, and most importantly, allows dense monitoring of tumor responses by sequential blood sampling. Blood is the most important analyte for liquid biopsy analyses, providing an easily accessible source for a plethora of cells, cell-derived products, free nucleic acids, proteins as well as vesicles. More than 12,000 publications are listed in PubMed as of today including the term liquid biopsy. In this manuscript, we critically review the current implications of liquid biopsy, with special focus on circulating tumor cells, and describe the hurdles that need to be addressed before liquid biopsy can be implemented in clinical standard of care guidelines.
Collapse
Affiliation(s)
- Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Svenja Schneegans
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Fleur Hiege Center for Skin Cancer Research, Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
35
|
Chen K, Mao M, Huo L, Wang G, Pu Z, Zhang Y. Flexible DNA Nanoclaws Offer Multivalent and Powerful Spatial Pattern-Recognition for Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29760-29769. [PMID: 38813974 DOI: 10.1021/acsami.4c03382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Multivalent receptor-ligand interactions (RLIs) exhibit excellent affinity for binding when targeting cell membrane receptors with low expression. However, existing strategies only allow for limited control of the valency and spacing of ligands for a certain receptor, lacking recognition patterns for multiple interested receptors with complex spatial distributions. Here, we developed flexible DNA nanoclaws with multivalent aptamers to achieve powerful cell recognition by controlling the spacing of aptamers to match the spatial patterns of receptors. The DNA nanoclaw with spacing-controllable binding sites was constructed via hybrid chain reaction (HCR), enabling dual targeting of HER2 and EpCAM molecules. The results demonstrate that the binding affinity of multivalent DNA nanoclaws to tumor cells is enhanced. We speculate that the flexible structure may conform better to irregularly shaped membrane surfaces, increasing the probability of intermolecular contact. The capture efficiency of circulating tumor cells successfully verified the high affinity and selectivity of this spatial pattern. This strategy will further promote the potential application of DNA frameworks in future disease diagnosis and treatment.
Collapse
Affiliation(s)
- Kang Chen
- Department of Laboratory Medicine, Zhongshan City People's Hospital, 528403 Zhongshan, Guangdong, China
| | - Miao Mao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, China
| | - Lian Huo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, China
| | - Guanzhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, China
| | - Zhe Pu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, China
| | - Yuanqing Zhang
- Department of Laboratory Medicine, Zhongshan City People's Hospital, 528403 Zhongshan, Guangdong, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Bardol T, Dujon AM, Taly V, Dunyach-Remy C, Lavigne JP, Costa-Silva B, Kurma K, Eslami-S Z, Cayrefourcq L, Canivet C, Muscari F, Bournet B, Alix-Panabières C. Early detection of pancreatic cancer by liquid biopsy "PANLIPSY": a french nation-wide study project. BMC Cancer 2024; 24:709. [PMID: 38853244 PMCID: PMC11163786 DOI: 10.1186/s12885-024-12463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Pancreatic cancer, predominantly characterized by ductal adenocarcinoma (PDAC) accounts for 90% of cases and is the fourth leading cause of cancer-related deaths globally. Its incidence is notably increasing. This poor prognosis is primarily due to late-stage diagnosis (approximately 70% to 80% of patients are diagnosed at an advanced stage), aggressive tumor biology, and low sensitivity to chemotherapy. Consequently, it is crucial to identify and develop a simple, feasible and reproducible blood-based signature (i.e., combination of biomarkers) for early detection of PDAC. METHODS The PANLIPSY study is a multi-center, non-interventional prospective clinical trial designed to achieve early detection of PDAC with high specificity and sensitivity, using a combinatorial approach in blood samples. These samples are collected from patients with resectable, borderline or locally advanced, and metastatic stage PDAC within the framework of the French Biological and Clinical Database for PDAC cohort (BACAP 2). All partners of the BACAP consortium are eligible to participate. The study will include 215 PDAC patients, plus 25 patients with benign pancreatic conditions from the PAncreatic Disease Cohort of TOuLouse (PACTOL) cohort, and 115 healthy controls, totaling 355 individuals. Circulating biomarkers will be collected in a total volume of 50 mL of blood, divided into one CellSave tube (10 mL), two CELL-FREE DNA BCT® preservative tubes (18 mL), and five EDTA tubes (22 mL in total). Samples preparation will adhere to the guidelines of the European Liquid Biopsy Society (ELBS). A unique feature of the study is the AI-based comparison of these complementary liquid biopsy biomarkers. Main end-points: i) to define a liquid biopsy signature that includes the most relevant circulating biomarkers, ii) to validate the multi-marker panel in an independent cohort of healthy controls and patients, with resectable PDAC, and iii) to establish a unique liquid biopsy biobank for PDAC study. DISCUSSION The PANLIPSY study is a unique prospective non-interventional clinical trial that brings together liquid biopsy experts. The aim is to develop a biological signature for the early detection of PDAC based on AI-assisted detection of circulating biomarkers in blood samples (CTCs, ctDNA, EVs, circulating immune system, circulating cell-free nucleosomes, proteins, and microbiota). TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT06128343 / NCT05824403. Registration dates: June 8,2023 and April 21, 2023.
Collapse
Affiliation(s)
- Thomas Bardol
- Laboratory of Rare Circulating Human Cells - Liquid Biopsy Lab, Institut Universitaire de Recherche Clinique (IURC), University Medical Center of Montpellier, 641, Avenue du Doyen Gaston Giraud, Cedex 5 34093, Montpellier, France.
- CREEC/CANECEV MIVEGEC (CREES), University of Montpellier, CNRS, Montpellier, IRD, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
| | - Antoine M Dujon
- CREEC/CANECEV MIVEGEC (CREES), University of Montpellier, CNRS, Montpellier, IRD, France
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Valerie Taly
- Équipe Labélisée Ligue Nationale Contre Le Cancer, Centre de Recherche Des Cordeliers, Université Paris Cité, UMR-S1138, CNRS SNC5096, Paris, France
- METHYS Dx, 67 Rue Saint-Jacques, Paris, France
| | - Catherine Dunyach-Remy
- Department of Microbiology and Hospital Hygiene Bacterial Virulence and Chronic Infections, University of Montpellier CHU Nîmes, INSERM U1047, Nîmes, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene Bacterial Virulence and Chronic Infections, University of Montpellier CHU Nîmes, INSERM U1047, Nîmes, France
| | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038, Lisbon, Portugal
| | - Keerthi Kurma
- Laboratory of Rare Circulating Human Cells - Liquid Biopsy Lab, Institut Universitaire de Recherche Clinique (IURC), University Medical Center of Montpellier, 641, Avenue du Doyen Gaston Giraud, Cedex 5 34093, Montpellier, France
- CREEC/CANECEV MIVEGEC (CREES), University of Montpellier, CNRS, Montpellier, IRD, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Circulating Human Cells - Liquid Biopsy Lab, Institut Universitaire de Recherche Clinique (IURC), University Medical Center of Montpellier, 641, Avenue du Doyen Gaston Giraud, Cedex 5 34093, Montpellier, France
- CREEC/CANECEV MIVEGEC (CREES), University of Montpellier, CNRS, Montpellier, IRD, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Circulating Human Cells - Liquid Biopsy Lab, Institut Universitaire de Recherche Clinique (IURC), University Medical Center of Montpellier, 641, Avenue du Doyen Gaston Giraud, Cedex 5 34093, Montpellier, France
- CREEC/CANECEV MIVEGEC (CREES), University of Montpellier, CNRS, Montpellier, IRD, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Cindy Canivet
- Department of Gastroenterology and Pancreatology, CHU - Rangueil and the University of Toulouse, 1 Avenue Jean Poulhès, Cedex 9 50032, 31059, Toulouse, TSA, France
| | - Fabrice Muscari
- Digestive Surgery and Liver Transplantation Department, Toulouse University Hospital, Toulouse, France
| | - Barbara Bournet
- Department of Gastroenterology and Pancreatology, CHU - Rangueil and the University of Toulouse, 1 Avenue Jean Poulhès, Cedex 9 50032, 31059, Toulouse, TSA, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Circulating Human Cells - Liquid Biopsy Lab, Institut Universitaire de Recherche Clinique (IURC), University Medical Center of Montpellier, 641, Avenue du Doyen Gaston Giraud, Cedex 5 34093, Montpellier, France.
- CREEC/CANECEV MIVEGEC (CREES), University of Montpellier, CNRS, Montpellier, IRD, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
| |
Collapse
|
37
|
Karacam B, Elbasan EB, Khan I, Akdur K, Mahfooz S, Cavusoglu M, Cicek Y, Hatiboglu MA. Role of cell-free DNA and extracellular vesicles for diagnosis and surveillance in patients with glioma. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100142. [PMID: 40027145 PMCID: PMC11863929 DOI: 10.1016/j.jlb.2024.100142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 03/05/2025]
Abstract
Objectives Liquid biopsy can be used to make the diagnosis, to screen treatment response, and to predict the prognosis. Extracellular vesicles (EVs) and cell-free DNA (cfDNA) sources are used as liquid biopsy biomarkers from body fluids such as serum, cerebrospinal fluid, urine, and mucosa. The purpose of this study was to investigate whether EVs and cfDNA are predictive for diagnosis and prognosis in patients with glioma. Methods cfDNA and EVs levels were measured from 17 glioma patients at three different time intervals (before surgery, 10-14 days after surgery, and at the time of recurrence) and 7 healthy individuals. We investigated whether their level increased in glioma patients. Also, the correlation between clinical outcome and their levels was analyzed. Results The mean serum cfDNA level in glioma patients was found to be higher compared to that in healthy controls. The difference between cfDNA level before surgery and that at 3 months follow-up was found to be statistically significant. Also, the mean serum EVs level in the glioma patients was found to be significantly higher compared to that in the control group. Discussion Our results suggested that cfDNA and EVs could be used as diagnostic biomarkers in patients with glioma. cfDNA could be also a possible biomarker for the surveillance of glioma patients. Further studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Busra Karacam
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
| | - Elif Burce Elbasan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
| | - Kerime Akdur
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
| | - Merve Cavusoglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Yusuf Cicek
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| |
Collapse
|
38
|
Wang H, Zhang Y, Zhang H, Cao H, Mao J, Chen X, Wang L, Zhang N, Luo P, Xue J, Qi X, Dong X, Liu G, Cheng Q. Liquid biopsy for human cancer: cancer screening, monitoring, and treatment. MedComm (Beijing) 2024; 5:e564. [PMID: 38807975 PMCID: PMC11130638 DOI: 10.1002/mco2.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Currently, tumor treatment modalities such as immunotherapy and targeted therapy have more stringent requirements for obtaining tumor growth information and require more accurate and easy-to-operate tumor information detection methods. Compared with traditional tissue biopsy, liquid biopsy is a novel, minimally invasive, real-time detection tool for detecting information directly or indirectly released by tumors in human body fluids, which is more suitable for the requirements of new tumor treatment modalities. Liquid biopsy has not been widely used in clinical practice, and there are fewer reviews of related clinical applications. This review summarizes the clinical applications of liquid biopsy components (e.g., circulating tumor cells, circulating tumor DNA, extracellular vesicles, etc.) in tumorigenesis and progression. This includes the development process and detection techniques of liquid biopsies, early screening of tumors, tumor growth detection, and guiding therapeutic strategies (liquid biopsy-based personalized medicine and prediction of treatment response). Finally, the current challenges and future directions for clinical applications of liquid biopsy are proposed. In sum, this review will inspire more researchers to use liquid biopsy technology to promote the realization of individualized therapy, improve the efficacy of tumor therapy, and provide better therapeutic options for tumor patients.
Collapse
Affiliation(s)
- Hao Wang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Yi Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Hao Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Hui Cao
- Department of PsychiatryThe School of Clinical Medicine, Hunan University of Chinese MedicineChangshaChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province)ChangshaChina
| | - Jinning Mao
- Health Management CenterThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xinxin Chen
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Liangchi Wang
- Department of NeurosurgeryFengdu People's Hospital, ChongqingChongqingChina
| | - Nan Zhang
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Peng Luo
- Department of OncologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Ji Xue
- Department of NeurosurgeryTraditional Chinese Medicine Hospital Dianjiang ChongqingChongqingChina
| | - Xiaoya Qi
- Health Management CenterThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xiancheng Dong
- Department of Cerebrovascular DiseasesDazhou Central HospitalSichuanChina
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
39
|
Piper AK, Penney C, Holliday J, Tincknell G, Ma Y, Napaki S, Pantel K, Brungs D, Ranson M. EGFR and PI3K Signalling Pathways as Promising Targets on Circulating Tumour Cells from Patients with Metastatic Gastric Adenocarcinoma. Int J Mol Sci 2024; 25:5565. [PMID: 38791602 PMCID: PMC11122469 DOI: 10.3390/ijms25105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The prognosis for metastatic gastric adenocarcinoma (mGAC) remains poor. Gene alterations in receptor tyrosine kinases (RTKs) such as epidermal growth factor receptor (EGFR) and their downstream effectors including catalytic subunit alpha of the phosphatidylinositol 3-kinase (PIK3CA) are common in mGAC. Targeted RTK and phosphatidylinositol-3-kinase (PI3K) treatments have demonstrated clinical benefits in other solid tumours and are key potential targets for clinical development against mGAC given the presence of recurrent alterations in these pathways. Furthermore, combination RTK/PI3K treatments may overcome compensatory mechanisms that arise using monotherapies, leading to improved patient outcomes. Herein, we investigated RTK/PI3K single and combination drug responses against our unique human mGAC-derived PIK3CA gain-of-function mutant, human epidermal growth factor receptor 2 (HER2)-negative, EGFR-expressing circulating tumour cell line, UWG02CTC, under two- and three-dimensional culture conditions to model different stages of metastasis. UWG02CTCs were highly responsive to the PI3K p110α-subunit targeted drugs PIK-75 (IC50 = 37.0 ± 11.1 nM) or alpelisib (7.05 ± 3.7 µM). Drug sensitivities were significantly increased in 3D conditions. Compensatory MAPK/ERK pathway upregulation by PI3K/Akt suppression was overcome by combination treatment with the EGFR inhibitor gefitinib, which was strongly synergistic. PIK-75 plus gefitinib significantly impaired UWG02CTC invasion in an organotypic assay. In conclusion, UWG02CTCs are a powerful ex vivo mGAC drug responsiveness model revealing EGFR/PI3K-targeted drugs as a promising combination treatment option for HER2-negative, RAS wild-type mGAC patients.
Collapse
Affiliation(s)
- Ann-Katrin Piper
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chelsea Penney
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jacqueline Holliday
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gary Tincknell
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia
| | - Yafeng Ma
- Centre for Circulating Tumour Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, South-Western Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Sarbar Napaki
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Department of Pathology, Wollongong Hospital, Wollongong, NSW 2500, Australia
| | - Klaus Pantel
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniel Brungs
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Department of Pathology, Wollongong Hospital, Wollongong, NSW 2500, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
40
|
Kött J, Hoehne IL, Heidrich I, Zimmermann N, Reese KL, Zell T, Geidel G, Rünger A, Schneider SW, Pantel K, Smit DJ, Gebhardt C. High Serum Levels of CCL20 Are Associated with Recurrence and Unfavorable Overall Survival in Advanced Melanoma Patients Receiving Immunotherapy. Cancers (Basel) 2024; 16:1737. [PMID: 38730689 PMCID: PMC11083498 DOI: 10.3390/cancers16091737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibition has revolutionized melanoma therapy, but many patients show primary or secondary resistance. Biomarkers are, therefore, urgently required to predict response prior to the initiation of therapy and to monitor disease progression. METHODS In this prospective study, we analyzed the serum C-C motif chemokine ligand 20 (CCL20) concentration using an enzyme-linked immunosorbent assay. Blood was obtained at baseline before the initiation of immunotherapy with anti-PD-1 monotherapy or Nivolumab and Ipilimumab in advanced melanoma patients (stages III and IV) enrolled at the University Medical Center Hamburg-Eppendorf. The CCL20 levels were correlated with clinico-pathological parameters and disease-related outcomes. RESULTS An increased C-C motif chemokine ligand 20 (CCL20) concentration (≥0.34 pg/mL) at baseline was associated with a significantly impaired progression-free survival (PFS) in the high-CCL20 group (3 months (95% CI: 2-6 months) vs. 11 months (95% CI: 6-26 months)) (p = 0.0033) and could be identified as an independent negative prognostic factor for PFS in univariate (Hazard Ratio (HR): 1.98, 95% CI 1.25-3.12, p = 0.004) and multivariate (HR: 1.99, 95% CI 1.21-3.29, p = 0.007) Cox regression analysis, which was associated with a higher risk than S100 (HR: 1.74). Moreover, high CCL20 levels were associated with impaired overall survival (median OS not reached for low-CCL20 group, p = 0.042) with an HR of 1.85 (95% CI 1.02-3.37, p = 0.043) in univariate analysis similar to the established prognostic marker S100 (HR: 1.99, 95% CI: 1.02-3.88, p = 0.043). CONCLUSIONS CCL20 may represent a novel blood-based biomarker for the prediction of resistance to immunotherapy that can be used in combination with established strong clinical predictors (e.g., ECOG performance score) and laboratory markers (e.g., S100) in advanced melanoma patients. Future prospective randomized trials are needed to establish CCL20 as a liquid biopsy-based biomarker in advanced melanoma.
Collapse
Affiliation(s)
- Julian Kött
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| | - Inka Lilott Hoehne
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Isabel Heidrich
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Noah Zimmermann
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| | - Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Tim Zell
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| | - Glenn Geidel
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| | - Alessandra Rünger
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| | - Stefan W. Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| | - Klaus Pantel
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Daniel J. Smit
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.L.H.); (I.H.); (N.Z.); (T.Z.); (G.G.); (A.R.); (S.W.S.)
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.P.); (D.J.S.)
| |
Collapse
|
41
|
Cui L, Zheng J, Lu Y, Lin P, Lin Y, Zheng Y, Xu R, Mai Z, Guo B, Zhao X. New frontiers in salivary extracellular vesicles: transforming diagnostics, monitoring, and therapeutics in oral and systemic diseases. J Nanobiotechnology 2024; 22:171. [PMID: 38610017 PMCID: PMC11015696 DOI: 10.1186/s12951-024-02443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Salivary extracellular vesicles (EVs) have emerged as key tools for non-invasive diagnostics, playing a crucial role in the early detection and monitoring of diseases. These EVs surpass whole saliva in biomarker detection due to their enhanced stability, which minimizes contamination and enzymatic degradation. The review comprehensively discusses methods for isolating, enriching, quantifying, and characterizing salivary EVs. It highlights their importance as biomarkers in oral diseases like periodontitis and oral cancer, and underscores their potential in monitoring systemic conditions. Furthermore, the review explores the therapeutic possibilities of salivary EVs, particularly in personalized medicine through engineered EVs for targeted drug delivery. The discussion also covers the current challenges and future prospects in the field, emphasizing the potential of salivary EVs in advancing clinical practice and disease management.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
42
|
Abramova A, Rivandi M, Yang L, Stamm N, Cieslik JP, Honisch E, Niederacher D, Fehm T, Neubauer H, Franken A. A workflow for the enrichment, the identification, and the isolation of non-apoptotic single circulating tumor cells for RNA sequencing analysis. Cytometry A 2024; 105:242-251. [PMID: 38054742 DOI: 10.1002/cyto.a.24816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Circulating tumor cells (CTCs) are constantly shed by tumor tissue and can serve as a valuable analyte for a gene expression analysis from a liquid biopsy. However, a high proportion of CTCs can be apoptotic leading to rapid mRNA decay and challenging the analysis of their transcriptome. We established a workflow to enrich, to identify, and to isolate single CTCs including the discrimination of apoptotic and non-apoptotic CTCs for further single CTC transcriptome analysis. Viable tumor cells-we first used cells from breast cancer cell lines followed by CTCs from metastatic breast cancer patients-were enriched with the CellSearch system from diagnostic leukapheresis products, identified by immunofluorescence analysis for neoplastic markers, and isolated by micromanipulation. Then, their cDNA was generated, amplified, and sequenced. In order to exclude early apoptotic tumor cells, staining with Annexin V coupled to a fluorescent dye was used. Annexin V staining intensity was associated with decreased RNA integrity as well as lower numbers of total reads, exon reads, and detected genes in cell line cells and CTCs. A comparative RNA analysis of single cells from MDA-MB-231 and MCF7 cell lines revealed the expected differential transcriptome profiles. Enrichment and staining procedures of cell line cells that were spiked into blood had only little effect on the obtained RNA sequencing data compared to processing of naïve cells. Further, the detection of transcripts of housekeeping genes such as GAPDH was associated with a significantly higher quality of expression data from CTCs. This workflow enables the enrichment, detection, and isolation of single CTCs for individual transcriptome analyses. The discrimination of apoptotic and non-apoptotic cells allows to focus on CTCs with a high RNA integrity to ensure a successful transcriptome analysis.
Collapse
Affiliation(s)
- Anna Abramova
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Liwen Yang
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Nadia Stamm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Jan-Philipp Cieslik
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Ellen Honisch
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
43
|
Zhang X, Li J, Lan X, Li J. Cell‐free DNA‐associated multi‐feature applications in cancer diagnosis and treatment. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 01/03/2025]
Abstract
AbstractMalignant tumours pose significant challenges in terms of high morbidity and mortality rates, primarily due to the lack of large‐scale applicable screening methods and efficient treatment strategies. However, the development of liquid biopsies, particularly circulating cell‐free DNA (cfDNA), offers promising solutions characterised by their non‐invasiveness and cost‐effectiveness, providing comprehensive tumour information on a global scale. The release of cfDNA is predominantly associated with cell death and turnover, while its elimination occurs through nuclease digestion, renal excretion into the urine and uptake by the liver and spleen. Extensive research into the biological properties of cfDNA has led to the identification of novel applications, including non‐invasive cancer screening, cancer subtype classification, tissue‐of‐origin detection and monitoring of treatment efficacy. Additionally, emerging fields such as methylation‐omics, fragment‐omics and nucleosome‐omics show immense potential as tissue‐ and disease‐specific markers. Therefore, this review aims to comprehensively introduce the latest detection techniques of cfDNA, along with detailed information on its characteristics and applications, providing valuable insights for cancer diagnosis and monitoring, which will assist us in purposefully enhancing relevant features for a more comprehensive application in clinical practice.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
- Tsinghua‐Peking Joint Center for Life Sciences Tsinghua University Beijing China
| | - Jingwei Li
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
| | - Xun Lan
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
- Tsinghua‐Peking Joint Center for Life Sciences Tsinghua University Beijing China
| | - Jie Li
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- Academy of Biomedical Engineering Kunming Medical University Kunming China
| |
Collapse
|
44
|
Smit DJ, Pantel K. Circulating tumor cells as liquid biopsy markers in cancer patients. Mol Aspects Med 2024; 96:101258. [PMID: 38387225 DOI: 10.1016/j.mam.2024.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Over the past decade, novel methods for enrichment and identification of cancer cells circulating in the blood have been established. Blood-based detection of cancer cells and other tumor-associated products can be summarized under the term of Liquid Biopsy. Circulating tumor cells (CTCs) have been used for diagnosis, risk stratification and treatment selection as well as treatment monitoring in several studies over the past years, thus representing a valuable biomarker for cancer patients. A plethora of methods to enrich, detect and analyze CTCs has been established. In contrast to other liquid biopsy analytes (e.g. ctDNA), CTCs represent a viable analyte that provides a unique opportunity to understand the underlaying biology of cancer and the metastatic cascade on the molecular level. In this review, we provide an overview on the current methods used for enrichment, detection, molecular and functional characterization of CTCs.
Collapse
Affiliation(s)
- Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
45
|
Allen TA. The Role of Circulating Tumor Cells as a Liquid Biopsy for Cancer: Advances, Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel) 2024; 16:1377. [PMID: 38611055 PMCID: PMC11010957 DOI: 10.3390/cancers16071377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a leading cause of mortality worldwide, with metastasis significantly contributing to its lethality. The metastatic spread of tumor cells, primarily through the bloodstream, underscores the importance of circulating tumor cells (CTCs) in oncological research. As a critical component of liquid biopsies, CTCs offer a non-invasive and dynamic window into tumor biology, providing invaluable insights into cancer dissemination, disease progression, and response to treatment. This review article delves into the recent advancements in CTC research, highlighting their emerging role as a biomarker in various cancer types. We explore the latest technologies and methods for CTC isolation and detection, alongside novel approaches to characterizing their biology through genomics, transcriptomics, proteomics, and epigenetic profiling. Additionally, we examine the clinical implementation of these findings, assessing how CTCs are transforming the landscape of cancer diagnosis, prognosis, and management. By offering a comprehensive overview of current developments and potential future directions, this review underscores the significance of CTCs in enhancing our understanding of cancer and in shaping personalized therapeutic strategies, particularly for patients with metastatic disease.
Collapse
|
46
|
Virtuoso A, D’Amico G, Scalia F, De Luca C, Papa M, Maugeri G, D’Agata V, Caruso Bavisotto C, D’Amico AG. The Interplay between Glioblastoma Cells and Tumor Microenvironment: New Perspectives for Early Diagnosis and Targeted Cancer Therapy. Brain Sci 2024; 14:331. [PMID: 38671983 PMCID: PMC11048111 DOI: 10.3390/brainsci14040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) stands out as the most tremendous brain tumor, constituting 60% of primary brain cancers, accompanied by dismal survival rates. Despite advancements in research, therapeutic options remain limited to chemotherapy and surgery. GBM molecular heterogeneity, the intricate interaction with the tumor microenvironment (TME), and non-selective treatments contribute to the neoplastic relapse. Diagnostic challenges arise from GBM advanced-stage detection, necessitating the exploration of novel biomarkers for early diagnosis. Using data from the literature and a bioinformatic tool, the current manuscript delineates the molecular interplay between human GBM, astrocytes, and myeloid cells, underscoring selected protein pathways belonging to astroglia and myeloid lineage, which can be considered for targeted therapies. Moreover, the pivotal role of extracellular vesicles (EVs) in orchestrating a favorable microenvironment for cancer progression is highlighted, suggesting their utility in identifying biomarkers for GBM early diagnosis.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Giuseppa D’Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
| | - Ciro De Luca
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (V.D.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (V.D.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
47
|
Mitchell MI, Ben-Dov IZ, Liu C, Wang T, Hazan RB, Bauer TL, Zakrzewski J, Donnelly K, Chow K, Ma J, Loudig O. Non-invasive detection of orthotopic human lung tumors by microRNA expression profiling of mouse exhaled breath condensates and exhaled extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:138-164. [PMID: 38863869 PMCID: PMC11165456 DOI: 10.20517/evcna.2023.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Aim The lung is the second most frequent site of metastatic dissemination. Early detection is key to improving survival. Given that the lung interfaces with the external environment, the collection of exhaled breath condensate (EBC) provides the opportunity to obtain biological material including exhaled miRNAs that originate from the lung. Methods In this proof-of-principal study, we used the highly metastatic MDA-MB-231 subline 3475 breast cancer cell line (LM-3475) to establish an orthotopic lung tumor-bearing mouse model and investigate non-invasive detection of lung tumors by analysis of exhaled miRNAs. We initially conducted miRNA NGS and qPCR validation analyses on condensates collected from unrestrained animals and identified significant miRNA expression differences between the condensates of lung tumor-bearing and control mice. To focus our purification of EBC and evaluate the origin of these differentially expressed miRNAs, we developed a system to collect EBC directly from the nose and mouth of our mice. Results Using nanoparticle distribution analyses, TEM, and ONi super-resolution nanoimaging, we determined that human tumor EVs could be increasingly detected in mouse EBC during the progression of secondary lung tumors. Using our customizable EV-CATCHER assay, we purified human tumor EVs from mouse EBC and demonstrated that the bulk of differentially expressed exhaled miRNAs originate from lung tumors, which could be detected by qPCR within 1 to 2 weeks after tail vein injection of the metastatic cells. Conclusion This study is the first of its kind and demonstrates that lung tumor EVs are exhaled in mice and provide non-invasive biomarkers for detection of lung tumors.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Christina Liu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Rachel B. Hazan
- Department of Pathology, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Thomas L. Bauer
- Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune City, NJ 07753, USA
| | - Johannes Zakrzewski
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Kathryn Donnelly
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kar Chow
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| |
Collapse
|
48
|
Shen F, Gao J, Zhang J, Ai M, Gao H, Liu Z. Vortex sorting of rare particles/cells in microcavities: A review. BIOMICROFLUIDICS 2024; 18:021504. [PMID: 38571909 PMCID: PMC10987199 DOI: 10.1063/5.0174938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Microfluidics or lab-on-a-chip technology has shown great potential for the separation of target particles/cells from heterogeneous solutions. Among current separation methods, vortex sorting of particles/cells in microcavities is a highly effective method for trapping and isolating rare target cells, such as circulating tumor cells, from flowing samples. By utilizing fluid forces and inertial particle effects, this passive method offers advantages such as label-free operation, high throughput, and high concentration. This paper reviews the fundamental research on the mechanisms of focusing, trapping, and holding of particles in this method, designs of novel microcavities, as well as its applications. We also summarize the challenges and prospects of this technique with the hope to promote its applications in medical and biological research.
Collapse
Affiliation(s)
- Feng Shen
- Authors to whom correspondence should be addressed: and
| | - Jie Gao
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Jie Zhang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Mingzhu Ai
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Hongkai Gao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Zhaomiao Liu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
49
|
Yang J, Deng Q, Chen Z, Chen Y, Fu Z. The role of adjuvant chemotherapy in rectal cancer patients with ypT0-2N0 after neoadjuvant chemoradiotherapy. Front Oncol 2024; 14:1338098. [PMID: 38406812 PMCID: PMC10889113 DOI: 10.3389/fonc.2024.1338098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Background Neoadjuvant chemoradiotherapy has emerged as the established treatment for locally advanced rectal cancer. Nevertheless, there remains a debate regarding the necessity of adjuvant chemotherapy for patients with locally advanced rectal cancer who exhibit a favorable tumor response (ypT0-2N0) after neoadjuvant chemoradiotherapy and surgery. Thus, the objective of this study is to investigate the impact of adjuvant chemotherapy on the oncological prognosis of rectal cancer patients who have a good response to neoadjuvant chemoradiotherapy. Materials and methods The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. Articles were searched in the Web of Science, PubMed, and Cochrane Library databases. The primary outcomes assessed were 5-year overall survival, disease-free survival, cancer-specific survival, recurrence-free survival, local recurrence, and distant metastasis. The data was summarized using a random effects model. Results A meta-analysis was conducted using 18 retrospective studies published between 2009 and 2023. The studies included 9 from China and 5 from Korea, involving a total of 6566 patients with ypT0-2N0 rectal cancer after neoadjuvant chemoradiotherapy. The pooled data revealed that adjuvant chemotherapy significantly improved 5-year overall survival (OR=1.75, 95% CI: 1.15-2.65, P=0.008), recurrence-free survival (OR=1.73, 95% CI: 1.20-2.48, P=0.003), and reduced distant metastasis (OR=0.68, 95% CI: 0.51-0.92, P=0.011). However, adjuvant chemotherapy did not have a significant effect on disease-free survival, cancer-specific survival, and local recurrence in ypT0-2N0 rectal cancer. Subgroup analysis indicated that adjuvant chemotherapy was beneficial in improving overall survival for ypT1-2N0 rectal cancer (OR=1.89, 95% CI: 1.13-3.19, P=0.003). Conclusion The findings of the meta-analysis suggest that adjuvant chemotherapy may provide benefits in terms of oncological outcomes for rectal cancer patients with ypT0-2N0 after neoadjuvant chemoradiotherapy and radical surgery. However, further prospective clinical studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Jianguo Yang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qican Deng
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhou Chen
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajun Chen
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongxue Fu
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Anitha K, Posinasetty B, Naveen Kumari K, Chenchula S, Padmavathi R, Prakash S, Radhika C. Liquid biopsy for precision diagnostics and therapeutics. Clin Chim Acta 2024; 554:117746. [PMID: 38151071 DOI: 10.1016/j.cca.2023.117746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Liquid biopsy (LB) has emerged as a highly promising and non-invasive diagnostic approach, particularly in the field of oncology, and has garnered interest in various medical disciplines. This technique involves the examination of biomolecules released into physiological fluids, such as urine samples, blood, and cerebrospinal fluid (CSF). The analysed biomolecules included circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free DNA (cfDNA), exosomes, and other cell-free components. In contrast to conventional tissue biopsies, LB provides minimally invasive diagnostics, offering invaluable insights into tumor characteristics, treatment response, and early disease detection. This Review explores the contemporary landscape of technologies and clinical applications in the realm of LB, with a particular emphasis on the isolation and analysis of ctDNA and/or cfDNA. Various methodologies have been employed, including droplet digital polymerase chain reaction (DDP), BEAMing (beads, emulsion, amplification, and magnetics), TAm-Seq (tagged-amplicon deep sequencing), CAPP-Seq (cancer personalized profiling by deep sequencing), WGBS-Seq (whole genome bisulfite sequencing), WES (whole exome sequencing), and WGS (whole-genome sequencing). Additionally, CTCs have been successfully isolated through biomarker-based cell capture, employing both positive and negative enrichment strategies based on diverse biophysical and other inherent properties. This approach also addresses challenges and limitations associated with liquid biopsy techniques, such as sensitivity, specificity, standardization and interpretability of findings. This review seeks to identify the current technologies used in liquid biopsy samples, emphasizing their significance in identifying tumor markers for cancer detection, prognosis, and treatment outcome monitoring.
Collapse
Affiliation(s)
- Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur 425405, India
| | | | - K Naveen Kumari
- Sri Krishna Teja Pharmacy College, Tirupati, Andhra Pradesh 517502, India
| | | | - R Padmavathi
- SVS Medical College, Hyderabad, Telangana, India
| | - Satya Prakash
- All India Institute of Medical Sciences, Bhopal 462020, India
| | | |
Collapse
|