1
|
Chowaniec H, Ślubowska A, Mroczek M, Borowczyk M, Braszka M, Dworacki G, Dobosz P, Wichtowski M. New hopes for the breast cancer treatment: perspectives on the oncolytic virus therapy. Front Immunol 2024; 15:1375433. [PMID: 38576614 PMCID: PMC10991781 DOI: 10.3389/fimmu.2024.1375433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Oncolytic virus (OV) therapy has emerged as a promising frontier in cancer treatment, especially for solid tumours. While immunotherapies like immune checkpoint inhibitors and CAR-T cells have demonstrated impressive results, their limitations in inducing complete tumour regression have spurred researchers to explore new approaches targeting tumours resistant to current immunotherapies. OVs, both natural and genetically engineered, selectively replicate within cancer cells, inducing their lysis while sparing normal tissues. Recent advancements in clinical research and genetic engineering have enabled the development of targeted viruses that modify the tumour microenvironment, triggering anti-tumour immune responses and exhibiting synergistic effects with other cancer therapies. Several OVs have been studied for breast cancer treatment, including adenovirus, protoparvovirus, vaccinia virus, reovirus, and herpes simplex virus type I (HSV-1). These viruses have been modified or engineered to enhance their tumour-selective replication, reduce toxicity, and improve oncolytic properties.Newer generations of OVs, such as Oncoviron and Delta-24-RGD adenovirus, exhibit heightened replication selectivity and enhanced anticancer effects, particularly in breast cancer models. Clinical trials have explored the efficacy and safety of various OVs in treating different cancers, including melanoma, nasopharyngeal carcinoma, head and neck cancer, and gynecologic malignancies. Notably, Talimogene laherparepvec (T-VEC) and Oncorine have. been approved for advanced melanoma and nasopharyngeal carcinoma, respectively. However, adverse effects have been reported in some cases, including flu-like symptoms and rare instances of severe complications such as fistula formation. Although no OV has been approved specifically for breast cancer treatment, ongoing preclinical clinical trials focus on four groups of viruses. While mild adverse effects like low-grade fever and nausea have been observed, the effectiveness of OV monotherapy in breast cancer remains insufficient. Combination strategies integrating OVs with chemotherapy, radiotherapy, or immunotherapy, show promise in improving therapeutic outcomes. Oncolytic virus therapy holds substantial potential in breast cancer treatment, demonstrating safety in trials. Multi-approach strategies combining OVs with conventional therapies exhibit more promising therapeutic effects than monotherapy, signalling a hopeful future for OV-based breast cancer treatments.
Collapse
Affiliation(s)
- Hanna Chowaniec
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Ślubowska
- Department of Biostatistics and Research Methodology, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University of Warsaw, Warsaw, Poland
| | - Magdalena Mroczek
- Department of Neurology, University Hospital Basel, Univeristy of Basel, Basel, Switzerland
| | - Martyna Borowczyk
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Małgorzata Braszka
- Faculty of Medical Sciences, University College London Medical School, London, United Kingdom
| | - Grzegorz Dworacki
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
- Chair of Patomorphology and Clinical Immunology, Poznań University of Medical Sciences, Poznan, Poland
| | - Paula Dobosz
- University Centre of Cancer Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Wichtowski
- Surgical Oncology Clinic, Institute of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Mohite P, Yadav V, Pandhare R, Maitra S, Saleh FM, Saleem RM, Al-malky HS, Kumarasamy V, Subramaniyan V, Abdel-Daim MM, Uti DE. Revolutionizing Cancer Treatment: Unleashing the Power of Viral Vaccines, Monoclonal Antibodies, and Proteolysis-Targeting Chimeras in the New Era of Immunotherapy. ACS OMEGA 2024; 9:7277-7295. [PMID: 38405458 PMCID: PMC10882662 DOI: 10.1021/acsomega.3c06501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024]
Abstract
In the realm of cancer immunotherapy, a profound evolution has ushered in sophisticated strategies that encompass both traditional cancer vaccines and emerging viral vaccines. This comprehensive Review offers an in-depth exploration of the methodologies, clinical applications, success stories, and future prospects of these approaches. Traditional cancer vaccines have undergone significant advancements utilizing diverse modalities such as proteins, peptides, and dendritic cells. More recent innovations have focused on the physiological mechanisms enabling the human body to recognize and combat precancerous and malignant cells, introducing specific markers like peptide-based anticancer vaccines targeting tumor-associated antigens. Moreover, cancer viral vaccines, leveraging engineered viruses to stimulate immune responses against specific antigens, exhibit substantial promise in inducing robust and enduring immunity. Integration with complementary therapeutic methods, including monoclonal antibodies, adjuvants, and radiation therapy, has not only improved survival rates but also deepened our understanding of viral virulence. Recent strides in vaccine design, encompassing oncolytic viruses, virus-like particles, and viral vectors, mark the frontier of innovation. While these advances hold immense potential, critical challenges must be addressed, such as strategies for immune evasion, potential off-target effects, and the optimization of viral genomes. In the landscape of immunotherapy, noteworthy innovations take the spotlight from the use of immunomodulatory agents for the enhancement of innate and adaptive immune collaboration. The emergence of proteolysis-targeting chimeras (PROTACs) as precision tools for cancer therapy is particularly exciting. With a focus on various cancers, from melanoma to formidable solid tumors, this Review critically assesses types of cancer vaccines, mechanisms, barriers in vaccine therapy, vaccine efficacy, safety profiles, and immune-related adverse events, providing a nuanced perspective on the underlying mechanisms involving cytotoxic T cells, natural killer cells, and dendritic cells. The Review also underscores the transformative potential of cutting-edge technologies such as clinical studies, molecular sequencing, and artificial intelligence in advancing the field of cancer vaccines. These tools not only expedite progress but also emphasize the multidimensional and rapidly evolving nature of this research, affirming its profound significance in the broader context of cancer therapy.
Collapse
Affiliation(s)
- Popat Mohite
- AETs
St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Vaishnavi Yadav
- AETs
St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Ramdas Pandhare
- MESs
College of Pharmacy, Sonai Tal-Newasa, Maharashtra 414105, India
| | - Swastika Maitra
- Center
for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
- Department
of Microbiology, Adamas University, Kolkata 700 126, West Bengal, India
| | - Fayez M. Saleh
- Department
of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rasha Mohammed Saleem
- Department
of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65431, Saudi Arabia
| | - Hamdan S. Al-malky
- Regional
Drug Information Center, Ministry of Health, Jeddah 11176, Saudi Arabia
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar
Sunway, 47500 Selangor
Darul Ehsan, Malaysia
- Center
for Transdisciplinary Research, Department of Pharmacology, Savetha
Dental College, Savetha Institute of Medical and Technical Sciences, Savetha University, Chennai, Tamil Nadu 600077, India
| | - Mohamed M. Abdel-Daim
- Department
of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box
6231, Jeddah 21442, Saudi Arabia
- Pharmacology
Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Daniel E. Uti
- Department
of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State 970001, Nigeria
| |
Collapse
|
3
|
Lee S, Yoon H, Hong SH, Kwon SP, Hong JJ, Kwak HW, Park HJ, Yoo S, Bae SH, Park HJ, Lee J, Bang YJ, Lee YS, Kim JY, Yoon S, Roh G, Cho Y, Kim Y, Kim D, Park SI, Kim DH, Lee S, Oh A, Ha D, Lee SY, Park M, Hwang EH, Bae G, Jeon E, Park SH, Choi WS, Oh HR, Kim IW, Youn H, Keum G, Bang EK, Rhee JH, Lee SE, Nam JH. mRNA-HPV vaccine encoding E6 and E7 improves therapeutic potential for HPV-mediated cancers via subcutaneous immunization. J Med Virol 2023; 95:e29309. [PMID: 38100632 DOI: 10.1002/jmv.29309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
The E6 and E7 proteins of specific subtypes of human papillomavirus (HPV), including HPV 16 and 18, are highly associated with cervical cancer as they modulate cell cycle regulation. The aim of this study was to investigate the potential antitumor effects of a messenger RNA-HPV therapeutic vaccine (mHTV) containing nononcogenic E6 and E7 proteins. To achieve this, C57BL/6j mice were injected with the vaccine via both intramuscular and subcutaneous routes, and the resulting effects were evaluated. mHTV immunization markedly induced robust T cell-mediated immune responses and significantly suppressed tumor growth in both subcutaneous and orthotopic tumor-implanted mouse model, with a significant infiltration of immune cells into tumor tissues. Tumor retransplantation at day 62 postprimary vaccination completely halted progression in all mHTV-treated mice. Furthermore, tumor expansion was significantly reduced upon TC-1 transplantation 160 days after the last immunization. Immunization of rhesus monkeys with mHTV elicited promising immune responses. The immunogenicity of mHTV in nonhuman primates provides strong evidence for clinical application against HPV-related cancers in humans. All data suggest that mHTV can be used as both a therapeutic and prophylactic vaccine.
Collapse
Affiliation(s)
- Seonghyun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Hyunho Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Seol Hee Hong
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, South Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sung Pil Kwon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, South Korea
- KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, South Korea
| | - Hye Won Kwak
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Hyeong-Jun Park
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Soyeon Yoo
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Seo-Hyeon Bae
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Yoo-Jin Bang
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Jae-Yong Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Subin Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Gahyun Roh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Youngran Cho
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Yongkwan Kim
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Daegeun Kim
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Sang-In Park
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Do-Hyung Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- R&D Research Center, SML Biopharm, Gwangmyeong, Gyeonggi-do, South Korea
| | - Sowon Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Ayoung Oh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Dahyeon Ha
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Soo-Yeon Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Misung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Eun-Ha Hwang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, South Korea
| | - Gyuseo Bae
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, South Korea
| | - Eunsu Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, South Korea
| | - Sung Hyun Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, South Korea
| | - Won Seok Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk-do, South Korea
| | - Ho Rim Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - In Woo Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyewon Youn
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul, South Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Eun-Kyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, South Korea
| | - Shee Eun Lee
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, South Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
- BK21 four Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| |
Collapse
|
4
|
Kothari N, Postwala H, Pandya A, Shah A, Shah Y, Chorawala MR. Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. Med Oncol 2023; 40:135. [PMID: 37014489 DOI: 10.1007/s12032-023-02003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.
Collapse
Affiliation(s)
- Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India.
| |
Collapse
|
5
|
Hu X, Zhou W, Pi R, Zhao X, Wang W. Genetically modified cancer vaccines: Current status and future prospects. Med Res Rev 2022; 42:1492-1517. [PMID: 35235212 DOI: 10.1002/med.21882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 12/13/2021] [Accepted: 01/23/2022] [Indexed: 02/05/2023]
Abstract
Vaccines can stimulate the immune system to protect individuals from infectious diseases. Moreover, vaccines have also been applied to the prevention and treatment of cancers. Due to advances in genetic engineering technology, cancer vaccines could be genetically modified to increase antitumor efficacy. Various genes could be inserted into cells to boost the immune response, such as cytokines, T cell costimulatory molecules, tumor-associated antigens, and tumor-specific antigens. Genetically modified cancer vaccines utilize innate and adaptive immune responses to induce durable antineoplastic capacity and prevent the recurrence. This review will discuss the major approaches used to develop genetically modified cancer vaccines and explore recent advances to increase the understanding of engineered cancer vaccines.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Weilin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Ruyu Pi
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
6
|
Mohsen MO, Speiser DE, Michaux J, Pak H, Stevenson BJ, Vogel M, Inchakalody VP, de Brot S, Dermime S, Coukos G, Bassani-Sternberg M, Bachmann MF. Bedside formulation of a personalized multi-neoantigen vaccine against mammary carcinoma. J Immunother Cancer 2022; 10:jitc-2021-002927. [PMID: 35017147 PMCID: PMC8753436 DOI: 10.1136/jitc-2021-002927] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background Harnessing the immune system to purposely recognize and destroy tumors represents a significant breakthrough in clinical oncology. Non-synonymous mutations (neoantigenic peptides) were identified as powerful cancer targets. This knowledge can be exploited for further improvements of active immunotherapies, including cancer vaccines, as T cells specific for neoantigens are not attenuated by immune tolerance mechanism and do not harm healthy tissues. The current study aimed at developing an optimized multitarget vaccine using short or long neoantigenic peptides utilizing virus-like particles (VLPs) as an efficient vaccine platform. Methods Mutations of murine mammary carcinoma cells were identified by integrating mass spectrometry-based immunopeptidomics and whole exome sequencing. Neoantigenic peptides were synthesized and covalently linked to virus-like nanoparticles using a Cu-free click chemistry method for easy preparation of vaccines against mouse mammary carcinoma. Results As compared with short peptides, vaccination with long peptides was superior in the generation of neoantigen-specific CD4+ and CD8+ T cells, which readily produced interferon gamma (IFN-γ) and tumor-necrosis factor α (TNF-α). The resulting anti-tumor effect was associated with favorable immune re-polarization in the tumor microenvironment through reduction of myeloid-derived suppressor cells. Vaccination with long neoantigenic peptides also decreased post-surgical tumor recurrence and metastases, and prolonged mouse survival, despite the tumor’s low mutational burden. Conclusion Integrating mass spectrometry-based immunopeptidomics and whole exome sequencing is an efficient approach for identifying neoantigenic peptides. Our multitarget VLP-based vaccine shows a promising anti-tumor effect in an aggressive murine mammary carcinoma model. Future clinical application using this strategy is readily feasible and practical, as click chemistry coupling of personalized synthetic peptides to the nanoparticles can be done at the bedside directly before injection.
Collapse
Affiliation(s)
- Mona O Mohsen
- Department of Medical Oncology, Hamad Medical Corporation, Doha, Qatar .,Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel E Speiser
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Justine Michaux
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - HuiSong Pak
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | | | - Monique Vogel
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | - Said Dermime
- Department of Medical Oncology, National Center for Cancer Care and Research, Doha, Qatar
| | - Georges Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland .,University of Lausanne, Lausanne, Switzerland
| | - Martin F Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Oncolytic viruses: A novel treatment strategy for breast cancer. Genes Dis 2021; 10:430-446. [DOI: 10.1016/j.gendis.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
|
8
|
Kim KJ, Moon D, Kong SJ, Lee YS, Yoo Y, Kim S, Kim C, Chon HJ, Kim JH, Choi KJ. Antitumor effects of IL-12 and GM-CSF co-expressed in an engineered oncolytic HSV-1. Gene Ther 2020; 28:186-198. [PMID: 33149278 DOI: 10.1038/s41434-020-00205-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
Oncolytic viruses selectively replicate and destroy cancer cells while sparing normal cells, prompting their recognition as promising antitumor agents. Herpes simplex virus (HSV) is suitable as an anticancer agent, given its considerable therapeutic gene capacity and excellent safety profile in clinical trials. Interleukin (IL)-12 induces a Th1-type immune response that mediates interferon (IFN)-γ release from natural killer (NK), CD4+ and CD8+ T cells. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the generation of antigen-presenting cells and promotes dendritic cell differentiation. We established a novel oncolytic HSV-1 (∆6/GM/IL12) co-expressing IL-12 and GM-CSF and tested its effects against a B16-F10 murine melanoma model. ∆6/GM/IL12 administration diminished tumor growth and prolonged survival compared to treatment with ∆6/GM or ∆6/IL12 expressing each individual cytokine. Flow cytometry and histological analysis showed increased activation of CD4+ and CD8+ T cells in ∆6/GM/IL12-treated mice. Enzyme-linked immunosorbent spot assay showed an increase in the phenotypically characterized IFN-γ-producing cell population in ∆6/GM/IL12-treated mice. Moreover, ∆6/GM/IL12 induced a B16-F10-specific cytotoxic immune response that enhanced IFN-γ production by CD3+CD8+ T cells. Therefore, IL-12 and GM-CSF from an engineered oncolytic HSV have a synergistic effect, boosting the immune response to increase their antitumor effects.
Collapse
Affiliation(s)
- Kyoung-Ju Kim
- Laboratory of Gene Therapy, Department of Microbiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea.,Graduate School of the Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Dahye Moon
- Laboratory of Gene Therapy, Department of Microbiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea.,Graduate School of the Department of Biomedical Science, CHA University, Seongnam, Korea
| | - So Jung Kong
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Korea.,Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Yu Seong Lee
- Graduate School of the Department of Biomedical Science, CHA University, Seongnam, Korea.,Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Korea
| | - Youngeun Yoo
- Laboratory of Gene Therapy, Department of Microbiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea.,Graduate School of the Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Soyoung Kim
- Laboratory of Gene Therapy, Department of Microbiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Chan Kim
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Korea.,Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hong Jae Chon
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Korea.,Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Joo-Hang Kim
- Laboratory of Gene Therapy, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea.
| | - Kyung-Ju Choi
- Laboratory of Gene Therapy, Department of Microbiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea. .,Graduate School of the Department of Biomedical Science, CHA University, Seongnam, Korea.
| |
Collapse
|
9
|
Schijns V, Fernández-Tejada A, Barjaktarović Ž, Bouzalas I, Brimnes J, Chernysh S, Gizurarson S, Gursel I, Jakopin Ž, Lawrenz M, Nativi C, Paul S, Pedersen GK, Rosano C, Ruiz-de-Angulo A, Slütter B, Thakur A, Christensen D, Lavelle EC. Modulation of immune responses using adjuvants to facilitate therapeutic vaccination. Immunol Rev 2020; 296:169-190. [PMID: 32594569 PMCID: PMC7497245 DOI: 10.1111/imr.12889] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Therapeutic vaccination offers great promise as an intervention for a diversity of infectious and non-infectious conditions. Given that most chronic health conditions are thought to have an immune component, vaccination can at least in principle be proposed as a therapeutic strategy. Understanding the nature of protective immunity is of vital importance, and the progress made in recent years in defining the nature of pathological and protective immunity for a range of diseases has provided an impetus to devise strategies to promote such responses in a targeted manner. However, in many cases, limited progress has been made in clinical adoption of such approaches. This in part results from a lack of safe and effective vaccine adjuvants that can be used to promote protective immunity and/or reduce deleterious immune responses. Although somewhat simplistic, it is possible to divide therapeutic vaccine approaches into those targeting conditions where antibody responses can mediate protection and those where the principal focus is the promotion of effector and memory cellular immunity or the reduction of damaging cellular immune responses as in the case of autoimmune diseases. Clearly, in all cases of antigen-specific immunotherapy, the identification of protective antigens is a vital first step. There are many challenges to developing therapeutic vaccines beyond those associated with prophylactic diseases including the ongoing immune responses in patients, patient heterogeneity, and diversity in the type and stage of disease. If reproducible biomarkers can be defined, these could allow earlier diagnosis and intervention and likely increase therapeutic vaccine efficacy. Current immunomodulatory approaches related to adoptive cell transfers or passive antibody therapy are showing great promise, but these are outside the scope of this review which will focus on the potential for adjuvanted therapeutic active vaccination strategies.
Collapse
Affiliation(s)
- Virgil Schijns
- Wageningen University, Cell Biology & Immunology and, ERC-The Netherlands, Schaijk, Landerd campus, The Netherlands
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Center for Cooperative Research in Biosciences, CIC bioGUNE, Biscay, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Žarko Barjaktarović
- Agency for Medicines and Medical Devices of Montenegro, Podgorica, Montenegro
| | - Ilias Bouzalas
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute, Thessaloniki, Greece
| | | | - Sergey Chernysh
- Laboratory of Insect Biopharmacology and Immunology, Department of Entomology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | | | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maria Lawrenz
- Vaccine Formulation Institute (CH), Geneva, Switzerland
| | - Cristina Nativi
- Department of Chemistry, University of Florence, Florence, Italy
| | | | | | | | - Ane Ruiz-de-Angulo
- Chemical Immunology Lab, Center for Cooperative Research in Biosciences, CIC bioGUNE, Biscay, Spain
| | - Bram Slütter
- Div. BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Briquez PS, Hauert S, de Titta A, Gray LT, Alpar AT, Swartz MA, Hubbell JA. Engineering Targeting Materials for Therapeutic Cancer Vaccines. Front Bioeng Biotechnol 2020; 8:19. [PMID: 32117911 PMCID: PMC7026271 DOI: 10.3389/fbioe.2020.00019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Therapeutic cancer vaccines constitute a valuable tool to educate the immune system to fight tumors and prevent cancer relapse. Nevertheless, the number of cancer vaccines in the clinic remains very limited to date, highlighting the need for further technology development. Recently, cancer vaccines have been improved by the use of materials, which can strongly enhance their intrinsic properties and biodistribution profile. Moreover, vaccine efficacy and safety can be substantially modulated through selection of the site at which they are delivered, which fosters the engineering of materials capable of targeting cancer vaccines to specific relevant sites, such as within the tumor or within lymphoid organs, to further optimize their immunotherapeutic effects. In this review, we aim to give the reader an overview of principles and current strategies to engineer therapeutic cancer vaccines, with a particular focus on the use of site-specific targeting materials. We will first recall the goal of therapeutic cancer vaccination and the type of immune responses sought upon vaccination, before detailing key components of cancer vaccines. We will then present how materials can be engineered to enhance the vaccine's pharmacokinetic and pharmacodynamic properties. Finally, we will discuss the rationale for site-specific targeting of cancer vaccines and provide examples of current targeting technologies.
Collapse
Affiliation(s)
- Priscilla S. Briquez
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Sylvie Hauert
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | | | - Laura T. Gray
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Aaron T. Alpar
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, United States
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
Sakhawat A, Ma L, Muhammad T, Khan AA, Chen X, Huang Y. A tumor targeting oncolytic adenovirus can improve therapeutic outcomes in chemotherapy resistant metastatic human breast carcinoma. Sci Rep 2019; 9:7504. [PMID: 31097752 PMCID: PMC6522519 DOI: 10.1038/s41598-019-43668-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most prevalent malignancy in women, which remains untreatable once metastatic. The treatment of advanced breast cancer is restricted due to chemotherapy resistance. We previously investigated anti-cancer potential of a tumor selective oncolytic adenovirus along with cisplatin in three lung cancer cells; A549, H292, and H661, and found it very efficient. To our surprise, this virotherapy showed remarkable cytotoxicity to chemo-resistant cancer cells. Here, we extended our investigation by using two breast cancer cells and their resistant sublines to further validate CRAd’s anti-resistance properties. Results of in vitro and in vivo analyses recapitulated the similar anti-tumor potential of CRAd. Based on the molecular analysis through qPCR and western blotting, we suggest upregulation of coxsackievirus-adenovirus receptor (CAR) as a selective vulnerability of chemotherapy-resistant tumors. CAR knockdown and overexpression experiments established its important involvement in the success of CRAd-induced tumor inhibition. Additionally, through transwell migration assay we demonstrate that CRAd might have anti-metastatic properties. Mechanistic analysis show that CRAd pre-treatment could reverse epithelial to mesenchymal transition in breast cancer cells, which needs further verification. These insights may prove to be a timely opportunity for the application of CRAd in recurrent drug-resistant cancers.
Collapse
Affiliation(s)
- Ali Sakhawat
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Ling Ma
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Tahir Muhammad
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Aamir Ali Khan
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Xuechai Chen
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China.
| |
Collapse
|
12
|
Recombinant Viruses for Cancer Therapy. Biomedicines 2018; 6:biomedicines6040094. [PMID: 30257488 PMCID: PMC6316473 DOI: 10.3390/biomedicines6040094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/28/2022] Open
Abstract
Recombinant viruses are novel therapeutic agents that can be utilized for treatment of various diseases, including cancers. Recombinant viruses can be engineered to express foreign transgenes and have a broad tropism allowing gene expression in a wide range of host cells. They can be selected or designed for specific therapeutic goals; for example, recombinant viruses could be used to stimulate host immune response against tumor-specific antigens and therefore overcome the ability of the tumor to evade the host's immune surveillance. Alternatively, recombinant viruses could express immunomodulatory genes which stimulate an anti-cancer immune response. Oncolytic viruses can replicate specifically in tumor cells and induce toxic effects leading to cell lysis and apoptosis. However, each of these approaches face certain difficulties that must be resolved to achieve maximum therapeutic efficacy. In this review we discuss actively developing approaches for cancer therapy based on recombinant viruses, problems that need to be overcome, and possible prospects for further development of recombinant virus based therapy.
Collapse
|
13
|
Goyvaerts C, Breckpot K. The Journey of in vivo Virus Engineered Dendritic Cells From Bench to Bedside: A Bumpy Road. Front Immunol 2018; 9:2052. [PMID: 30254636 PMCID: PMC6141723 DOI: 10.3389/fimmu.2018.02052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are recognized as highly potent antigen-presenting cells that are able to stimulate cytotoxic T lymphocyte (CTL) responses with antitumor activity. Consequently, DCs have been explored as cellular vaccines in cancer immunotherapy. To that end, DCs are modified with tumor antigens to enable presentation of antigen-derived peptides to CTLs. In this review we discuss the use of viral vectors for in situ modification of DCs, focusing on their clinical applications as anticancer vaccines. Among the viral vectors discussed are those derived from viruses belonging to the families of the Poxviridae, Adenoviridae, Retroviridae, Togaviridae, Paramyxoviridae, and Rhabdoviridae. We will further shed light on how the combination of viral vector-based vaccination with T-cell supporting strategies will bring this strategy to the next level.
Collapse
|
14
|
Tran T, Blanc C, Granier C, Saldmann A, Tanchot C, Tartour E. Therapeutic cancer vaccine: building the future from lessons of the past. Semin Immunopathol 2018; 41:69-85. [PMID: 29978248 DOI: 10.1007/s00281-018-0691-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
Anti-cancer vaccines have raised many hopes from the start of immunotherapy but have not yet been clinically successful. The few positive results of anti-cancer vaccines have been observed in clinical situations of low tumor burden or preneoplastic lesions. Several new concepts and new results reposition this therapeutic approach in the field of immunotherapy. Indeed, cancers that respond to anti-PD-1/PD-L1 (20-30%) are those that are infiltrated by anti-tumor T cells with an inflammatory infiltrate. However, 70% of cancers do not appear to have an anti-tumor immune reaction in the tumor microenvironment. To induce this anti-tumor immunity, therapeutic combinations between vaccines and anti-PD-1/PD-L1 are being evaluated. In addition, the identification of neoepitopes against which the immune system is less tolerated is giving rise to a new enthusiasm by the first clinical results of the vaccine including these neoepitopes in humans. The ability of anti-cancer vaccines to induce a population of anti-tumor T cells called memory resident T cells that play an important role in immunosurveillance is also a new criterion to consider in the design of therapeutic vaccines.
Collapse
Affiliation(s)
- T Tran
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Blanc
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Granier
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A Saldmann
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Tanchot
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Eric Tartour
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
- Hôpital Européen Georges Pompidou, Laboratory of Immunology, Assistance Publique des Hôpitaux de Paris, Paris, France.
- Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
| |
Collapse
|
15
|
Synergistic Anti-tumour Effects of Quercetin and Oncolytic Adenovirus expressing TRAIL in Human Hepatocellular Carcinoma. Sci Rep 2018; 8:2182. [PMID: 29391509 PMCID: PMC5794998 DOI: 10.1038/s41598-018-20213-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/16/2018] [Indexed: 01/13/2023] Open
Abstract
The combination of oncolytic adenoviruses and specific chemotherapy agents is fast emerging as a novel therapeutic approach for resistan the patocellular carcinoma (HCC) cells. A detailed analysis of the network between adenovirus and chemotherapeutic agents can help design an effective strategy to combat HCC. We sought to investigate whether a combined treatment of ZD55-TRAIL and quercetin can have an enhanced cell-killing effect on HCC cells. In-vitro experiments showed that quercetin can enhance ZD55-TRAIL mediated growth inhibition and apoptosis in HCC cells. In addition, we showed that quercetin reduced ZD55-TRAIL mediated NF-κB activation and down-regulated its downstream targets, which in turn promoted the pro-apoptotic action of ZD55-TRAIL. Furthermore, in-vivo experiments in mice injected with HuH-7 cells resulted in significantly greater reduction in tumour growth and volume following combined ZD55-TRAIL and quercetin treatment. In conclusion, we demonstrated that quercetin could sensitize human HCC cells to apoptosis via ZD55-TRAIL in-vitro and in-vivo and presented ZD55-TRAIL and quercetin combination as a suitable anti-HCC therapy.
Collapse
|
16
|
Hunter P. Advanced therapies push regulatory boundaries: Novel therapeutic approaches require more regulatory flexibility and transparency. EMBO Rep 2017; 18:2101-2104. [PMID: 29122833 PMCID: PMC5709725 DOI: 10.15252/embr.201745345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Novel therapies, such as gene or cell therapy, don not require radical changes of the regulatory framework for medicinal products. Yet, both new and old developments cannot be easily accommodated by existing regulations.
Collapse
|
17
|
Marino N, Illingworth S, Kodialbail P, Patel A, Calderon H, Lear R, Fisher KD, Champion BR, Brown ACN. Development of a versatile oncolytic virus platform for local intra-tumoural expression of therapeutic transgenes. PLoS One 2017; 12:e0177810. [PMID: 28542292 PMCID: PMC5436815 DOI: 10.1371/journal.pone.0177810] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/03/2017] [Indexed: 12/29/2022] Open
Abstract
Oncolytic viruses which infect and kill tumour cells can also be genetically modified to express therapeutic genes that augment their anti-cancer activities. Modifying oncolytic viruses to produce effective cancer therapies is challenging as encoding transgenes often attenuates virus activity or prevents systemic delivery in patients due to the risk of off-target expression of transgenes in healthy tissues. To overcome these issues we aimed to generate a readily modifiable virus platform using the oncolytic adenovirus, enadenotucirev. Enadenotucirev replicates in human tumour cells but not cells from healthy tissues and can be delivered intravenously because it is stable in human blood. Here, the enadenotucirev genome was used to generate plasmids into which synthesised transgene cassettes could be directly cloned in a single step reaction. The platform enabled generation of panels of reporter viruses to identify cloning sites and transgene cassette designs where transgene expression could be linked to the virus life cycle. It was demonstrated using these viruses that encoded transgene proteins could be successfully expressed in tumour cells in vitro and tumours in vivo. The expression of transgenes did not impact either the oncolytic activity or selective properties of the virus. The effectiveness of this approach as a drug delivery platform for complex therapeutics was demonstrated by inserting multiple genes in the virus genome to encode full length anti-VEGF antibodies. Functional antibody could be synthesised and secreted from infected tumour cells without impacting the activity of the virus particle in terms of oncolytic potency, manufacturing yields or selectivity for tumour cells. In vivo, viral particles could be efficaciously delivered intravenously to disseminated orthotopic tumours.
Collapse
Affiliation(s)
- Nalini Marino
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Sam Illingworth
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Prithvi Kodialbail
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Ashvin Patel
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Hugo Calderon
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Rochelle Lear
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Kerry D. Fisher
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Brian R. Champion
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| | - Alice C. N. Brown
- PsiOxus Therapeutics Ltd, 154B Brook Drive, Milton Park, Abingdon, Oxfordshire, United Kingdom
| |
Collapse
|
18
|
Polymeric oncolytic adenovirus for cancer gene therapy. J Control Release 2015; 219:181-191. [PMID: 26453806 DOI: 10.1016/j.jconrel.2015.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 01/01/2023]
Abstract
Oncolytic adenovirus (Ad) vectors present a promising modality to treat cancer. Many clinical trials have been done with either naked oncolytic Ad or combination with chemotherapies. However, the systemic injection of oncolytic Ad in clinical applications is restricted due to significant liver toxicity and immunogenicity. To overcome these issues, Ad has been engineered physically or chemically with numerous polymers for shielding the Ad surface, accomplishing extended blood circulation time and reduced immunogenicity as well as hepatotoxicity. In this review, we describe and classify the characteristics of polymer modified oncolytic Ad following each strategy for cancer treatment. Furthermore, this review concludes with the highlights of various polymer-coated Ads and their prospects, and directions for future research.
Collapse
|
19
|
Bloy N, Buqué A, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Naked and vectored DNA-based anticancer vaccines. Oncoimmunology 2015; 4:e1026531. [PMID: 26155408 PMCID: PMC4485755 DOI: 10.1080/2162402x.2015.1026531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/28/2022] Open
Abstract
One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.
Collapse
Key Words
- AFP, α-fetoprotein
- APC, antigen-presenting cell
- CDR, complementarity-determining region
- CEA, carcinoembryonic antigen
- CIN, cervical intraepithelial neoplasia
- CTLA4, cytotoxic T lymphocyte protein 4
- DAMP, damage-associated molecular pattern
- DC, dendritic cell
- FDA, Food and Drug Administration
- GM-CSF, granulocyte macrophage colony-stimulating factor
- GX-188E
- HCC, hepatocellular carcinoma
- HNSCC, head and neck squamous cell carcinoma
- HPV, human papillomavirus
- IL, interleukin
- OS, overall survival
- OVA, ovalbumin
- PAP, prostate acid phosphatase
- SCGB2A2, secretoglobin, family 2A, member 2
- SOX2, SRY (sex determining region Y)-box 2
- T, brachyury homolog
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- TRA, tumor rejection antigen
- Treg, regulatory T cell
- VGX-3100
- WT1, Wilms tumor 1
- adjuvants
- dendritic cell
- electroporation
- mucosal immunity
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System; Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS); Barcelona, Spain
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine; Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
- Sotio a.c; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Jitka Fucikova
- Sotio a.c; Prague, Czech Republic
- Dept. of Immunology; 2 Faculty of Medicine and University Hospital Motol; Charles University; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Radek Spisek
- Sotio a.c; Prague, Czech Republic
- Dept. of Immunology; 2 Faculty of Medicine and University Hospital Motol; Charles University; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM, U970; Paris, France
- Paris-Cardiovascular Research Center (PARCC); Paris, France
- Service d'Immunologie Biologique; Hôpital Européen Georges Pompidou (HEGP); AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
20
|
Zhang X, Hu S, Du X, Li T, Han L, Kong J. Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:851-858. [PMID: 25641594 DOI: 10.1016/j.jmii.2014.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/22/2014] [Accepted: 11/05/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND/PURPOSE Carcinoembryonic antigen (CEA) is an attractive target for immunotherapy because it is expressed minimally in normal tissue, but is overexpressed in a wide variety of malignant epithelial tissues. Lactic acid bacteria (LABs), widely used in food processes, are attractive candidates for oral vaccination. Thus, we examined whether LABs could be used as a live vaccine vector to deliver CEA antigen. METHODS CEA was cloned into an Escherichia coli/Lactococcus lactis shuttle vector pSEC:LEISS under the control of a nisin promoter. For displaying the CEA on the cell surface of the L. lactis strain, the anchor motif LcsB from the S-layer protein of Lactobacillus crispatus was fused with CEA. Intracellular and cell surface expression of the CEA-LcsB fusion was confirmed by western blot analysis. RESULTS Significantly higher levels of CEA-specific secretory immunoglobulin A in the sera of mice were observed upon oral administration of strain cultures containing the CEA-LcsB fused protein. In addition, the CEA-LcsB antigen group showed a higher spleen index compared to the CEA antigen alone or negative control, demonstrating that surface-displayed CEA antigen could induce a higher immune response. CONCLUSION These results provided the first evidence for displaying CEA antigen on the cell surfaces of LABs as oral vaccines against cancer or infectious diseases.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Health Science Exchange and Service Center of Jinan, Jinan 250013, China.
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China; State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xue Du
- Health Science Exchange and Service Center of Jinan, Jinan 250013, China
| | - Tiejun Li
- Health Science Exchange and Service Center of Jinan, Jinan 250013, China
| | - Lanlan Han
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
| |
Collapse
|
21
|
Senovilla L, Vacchelli E, Garcia P, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: DNA vaccines for cancer therapy. Oncoimmunology 2014; 2:e23803. [PMID: 23734328 PMCID: PMC3654598 DOI: 10.4161/onci.23803] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022] Open
Abstract
The foundation of modern vaccinology dates back to the 1790s, when the English physician Edward Jenner uncovered the tremendous medical potential of prophylactic vaccination. Jenner’s work ignited a wave of nationwide vaccination campaigns abating the incidence of multiple life-threatening infectious diseases and culminating with the eradication of natural smallpox virus, which was definitively certified by the WHO in 1980. The possibility of using vaccines against cancer was first proposed at the end of the 19th century by Paul Ehrlich and William Coley. However, it was not until the 1990s that such a hypothesis began to be intensively investigated, following the realization that the immune system is not completely unresponsive to tumors and that neoplastic cells express immunogenic tumor-associated antigens (TAAs). Nowadays, anticancer vaccines are rapidly moving from the bench to the bedside, and a few prophylactic and therapeutic preparations have already been approved by FDA for use in humans. In this setting, one interesting approach is constituted by DNA vaccines, i.e., TAA-encoding circularized DNA constructs, often of bacterial origin, that are delivered to patients as such or by means of specific vectors, including (but not limited to) liposomal preparations, nanoparticles, bacteria and viruses. The administration of DNA vaccines is most often performed via the intramuscular or subcutaneous route and is expected to cause (1) the endogenous synthesis of the TAA by myocytes and/or resident antigen-presenting cells; (2) the presentation of TAA-derived peptides on the cell surface, in association with MHC class I molecules; and (3) the activation of potentially therapeutic tumor-specific immune responses. In this Trial Watch, we will summarize the results of recent clinical trials that have evaluated/are evaluating DNA vaccines as therapeutic interventions against cancer.
Collapse
Affiliation(s)
- Laura Senovilla
- Institut Gustave Roussy; Villejuif, France ; INSERM; U848; Villejuif, France ; INSERM; U1015 labelisée par la Ligue Nationale contre le Cancer; CICBT507; Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tosic V, Thomas DL, Kranz DM, Liu J, McFadden G, Shisler JL, MacNeill AL, Roy EJ. Myxoma virus expressing a fusion protein of interleukin-15 (IL15) and IL15 receptor alpha has enhanced antitumor activity. PLoS One 2014; 9:e109801. [PMID: 25329832 PMCID: PMC4199602 DOI: 10.1371/journal.pone.0109801] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 09/14/2014] [Indexed: 12/20/2022] Open
Abstract
Myxoma virus, a rabbit poxvirus, can efficiently infect various types of mouse and human cancer cells. It is a strict rabbit-specific pathogen, and is thought to be safe as a therapeutic agent in all non-rabbit hosts tested including mice and humans. Interleukin-15 (IL15) is an immuno-modulatory cytokine with significant potential for stimulating anti-tumor T lymphocytes and NK cells. Co-expression of IL15 with the α subunit of IL15 receptor (IL15Rα) greatly enhances IL15 stability and bioavailability. Therefore, we engineered a new recombinant myxoma virus (vMyx-IL15Rα-tdTr), which expresses an IL15Rα-IL15 fusion protein plus tdTomato red fluorescent reporter protein. Permissive rabbit kidney epithelial (RK-13) cells infected with vMyx-IL15Rα-tdTr expressed and secreted the IL15Rα-IL15 fusion protein. Functional activity was confirmed by demonstrating that the secreted fusion protein stimulated proliferation of cytokine-dependent CTLL-2 cells. Multi-step growth curves showed that murine melanoma (B16-F10 and B16.SIY) cell lines were permissive to vMyx-IL15Rα-tdTr infection. In vivo experiments in RAG1-/- mice showed that subcutaneous B16-F10 tumors treated with vMyx-IL15Rα-tdTr exhibited attenuated tumor growth and a significant survival benefit for the treated group compared to the PBS control and the control viruses (vMyx-IL15-tdTr and vMyx-tdTr). Immunohistological analysis of the subcutaneous tumors showed dramatically increased infiltration of NK cells in vMyx-IL15Rα-tdTr treated tumors compared to the controls. In vivo experiments with immunocompetent C57BL/6 mice revealed a strong infiltrate of both NK cells and CD8+ T cells in response to vMyx-IL15Rα-tdTr, and prolonged survival. We conclude that delivery of IL15Rα-IL15 in a myxoma virus vector stimulates both innate and adaptive components of the immune system.
Collapse
Affiliation(s)
- Vesna Tosic
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Diana L. Thomas
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - David M. Kranz
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jia Liu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Joanna L. Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Amy L. MacNeill
- Department of Pathobiology at College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Edward J. Roy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lineweaver CH, Davies PCW, Vincent MD. Targeting cancer's weaknesses (not its strengths): Therapeutic strategies suggested by the atavistic model. Bioessays 2014; 36:827-35. [PMID: 25043755 DOI: 10.1002/bies.201400070] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the atavistic model of cancer progression, tumor cell dedifferentiation is interpreted as a reversion to phylogenetically earlier capabilities. The more recently evolved capabilities are compromised first during cancer progression. This suggests a therapeutic strategy for targeting cancer: design challenges to cancer that can only be met by the recently evolved capabilities no longer functional in cancer cells. We describe several examples of this target-the-weakness strategy. Our most detailed example involves the immune system. The absence of adaptive immunity in immunosuppressed tumor environments is an irreversible weakness of cancer that can be exploited by creating a challenge that only the presence of adaptive immunity can meet. This leaves tumor cells more vulnerable than healthy tissue to pathogenic attack. Such a target-the-weakness therapeutic strategy has broad applications, and contrasts with current therapies that target the main strength of cancer: cell proliferation.
Collapse
Affiliation(s)
- Charles H Lineweaver
- Planetary Science Institute, Research School of Astronomy and Astrophysics and the Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | | | | |
Collapse
|
24
|
Abstract
Oncolytic viruses are ideal platforms for tumor vaccination because they can mediate the direct in situ killing of tumor cells that release a broad array of tumor antigens and alarmins or danger signals thereby cross-priming antitumor cytotoxic T lymphocytes (CTLs), which mediate the indirect killing of uninfected cells. The balance between the direct and indirect killing phases of oncolytic virotherapy is the key to its success and can be manipulated by incorporating various immunomodulatory genes into the oncolytic virus genome. Recently, the interim analysis of a large multicenter Phase III clinical trial for Talimogene laherparepvec, a granulocyte-macrophage colony stimulating factor-armed oncolytic herpes simplex virus, revealed significant improvement in objective response and durable response rates over control arm and a trend toward improved overall survival. Meanwhile, newer oncolytics are being developed expressing additional immunomodulatory transgenes to further enhance cross-priming and the generation of antitumor CTLs and to block the immunosuppressive actions of the tumor microenvironment. Since oncolytic vaccines can be engineered to kill tumor cells directly, modulate the kinetics of the antitumor immune response and reverse the immunosuppressive actions of the tumor, they are predicted to emerge as the preferred immunotherapeutic anticancer weapons of the future.
Collapse
Affiliation(s)
- Noura B Elsedawy
- Department of Molecular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
25
|
Moehler M, Goepfert K, Heinrich B, Breitbach CJ, Delic M, Galle PR, Rommelaere J. Oncolytic virotherapy as emerging immunotherapeutic modality: potential of parvovirus h-1. Front Oncol 2014; 4:92. [PMID: 24822170 PMCID: PMC4013456 DOI: 10.3389/fonc.2014.00092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/14/2014] [Indexed: 12/11/2022] Open
Abstract
Human tumors develop multiple strategies to evade recognition and efficient suppression by the immune system. Therefore, a variety of immunotherapeutic strategies have been developed to reactivate and reorganize the human immune system. The recent development of new antibodies against immune check points may help to overcome the immune silencing induced by human tumors. Some of these antibodies have already been approved for treatment of various solid tumor entities. Interestingly, targeting antibodies may be combined with standard chemotherapy or radiation protocols. Furthermore, recent evidence indicates that intratumoral or intravenous injections of replicative oncolytic viruses such as herpes simplex-, pox-, parvo-, or adenoviruses may also reactivate the human immune system. By generating tumor cell lysates in situ, oncolytic viruses overcome cellular tumor resistance mechanisms and induce immunogenic tumor cell death resulting in the recognition of newly released tumor antigens. This is in particular the case of the oncolytic parvovirus H-1 (H-1PV), which is able to kill human tumor cells and stimulate an anti-tumor immune response through increased presentation of tumor-associated antigens, maturation of dendritic cells, and release of pro-inflammatory cytokines. Current research and clinical studies aim to assess the potential of oncolytic virotherapy and its combination with immunotherapeutic agents or conventional treatments to further induce effective antitumoral immune responses.
Collapse
Affiliation(s)
- Markus Moehler
- 1st Department of Internal Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz , Mainz , Germany
| | - Katrin Goepfert
- 1st Department of Internal Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz , Mainz , Germany
| | - Bernd Heinrich
- 1st Department of Internal Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz , Mainz , Germany
| | | | - Maike Delic
- 1st Department of Internal Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz , Mainz , Germany
| | - Peter Robert Galle
- 1st Department of Internal Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz , Mainz , Germany
| | - Jean Rommelaere
- Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
26
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Hervé Fridman W, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: DNA vaccines for cancer therapy. Oncoimmunology 2014; 3:e28185. [PMID: 24800178 PMCID: PMC4008456 DOI: 10.4161/onci.28185] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 12/13/2022] Open
Abstract
During the past 2 decades, the possibility that preparations capable of eliciting tumor-specific immune responses would mediate robust therapeutic effects in cancer patients has received renovated interest. In this context, several approaches to vaccinate cancer patients against their own malignancies have been conceived, including the administration of DNA constructs coding for one or more tumor-associated antigens (TAAs). Such DNA-based vaccines conceptually differ from other types of gene therapy in that they are not devised to directly kill cancer cells or sensitize them to the cytotoxic activity of a drug, but rather to elicit a tumor-specific immune response. In spite of an intense wave of preclinical development, the introduction of this immunotherapeutic paradigm into the clinical practice is facing difficulties. Indeed, while most DNA-based anticancer vaccines are well tolerated by cancer patients, they often fail to generate therapeutically relevant clinical responses. In this Trial Watch, we discuss the latest advances on the use of DNA-based vaccines in cancer therapy, discussing the literature that has been produced around this topic during the last 13 months as well as clinical studies that have been launched in the same time frame to assess the actual therapeutic potential of this intervention.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers; Paris, France
| | - Wolf Hervé Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
27
|
Kasala D, Choi JW, Kim SW, Yun CO. Utilizing adenovirus vectors for gene delivery in cancer. Expert Opin Drug Deliv 2014; 11:379-92. [PMID: 24392755 DOI: 10.1517/17425247.2014.874414] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Adenovirus (Ad) is a promising candidate vector for cancer gene therapy because of its unique characteristics, which include efficient infection, high loading capacity and lack of insertional mutagenesis. However, systemic administration of Ad is hampered by the host's immune response, hepatocytoxicity, short half-life of the vector and low accumulation at the target site. For these reasons, clinical applications of Ad are currently restricted. AREAS COVERED In this review, we focus on recent developments in Ad nanocomplex systems that improve the transduction and targeting efficacy of Ad vectors in cancer gene therapy. We discuss the development of different Ad delivery systems, including surface modification of Ad, smart Ad/nanohybrid systems and hydrogels for sustained release of Ad. EXPERT OPINION The fusion of bioengineering and biopharmaceutical technologies can provide solutions to the obstacles encountered during systemic delivery of Ads. The in vivo transgene expression efficiency of Ad nanocomplex systems is typically high, and animal tumor models demonstrate that systemic administration of these Ad complexes can arrest tumor growth. However, further optimization of these smart Ad nanocomplex systems is needed to increase their effectiveness and safety for clinical application in cancer gene therapy.
Collapse
Affiliation(s)
- Dayananda Kasala
- Hanyang University, College of Engineering, Department of Bioengineering , 17 Haengdang-dong, Seongdong-gu, Seoul , Republic of Korea +82 2 2220 0491 ; +82 2 2220 4850 ;
| | | | | | | |
Collapse
|
28
|
Gameiro SR, Jammeh ML, Hodge JW. Cancer vaccines targeting carcinoembryonic antigen: state-of-the-art and future promise. Expert Rev Vaccines 2013; 12:617-29. [PMID: 23750792 DOI: 10.1586/erv.13.40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Concurrent with the US FDA's approval of the first therapeutic cancer vaccine, and supported by mounting clinical evidence indicating that targeting carcinoembryonic antigen (CEA) can safely overcome pre-existing tolerance, a multitude of novel CEA cancer vaccines are now in various stages of development. Since cancer-driven immune suppression often limits the efficacy of vaccines, numerous strategies are being examined in both preclinical and clinical settings to overcome immunosuppressive elements, including the combined use of vaccines with certain chemotherapies, immune checkpoint inhibitors, small-molecule targeted therapies and radiation. This review discusses the current state and future direction of therapeutic cancer vaccines targeting CEA, based on advances achieved over the last 5 years.
Collapse
Affiliation(s)
- Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
29
|
Dendritic cell-specific delivery of Flt3L by coronavirus vectors secures induction of therapeutic antitumor immunity. PLoS One 2013; 8:e81442. [PMID: 24312302 PMCID: PMC3842931 DOI: 10.1371/journal.pone.0081442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/22/2013] [Indexed: 12/22/2022] Open
Abstract
Efficacy of antitumor vaccination depends to a large extent on antigen targeting to dendritic cells (DCs). Here, we assessed antitumor immunity induced by attenuated coronavirus vectors which exclusively target DCs in vivo and express either lymphocyte- or DC-activating cytokines in combination with a GFP-tagged model antigen. Tracking of in vivo transduced DCs revealed that vectors encoding for Fms-like tyrosine kinase 3 ligand (Flt3L) exhibited a higher capacity to induce DC maturation compared to vectors delivering IL-2 or IL-15. Moreover, Flt3L vectors more efficiently induced tumor-specific CD8+ T cells, expanded the epitope repertoire, and provided both prophylactic and therapeutic tumor immunity. In contrast, IL-2- or IL-15-encoding vectors showed a substantially lower efficacy in CD8+ T cell priming and failed to protect the host once tumors had been established. Thus, specific in vivo targeting of DCs with coronavirus vectors in conjunction with appropriate conditioning of the microenvironment through Flt3L represents an efficient strategy for the generation of therapeutic antitumor immunity.
Collapse
|
30
|
Wayteck L, Breckpot K, Demeester J, De Smedt SC, Raemdonck K. A personalized view on cancer immunotherapy. Cancer Lett 2013; 352:113-25. [PMID: 24051308 DOI: 10.1016/j.canlet.2013.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 02/08/2023]
Abstract
Recent progress in cancer immunotherapy has resulted in complete responses in patients refractory to current standard cancer therapies. However, due to tumor heterogeneity and inter-individual variations in anti-tumor immunity, only subsets of patients experience clinical benefit. This review highlights the implementation of a personalized approach to enhance treatment efficacy and reduce side effects, including the identification of tumor-specific antigens for cancer vaccination and adoptive T cell therapies. Furthermore, together with the current advances and promising clinical outcomes of combination cancer (immuno-)therapies, the screening for predictive biomarkers in a patient-specific manner is emphasized.
Collapse
Affiliation(s)
- Laura Wayteck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Immunology and Physiology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Jo Demeester
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.
| |
Collapse
|