1
|
Stephen C, Palmer D, Mishanina TV. Opportunities for Riboswitch Inhibition by Targeting Co-Transcriptional RNA Folding Events. Int J Mol Sci 2024; 25:10495. [PMID: 39408823 PMCID: PMC11476745 DOI: 10.3390/ijms251910495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Antibiotic resistance is a critical global health concern, causing millions of prolonged bacterial infections every year and straining our healthcare systems. Novel antibiotic strategies are essential to combating this health crisis and bacterial non-coding RNAs are promising targets for new antibiotics. In particular, a class of bacterial non-coding RNAs called riboswitches has attracted significant interest as antibiotic targets. Riboswitches reside in the 5'-untranslated region of an mRNA transcript and tune gene expression levels in cis by binding to a small-molecule ligand. Riboswitches often control expression of essential genes for bacterial survival, making riboswitch inhibitors an exciting prospect for new antibacterials. Synthetic ligand mimics have predominated the search for new riboswitch inhibitors, which are designed based on static structures of a riboswitch's ligand-sensing aptamer domain or identified by screening a small-molecule library. However, many small-molecule inhibitors that bind an isolated riboswitch aptamer domain with high affinity in vitro lack potency in vivo. Importantly, riboswitches fold and respond to the ligand during active transcription in vivo. This co-transcriptional folding is often not considered during inhibitor design, and may explain the discrepancy between a low Kd in vitro and poor inhibition in vivo. In this review, we cover advances in riboswitch co-transcriptional folding and illustrate how intermediate structures can be targeted by antisense oligonucleotides-an exciting new strategy for riboswitch inhibitor design.
Collapse
Affiliation(s)
| | | | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA (D.P.)
| |
Collapse
|
2
|
Chen S, Heendeniya SN, Le BT, Rahimizadeh K, Rabiee N, Zahra QUA, Veedu RN. Splice-Modulating Antisense Oligonucleotides as Therapeutics for Inherited Metabolic Diseases. BioDrugs 2024; 38:177-203. [PMID: 38252341 PMCID: PMC10912209 DOI: 10.1007/s40259-024-00644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
The last decade (2013-2023) has seen unprecedented successes in the clinical translation of therapeutic antisense oligonucleotides (ASOs). Eight such molecules have been granted marketing approval by the United States Food and Drug Administration (US FDA) during the decade, after the first ASO drug, fomivirsen, was approved much earlier, in 1998. Splice-modulating ASOs have also been developed for the therapy of inborn errors of metabolism (IEMs), due to their ability to redirect aberrant splicing caused by mutations, thus recovering the expression of normal transcripts, and correcting the deficiency of functional proteins. The feasibility of treating IEM patients with splice-switching ASOs has been supported by FDA permission (2018) of the first "N-of-1" study of milasen, an investigational ASO drug for Batten disease. Although for IEM, owing to the rarity of individual disease and/or pathogenic mutation, only a low number of patients may be treated by ASOs that specifically suppress the aberrant splicing pattern of mutant precursor mRNA (pre-mRNA), splice-switching ASOs represent superior individualized molecular therapeutics for IEM. In this work, we first summarize the ASO technology with respect to its mechanisms of action, chemical modifications of nucleotides, and rational design of modified oligonucleotides; following that, we precisely provide a review of the current understanding of developing splice-modulating ASO-based therapeutics for IEM. In the concluding section, we suggest potential ways to improve and/or optimize the development of ASOs targeting IEM.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Saumya Nishanga Heendeniya
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Bao T Le
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- ProGenis Pharmaceuticals Pty Ltd, Bentley, WA, 6102, Australia
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Qurat Ul Ain Zahra
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
- ProGenis Pharmaceuticals Pty Ltd, Bentley, WA, 6102, Australia.
| |
Collapse
|
3
|
Pornnoppadol G, Bond LG, Lucas MJ, Zupancic JM, Kuo YH, Zhang B, Greineder CF, Tessier PM. Bispecific antibody shuttles targeting CD98hc mediate efficient and long-lived brain delivery of IgGs. Cell Chem Biol 2024; 31:361-372.e8. [PMID: 37890480 PMCID: PMC10922565 DOI: 10.1016/j.chembiol.2023.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023]
Abstract
The inability of antibodies to penetrate the blood-brain barrier (BBB) is a key limitation to their use in diverse applications. One promising strategy is to deliver IgGs using a bispecific BBB shuttle, which involves fusing an IgG to a second affinity ligand that engages a cerebrovascular endothelial target and facilitates transport across the BBB. Nearly all prior efforts have focused on shuttles that target transferrin receptor (TfR-1) despite inherent delivery and safety challenges. Here, we report bispecific antibody shuttles that engage CD98hc, the heavy chain of the large neutral amino acid transporter (LAT1), and efficiently transport IgGs into the brain. Notably, CD98hc shuttles lead to much longer-lived brain retention of IgGs than TfR-1 shuttles while enabling more specific targeting due to limited CD98hc engagement in the brain parenchyma, which we demonstrate for IgGs that either agonize a neuronal receptor (TrkB) or target other endogenous cell-surface proteins on neurons and astrocytes.
Collapse
Affiliation(s)
- Ghasidit Pornnoppadol
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Layne G Bond
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael J Lucas
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer M Zupancic
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yun-Huai Kuo
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boya Zhang
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Colin F Greineder
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Peter M Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Sinsinbar G, Bindra AK, Liu S, Chia TW, Yoong Eng EC, Loo SY, Lam JH, Schultheis K, Nallani M. Amphiphilic Block Copolymer Nanostructures as a Tunable Delivery Platform: Perspective and Framework for the Future Drug Product Development. Biomacromolecules 2024; 25:541-563. [PMID: 38240244 DOI: 10.1021/acs.biomac.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Nanoformulation of active payloads or pharmaceutical ingredients (APIs) has always been an area of interest to achieve targeted, sustained, and efficacious delivery. Various delivery platforms have been explored, but loading and delivery of APIs have been challenging because of the chemical and structural properties of these molecules. Polymersomes made from amphiphilic block copolymers (ABCPs) have shown enormous promise as a tunable API delivery platform and confer multifold advantages over lipid-based systems. For example, a COVID booster vaccine comprising polymersomes encapsulating spike protein (ACM-001) has recently completed a Phase I clinical trial and provides a case for developing safe drug products based on ABCP delivery platforms. However, several limitations need to be resolved before they can reach their full potential. In this Perspective, we would like to highlight such aspects requiring further development for translating an ABCP-based delivery platform from a proof of concept to a viable commercial product.
Collapse
Affiliation(s)
- Gaurav Sinsinbar
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Anivind Kaur Bindra
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Shaoqiong Liu
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Teck Wan Chia
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Eunice Chia Yoong Eng
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Ser Yue Loo
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Jian Hang Lam
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Katherine Schultheis
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Madhavan Nallani
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| |
Collapse
|
5
|
Harisa GI, Faris TM, Sherif AY, Alzhrani RF, Alanazi SA, Kohaf NA, Alanazi FK. Gene-editing technology, from macromolecule therapeutics to organ transplantation: Applications, limitations, and prospective uses. Int J Biol Macromol 2023; 253:127055. [PMID: 37758106 DOI: 10.1016/j.ijbiomac.2023.127055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Gene editing technologies (GETs) could induce gene knockdown or gene knockout for biomedical applications. The clinical success of gene silence by RNAi therapies pays attention to other GETs as therapeutic approaches. This review aims to highlight GETs, categories, mechanisms, challenges, current use, and prospective applications. The different academic search engines, electronic databases, and bibliographies of selected articles were used in the preparation of this review with a focus on the fundamental considerations. The present results revealed that, among GETs, CRISPR/Cas9 has higher editing efficiency and targeting specificity compared to other GETs to insert, delete, modify, or replace the gene at a specific location in the host genome. Therefore, CRISPR/Cas9 is talented in the production of molecular, tissue, cell, and organ therapies. Consequently, GETs could be used in the discovery of innovative therapeutics for genetic diseases, pandemics, cancer, hopeless diseases, and organ failure. Specifically, GETs have been used to produce gene-modified animals to spare human organ failure. Genetically modified pigs are used in clinical trials as a source of heart, liver, kidneys, and lungs for xenotransplantation (XT) in humans. Viral, non-viral, and hybrid vectors have been utilized for the delivery of GETs with some limitations. Therefore, extracellular vesicles (EVs) are proposed as intelligent and future cargoes for GETs delivery in clinical applications. This study concluded that GETs are promising for the production of molecular, cellular, and organ therapies. The use of GETs as XT is still in the early stage as well and they have ethical and biosafety issues.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Tarek M Faris
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Riyad F Alzhrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alanazi
- Pharmaceutical Care Services, King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Science Collage of Pharmacy, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Neveen A Kohaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Hnath B, Chen J, Reynolds J, Choi E, Wang J, Zhang D, Sha CM, Dokholyan NV. Big versus small: The impact of aggregate size in disease. Protein Sci 2023; 32:e4686. [PMID: 37243896 PMCID: PMC10273386 DOI: 10.1002/pro.4686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Protein aggregation results in an array of different size soluble oligomers and larger insoluble fibrils. Insoluble fibrils were originally thought to cause neuronal cell deaths in neurodegenerative diseases due to their prevalence in tissue samples and disease models. Despite recent studies demonstrating the toxicity associated with soluble oligomers, many therapeutic strategies still focus on fibrils or consider all types of aggregates as one group. Oligomers and fibrils require different modeling and therapeutic strategies, targeting the toxic species is crucial for successful study and therapeutic development. Here, we review the role of different-size aggregates in disease, and how factors contributing to aggregation (mutations, metals, post-translational modifications, and lipid interactions) may promote oligomers opposed to fibrils. We review two different computational modeling strategies (molecular dynamics and kinetic modeling) and how they are used to model both oligomers and fibrils. Finally, we outline the current therapeutic strategies targeting aggregating proteins and their strengths and weaknesses for targeting oligomers versus fibrils. Altogether, we aim to highlight the importance of distinguishing the difference between oligomers and fibrils and determining which species is toxic when modeling and creating therapeutics for protein aggregation in disease.
Collapse
Affiliation(s)
- Brianna Hnath
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Jiaxing Chen
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Joshua Reynolds
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Esther Choi
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Medical Scientist Training ProgramPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Jian Wang
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Dongyan Zhang
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Congzhou M. Sha
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Medical Scientist Training ProgramPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkPennsylvaniaUSA
| | - Nikolay V. Dokholyan
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of Biochemistry & Molecular BiologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of ChemistryPenn State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
7
|
Zhao Y, Zheng Q, Hong Y, Gao Y, Hu J, Lang M, Zhang H, Zhou Y, Luo H, Zhang X, Sun H, Yan XX, Huang TY, Wang YJ, Xu H, Liu C, Wang X. β 2-Microglobulin coaggregates with Aβ and contributes to amyloid pathology and cognitive deficits in Alzheimer's disease model mice. Nat Neurosci 2023:10.1038/s41593-023-01352-1. [PMID: 37264159 DOI: 10.1038/s41593-023-01352-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Extensive studies indicate that β-amyloid (Aβ) aggregation is pivotal for Alzheimer's disease (AD) progression; however, cumulative evidence suggests that Aβ itself is not sufficient to trigger AD-associated degeneration, and whether other additional pathological factors drive AD pathogenesis remains unclear. Here, we characterize pathogenic aggregates composed of β2-microglobulin (β2M) and Aβ that trigger neurodegeneration in AD. β2M, a component of major histocompatibility complex class I (MHC class I), is upregulated in the brains of individuals with AD and constitutes the amyloid plaque core. Elevation of β2M aggravates amyloid pathology independent of MHC class I, and coaggregation with β2M is essential for Aβ neurotoxicity. B2m genetic ablation abrogates amyloid spreading and cognitive deficits in AD mice. Antisense oligonucleotide- or monoclonal antibody-mediated β2M depletion mitigates AD-associated neuropathology, and inhibition of β2M-Aβ coaggregation with a β2M-based blocking peptide ameliorates amyloid pathology and cognitive deficits in AD mice. Our findings identify β2M as an essential factor for Aβ neurotoxicity and a potential target for treating AD.
Collapse
Affiliation(s)
- Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Yujuan Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Maoju Lang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, China
| | - Timothy Y Huang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Huaxi Xu
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, China.
| |
Collapse
|
8
|
Pornnoppadol G, Bond LG, Lucas MJ, Zupancic JM, Kuo YH, Zhang B, Greineder CF, Tessier PM. Bispecific antibody shuttles targeting CD98hc mediate efficient and long-lived brain delivery of IgGs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.29.538811. [PMID: 37162883 PMCID: PMC10168297 DOI: 10.1101/2023.04.29.538811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The inability of antibodies and other biologics to penetrate the blood-brain barrier (BBB) is a key limitation to their use in diagnostic, imaging, and therapeutic applications. One promising strategy is to deliver IgGs using a bispecific BBB shuttle, which involves fusing an IgG with a second affinity ligand that engages a cerebrovascular endothelial target and facilitates transport across the BBB. Nearly all prior efforts have focused on the transferrin receptor (TfR-1) as the prototypical endothelial target despite inherent delivery and safety challenges. Here we report bispecific antibody shuttles that engage CD98hc (also known as 4F2 and SLC3A2), the heavy chain of the large neutral amino acid transporter (LAT1), and efficiently transport IgGs into the brain parenchyma. Notably, CD98hc shuttles lead to much longer-lived brain retention of IgGs than TfR-1 shuttles while enabling more specific brain targeting due to limited CD98hc engagement in the brain parenchyma. We demonstrate the broad utility of the CD98hc shuttles by reformatting three existing IgGs as CD98hc bispecific shuttles and delivering them to the mouse brain parenchyma that either agonize a neuronal receptor (TrkB) or target other endogenous antigens on specific types of brain cells (neurons and astrocytes).
Collapse
|
9
|
Anwar S, Mir F, Yokota T. Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics 2023; 15:pharmaceutics15041130. [PMID: 37111616 PMCID: PMC10140998 DOI: 10.3390/pharmaceutics15041130] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Oligonucleotide-based therapies are a promising approach for treating a wide range of hard-to-treat diseases, particularly genetic and rare diseases. These therapies involve the use of short synthetic sequences of DNA or RNA that can modulate gene expression or inhibit proteins through various mechanisms. Despite the potential of these therapies, a significant barrier to their widespread use is the difficulty in ensuring their uptake by target cells/tissues. Strategies to overcome this challenge include cell-penetrating peptide conjugation, chemical modification, nanoparticle formulation, and the use of endogenous vesicles, spherical nucleic acids, and smart material-based delivery vehicles. This article provides an overview of these strategies and their potential for the efficient delivery of oligonucleotide drugs, as well as the safety and toxicity considerations, regulatory requirements, and challenges in translating these therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Farin Mir
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
10
|
Abstract
The scientific landscape surrounding amyotrophic lateral sclerosis has shifted immensely with a number of well-defined ALS disease-causing genes, each with related phenotypical and cellular motor neuron processes that have come to light. Yet in spite of decades of research and clinical investigation, there is still no etiology for sporadic amyotrophic lateral sclerosis, and treatment options even for those with well-defined familial syndromes are still limited. This chapter provides a comprehensive review of the genetic basis of amyotrophic lateral sclerosis, highlighting factors that contribute to its heritability and phenotypic manifestations, and an overview of past, present, and upcoming therapeutic strategies.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| | - Robert H Brown
- Department of Neurology, UMass Chan Medical School, Donna M. and Robert J. Manning Chair in Neurosciences and Director in Neurotherapeutics, Worcester, MA, United States
| |
Collapse
|
11
|
Calero M, Moleiro LH, Sayd A, Dorca Y, Miquel-Rio L, Paz V, Robledo-Montaña J, Enciso E, Acción F, Herráez-Aguilar D, Hellweg T, Sánchez L, Bortolozzi A, Leza JC, García-Bueno B, Monroy F. Lipid nanoparticles for antisense oligonucleotide gene interference into brain border-associated macrophages. Front Mol Biosci 2022; 9:887678. [PMID: 36406277 PMCID: PMC9671215 DOI: 10.3389/fmolb.2022.887678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
A colloidal synthesis’ proof-of-concept based on the Bligh–Dyer emulsion inversion method was designed for integrating into lipid nanoparticles (LNPs) cell-permeating DNA antisense oligonucleotides (ASOs), also known as GapmeRs (GRs), for mRNA interference. The GR@LNPs were formulated to target brain border-associated macrophages (BAMs) as a central nervous system (CNS) therapy platform for silencing neuroinflammation-related genes. We specifically aim at inhibiting the expression of the gene encoding for lipocalin-type prostaglandin D synthase (L-PGDS), an anti-inflammatory enzyme expressed in BAMs, whose level of expression is altered in neuropsychopathologies such as depression and schizophrenia. The GR@LNPs are expected to demonstrate a bio-orthogonal genetic activity reacting with L-PGDS gene transcripts inside the living system without interfering with other genetic or biochemical circuitries. To facilitate selective BAM phagocytosis and avoid subsidiary absorption by other cells, they were functionalized with a mannosylated lipid as a specific MAN ligand for the mannose receptor presented by the macrophage surface. The GR@LNPs showed a high GR-packing density in a compact multilamellar configuration as structurally characterized by light scattering, zeta potential, and transmission electronic microscopy. As a preliminary biological evaluation of the mannosylated GR@LNP nanovectors into specifically targeted BAMs, we detected in vivo gene interference after brain delivery by intracerebroventricular injection (ICV) in Wistar rats subjected to gene therapy protocol. The results pave the way towards novel gene therapy platforms for advanced treatment of neuroinflammation-related pathologies with ASO@LNP nanovectors.
Collapse
Affiliation(s)
- Macarena Calero
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Lara H. Moleiro
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Aline Sayd
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
| | - Yeray Dorca
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Lluis Miquel-Rio
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- Institut d’Investigacions Biomèdiques de Barcelona, Spanish National Research Council (CSIC) 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Verónica Paz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- Institut d’Investigacions Biomèdiques de Barcelona, Spanish National Research Council (CSIC) 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Javier Robledo-Montaña
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
| | - Eduardo Enciso
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Fernando Acción
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Diego Herráez-Aguilar
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Instituto de Investigaciones Biosanitarias, Universidad Francisco de Vitoria, Madrid, Spain
| | - Thomas Hellweg
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Luis Sánchez
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Analía Bortolozzi
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- Institut d’Investigacions Biomèdiques de Barcelona, Spanish National Research Council (CSIC) 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan C. Leza
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
| | - Borja García-Bueno
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- *Correspondence: Borja García-Bueno, ; Francisco Monroy,
| | - Francisco Monroy
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- *Correspondence: Borja García-Bueno, ; Francisco Monroy,
| |
Collapse
|
12
|
Nucleic acid therapy in pediatric cancer. Pharmacol Res 2022; 184:106441. [PMID: 36096420 DOI: 10.1016/j.phrs.2022.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
The overall survival, progress free survival, and life quality of cancer patients have improved due to the advance in minimally invasive surgery, precision radiotherapy, and various combined chemotherapy in the last decade. Furthermore, the discovery of new types of therapeutics, such as immune checkpoint inhibitors and immune cell therapies have facilitated both patients and doctors to fight with cancers. Moreover, in the context of the development in biocompatible and cell type targeting nano-carriers as well as nucleic acid-based drugs for initiating and enhancing the anti-tumor response have come to the age. The treatment paradigms utilization of nucleic acids, including short interfering RNA (siRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA), can target specific protein expression to achieve the therapeutic effects. Over ten nucleic acid therapeutics have been approved by the FDA and EMA in rare diseases and genetic diseases as well as dozens of registered clinical trails for varies cancers. Though generally less dangerous of pediatric cancers than adult cancers was observed during the past decades, yet pediatric cancers accounted for a significant proportion of child deaths which hurt those family very deeply. Therefore, it is necessary to pay more attention for improving the treatment of pediatric cancer and discovering new nucleic acid therapeutics which may help to improve the therapeutic effect and prognoses in turns to ameliorate the survival period and quality of life for children patient. In this review, we focus on the nucleic acid therapy in pediatric cancers.
Collapse
|
13
|
Saifullah, Motohashi N, Tsukahara T, Aoki Y. Development of Therapeutic RNA Manipulation for Muscular Dystrophy. Front Genome Ed 2022; 4:863651. [PMID: 35620642 PMCID: PMC9127466 DOI: 10.3389/fgeed.2022.863651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Approval of therapeutic RNA molecules, including RNA vaccines, has paved the way for next-generation treatment strategies for various diseases. Oligonucleotide-based therapeutics hold particular promise for treating incurable muscular dystrophies, including Duchenne muscular dystrophy (DMD). DMD is a severe monogenic disease triggered by deletions, duplications, or point mutations in the DMD gene, which encodes a membrane-linked cytoskeletal protein to protect muscle fibers from contraction-induced injury. Patients with DMD inevitably succumb to muscle degeneration and atrophy early in life, leading to premature death from cardiac and respiratory failure. Thus far, the disease has thwarted all curative strategies. Transcriptomic manipulation, employing exon skipping using antisense oligonucleotides (ASO), has made significant progress in the search for DMD therapeutics. Several exon-skipping drugs employing RNA manipulation technology have been approved by regulatory agencies and have shown promise in clinical trials. This review summarizes recent scientific and clinical progress of ASO and other novel RNA manipulations, including RNA-based editing using MS2 coat protein-conjugated adenosine deaminase acting on the RNA (MCP-ADAR) system illustrating the efficacy and limitations of therapies to restore dystrophin. Perhaps lessons from this review will encourage the application of RNA-editing therapy to other neuromuscular disorders.
Collapse
Affiliation(s)
- Saifullah
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan
- Division of Transdisciplinary Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
14
|
Rook ME, Southwell AL. Antisense Oligonucleotide Therapy: From Design to the Huntington Disease Clinic. BioDrugs 2022; 36:105-119. [PMID: 35254632 PMCID: PMC8899000 DOI: 10.1007/s40259-022-00519-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Huntington disease (HD) is a fatal progressive neurodegenerative disorder caused by an inherited mutation in the huntingtin (HTT) gene, which encodes mutant HTT protein. Though HD remains incurable, various preclinical studies have reported a favorable response to HTT suppression, emphasizing HTT lowering strategies as prospective disease-modifying treatments. Antisense oligonucleotides (ASOs) lower HTT by targeting transcripts and are well suited for treating neurodegenerative disorders as they distribute broadly throughout the central nervous system (CNS) and are freely taken up by neurons, glia, and ependymal cells. With the FDA approval of an ASO therapy for another disease of the CNS, spinal muscular atrophy, ASOs have become a particularly attractive therapeutic option for HD. However, two types of ASOs were recently assessed in human clinical trials for the treatment of HD, and both were halted early. In this review, we will explore the differences in chemistry, targeting, and specificity of these HTT ASOs as well as preliminary clinical findings and potential reasons for and implications of these halted trials.
Collapse
Affiliation(s)
- Morgan E Rook
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA.
| | - Amber L Southwell
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
15
|
Ren J, Zhang X, Cao J, Tian J, Luo J, Yu Y, Wang F, Zhao Q. Radiosynthesis of a novel antisense imaging probe targeting LncRNA HOTAIR in malignant glioma. BMC Cancer 2022; 22:79. [PMID: 35042456 PMCID: PMC8767688 DOI: 10.1186/s12885-022-09170-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 12/31/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Long non-coding RNA (LncRNA) HOTAIR was amplified and overexpressed in many human carcinomas, which could serve as a useful target for cancer early detection and treatment. The 99mTc radiolabeled antisense oligonucleotides (ASON) could visualize the expression of HOTAIR and provide a diagnostic value for malignant tumors. The aim of this study was to evaluate whether liposome-coated antisense oligonucleotide probe 99mTc-HYNIC-ASON targeting HOTAIR can be used in in vivo imaging of HOTAIR in malignant glioma xenografts.
Methods
The ASON targeting LncRNA HOTAIR as well as mismatched ASON (ASONM) were designed and modified. The radiolabeling of 99mTc with two probes were via the conjugation of bifunctional chelator HYNIC. Then probes were purified by Sephadex G25 and tested for their radiolabeling efficiency and purity, as well as stability by ITLC (Instant thin-layer chromatography) and gel electrophoresis. Then the radiolabeled probes were transfected with lipofectamine 2000 for cellular uptake test and the next experimental use. Furthermore, biodistribution study and SPECT imaging were performed at different times after liposome-coated 99mTc-HYNIC-ASON/ASONM were intravenously injected in glioma tumor-bearing mice models. All data were analyzed by statistical software.
Results
The labeling efficiencies of 99mTc-HYNIC-ASON and 99mTc-HYNIC-ASONM measured by ITLC were (91 ± 1.5) % and (90 ± 0.6) %, respectively, and both radiochemical purities were more than 89%. Two probes showed good stability within 12 h. Gel electrophoresis confirmed that the oligomers were successfully radiolabeled no significant degradation were found. Biodistribution study demonstrated that liposome-coated antisense probes were excreted mainly through the kidney and bladder and has higher uptake in the tumor. Meanwhile, the tumor was clearly shown after injection of liposome coated 99mTc-HYNIC-ASON, and its T/M ratio was higher than that in the non-transfection group and mismatched group. No tumor was seen in mismatched and blocking group.
Conclusion
The liposome encapsulated 99mTc-HYNIC-ASON probe can be used in the in vivo, real-time imaging of LncRNA HOTAIR expression in malignant glioma.
Collapse
|
16
|
Byun S, Lee M, Kim M. Gene Therapy for Huntington's Disease: The Final Strategy for a Cure? J Mov Disord 2021; 15:15-20. [PMID: 34781633 PMCID: PMC8820879 DOI: 10.14802/jmd.21006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022] Open
Abstract
Huntington's disease (HD) has become a target of the first clinical trials for gene therapy among movement disorders with a genetic origin. More than 100 clinical trials regarding HD have been tried, but all failed, although there were some improvements limited to symptomatic support. Compared to other neurogenetic disorders, HD is known to have a single genetic target. Thus, this is an advantage and its cure is more feasible than any other movement disorder with heterogeneous genetic causes. In this review paper, the authors attempt to cover the characteristics of HD itself while providing an overview of the gene transfer methods currently being researched, and will introduce an experimental trial with a preclinical model of HD followed by an update on the ongoing clinical trials for patients with HD.
Collapse
Affiliation(s)
- Seulgi Byun
- Department of Neurology, Seoul National University Hospital, Seoul, Korea.,Neurobiology Section, Division of Biological Science, University of California San Diego, La Jolla, CA, USA
| | - Mijung Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea.,Protein Metabolism and Dementia & Neuroscience Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Programming cell entry of molecules via reversible synthetic DNA circuits on cell membrane. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Erel-Akbaba G, İsar S, Akbaba H. Development and Evaluation of Solid Witepsol Nanoparticles for Gene Delivery. Turk J Pharm Sci 2021; 18:344-351. [PMID: 34157825 DOI: 10.4274/tjps.galenos.2020.68878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives Gene therapy approaches have become increasingly attractive in the medical, pharmaceutical, and biotechnological industries due to their applicability in the treatment of diseases with no effective conventional therapy. Non-viral delivery using cationic solid lipid nanoparticles (cSLNs) can be useful to introduce large nucleic acids to target cells. A careful selection of components and their amounts is critical to obtain a successful delivery system. In this study, solid Witepsol nanoparticles were formulated, characterized, and evaluated in vitro for gene delivery purposes. Materials and Methods Solid Witepsol nanoparticles were formulated through the microemulsion dilution technique using two grades of Witepsol and three surfactants, namely Cremephor RH40, Kolliphor HS15, and Peceol. Dimethyldioctadecylammonium bromide was incorporated into the system as a cationic lipid. Twelve combinations of these ingredients were formulated. The obtained nanoparticles were then evaluated for particle size, zeta potential, DNA binding and protection ability, cytotoxicity, and transfection ability. Results Particle sizes of the prepared cationic cSLNs were between 13.43±0.06 and 68.80±0.78 nm. Their zeta potential, which is important for DNA binding efficiency, was determined at >+40 mV. Gel retardation assays revealed that the obtained cSLNs can form a compact complex with plasmid DNA (pDNA) encoding green fluorescent protein and that this complex can protect pDNA from DNase I-mediated degradation. Cytotoxicity evaluation of nanoparticles was performed on the L929 cell line. In vitro transfection data revealed that solid Witepsol nanoparticles could effectively transfect fibroblasts. Conclusion Our findings indicate that solid Witepsol nanoparticles prepared using the microemulsion dilution technique are promising non-viral delivery systems for gene therapy.
Collapse
Affiliation(s)
- Gülşah Erel-Akbaba
- İzmir Katip Çelebi University Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, İzmir, Turkey
| | - Selen İsar
- Ege University Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, İzmir, Turkey
| | - Hasan Akbaba
- Ege University Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, İzmir, Turkey
| |
Collapse
|
19
|
Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, van der Meel R. The current landscape of nucleic acid therapeutics. NATURE NANOTECHNOLOGY 2021; 16:630-643. [PMID: 34059811 DOI: 10.1038/s41565-021-00898-0] [Citation(s) in RCA: 623] [Impact Index Per Article: 207.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/11/2021] [Indexed: 05/20/2023]
Abstract
The increasing number of approved nucleic acid therapeutics demonstrates the potential to treat diseases by targeting their genetic blueprints in vivo. Conventional treatments generally induce therapeutic effects that are transient because they target proteins rather than underlying causes. In contrast, nucleic acid therapeutics can achieve long-lasting or even curative effects via gene inhibition, addition, replacement or editing. Their clinical translation, however, depends on delivery technologies that improve stability, facilitate internalization and increase target affinity. Here, we review four platform technologies that have enabled the clinical translation of nucleic acid therapeutics: antisense oligonucleotides, ligand-modified small interfering RNA conjugates, lipid nanoparticles and adeno-associated virus vectors. For each platform, we discuss the current state-of-the-art clinical approaches, explain the rationale behind its development, highlight technological aspects that facilitated clinical translation and provide an example of a clinically relevant genetic drug. In addition, we discuss how these technologies enable the development of cutting-edge genetic drugs, such as tissue-specific nucleic acid bioconjugates, messenger RNA and gene-editing therapeutics.
Collapse
Affiliation(s)
- Jayesh A Kulkarni
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- NanoMedicines Innovation Network, Vancouver, British Columbia, Canada
- NanoVation Therapeutics, Vancouver, British Columbia, Canada
| | - Dominik Witzigmann
- NanoMedicines Innovation Network, Vancouver, British Columbia, Canada
- NanoVation Therapeutics, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah B Thomson
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sam Chen
- Integrated Nanotherapeutics, Vancouver, British Columbia, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pieter R Cullis
- NanoMedicines Innovation Network, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
20
|
Overcoming the challenges of tissue delivery for oligonucleotide therapeutics. Trends Pharmacol Sci 2021; 42:588-604. [PMID: 34020790 DOI: 10.1016/j.tips.2021.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
Synthetic therapeutic oligonucleotides (STO) represent the third bonafide platform for drug discovery in the pharmaceutical industry after small molecule and protein therapeutics. So far, thirteen STOs have been approved by regulatory agencies and over one hundred of them are in different stages of clinical trials. STOs hybridize to their target RNA or DNA in cells via Watson-Crick base pairing to exert their pharmacological effects. This unique class of therapeutic agents has the potential to target genes and gene products that are considered undruggable by other therapeutic platforms. However, STOs must overcome several extracellular and intracellular obstacles to interact with their biological RNA targets inside cells. These obstacles include degradation by extracellular nucleases, scavenging by the reticuloendothelial system, filtration by the kidney, traversing the capillary endothelium to access the tissue interstitium, cell-surface receptor-mediated endocytic uptake, and escape from endolysosomal compartments to access the nuclear and/or cytoplasmic compartments where their targets reside. In this review, we present the recent advances in this field with a specific focus on antisense oligonucleotides (ASOs) and siRNA therapeutics.
Collapse
|
21
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
22
|
Epigenetic Targets for Oligonucleotide Therapies of Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:ijms21239222. [PMID: 33287230 PMCID: PMC7731052 DOI: 10.3390/ijms21239222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023] Open
Abstract
Arterial wall remodeling underlies increased pulmonary vascular resistance and right heart failure in pulmonary arterial hypertension (PAH). None of the established vasodilator drug therapies for PAH prevents or reverse established arterial wall thickening, stiffening, and hypercontractility. Therefore, new approaches are needed to achieve long-acting prevention and reversal of occlusive pulmonary vascular remodeling. Several promising new drug classes are emerging from a better understanding of pulmonary vascular gene expression programs. In this review, potential epigenetic targets for small molecules and oligonucleotides will be described. Most are in preclinical studies aimed at modifying the growth of vascular wall cells in vitro or normalizing vascular remodeling in PAH animal models. Initial success with lung-directed delivery of oligonucleotides targeting microRNAs suggests other epigenetic mechanisms might also be suitable drug targets. Those targets include DNA methylation, proteins of the chromatin remodeling machinery, and long noncoding RNAs, all of which act as epigenetic regulators of vascular wall structure and function. The progress in testing small molecules and oligonucleotide-based drugs in PAH models is summarized.
Collapse
|
23
|
Abstract
Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches - including chemical modification, bioconjugation and the use of nanocarriers - which aim to address the delivery challenge.
Collapse
|
24
|
Colini Baldeschi A, Vanni S, Zattoni M, Legname G. Novel regulators of PrP C expression as potential therapeutic targets in prion diseases. Expert Opin Ther Targets 2020; 24:759-776. [PMID: 32631090 DOI: 10.1080/14728222.2020.1782384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Prion diseases are rare and fatal neurodegenerative disorders. The key molecular event in these disorders is the misfolding of the physiological form of the cellular prion protein, PrPC, leading to the accumulation of a pathological isoform, PrPSc, with unique features. Both isoforms share the same primary sequence, lacking detectable differences in posttranslational modification, a major hurdle for their biochemical or biophysical independent characterization. The mechanism underlying the conversion of PrPC to PrPSc is not completely understood, so finding an effective therapy to cure prion disorders is extremely challenging. AREAS COVERED This review discusses the strategies for decreasing prion replication and throws a spotlight on the relevance of PrPC in the prion accumulation process. EXPERT OPINION PrPC is the key substrate for prion pathology; hence, the most promising therapeutic approach appears to be the targeting of PrPC to block the production of the infectious isoform. The use of RNA interference and antisense oligonucleotide technologies may offer opportunities for treatment because of their success in clinical trials for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Arianna Colini Baldeschi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Silvia Vanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio E La Cura Dei Tumori (IRST) IRCCS , Meldola, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| |
Collapse
|
25
|
Silva AC, Lobo DD, Martins IM, Lopes SM, Henriques C, Duarte SP, Dodart JC, Nobre RJ, Pereira de Almeida L. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain 2020; 143:407-429. [PMID: 31738395 DOI: 10.1093/brain/awz328] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.
Collapse
Affiliation(s)
- Ana C Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês M Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara M Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carina Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Sónia P Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Sheng L, Rigo F, Bennett CF, Krainer AR, Hua Y. Comparison of the efficacy of MOE and PMO modifications of systemic antisense oligonucleotides in a severe SMA mouse model. Nucleic Acids Res 2020; 48:2853-2865. [PMID: 32103257 PMCID: PMC7102994 DOI: 10.1093/nar/gkaa126] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease. Nusinersen, a splice-switching antisense oligonucleotide (ASO), was the first approved drug to treat SMA. Based on prior preclinical studies, both 2′-O-methoxyethyl (MOE) with a phosphorothioate backbone and morpholino with a phosphorodiamidate backbone—with the same or extended target sequence as nusinersen—displayed efficient rescue of SMA mouse models. Here, we compared the therapeutic efficacy of these two modification chemistries in rescue of a severe mouse model using ASO10-29—a 2-nt longer version of nusinersen—via subcutaneous injection. Although both chemistries efficiently corrected SMN2 splicing in various tissues, restored motor function and improved the integrity of neuromuscular junctions, MOE-modified ASO10-29 (MOE10-29) was more efficacious than morpholino-modified ASO10-29 (PMO10-29) at the same molar dose, as seen by longer survival, greater body-weight gain and better preservation of motor neurons. Time-course analysis revealed that MOE10-29 had more persistent effects than PMO10-29. On the other hand, PMO10-29 appears to more readily cross an immature blood-brain barrier following systemic administration, showing more robust initial effects on SMN2 exon 7 inclusion, but less persistence in the central nervous system. We conclude that both modifications can be effective as splice-switching ASOs in the context of SMA and potentially other diseases, and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Lei Sheng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - Adrian R Krainer
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA
| | - Yimin Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA.,Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
27
|
Caron NS, Southwell AL, Brouwers CC, Cengio LD, Xie Y, Black HF, Anderson LM, Ko S, Zhu X, van Deventer SJ, Evers MM, Konstantinova P, Hayden MR. Potent and sustained huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease. Nucleic Acids Res 2020; 48:36-54. [PMID: 31745548 PMCID: PMC7145682 DOI: 10.1093/nar/gkz976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative disease caused by a pathogenic expansion of a CAG repeat in the huntingtin (HTT) gene. There are no disease-modifying therapies for HD. Artificial microRNAs targeting HTT transcripts for degradation have shown preclinical promise and will soon enter human clinical trials. Here, we examine the tolerability and efficacy of non-selective HTT lowering with an AAV5 encoded miRNA targeting human HTT (AAV5-miHTT) in the humanized Hu128/21 mouse model of HD. We show that intrastriatal administration of AAV5-miHTT results in potent and sustained HTT suppression for at least 7 months post-injection. Importantly, non-selective suppression of huntingtin was generally tolerated, however high dose AAV5-miHTT did induce astrogliosis. We observed an improvement of select behavioural and modest neuropathological HD-like phenotypes in Hu128/21 mice, suggesting a potential therapeutic benefit of miRNA-mediated non-selective HTT lowering. Finally, we also observed that potent reduction of wild type HTT (wtHTT) in Hu21 control mice was tolerated up to 7 months post-injection but may induce impairment of motor coordination and striatal atrophy. Taken together, our data suggests that in the context of HD, the therapeutic benefits of mHTT reduction may outweigh the potentially detrimental effects of wtHTT loss following non-selective HTT lowering.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Cynthia C Brouwers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Louisa Dal Cengio
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Yuanyun Xie
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Lisa M Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Xiang Zhu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Sander J van Deventer
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Melvin M Evers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Kay C, Collins JA, Caron NS, Agostinho LDA, Findlay-Black H, Casal L, Sumathipala D, Dissanayake VHW, Cornejo-Olivas M, Baine F, Krause A, Greenberg JL, Paiva CLA, Squitieri F, Hayden MR. A Comprehensive Haplotype-Targeting Strategy for Allele-Specific HTT Suppression in Huntington Disease. Am J Hum Genet 2019; 105:1112-1125. [PMID: 31708117 PMCID: PMC6904807 DOI: 10.1016/j.ajhg.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/11/2019] [Indexed: 11/20/2022] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder caused by a gain-of-function mutation in HTT. Suppression of mutant HTT has emerged as a leading therapeutic strategy for HD, with allele-selective approaches targeting HTT SNPs now in clinical trials. Haplotypes associated with the HD mutation (A1, A2, A3a) represent panels of allele-specific gene silencing targets for efficient treatment of individuals with HD of Northern European and indigenous South American ancestry. Here we extend comprehensive haplotype analysis of the HD mutation to key populations of Southern European, South Asian, Middle Eastern, and admixed African ancestry. In each of these populations, the HD mutation occurs predominantly on the A2 HTT haplotype. Analysis of HD haplotypes across all affected population groups enables rational selection of candidate target SNPs for development of allele-selective gene silencing therapeutics worldwide. Targeting SNPs on the A1 and A2 haplotypes in parallel is essential to achieve treatment of the most HD-affected subjects in populations where HD is most prevalent. Current allele-specific approaches will leave a majority of individuals with HD untreated in populations where the HD mutation occurs most frequently on the A2 haplotype. We further demonstrate preclinical development of potent and selective ASOs targeting SNPs on the A2 HTT haplotype, representing an allele-specific treatment strategy for these individuals. On the basis of comprehensive haplotype analysis, we show the maximum proportion of HD-affected subjects that may be treated with three or four allele targets in different populations worldwide, informing current allele-specific HTT silencing strategies.
Collapse
Affiliation(s)
- Chris Kay
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Jennifer A Collins
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Nicholas S Caron
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Luciana de Andrade Agostinho
- PPGNEURO, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ 20270-004, Brazil; Centro Universitário UNIFAMINAS, Muriaé, MG 36880-000, Brazil; Hospital do Câncer de Muriaé, Muriaé, MG 36880-000, Brazil
| | - Hailey Findlay-Black
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Lorenzo Casal
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | | | | | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima 15003, Peru; Center for Global Health, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Fiona Baine
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa; Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa
| | - Jacquie L Greenberg
- Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Carmen Lúcia Antão Paiva
- PPGNEURO, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ 20270-004, Brazil
| | - Ferdinando Squitieri
- Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | - Michael R Hayden
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada.
| |
Collapse
|
29
|
Mazur C, Powers B, Zasadny K, Sullivan JM, Dimant H, Kamme F, Hesterman J, Matson J, Oestergaard M, Seaman M, Holt RW, Qutaish M, Polyak I, Coelho R, Gottumukkala V, Gaut CM, Berridge M, Albargothy NJ, Kelly L, Carare RO, Hoppin J, Kordasiewicz H, Swayze EE, Verma A. Brain pharmacology of intrathecal antisense oligonucleotides revealed through multimodal imaging. JCI Insight 2019; 4:129240. [PMID: 31619586 DOI: 10.1172/jci.insight.129240] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023] Open
Abstract
Intrathecal (IT) delivery and pharmacology of antisense oligonucleotides (ASOs) for the CNS have been successfully developed to treat spinal muscular atrophy. However, ASO pharmacokinetic (PK) and pharmacodynamic (PD) properties remain poorly understood in the IT compartment. We applied multimodal imaging techniques to elucidate the IT PK and PD of unlabeled, radioactively labeled, or fluorescently labeled ASOs targeting ubiquitously expressed or neuron-specific RNAs. Following lumbar IT bolus injection in rats, all ASOs spread rostrally along the neuraxis, adhered to meninges, and were partially cleared to peripheral lymph nodes and kidneys. Rapid association with the pia and arterial walls preceded passage of ASOs across the glia limitans, along arterial intramural basement membranes, and along white-matter axonal bundles. Several neuronal and glial cell types accumulated ASOs over time, with evidence of probable glial accumulation preceding neuronal uptake. IT doses of anti-GluR1 and anti-Gabra1 ASOs markedly reduced the mRNA and protein levels of their respective neurotransmitter receptor protein targets by 2 weeks and anti-Gabra1 ASOs also reduced binding of the GABAA receptor PET ligand 18F-flumazenil in the brain over 4 weeks. Our multimodal imaging approaches elucidate multiple transport routes underlying the CNS distribution, clearance, and efficacy of IT-dosed ASOs.
Collapse
Affiliation(s)
- Curt Mazur
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Berit Powers
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | - Jenna M Sullivan
- Invicro, LLC, Boston, Massachusetts, USA.,Biogen, Cambridge, Masschusetts, USA
| | | | - Fredrik Kamme
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | - John Matson
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | | | | | | | | | | | | | | | | | | | - Louise Kelly
- University of Southampton, Hampshire, United Kingdom
| | | | | | | | - Eric E Swayze
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | |
Collapse
|
30
|
Southwell AL, Kordasiewicz HB, Langbehn D, Skotte NH, Parsons MP, Villanueva EB, Caron NS, Østergaard ME, Anderson LM, Xie Y, Cengio LD, Findlay-Black H, Doty CN, Fitsimmons B, Swayze EE, Seth PP, Raymond LA, Frank Bennett C, Hayden MR. Huntingtin suppression restores cognitive function in a mouse model of Huntington's disease. Sci Transl Med 2019; 10:10/461/eaar3959. [PMID: 30282695 DOI: 10.1126/scitranslmed.aar3959] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/26/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) protein, resulting in acquisition of toxic functions. Previous studies have shown that lowering mutant HTT has the potential to be broadly beneficial. We previously identified HTT single-nucleotide polymorphisms (SNPs) tightly linked to the HD mutation and developed antisense oligonucleotides (ASOs) targeting HD-SNPs that selectively suppress mutant HTT. We tested allele-specific ASOs in a mouse model of HD. Both early and late treatment reduced cognitive and behavioral impairments in mice. To determine the translational potential of the treatment, we examined the effect of ASO administration on HTT brain expression in nonhuman primates. The treatment induced robust HTT suppression throughout the cortex and limbic system, areas implicated in cognition and psychiatric function. The results suggest that ASOs specifically targeting mutated HTT might have therapeutic effects on HD-mediated cognitive impairments.
Collapse
Affiliation(s)
- Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | - Douglas Langbehn
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Niels H Skotte
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Matthew P Parsons
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Erika B Villanueva
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | - Lisa M Anderson
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Yuanyun Xie
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Louisa Dal Cengio
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Hailey Findlay-Black
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Crystal N Doty
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | | - Lynn A Raymond
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
31
|
Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-Mediated Genome Editing Increases Lifespan and Improves Motor Deficits in a Huntington's Disease Mouse Model. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:829-839. [PMID: 31465962 PMCID: PMC6717077 DOI: 10.1016/j.omtn.2019.07.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/29/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is a currently incurable and, ultimately, fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion within exon 1 of the huntingtin (HTT) gene, which results in the production of a mutant protein that forms inclusions and selectively destroys neurons in the striatum and other adjacent structures. The RNA-guided Cas9 endonuclease from CRISPR-Cas9 systems is a versatile technology for inducing DNA double-strand breaks that can stimulate the introduction of frameshift-inducing mutations and permanently disable mutant gene function. Here, we show that the Cas9 nuclease from Staphylococcus aureus, a small Cas9 ortholog that can be packaged alongside a single guide RNA into a single adeno-associated virus (AAV) vector, can be used to disrupt the expression of the mutant HTT gene in the R6/2 mouse model of HD following its in vivo delivery to the striatum. Specifically, we found that CRISPR-Cas9-mediated disruption of the mutant HTT gene resulted in a ∼50% decrease in neuronal inclusions and significantly improved lifespan and certain motor deficits. These results thus illustrate the potential for CRISPR-Cas9 technology to treat HD and other autosomal dominant neurodegenerative disorders caused by a trinucleotide repeat expansion via in vivo genome editing.
Collapse
Affiliation(s)
- Freja K Ekman
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - David S Ojala
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Maroof M Adil
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Paola A Lopez
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
32
|
Scoles DR, Pulst SM. Antisense therapies for movement disorders. Mov Disord 2019; 34:1112-1119. [PMID: 31283857 DOI: 10.1002/mds.27782] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/10/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, few disease-modifying therapies exist for degenerative movement disorders. Antisense oligonucleotides are small DNA oligonucleotides, usually encompassing ∼20 base pairs, that can potentially target any messenger RNA of interest. Antisense oligonucleotides often contain modifications to the phosphate backbone, the sugar moiety, and the nucleotide base. The development of antisense oligonucleotide therapies spinal muscular atrophy and Duchenne muscular dystrophy suggest potentially wide-ranging therapeutic applications for antisense oligonucleotides in neurology. Successes with these two diseases have heightened interest in academia and the pharmaceutical industry to develop antisense oligonucleotides for several movement disorders, including, spinocerebellar ataxias, Huntington's disease, and Parkinson's disease. Compared to small molecules, antisense oligonucleotide-based therapies have an advantage because the target disease gene sequence is the immediate path to identifying the therapeutically effective complementary antisense oligonucleotide. In this review we describe the different types of antisense oligonucleotide chemistries and their potential use for the treatment of human movement disorders. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Daniel R Scoles
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, USA
| |
Collapse
|
33
|
Yang B, Zhang XD, Li J, Tian J, Wu YP, Yu FX, Wang R, Wang H, Zhang DW, Liu Y, Zhou L, Li ZT. In Situ Loading and Delivery of Short Single- and Double-Stranded DNA by Supramolecular Organic Frameworks. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20180011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Short DNA represents an important class of biomacromolecules that are widely applied in gene therapy, editing, and modulation. However, the development of simple and reliable methods for their intracellular delivery remains a challenge. Herein, we describe that seven water-soluble, homogeneous supramolecular organic frameworks (SOFs) with a well-defined pore size and high stability in water that can accomplish in situ inclusion of single-stranded (ss) and double-stranded (ds) DNA (21, 23, and 58 nt) and effective intracellular delivery (including two noncancerous and six cancerous cell lines). Fluorescence quenching experiments for single and double end-labeled ss- and ds-DNA support that the DNA sequences can be completely enveloped by the SOFs. Confocal laser scanning microscopy and flow cytometry reveal that five of the SOFs exhibit excellent delivery efficiencies that, in most of the studied cases, outperform the commercial standard Lipo2000, even at low SOF–nucleic acid ratios. In addition to high delivery efficiencies, the water-soluble, self-assembled SOF carriers have a variety of advantages, including convenient preparation, high stability, and in situ DNA inclusion, which are all critical for practical applications in nucleic acid delivery.
Collapse
|
34
|
Risk Factors and Emerging Therapies in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2019; 20:ijms20112616. [PMID: 31141951 PMCID: PMC6600314 DOI: 10.3390/ijms20112616] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease characterized by a permanent degeneration of both upper and lower motor neurons. Many different genes and pathophysiological processes contribute to this disease, however its exact cause remains unclear. Therefore, it is necessary to understand this heterogeneity to find effective treatments. In this review, we focus on selected environmental and genetic risk factors predisposing to ALS and highlight emerging treatments in ALS therapy. Of numerous defective genes associated with ALS, we focus on four principal genes that have been identified as definite causes of ALS: the SOD1 gene, C9orf72, TDP-43, as well as the recently identified TBK1. We also provide up-to-date information on selected environmental factors that have historically been considered as key players in ALS development and pathogenesis. In parallel to our survey of known risk factors, we also discuss emerging ALS stem cell therapies and experimental medicines currently undergoing phase II and III clinical trials.
Collapse
|
35
|
Kim JK, Lee JH. Mechanistic Target of Rapamycin Pathway in Epileptic Disorders. J Korean Neurosurg Soc 2019; 62:272-287. [PMID: 31085953 PMCID: PMC6514310 DOI: 10.3340/jkns.2019.0027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.
Collapse
Affiliation(s)
- Jang Keun Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
36
|
Scoles DR, Minikel EV, Pulst SM. Antisense oligonucleotides: A primer. NEUROLOGY-GENETICS 2019; 5:e323. [PMID: 31119194 PMCID: PMC6501637 DOI: 10.1212/nxg.0000000000000323] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
There are few disease-modifying therapeutics for neurodegenerative diseases, but successes on the development of antisense oligonucleotide (ASO) therapeutics for spinal muscular atrophy and Duchenne muscular dystrophy predict a robust future for ASOs in medicine. Indeed, existing pipelines for the development of ASO therapies for spinocerebellar ataxias, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, Parkinson disease, and others, and increased focus by the pharmaceutical industry on ASO development, strengthen the outlook for using ASOs for neurodegenerative diseases. Perhaps the most significant advantage to ASO therapeutics over other small molecule approaches is that acquisition of the target sequence provides immediate knowledge of putative complementary oligonucleotide therapeutics. In this review, we describe the various types of ASOs, how they are used therapeutically, and the present efforts to develop new ASO therapies that will contribute to a forthcoming toolkit for treating multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel R Scoles
- Department of Neurology (D.R.S., S.M.P.), University of Utah, Salt Lake City, UT; and Center for the Science of Therapeutics (E.V.M.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Eric V Minikel
- Department of Neurology (D.R.S., S.M.P.), University of Utah, Salt Lake City, UT; and Center for the Science of Therapeutics (E.V.M.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Stefan M Pulst
- Department of Neurology (D.R.S., S.M.P.), University of Utah, Salt Lake City, UT; and Center for the Science of Therapeutics (E.V.M.), Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
37
|
Abstract
The 25 years since the identification of the gene responsible for Huntington disease (HD) have stood witness to profound discoveries about the nature of the disease and its pathogenesis. Despite this progress, however, the development of disease-modifying therapies has thus far been slow. Preclinical validation of the therapeutic potential of disrupted pathways in HD has led to the advancement of pharmacological agents, both novel and repurposed, for clinical evaluation. The most promising therapeutic approaches include huntingtin (HTT) lowering and modification as well as modulation of neuroinflammation and synaptic transmission. With clinical trials for many of these approaches imminent or currently ongoing, the coming years are promising not only for HD but also for more prevalent neurodegenerative disorders, such as Alzheimer and Parkinson disease, in which many of these pathways have been similarly implicated.
Collapse
|
38
|
Haniff HS, Graves A, Disney MD. Selective Small Molecule Recognition of RNA Base Pairs. ACS COMBINATORIAL SCIENCE 2018; 20:482-491. [PMID: 29966095 PMCID: PMC6325646 DOI: 10.1021/acscombsci.8b00049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many types of RNAs exist in the human transcriptome, yet only the bacterial ribosome has been exploited as a small molecule drug target. Aside from rRNA, other cellular RNAs such as noncoding RNAs have primarily secondary structure and limited tertiary structure. Within these secondary structures of noncanonically paired and unpaired regions, more than 50% are base paired, with most efforts to target these structures focused on looped regions. A void exists in the availability of small molecules capable of targeting RNA base pairs. Using chemoinformatics, an RNA-focused library enriched for nitrogen-containing heterocycles was developed and tested for binding RNA base pairs, leading to the identification of six selective and previously unknown binders. While all binders were derivatives of benzimidazoles, those with expanded aromatic polycycles bound selectively to AU pairs, while those with flexible urea side chains bound selectively to GC pairs. Two of the three selective GC pair binders can distinguish between two different orientations, 5'GG/3'CC and 5'GC/3'CG pairs. Furthermore, all six molecules showed >50-fold selectivity for RNA over DNA. These studies provide foundational knowledge to better exploit RNA as targets for small molecule chemical probes or lead therapeutics by using modules that target RNA base pairs.
Collapse
Affiliation(s)
- Hafeez S Haniff
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Amanda Graves
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Matthew D Disney
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| |
Collapse
|
39
|
Abstract
Therapeutics that directly target RNAs are promising for a broad spectrum of disorders, including the neurodegenerative diseases. This is exemplified by the FDA approval of Nusinersen, an antisense oligonucleotide (ASO) therapeutic for spinal muscular atrophy (SMA). RNA targeting therapeutics are currently under development for amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias. We have used an ASO approach toward developing a treatment for spinocerebellar ataxia type 2 (SCA2), for targeting the causative gene ATXN2. We demonstrated that reduction of ATXN2 expression in SCA2 mice treated by intracerebroventicular injection (ICV) of ATXN2 ASO delayed motor phenotype onset, improved the expression of several genes demonstrated abnormally reduced by transcriptomic profiling of SCA2 mice, and restored abnormal Purkinje cell firing frequency in acute cerebellar sections. Here we discuss RNA abnormalities in disease and the prospects of targeting neurodegenerative diseases at the level of RNA control using ASOs and other RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Daniel R Scoles
- a Department of Neurology , University of Utah , Salt Lake City , UT , USA
| | - Stefan M Pulst
- a Department of Neurology , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
40
|
Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat Commun 2018; 9:1293. [PMID: 29615605 PMCID: PMC5882967 DOI: 10.1038/s41467-018-03650-w] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/02/2018] [Indexed: 01/23/2023] Open
Abstract
Effective transfection of genetic molecules such as DNA usually relies on vectors that can reversibly uptake and release these molecules, and protect them from digestion by nuclease. Non-viral vectors meeting these requirements are rare due to the lack of specific interactions with DNA. Here, we design a series of four isoreticular metal-organic frameworks (Ni-IRMOF-74-II to -V) with progressively tuned pore size from 2.2 to 4.2 nm to precisely include single-stranded DNA (ssDNA, 11–53 nt), and to achieve reversible interaction between MOFs and ssDNA. The entire nucleic acid chain is completely confined inside the pores providing excellent protection, and the geometric distribution of the confined ssDNA is visualized by X-ray diffraction. Two MOFs in this series exhibit excellent transfection efficiency in mammalian immune cells, 92% in the primary mouse immune cells (CD4+ T cell) and 30% in human immune cells (THP-1 cell), unrivaled by the commercialized agents (Lipo and Neofect). Non-viral vectors are important for transfection but can be limited in the uptake, protection and release of ssDNA. Here, the authors report on the design of metal-organic-framework vectors with precisely controlled pore geometry and demonstrate the vector in the transfection of immune cells.
Collapse
|
41
|
Miniarikova J, Evers MM, Konstantinova P. Translation of MicroRNA-Based Huntingtin-Lowering Therapies from Preclinical Studies to the Clinic. Mol Ther 2018; 26:947-962. [PMID: 29503201 DOI: 10.1016/j.ymthe.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022] Open
Abstract
The single mutation underlying the fatal neuropathology of Huntington's disease (HD) is a CAG triplet expansion in exon 1 of the huntingtin (HTT) gene, which gives rise to a toxic mutant HTT protein. There have been a number of not yet successful therapeutic advances in the treatment of HD. The current excitement in the HD field is due to the recent development of therapies targeting the culprit of HD either at the DNA or RNA level to reduce the overall mutant HTT protein. In this review, we briefly describe short-term and long-term HTT-lowering strategies targeting HTT transcripts. One of the most advanced HTT-lowering strategies is a microRNA (miRNA)-based gene therapy delivered by a single administration of an adeno-associated viral (AAV) vector to the HD patient. We outline the outcome measures for the miRNA-based HTT-lowering therapy in the context of preclinical evaluation in HD animal and cell models. We highlight the strengths and ongoing queries of the HTT-lowering gene therapy as an HD intervention with a potential disease-modifying effect. This review provides a perspective on the fast-developing HTT-lowering therapies for HD and their translation to the clinic based on existing knowledge in preclinical models.
Collapse
Affiliation(s)
- Jana Miniarikova
- Department of Research and Development, uniQure, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Melvin M Evers
- Department of Research and Development, uniQure, Amsterdam, the Netherlands
| | | |
Collapse
|
42
|
Hagemann TL, Powers B, Mazur C, Kim A, Wheeler S, Hung G, Swayze E, Messing A. Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease. Ann Neurol 2018; 83:27-39. [PMID: 29226998 DOI: 10.1002/ana.25118] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 12/06/2017] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Alexander disease is a fatal leukodystrophy caused by autosomal dominant gain-of-function mutations in the gene for glial fibrillary acidic protein (GFAP), an intermediate filament protein primarily expressed in astrocytes of the central nervous system. A key feature of pathogenesis is overexpression and accumulation of GFAP, with formation of characteristic cytoplasmic aggregates known as Rosenthal fibers. Here we investigate whether suppressing GFAP with antisense oligonucleotides could provide a therapeutic strategy for treating Alexander disease. METHODS In this study, we use GFAP mutant mouse models of Alexander disease to test the efficacy of antisense suppression and evaluate the effects on molecular and cellular phenotypes and non-cell-autonomous toxicity. Antisense oligonucleotides were designed to target the murine Gfap transcript, and screened using primary mouse cortical cultures. Lead oligonucleotides were then tested for their ability to reduce GFAP transcripts and protein, first in wild-type mice with normal levels of GFAP, and then in adult mutant mice with established pathology and elevated levels of GFAP. RESULTS Nearly complete and long-lasting elimination of GFAP occurred in brain and spinal cord following single bolus intracerebroventricular injections, with a striking reversal of Rosenthal fibers and downstream markers of microglial and other stress-related responses. GFAP protein was also cleared from cerebrospinal fluid, demonstrating its potential utility as a biomarker in future clinical applications. Finally, treatment led to improved body condition and rescue of hippocampal neurogenesis. INTERPRETATION These results demonstrate the efficacy of antisense suppression for an astrocyte target, and provide a compelling therapeutic approach for Alexander disease. Ann Neurol 2018;83:27-39.
Collapse
Affiliation(s)
| | | | | | | | - Steven Wheeler
- Waisman Center, University of Wisconsin-Madison, Madison, WI
| | | | | | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, WI.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
43
|
Abstract
This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for genome editing in the context of Huntington's disease. Here, we provide protocols that cover the design of various genome editing strategies, the cloning of CRISPR/Cas9 elements into lentiviral vectors, and the assessment of cleavage efficiency, as well as potential unwanted effects.
Collapse
Affiliation(s)
- Gabriel Vachey
- Laboratory of Neurotherapies and Neuromodulation (LNCM), Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Nicole Déglon
- Laboratory of Neurotherapies and Neuromodulation (LNCM), Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
44
|
Goutman SA, Chen KS, Paez-Colasante X, Feldman EL. Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:603-623. [PMID: 29478603 DOI: 10.1016/b978-0-444-64076-5.00039-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, noncurable neurodegenerative disorder of the upper and lower motor neurons causing weakness and death within a few years of symptom onset. About 10% of patients with ALS have a family history of the disease; however, ALS-associated genetic mutations are also found in sporadic cases. There are over 100 ALS-associated mutations, and importantly, several genetic mutations, including C9ORF72, SOD1, and TARDBP, have led to mechanistic insight into this complex disease. In the clinical realm, knowledge of ALS genetics can also help explain phenotypic heterogeneity, aid in genetic counseling, and in the future may help direct treatment efforts.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
45
|
Goyal N, Narayanaswami P. Making sense of antisense oligonucleotides: A narrative review. Muscle Nerve 2017; 57:356-370. [PMID: 29105153 DOI: 10.1002/mus.26001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022]
Abstract
Synthetic nucleic acid sequences that bind to ribonucleic acid (RNA) through Watson-Crick base pairing are known as antisense oligonucleotides (ASOs) because they are complementary to "sense strand" nucleic acids. ASOs bind to selected sequences of RNA and regulate the expression of genes by several mechanisms depending on their chemical properties and targets. They can be used to restore deficient protein expression, reduce the expression of a toxic protein, modify functional effects of proteins, or reduce toxicity of mutant proteins. Two ASOs were approved by the U.S. Food and Drug Administration in 2016: eteplirsen for Duchenne muscular dystrophy and nusinersen for spinal muscular atrophy. Clinical trials in amyotrophic lateral sclerosis and familial amyloid polyneuropathy are ongoing. We review the chemistry, pharmacology, and mechanisms of action of ASOs, preclinical data, and clinical trials in neuromuscular diseases and discuss some ethical, regulatory, and policy considerations in the clinical development and use of ASOs. Muscle Nerve 57: 356-370, 2018.
Collapse
Affiliation(s)
- Neelam Goyal
- Neurology/Neuromuscular Disease, Stanford University Hospital, 213 Quarry Road MC 5979, Palo Alto, Ca 94303
| | - Pushpa Narayanaswami
- Neurology/Neuromuscular Disease, Neurology TCC-8, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts, 02215
| |
Collapse
|
46
|
A mixed modality approach towards Xi reactivation for Rett syndrome and other X-linked disorders. Proc Natl Acad Sci U S A 2017; 115:E668-E675. [PMID: 29282321 DOI: 10.1073/pnas.1715124115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The X-chromosome harbors hundreds of disease genes whose associated diseases predominantly affect males. However, a subset, including neurodevelopmental disorders, Rett syndrome (RTT), fragile X syndrome, and CDKL5 syndrome, also affects females. These disorders lack disease-specific treatment. Because female cells carry two X chromosomes, an emerging treatment strategy has been to reawaken the healthy allele on the inactive X (Xi). Here, we focus on methyl-CpG binding protein 2 (MECP2) restoration for RTT and combinatorially target factors in the interactome of Xist, the noncoding RNA responsible for X inactivation. We identify a mixed modality approach combining an Xist antisense oligonucleotide and a small-molecule inhibitor of DNA methylation, which, together, achieve 30,000-fold MECP2 up-regulation from the Xi in cultured cells. Combining a brain-specific genetic Xist ablation with short-term 5-aza-2'-deoxycytidine (Aza) treatment models the synergy in vivo without evident toxicity. The Xi is selectively reactivated. These experiments provide proof of concept for a mixed modality approach for treating X-linked disorders in females.
Collapse
|
47
|
Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 2017; 14:9-21. [PMID: 29192260 DOI: 10.1038/nrneurol.2017.148] [Citation(s) in RCA: 499] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antisense oligonucleotides (ASOs) were first discovered to influence RNA processing and modulate protein expression over two decades ago; however, progress translating these agents into the clinic has been hampered by inadequate target engagement, insufficient biological activity, and off-target toxic effects. Over the years, novel chemical modifications of ASOs have been employed to address these issues. These modifications, in combination with elucidation of the mechanism of action of ASOs and improved clinical trial design, have provided momentum for the translation of ASO-based strategies into therapies. Many neurological conditions lack an effective treatment; however, as research progressively disentangles the pathogenic mechanisms of these diseases, they provide an ideal platform to test ASO-based strategies. This steady progress reached a pinnacle in the past few years with approvals of ASOs for the treatment of spinal muscular atrophy and Duchenne muscular dystrophy, which represent landmarks in a field in which disease-modifying therapies were virtually non-existent. With the rapid development of improved next-generation ASOs toward clinical application, this technology now holds the potential to have a dramatic effect on the treatment of many neurological conditions in the near future.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
48
|
Alarcón-Arís D, Recasens A, Galofré M, Carballo-Carbajal I, Zacchi N, Ruiz-Bronchal E, Pavia-Collado R, Chica R, Ferrés-Coy A, Santos M, Revilla R, Montefeltro A, Fariñas I, Artigas F, Vila M, Bortolozzi A. Selective α-Synuclein Knockdown in Monoamine Neurons by Intranasal Oligonucleotide Delivery: Potential Therapy for Parkinson's Disease. Mol Ther 2017; 26:550-567. [PMID: 29273501 DOI: 10.1016/j.ymthe.2017.11.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023] Open
Abstract
Progressive neuronal death in brainstem nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson's disease (PD). Reduction of α-synuclein levels is therefore a potential therapy for PD. However, because α-synuclein is essential for neuronal development and function, α-synuclein elimination would dramatically impact brain function. We previously developed conjugated small interfering RNA (siRNA) sequences that selectively target serotonin (5-HT) or norepinephrine (NE) neurons after intranasal administration. Here, we used this strategy to conjugate inhibitory oligonucleotides, siRNA and antisense oligonucleotide (ASO), with the triple monoamine reuptake inhibitor indatraline (IND), to selectively reduce α-synuclein expression in the brainstem monoamine nuclei of mice after intranasal delivery. Following internalization of the conjugated oligonucleotides in monoamine neurons, reduced levels of endogenous α-synuclein mRNA and protein were found in substantia nigra pars compacta (SNc), ventral tegmental area (VTA), dorsal raphe nucleus (DR), and locus coeruleus (LC). α-Synuclein knockdown by ∼20%-40% did not cause monoaminergic neurodegeneration and enhanced forebrain dopamine (DA) and 5-HT release. Conversely, a modest human α-synuclein overexpression in DA neurons markedly reduced striatal DA release. These results indicate that α-synuclein negatively regulates monoamine neurotransmission and set the stage for the testing of non-viral inhibitory oligonucleotides as disease-modifying agents in α-synuclein models of PD.
Collapse
Affiliation(s)
- Diana Alarcón-Arís
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Neurochemistry and Neuropharmacology, IIBB-CSIC (Consejo Superior de Investigaciones Científicas), Barcelona 08036, Spain
| | - Ariadna Recasens
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Mireia Galofré
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Neurochemistry and Neuropharmacology, IIBB-CSIC (Consejo Superior de Investigaciones Científicas), Barcelona 08036, Spain
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | | | - Esther Ruiz-Bronchal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Neurochemistry and Neuropharmacology, IIBB-CSIC (Consejo Superior de Investigaciones Científicas), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Rubén Pavia-Collado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Neurochemistry and Neuropharmacology, IIBB-CSIC (Consejo Superior de Investigaciones Científicas), Barcelona 08036, Spain
| | | | - Albert Ferrés-Coy
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Neurochemistry and Neuropharmacology, IIBB-CSIC (Consejo Superior de Investigaciones Científicas), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | | | | | | | - Isabel Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Departament of Cellular Biology, Universitat de València, València, Spain
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Neurochemistry and Neuropharmacology, IIBB-CSIC (Consejo Superior de Investigaciones Científicas), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Analia Bortolozzi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Neurochemistry and Neuropharmacology, IIBB-CSIC (Consejo Superior de Investigaciones Científicas), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| |
Collapse
|
49
|
Kostov O, Páv O, Rosenberg I. Nucleoside-O-Methyl-(H)-Phosphinates: Novel Monomers for the Synthesis of Methylphosphonate Oligonucleotides Using H-Phosphonate Chemistry. ACTA ACUST UNITED AC 2017; 70:4.76.1-4.76.22. [PMID: 28921496 DOI: 10.1002/cpnc.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit comprises the straightforward synthesis of protected 2'-deoxyribonucleoside-O-methyl-(H)-phosphinates in both 3'- and 5'-series. These compounds represent a new class of monomers compatible with the solid-phase synthesis of oligonucleotides using H-phosphonate chemistry and are suitable for the preparation of both 3'- and 5'-O-methylphosphonate oligonucleotides. The synthesis of 4-toluenesulfonyloxymethyl-(H)-phosphinic acid as a new reagent for the preparation of O-methyl-(H)-phosphinic acid derivatives is described. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ondřej Kostov
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic
| | - Ondřej Páv
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic
| | - Ivan Rosenberg
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic
| |
Collapse
|
50
|
Merienne N, Vachey G, de Longprez L, Meunier C, Zimmer V, Perriard G, Canales M, Mathias A, Herrgott L, Beltraminelli T, Maulet A, Dequesne T, Pythoud C, Rey M, Pellerin L, Brouillet E, Perrier AL, du Pasquier R, Déglon N. The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes. Cell Rep 2017; 20:2980-2991. [DOI: 10.1016/j.celrep.2017.08.075] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 07/14/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022] Open
|