1
|
Schoonen M, Fassad M, Patel K, Bisschoff M, Vorster A, Makwikwi T, Human R, Lubbe E, Nonyane M, Vorster BC, Vandrovcova J, Hanna MG, Taylor RW, McFarland R, Wilson LA, van der Westhuizen FH, Smuts I. Biallelic variants in RYR1 and STAC3 are predominant causes of King-Denborough Syndrome in an African cohort. Eur J Hum Genet 2025; 33:421-431. [PMID: 39966651 PMCID: PMC11985997 DOI: 10.1038/s41431-025-01795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
King-Denborough Syndrome (KDS) is a congenital myopathy (CM) characterised by myopathy, dysmorphic features and susceptibility to malignant hyperthermia. The objective of this study was to investigate the genotype-phenotype correlation in Black African patients presenting with CM, specifically those with KDS-like phenotypes, who remained undiagnosed for over 25 years. A cohort of 67 Black African patients with CM was studied, of whom 44 were clinically evaluated and diagnosed with KDS. Whole-exome sequencing (WES) was performed as part of an international genomics study (ICGNMD) to identify potential pathogenic mutations. Genomic assessments focused on identifying relevant genes, including RYR1 and STAC3, and establishing genotype-phenotype correlations. The study identified RYR1 and STAC3 mutations as the predominant genetic causes of KDS in this cohort, with mutations in both genes exhibiting autosomal recessive inheritance. While RYR1 has previously been linked to autosomal dominant mutations, STAC3, which was formerly associated exclusively with Native American Myopathy/Bailey-Bloch Myopathy, congenital hypotonia, and susceptibility to malignant hyperthermia, is now newly associated with CM-KDS in this study. This establishes the first genotype-phenotype correlation for 44 Black African individuals with KDS. This study marks a significant milestone in research on understudied African populations with CM, emphasising the lengthy diagnostic journey these patients endured. The findings highlight the pressing need for improved access to genomic medicine in underserved regions and underscore the importance of expanding research and diagnostic capabilities in Africa. This work contributes to the advancement of genetic medicine in underrepresented populations, facilitating better diagnostic and therapeutic outcomes.
Collapse
Affiliation(s)
- Maryke Schoonen
- Mitochondria Research Group, Biomedical and Molecular Metabolism Research (BioMMet), North-West University, Potchefstroom, South Africa.
| | - Mahmoud Fassad
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Krutik Patel
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Michelle Bisschoff
- Mitochondria Research Group, Biomedical and Molecular Metabolism Research (BioMMet), North-West University, Potchefstroom, South Africa
| | - Armand Vorster
- Mitochondria Research Group, Biomedical and Molecular Metabolism Research (BioMMet), North-West University, Potchefstroom, South Africa
| | - Tendai Makwikwi
- Mitochondria Research Group, Biomedical and Molecular Metabolism Research (BioMMet), North-West University, Potchefstroom, South Africa
| | - Ronel Human
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Elsa Lubbe
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Malebo Nonyane
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Barend C Vorster
- Laboratory for Inborn Errors of Metabolism (PLIEM), Centre for Human Metabolomics (CHM), Potchefstroom Campus, North-West University, Potchefstroom, South Africa
| | - Jana Vandrovcova
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael G Hanna
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Robert W Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert McFarland
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lindsay A Wilson
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Francois H van der Westhuizen
- Mitochondria Research Group, Biomedical and Molecular Metabolism Research (BioMMet), North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
2
|
Heat-hypersensitive mutants of ryanodine receptor type 1 revealed by microscopic heating. Proc Natl Acad Sci U S A 2022; 119:e2201286119. [PMID: 35925888 PMCID: PMC9371657 DOI: 10.1073/pnas.2201286119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malignant hyperthermia (MH) is a life-threatening disorder caused largely by mutations in ryanodine receptor type 1 (RyR1) Ca2+-release channels. Enhanced Ca2+ release through the mutant channels induces excessive heat development upon exposure to volatile anesthetics. However, the mechanism by which Ca2+ release is accelerated at an elevated temperature is yet to be identified. Fluorescence Ca2+ imaging with rapid heating by an infrared laser beam provides direct evidence that heat induces Ca2+ release through the RyR1 channel. And the mutant channels are more heat sensitive than the wild-type channels, thereby causing an increase in the cytosolic Ca2+ concentration in mutant cells. It is likely that the heat-induced Ca2+ release participates as an enhancer in the cellular mechanism of MH. Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum–targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels’ heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.
Collapse
|
3
|
Yamazawa T, Ogawa H, Murayama T, Yamaguchi M, Oyamada H, Suzuki J, Kurebayashi N, Kanemaru K, Oguchi K, Sakurai T, Iino M. Insights into channel modulation mechanism of RYR1 mutants using Ca2+ imaging and molecular dynamics. J Gen Physiol 2021; 152:132759. [PMID: 31841587 PMCID: PMC7034096 DOI: 10.1085/jgp.201812235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/31/2019] [Accepted: 11/05/2019] [Indexed: 12/01/2022] Open
Abstract
Molecular bases of pathogenic enhancement of Ca2+ release channel activities in RYR1 carrying disease-associated mutations at the N-terminal region were studied. Functional studies and MD simulation revealed that the interactions between domains have a strong correlation with channel activity. Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum in skeletal muscle and plays an important role in excitation–contraction coupling. Mutations in the RYR1 gene cause severe muscle diseases such as malignant hyperthermia (MH), which is a disorder of CICR via RYR1. Thus far, >300 mutations in RYR1 have been reported in patients with MH. However, owing to a lack of comprehensive analysis of the structure–function relationship of mutant RYR1, the mechanism remains largely unknown. Here, we combined functional studies and molecular dynamics (MD) simulations of RYR1 bearing disease-associated mutations at the N-terminal region. When expressed in HEK293 cells, the mutant RYR1 caused abnormalities in Ca2+ homeostasis. MD simulations of WT and mutant RYR1s were performed using crystal structure of the N-terminal domain (NTD) monomer, consisting of A, B, and C domains. We found that the mutations located around the interdomain region differentially affected hydrogen bonds/salt bridges. Particularly, mutations at R402, which increase the open probability of the channel, cause clockwise rotation of BC domains with respect to the A domain by alteration of the interdomain interactions. Similar results were also obtained with artificial mutations that mimic alteration of the interactions. Our results reveal the importance of interdomain interactions within the NTD in the regulation of the RYR1 channel and provide insights into the mechanism of MH caused by the mutations at the NTD.
Collapse
Affiliation(s)
- Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruo Ogawa
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Maki Yamaguchi
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideto Oyamada
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Junji Suzuki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Physiology, University of California, San Francisco, San Francisco, CA
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazunori Kanemaru
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| | - Katsuji Oguchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Gong D, Yan N, Ledford HA. Structural Basis for the Modulation of Ryanodine Receptors. Trends Biochem Sci 2020; 46:489-501. [PMID: 33353849 DOI: 10.1016/j.tibs.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Historically, ryanodine receptors (RyRs) have presented unique challenges for high-resolution structural determination despite long-standing interest in their role in excitation-contraction coupling. Owing to their large size (nearly 2.2 MDa), high-resolution structures remained elusive until the advent of cryogenic electron microscopy (cryo-EM) techniques. In recent years, structures for both RyR1 and RyR2 have been solved at near-atomic resolution. Furthermore, recent reports have delved into their more complex structural associations with key modulators - proteins such as the dihydropyridine receptor (DHPR), FKBP12/12.6, and calmodulin (CaM), as well as ions and small molecules including Ca2+, ATP, caffeine, and PCB95. This review addresses the modulation of RyR1 and RyR2, in addition to the impact of such discoveries on intracellular Ca2+ dynamics and biophysical properties.
Collapse
Affiliation(s)
- Deshun Gong
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province/Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Hannah A Ledford
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
5
|
Marques F, Thapliyal S, Javer A, Shrestha P, Brown AEX, Glauser DA. Tissue-specific isoforms of the single C. elegans Ryanodine receptor gene unc-68 control specific functions. PLoS Genet 2020; 16:e1009102. [PMID: 33104696 PMCID: PMC7644089 DOI: 10.1371/journal.pgen.1009102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 11/05/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022] Open
Abstract
Ryanodine receptors (RyR) are essential regulators of cellular calcium homeostasis and signaling. Vertebrate genomes contain multiple RyR gene isoforms, expressed in different tissues and executing different functions. In contrast, invertebrate genomes contain a single RyR-encoding gene and it has long been proposed that different transcripts generated by alternative splicing may diversify their functions. Here, we analyze the expression and function of alternative exons in the C. elegans RyR gene unc-68. We show that specific isoform subsets are created via alternative promoters and via alternative splicing in unc-68 Divergent Region 2 (DR2), which actually corresponds to a region of high sequence variability across vertebrate isoforms. The expression of specific unc-68 alternative exons is enriched in different tissues, such as in body wall muscle, neurons and pharyngeal muscle. In order to infer the function of specific alternative promoters and alternative exons of unc-68, we selectively deleted them by CRISPR/Cas9 genome editing. We evaluated pharyngeal function, as well as locomotor function in swimming and crawling with high-content computer-assisted postural and behavioral analysis. Our data provide a comprehensive map of the pleiotropic impact of isoform-specific mutations and highlight that tissue-specific unc-68 isoforms fulfill distinct functions. As a whole, our work clarifies how the C. elegans single RyR gene unc-68 can fulfill multiple tasks through tissue-specific isoforms, and provide a solid foundation to further develop C. elegans as a model to study RyR channel functions and malfunctions.
Collapse
Affiliation(s)
- Filipe Marques
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Saurabh Thapliyal
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Avelino Javer
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Priyanka Shrestha
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - André E. X. Brown
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
6
|
Yeh HM, Liao MH, Chu CL, Lin YH, Sun WZ, Lai LP, Chen PL. Next-generation sequencing and bioinformatics to identify genetic causes of malignant hyperthermia. J Formos Med Assoc 2020; 120:883-892. [PMID: 32919876 DOI: 10.1016/j.jfma.2020.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/02/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND/PURPOSE Malignant hyperthermia (MH) is a life-threatening pharmacogenetic disease with only two known causative genes, RYR1 and CACNA1S. Both are huge genes containing numerous exons, and they reportedly only account for 50-70% of known MH patients. Next-generation sequencing (NGS) technology and bioinformatics could help delineate the genetic diagnosis of MH and several MH-like clinical presentations. METHODS We established a capture-based targeted NGS sequencing framework to examine the whole genomic regions of RYR1, CACNA1S and the 16.6 Kb mitochondrial genome, as well as 12 other genes related to excitation-contraction coupling and/or skeletal muscle calcium homeostasis. We applied bioinformatics analyses to the variants identified in this study and also to the 48 documented RYR1 pathogenic variants. RESULTS The causative variants were identified in seven of the eight (87.5%) MH families, but in none of the 10 individuals classified as either normal controls (N = 2) or patients displaying MH-like clinical features later found to be caused by other etiologies (N = 8). We showed that RYR1 c.1565A>G (p.Tyr522Cys)(rs118192162) could be a genetic hot spot in the Taiwanese population. Bioinformatics analyses demonstrated low population frequencies and predicted damaging effects from all known pathogenic RYR1 variants. We estimated that more than one in 1149 individuals worldwide carry MH pathogenic variants at RYR1. CONCLUSION NGS and bioinformatics are sensitive and specific tools to examine RYR1 and CACNA1S for the genetic diagnosis of MH. Pathogenic variants in RYR1 can be found in the majority of MH patients in Taiwan.
Collapse
Affiliation(s)
- Huei-Ming Yeh
- Department of Anesthesiology National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Hua Liao
- Scientist, Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Lin Chu
- Department of Anesthesiology, National Taiwan University Hospital, Yun-Lin Branch, Yunlin, Taiwan
| | - Yin-Hung Lin
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Zen Sun
- Department of Anesthesiology National Taiwan University Hospital, Taipei, Taiwan
| | - Ling-Ping Lai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Zheng W, Wen H. Investigating dual Ca 2+ modulation of the ryanodine receptor 1 by molecular dynamics simulation. Proteins 2020; 88:1528-1539. [PMID: 32557910 DOI: 10.1002/prot.25971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 11/09/2022]
Abstract
The ryanodine receptors (RyR) are essential to calcium signaling in striated muscles. A deep understanding of the complex Ca2+ -activation/inhibition mechanism of RyRs requires detailed structural and dynamic information for RyRs in different functional states (eg, with Ca2+ bound to activating or inhibitory sites). Recently, high-resolution structures of the RyR isoform 1 (RyR1) were solved by cryo-electron microscopy, revealing the location of a Ca2+ binding site for activation. Toward elucidating the Ca2+ -modulation mechanism of RyR1, we performed extensive molecular dynamics simulation of the core RyR1 structure in the presence and absence of activating and solvent Ca2+ (total simulation time is >5 μs). In the presence of solvent Ca2+ , Ca2+ binding to the activating site enhanced dynamics of RyR1 with higher inter-subunit flexibility, asymmetric inter-subunit motions, outward domain motions and partial pore dilation, which may prime RyR1 for subsequent channel opening. In contrast, the solvent Ca2+ alone reduced dynamics of RyR1 and led to inward domain motions and pore contraction, which may cause inhibition. Combining our simulation with the map of disease mutation sites in RyR1, we constructed a wiring diagram of key domains coupled via specific hydrogen bonds involving the mutation sites, some of which were modulated by Ca2+ binding. The structural and dynamic information gained from this study will inform future mutational and functional studies of RyR1 activation and inhibition by Ca2+ .
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo, Buffalo, New York, USA
| | - Han Wen
- Department of Physics, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
8
|
Chen W, Kudryashev M. Structure of RyR1 in native membranes. EMBO Rep 2020; 21:e49891. [PMID: 32147968 PMCID: PMC7202208 DOI: 10.15252/embr.201949891] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Ryanodine receptor 1 (RyR1) mediates excitation–contraction coupling by releasing Ca2+ from sarcoplasmic reticulum (SR) to the cytoplasm of skeletal muscle cells. RyR1 activation is regulated by several proteins from both the cytoplasm and lumen of the SR. Here, we report the structure of RyR1 from native SR membranes in closed and open states. Compared to the previously reported structures of purified RyR1, our structure reveals helix‐like densities traversing the bilayer approximately 5 nm from the RyR1 transmembrane domain and sarcoplasmic extensions linking RyR1 to a putative calsequestrin network. We document the primary conformation of RyR1 in situ and its structural variations. The activation of RyR1 is associated with changes in membrane curvature and movement in the sarcoplasmic extensions. Our results provide structural insight into the mechanism of RyR1 in its native environment.
Collapse
Affiliation(s)
- Wenbo Chen
- Max Planck Institute for Biophysics, Frankfurt on Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt on Main, Germany
| | - Mikhail Kudryashev
- Max Planck Institute for Biophysics, Frankfurt on Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt on Main, Germany
| |
Collapse
|
9
|
ANO5 mutations in the Polish limb girdle muscular dystrophy patients: Effects on the protein structure. Sci Rep 2019; 9:11533. [PMID: 31395899 PMCID: PMC6687736 DOI: 10.1038/s41598-019-47849-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/25/2019] [Indexed: 01/06/2023] Open
Abstract
LGMD2L is a subtype of limb-girdle muscular dystrophy (LGMD), caused by recessive mutations in ANO5, encoding anoctamin-5 (ANO5). We present the analysis of five patients with skeletal muscle weakness for whom heterozygous mutations within ANO5 were identified by whole exome sequencing (WES). Patients varied in the age of the disease onset (from 22 to 38 years) and severity of the morphological and clinical phenotypes. Out of the nine detected mutations one was novel (missense p.Lys132Met, accompanied by p.His841Asp) and one was not yet characterized in the literature (nonsense, p.Trp401Ter, accompanied by p.Asp81Gly). The p.Asp81Gly mutation was also identified in another patient carrying a p.Arg758Cys mutation as well. Also, a c.191dupA frameshift (p.Asn64LysfsTer15), the first described and common mutation was identified. Mutations were predicted by in silico tools to have damaging effects and are likely pathogenic according to criteria of the American College of Medical Genetics and Genomics (ACMG). Indeed, molecular modeling of mutations revealed substantial changes in ANO5 conformation that could affect the protein structure and function. In addition, variants in other genes associated with muscle pathology were identified, possibly affecting the disease progress. The presented data indicate that the identified ANO5 mutations contribute to the observed muscle pathology and broaden the genetic spectrum of LGMD myopathies.
Collapse
|
10
|
Parker R, Schiemann AH, Langton E, Bulger T, Pollock N, Bjorksten A, Gillies R, Hutchinson D, Roxburgh R, Stowell KM. Functional Characterization of C-terminal Ryanodine Receptor 1 Variants Associated with Central Core Disease or Malignant Hyperthermia. J Neuromuscul Dis 2019; 4:147-158. [PMID: 28527222 PMCID: PMC5467713 DOI: 10.3233/jnd-170210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Central core disease and malignant hyperthermia are human disorders of skeletal muscle resulting from aberrant Ca2+ handling. Most malignant hyperthermia and central core disease cases are associated with amino acid changes in the type 1 ryanodine receptor (RyR1), the skeletal muscle Ca2+-release channel. Malignant hyperthermia exhibits a gain-of-function phenotype, and central core disease results from loss of channel function. For a variant to be classified as pathogenic, functional studies must demonstrate a correlation with the pathophysiology of malignant hyperthermia or central core disease. Objective: We assessed the pathogenicity of four C-terminal variants of the ryanodine receptor using functional analysis. The variants were identified in families affected by either malignant hyperthermia or central core disease. Methods: Four variants were introduced separately into human cDNA encoding the skeletal muscle ryanodine receptor. Following transient expression in HEK-293T cells, functional studies were carried out using calcium release assays in response to an agonist. Two previously characterized variants and wild-type skeletal muscle ryanodine receptor were used as controls. Results: The p.Met4640Ile variant associated with central core disease showed no difference in calcium release compared to wild-type. The p.Val4849Ile variant associated with malignant hyperthermia was more sensitive to agonist than wild-type but did not reach statistical significance and two variants (p.Phe4857Ser and p.Asp4918Asn) associated with central core disease were completely inactive. Conclusions: The p.Val4849Ile variant should be considered a risk factor for malignant hyperthermia, while the p.Phe4857Ser and p.Asp4918Asn variants should be classified as pathogenic for central core disease.
Collapse
Affiliation(s)
- Remai Parker
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H Schiemann
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | - Terasa Bulger
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand
| | - Neil Pollock
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand
| | - Andrew Bjorksten
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Melbourne
| | - Robyn Gillies
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Melbourne
| | - David Hutchinson
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Richard Roxburgh
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Kathryn M Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
11
|
Gonsalves SG, Dirksen RT, Sangkuhl K, Pulk R, Alvarellos M, Vo T, Hikino K, Roden D, Klein T, Poler SM, Patel S, Caudle KE, Gordon R, Brandom B, Biesecker LG. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for the Use of Potent Volatile Anesthetic Agents and Succinylcholine in the Context of RYR1 or CACNA1S Genotypes. Clin Pharmacol Ther 2019; 105:1338-1344. [PMID: 30499100 PMCID: PMC6513720 DOI: 10.1002/cpt.1319] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/20/2018] [Indexed: 11/09/2022]
Abstract
The identification in a patient of 1 of the 50 variants in the RYR1 or CACNA1S genes reviewed here should lead to a presumption of malignant hyperthermia susceptibility (MHS). MHS can lead to life-threatening reactions to potent volatile anesthetic agents or succinylcholine. We summarize evidence from the literature supporting this association and provide therapeutic recommendations for the use of these agents in patients with these RYR1 or CACNA1S variants (updates at https://cpicpgx.org/guidelines and www.pharmgkb.org).
Collapse
Affiliation(s)
- Stephen G. Gonsalves
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert T. Dirksen
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Katrin Sangkuhl
- The Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Rebecca Pulk
- Center for Pharmacy Innovation and Outcomes, Geisinger, Danville, Pennsylvania, USA
| | - Maria Alvarellos
- The Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Teresa Vo
- College of Medicine Internal Medicine and Dept of Pharmacy Practice, University of South Florida College of Pharmacy, Tampa, Florida, USA
| | - Keiko Hikino
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, USA
| | - Dan Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Teri Klein
- The Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - S. Mark Poler
- Departments of Anesthesiology, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Sephalie Patel
- H. Lee Moffitt Cancer Center, Department of Anesthesiology, Tampa, Florida, USA
| | - Kelly E. Caudle
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ronald Gordon
- University of California San Diego, Department of Anesthesiology, San Diego, California, USA
| | - Barbara Brandom
- Department of Anesthesiology, Mercy Hospital UPMC, North American MH Registry of MHAUS, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Leslie G. Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Abstract
The congenital myopathies form a large clinically and genetically heterogeneous group of disorders. Currently mutations in at least 27 different genes have been reported to cause a congenital myopathy, but the number is expected to increase due to the accelerated use of next-generation sequencing methods. There is substantial overlap between the causative genes and the clinical and histopathologic features of the congenital myopathies. The mode of inheritance can be autosomal recessive, autosomal dominant or X-linked. Both dominant and recessive mutations in the same gene can cause a similar disease phenotype, and the same clinical phenotype can also be caused by mutations in different genes. Clear genotype-phenotype correlations are few and far between.
Collapse
Affiliation(s)
- Katarina Pelin
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Suman M, Sharpe JA, Bentham RB, Kotiadis VN, Menegollo M, Pignataro V, Molgó J, Muntoni F, Duchen MR, Pegoraro E, Szabadkai G. Inositol trisphosphate receptor-mediated Ca2+ signalling stimulates mitochondrial function and gene expression in core myopathy patients. Hum Mol Genet 2019; 27:2367-2382. [PMID: 29701772 PMCID: PMC6005141 DOI: 10.1093/hmg/ddy149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Core myopathies are a group of childhood muscle disorders caused by mutations of the ryanodine receptor (RyR1), the Ca2+ release channel of the sarcoplasmic reticulum. These mutations have previously been associated with elevated inositol trisphosphate receptor (IP3R) levels in skeletal muscle myotubes derived from patients. However, the functional relevance and the relationship of IP3R mediated Ca2+ signalling with the pathophysiology of the disease is unclear. It has also been suggested that mitochondrial dysfunction underlies the development of central and diffuse multi-mini-cores, devoid of mitochondrial activity, which is a key pathological consequence of RyR1 mutations. Here we used muscle biopsies of central core and multi-minicore disease patients with RyR1 mutations, as well as cellular and in vivo mouse models of the disease to characterize global cellular and mitochondrial Ca2+ signalling, mitochondrial function and gene expression associated with the disease. We show that RyR1 mutations that lead to the depletion of the channel are associated with increased IP3-mediated nuclear and mitochondrial Ca2+ signals and increased mitochondrial activity. Moreover, western blot and microarray analysis indicated enhanced mitochondrial biogenesis at the transcriptional and protein levels and was reflected in increased mitochondrial DNA content. The phenotype was recapitulated by RYR1 silencing in mouse cellular myotube models. Altogether, these data indicate that remodelling of skeletal muscle Ca2+ signalling following loss of functional RyR1 mediates bioenergetic adaptation.
Collapse
Affiliation(s)
- Matteo Suman
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.,Neuromuscular Unit, Department of Neuroscience, University of Padova, 35131 Padua, Italy
| | - Jenny A Sharpe
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK
| | - Robert B Bentham
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Vassilios N Kotiadis
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK
| | - Michela Menegollo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Viviana Pignataro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Jordi Molgó
- Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette 91191, France.,Institut des Neurosciences Paris-Saclay, UMR 9197, Centre National de la Recherche Scientifique (CNRS)/Université Paris-Sud, Gif-sur-Yvette 91198, France
| | - Francesco Muntoni
- University College London, Great Ormond Street Institute of Child Health Dubowitz Neuromuscular Centre and Medical Research Council (MRC) Centre for Neuromuscular Diseases, London WC1N 1EH, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK
| | - Elena Pegoraro
- Neuromuscular Unit, Department of Neuroscience, University of Padova, 35131 Padua, Italy
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.,Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK.,The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
14
|
Todd JJ, Sagar V, Lawal TA, Allen C, Razaqyar MS, Shelton MS, Chrismer IC, Zhang X, Cosgrove MM, Kuo A, Vasavada R, Jain MS, Waite M, Rajapakse D, Witherspoon JW, Wistow G, Meilleur KG. Correlation of phenotype with genotype and protein structure in RYR1-related disorders. J Neurol 2018; 265:2506-2524. [PMID: 30155738 PMCID: PMC6182665 DOI: 10.1007/s00415-018-9033-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/01/2023]
Abstract
Variants in the skeletal muscle ryanodine receptor 1 gene (RYR1) result in a spectrum of RYR1-related disorders. Presentation during infancy is typical and ranges from delayed motor milestones and proximal muscle weakness to severe respiratory impairment and ophthalmoplegia. We aimed to elucidate correlations between genotype, protein structure and clinical phenotype in this rare disease population. Genetic and clinical data from 47 affected individuals were analyzed and variants mapped to the cryo-EM RyR1 structure. Comparisons of clinical severity, motor and respiratory function and symptomatology were made according to the mode of inheritance and affected RyR1 structural domain(s). Overall, 49 RYR1 variants were identified in 47 cases (dominant/de novo, n = 35; recessive, n = 12). Three variants were previously unreported. In recessive cases, facial weakness, neonatal hypotonia, ophthalmoplegia/paresis, ptosis, and scapular winging were more frequently observed than in dominant/de novo cases (all, p < 0.05). Both dominant/de novo and recessive cases exhibited core myopathy histopathology. Clinically severe cases were typically recessive or had variants localized to the RyR1 cytosolic shell domain. Motor deficits were most apparent in the MFM-32 standing and transfers dimension, [median (IQR) 85.4 (18.8)% of maximum score] and recessive cases exhibited significantly greater overall motor function impairment compared to dominant/de novo cases [79.7 (18.8)% vs. 87.5 (17.7)% of maximum score, p = 0.03]. Variant mapping revealed patterns of clinical severity across RyR1 domains, including a structural plane of interest within the RyR1 cytosolic shell, in which 84% of variants affected the bridging solenoid. We have corroborated genotype-phenotype correlations and identified RyR1 regions that may be especially sensitive to structural modification.
Collapse
Affiliation(s)
- Joshua J Todd
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA.
| | - Vatsala Sagar
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tokunbor A Lawal
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Carolyn Allen
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Muslima S Razaqyar
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Monique S Shelton
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Xuemin Zhang
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Mary M Cosgrove
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Anna Kuo
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Ruhi Vasavada
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Minal S Jain
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Melissa Waite
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Dinusha Rajapakse
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica W Witherspoon
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, 10 Center Drive, Room 2A07, Bethesda, MD, 20892, USA
| |
Collapse
|
15
|
Zhao Y, Zhao Z, Shen H, Bing Q, Hu J. Characterization and genetic diagnosis of centronuclear myopathies in seven Chinese patients. Neurol Sci 2018; 39:2043-2051. [PMID: 30232666 DOI: 10.1007/s10072-018-3534-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/09/2018] [Indexed: 11/24/2022]
Abstract
Centronuclear myopathies (CNMs) are a group of clinically and genetically heterogeneous muscle disorders. Here, we report a cohort of seven CNM patients with their clinical, histological, and morphological features. In addition, using the next-generation sequencing (NGS) technique (5/7 patients), we identified small indels: intronic, exonic, and missense mutations in MTM1, DNM2, and RYR1 genes. Further genetic studies revealed skewed X-chromosome inactivation in two female patients carrying MTM1 mutations. Based on the results of genetic analysis, these seven patients were classified as (1) X-linked recessive myotubular myopathy (patients 1-3) with MTM1 mutations and mild phenotype, (2) the autosomal dominant CNM (patients 4-6) with DNM2 mutations, and (3) the autosomal recessive CNM (patient 7) with RYR1 mutations. In all patients, histological findings featured a high proportion of fibers with central nuclei. Radial arrangement of the sarcoplasmic strands was observed in DNM2-CNM and RYR1-CNM patients. Muscle magnetic resonance imaging (MRI) revealed a proximal pattern of involvement presented in both MTM1-CNM and RYR1-CNM patients. A distal pattern of involvement was present in DNM2-CNM patients. Our findings thereby identified a number of novel features that expand the reported clinicopathological phenotype of CNMs in China.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Zhe Zhao
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Hongrui Shen
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Qi Bing
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Jing Hu
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
16
|
A Rare Case of Severe Congenital RYR1-Associated Myopathy. Case Rep Genet 2018; 2018:6184185. [PMID: 30155320 PMCID: PMC6092990 DOI: 10.1155/2018/6184185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 01/27/2023] Open
Abstract
Congenital myopathies are a group of rare inherited diseases, defined by hypotonia and muscle weakness. We report clinical and genetic characteristics of a male preterm newborn, whose phenotype was characterized by severe hypotonia and hyporeactivity, serious respiratory distress syndrome that required mechanical ventilation, clubfoot, and other dysmorphic features. The diagnostic procedure was completed with the complete exome sequencing of the proband and of his parents and his sister, which showed new mutations in the ryanodine receptor gene (RYR1), which maps to chromosome 19q13.2 and encodes the skeletal muscle isoform of a calcium-release channel in the sarcoplasmic reticulum (RyR1). This report confirms that early diagnosis and accurate study of genomic disorders are very important, enabling proper genetic counselling of the reproductive risk, as well as disease prognosis and patient management.
Collapse
|
17
|
Todd JJ, Razaqyar MS, Witherspoon JW, Lawal TA, Mankodi A, Chrismer IC, Allen C, Meyer MD, Kuo A, Shelton MS, Amburgey K, Niyazov D, Fequiere P, Bönnemann CG, Dowling JJ, Meilleur KG. Novel Variants in Individuals with RYR1-Related Congenital Myopathies: Genetic, Laboratory, and Clinical Findings. Front Neurol 2018; 9:118. [PMID: 29556213 PMCID: PMC5845096 DOI: 10.3389/fneur.2018.00118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/19/2018] [Indexed: 12/23/2022] Open
Abstract
The ryanodine receptor 1-related congenital myopathies (RYR1-RM) comprise a spectrum of slow, rare neuromuscular diseases. Affected individuals present with a mild-to-severe symptomatology ranging from proximal muscle weakness, hypotonia and joint contractures to scoliosis, ophthalmoplegia, and respiratory involvement. Although there is currently no FDA-approved treatment for RYR1-RM, our group recently conducted the first clinical trial in this patient population (NCT02362425). This study aimed to characterize novel RYR1 variants with regard to genetic, laboratory, muscle magnetic resonance imaging (MRI), and clinical findings. Genetic and histopathology reports were obtained from participant's medical records. Alamut Visual Software was used to determine if participant's variants had been previously reported and to assess predicted pathogenicity. Physical exams, pulmonary function tests, T1-weighted muscle MRI scans, and blood measures were completed during the abovementioned clinical trial. Six novel variants (two de novo, three dominant, and one recessive) were identified in individuals with RYR1-RM. Consistent with established RYR1-RM histopathology, cores were observed in all biopsies, except Case 6 who exhibited fiber-type disproportion. Muscle atrophy and impaired mobility with Trendelenburg gait were the most common clinical symptoms and were identified in all cases. Muscle MRI revealed substantial inter-individual variation in fatty infiltration corroborating the heterogeneity of the disease. Two individuals with dominant RYR1 variants exhibited respiratory insufficiency: a clinical symptom more commonly associated with recessive RYR1-RM cases. This study demonstrates that a genetics-led approach is suitable for the diagnosis of suspected RYR1-RM which can be corroborated through histopathology, muscle MRI and clinical examination.
Collapse
Affiliation(s)
- Joshua J Todd
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), Bethesda, MD, United States
| | - Muslima S Razaqyar
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), Bethesda, MD, United States
| | - Jessica W Witherspoon
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), Bethesda, MD, United States
| | - Tokunbor A Lawal
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), Bethesda, MD, United States
| | - Ami Mankodi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke--NINDS (NIH), Bethesda, MD, United States
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), Bethesda, MD, United States
| | - Carolyn Allen
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), Bethesda, MD, United States
| | - Mary D Meyer
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), Bethesda, MD, United States
| | - Anna Kuo
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), Bethesda, MD, United States
| | - Monique S Shelton
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), Bethesda, MD, United States
| | - Kim Amburgey
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Dmitriy Niyazov
- Department of Pediatrics, Ochsner Medical Center, New Orleans, LA, United States
| | - Pierre Fequiere
- Division of Neurology, Children's of Alabama, Birmingham, AL, United States
| | - Carsten G Bönnemann
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke--NINDS (NIH), Bethesda, MD, United States
| | - James J Dowling
- Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), Bethesda, MD, United States
| |
Collapse
|
18
|
Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat Rev Neurol 2018; 14:151-167. [PMID: 29391587 DOI: 10.1038/nrneurol.2017.191] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The congenital myopathies are a group of early-onset, non-dystrophic neuromuscular conditions with characteristic muscle biopsy findings, variable severity and a stable or slowly progressive course. Pronounced weakness in axial and proximal muscle groups is a common feature, and involvement of extraocular, cardiorespiratory and/or distal muscles can implicate specific genetic defects. Central core disease (CCD), multi-minicore disease (MmD), centronuclear myopathy (CNM) and nemaline myopathy were among the first congenital myopathies to be reported, and they still represent the main diagnostic categories. However, these entities seem to belong to a much wider phenotypic spectrum. To date, congenital myopathies have been attributed to mutations in over 20 genes, which encode proteins implicated in skeletal muscle Ca2+ homeostasis, excitation-contraction coupling, thin-thick filament assembly and interactions, and other mechanisms. RYR1 mutations are the most frequent genetic cause, and CCD and MmD are the most common subgroups. Next-generation sequencing has vastly improved mutation detection and has enabled the identification of novel genetic backgrounds. At present, management of congenital myopathies is largely supportive, although new therapeutic approaches are reaching the clinical trial stage.
Collapse
|
19
|
Santulli G, Lewis D, des Georges A, Marks AR, Frank J. Ryanodine Receptor Structure and Function in Health and Disease. Subcell Biochem 2018; 87:329-352. [PMID: 29464565 PMCID: PMC5936639 DOI: 10.1007/978-981-10-7757-9_11] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ryanodine receptors (RyRs) are ubiquitous intracellular calcium (Ca2+) release channels required for the function of many organs including heart and skeletal muscle, synaptic transmission in the brain, pancreatic beta cell function, and vascular tone. In disease, defective function of RyRs due either to stress (hyperadrenergic and/or oxidative overload) or genetic mutations can render the channels leaky to Ca2+ and promote defective disease-causing signals as observed in heat failure, muscular dystrophy, diabetes mellitus, and neurodegerative disease. RyRs are massive structures comprising the largest known ion channel-bearing macromolecular complex and exceeding 3 million Daltons in molecular weight. RyRs mediate the rapid release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR) to stimulate cellular functions through Ca2+-dependent processes. Recent advances in single-particle cryogenic electron microscopy (cryo-EM) have enabled the determination of atomic-level structures for RyR for the first time. These structures have illuminated the mechanisms by which these critical ion channels function and interact with regulatory ligands. In the present chapter we discuss the structure, functional elements, gating and activation mechanisms of RyRs in normal and disease states.
Collapse
Affiliation(s)
- Gaetano Santulli
- The Wu Center for Molecular Cardiology, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
- The Wilf Family Cardiovascular Research Institute and the Einstein-Mount Sinai Diabetes Research Center, Department of Medicine, Albert Einstein College of Medicine - Montefiore University Hospital, New York, NY, USA
| | - Daniel Lewis
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Amedee des Georges
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY, USA
- Department of Chemistry & Biochemistry, City College of New York, New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Zullo A, Textor M, Elischer P, Mall S, Alt A, Klingler W, Melzer W. Voltage modulates halothane-triggered Ca 2+ release in malignant hyperthermia-susceptible muscle. J Gen Physiol 2017; 150:111-125. [PMID: 29247050 PMCID: PMC5749113 DOI: 10.1085/jgp.201711864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022] Open
Abstract
Malignant hyperthermia can result from mutations in the ryanodine receptor that favor anesthetic-induced Ca2+ release. Zullo et al. find that membrane potential modulates the effect of the volatile anesthetic halothane on skeletal muscle ryanodine receptors possessing the Y524S mutation. Malignant hyperthermia (MH) is a fatal hypermetabolic state that may occur during general anesthesia in susceptible individuals. It is often caused by mutations in the ryanodine receptor RyR1 that favor drug-induced release of Ca2+ from the sarcoplasmic reticulum. Here, knowing that membrane depolarization triggers Ca2+ release in normal muscle function, we study the cross-influence of membrane potential and anesthetic drugs on Ca2+ release. We used short single muscle fibers of knock-in mice heterozygous for the RyR1 mutation Y524S combined with microfluorimetry to measure intracellular Ca2+ signals. Halothane, a volatile anesthetic used in contracture testing for MH susceptibility, was equilibrated with the solution superfusing the cells by means of a vaporizer system. In the range 0.2 to 3%, the drug causes significantly larger elevations of free myoplasmic [Ca2+] in mutant (YS) compared with wild-type (WT) fibers. Action potential–induced Ca2+ signals exhibit a slowing of their time course of relaxation that can be attributed to a component of delayed Ca2+ release turnoff. In further experiments, we applied halothane to single fibers that were voltage-clamped using two intracellular microelectrodes and studied the effect of small (10-mV) deviations from the holding potential (−80 mV). Untreated WT fibers show essentially no changes in [Ca2+], whereas the Ca2+ level of YS fibers increases and decreases on depolarization and hyperpolarization, respectively. The drug causes a significant enhancement of this response. Depolarizing pulses reveal a substantial negative shift in the voltage dependence of activation of Ca2+ release. This behavior likely results from the allosteric coupling between RyR1 and its transverse tubular voltage sensor. We conclude that the binding of halothane to RyR1 alters the voltage dependence of Ca2+ release in MH-susceptible muscle fibers such that the resting membrane potential becomes a decisive factor for the efficiency of the drug to trigger Ca2+ release.
Collapse
Affiliation(s)
- Alberto Zullo
- Institute of Applied Physiology, Ulm University, Ulm, Germany.,CEINGE - Biotecnologie Avanzate, Napoli, Italy.,Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Martin Textor
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | | | - Stefan Mall
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Andreas Alt
- Institute of Legal Medicine, Ulm University, Ulm, Germany
| | - Werner Klingler
- Department of Neuroanaesthesiology, Ulm University, Günzburg, Germany.,Queensland University of Technology, Brisbane, Australia
| | - Werner Melzer
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
21
|
Zalk R, Marks AR. Ca 2+ Release Channels Join the 'Resolution Revolution'. Trends Biochem Sci 2017; 42:543-555. [PMID: 28499500 PMCID: PMC5875148 DOI: 10.1016/j.tibs.2017.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/02/2017] [Accepted: 04/13/2017] [Indexed: 01/22/2023]
Abstract
Ryanodine receptors (RyRs) are calcium release channels expressed in the sarcoendoplasmic reticula of many cell types including cardiac and skeletal muscle cells. In recent years Ca2+ leak through RyRs has been implicated as a major contributor to the development of diseases including heart failure, muscle myopathies, Alzheimer's disease, and diabetes, making it an important therapeutic target. Recent mammalian RyR1 cryoelectron microscopy (cryo-EM) structures of multiple functional states have clarified longstanding questions including the architecture of the transmembrane (TM) pore and cytoplasmic domains, the location and architecture of the channel gate, ligand-binding sites, and the gating mechanism. As we advance toward complete models of RyRs this new information enables the determination of domain-domain interfaces and the location and structural effects of disease-causing RyR mutations.
Collapse
Affiliation(s)
- Ran Zalk
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
22
|
Santulli G, Lewis DR, Marks AR. Physiology and pathophysiology of excitation-contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil 2017; 38:37-45. [PMID: 28653141 PMCID: PMC5813681 DOI: 10.1007/s10974-017-9470-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
Calcium (Ca2+) release from intracellular stores plays a key role in the regulation of skeletal muscle contraction. The type 1 ryanodine receptors (RyR1) is the major Ca2+ release channel on the sarcoplasmic reticulum (SR) of myocytes in skeletal muscle and is required for excitation-contraction (E-C) coupling. This article explores the role of RyR1 in skeletal muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Gaetano Santulli
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Daniel R Lewis
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Andrew R Marks
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Arai S, Ikeda M, Ide T, Matsuo Y, Fujino T, Hirano K, Sunagawa K, Tsutsui H. Functional loss of DHRS7C induces intracellular Ca2+ overload and myotube enlargement in C2C12 cells via calpain activation. Am J Physiol Cell Physiol 2017; 312:C29-C39. [DOI: 10.1152/ajpcell.00090.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/17/2016] [Indexed: 02/03/2023]
Abstract
Dehydrogenase/reductase member 7C (DHRS7C) is a newly identified NAD/NADH-dependent dehydrogenase that is expressed in cardiac and skeletal muscle and localized in the endoplasmic/sarcoplasmic reticulum (ER/SR). However, its functional role in muscle cells remains to be fully elucidated. Here, we investigated the role of DHRS7C by analyzing mouse C2C12 myoblasts deficient in DHRS7C (DHRS7C-KO cells), overexpressing wild-type DHRS7C (DHRS7C-WT cells), or expressing mutant DHRS7C [DHRS7C-Y191F or DHRS7C-K195Q cells, harboring point mutations in the NAD/NADH-dependent dehydrogenase catalytic core domain (YXXXK)]. DHRS7C expression was induced as C2C12 myoblasts differentiated into mature myotubes, whereas DHRS7C-KO myotubes exhibited enlarged cellular morphology after differentiation. Notably, both DHRS7C-Y191F and DHRS7C-K195Q cells also showed similar enlarged cellular morphology, suggesting that the NAD/NADH-dependent dehydrogenase catalytic core domain is pivotal for DHRS7C function. In DHRS7C-KO, DHRS7C-Y191F, and DHRS7C-K195Q cells, the resting level of cytosolic Ca2+ and total amount of Ca2+ storage in the ER/SR were significantly higher than those in control C2C12 and DHRS7C-WT cells after differentiation. Additionally, Ca2+ release from the ER/SR induced by thapsigargin and 4-chloro-m-cresol was augmented in these cells and calpain, a calcium-dependent protease, was significantly activated in DHRS7C-KO, DHRS7C-Y191F, and DHRS7C-K195Q myotubes, consistent with the higher resting level of cytosolic Ca2+ concentration and enlarged morphology after differentiation. Furthermore, treatment with a calpain inhibitor abolished the enlarged cellular morphology. Taken together, our findings suggested that DHRS7C maintains intracellular Ca2+ homeostasis involving the ER/SR and that functional loss of DHRS7C leads to Ca2+ overload in the cytosol and ER/SR, resulting in enlarged cellular morphology via calpain activation.
Collapse
Affiliation(s)
- Shinobu Arai
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuka Matsuo
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology Faculty of Medicine, Kagawa University, Kagawa, Japan; and
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Witherspoon JW, Meilleur KG. Review of RyR1 pathway and associated pathomechanisms. Acta Neuropathol Commun 2016; 4:121. [PMID: 27855725 PMCID: PMC5114830 DOI: 10.1186/s40478-016-0392-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/02/2016] [Indexed: 02/04/2023] Open
Abstract
Ryanodine receptor isoform-1 (RyR1) is a major calcium channel in skeletal muscle important for excitation-contraction coupling. Mutations in the RYR1 gene yield RyR1 protein dysfunction that manifests clinically as RYR1-related congenital myopathies (RYR1-RM) and/or malignant hyperthermia susceptibility (MHS). Individuals with RYR1-RM and/or MHS exhibit varying symptoms and severity. The symptoms impair quality of life and put patients at risk for early mortality, yet the cause of varying severity is not well understood. Currently, there is no Food and Drug Administration (FDA) approved treatment for RYR1-RM. Discovery of effective treatments is therefore critical, requiring knowledge of the RyR1 pathway. The purpose of this review is to compile work published to date on the RyR1 pathway and to implicate potential regions as targets for treatment. The RyR1 pathway is comprised of protein-protein interactions, protein-ligand interactions, and post-translational modifications, creating an activation/regulatory macromolecular complex. Given the complexity of this pathway, we divided these interactions and modifications into six regulatory groups. Three of several RyR1 interacting proteins, FK506-binding protein 12 (FKBP12), triadin, and calmodulin, were identified as playing important roles across all groups and may serve as promising target sites for treatment. Also, variability in disease severity may be influenced by prolongation or hyperactivity of post-translational modifications resulting from RyR1 dysfunction.
Collapse
|
25
|
|
26
|
Casey J, Flood K, Ennis S, Doyle E, Farrell M, Lynch SA. Intra-familial variability associated with recessive RYR1 mutation diagnosed prenatally by exome sequencing. Prenat Diagn 2016; 36:1020-1026. [PMID: 27616680 DOI: 10.1002/pd.4925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine the underlying molecular aetiology in a non-consanguineous Irish family who have had three fetal losses because of a primary myopathy characterised by fetal akinesia, arthrogryposis multiplex, bilateral pulmonary hypoplasia and reduced muscle bulk. METHODS Fetal DNA extracted from amniotic cells was whole genome amplified and subjected to whole exome sequencing. RESULTS Whole exome sequencing identified compound heterozygous variants in RYR1 as the cause of the lethal myopathy in this family. All three fetuses were compound heterozygous for a paternally inherited missense variant (c.2113G > A; p.Gly705Arg) and a novel maternally inherited truncating frameshift deletion (c.8843delC; p.Ser2948Cysfs*58). This family did not have the classic cores and fibre type disproportion typically associated with RYR1 mutation. The RYR1 exome finding was made during the couple's third pregnancy and enabled prenatal genetic testing to be undertaken. CONCLUSION We show that recessive RYR1 mutations can be associated with significant intra-familial variability in clinical presentation which can complicate prediction of clinical outcome. RYR1 mutations can also cause diverse muscle pathologies which thwarts diagnosis. This study demonstrates the impact that exome-based diagnoses can have for families with lethal disorders. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jillian Casey
- Clinical Genetics, Temple Street Children's University Hospital, Dublin, Ireland.,UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Karen Flood
- Royal College of Surgeons in Ireland, RCSI Unit, Rotunda Hospital, Dublin, Ireland
| | - Sean Ennis
- UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | | | - Michael Farrell
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Sally Ann Lynch
- Clinical Genetics, Temple Street Children's University Hospital, Dublin, Ireland.,UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Gomez AC, Holford TW, Yamaguchi N. Malignant hyperthermia-associated mutations in the S2-S3 cytoplasmic loop of type 1 ryanodine receptor calcium channel impair calcium-dependent inactivation. Am J Physiol Cell Physiol 2016; 311:C749-C757. [PMID: 27558158 DOI: 10.1152/ajpcell.00134.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/19/2016] [Indexed: 11/22/2022]
Abstract
Channel activities of skeletal muscle ryanodine receptor (RyR1) are activated by micromolar Ca2+ and inactivated by higher (∼1 mM) Ca2+ To gain insight into a mechanism underlying Ca2+-dependent inactivation of RyR1 and its relationship with skeletal muscle diseases, we constructed nine recombinant RyR1 mutants carrying malignant hyperthermia or centronuclear myopathy-associated mutations and determined RyR1 channel activities by [3H]ryanodine binding assay. These mutations are localized in or near the RyR1 domains which are responsible for Ca2+-dependent inactivation of RyR1. Four RyR1 mutations (F4732D, G4733E, R4736W, and R4736Q) in the cytoplasmic loop between the S2 and S3 transmembrane segments (S2-S3 loop) greatly reduced Ca2+-dependent channel inactivation. Activities of these mutant channels were suppressed at 10-100 μM Ca2+, and the suppressions were relieved by 1 mM Mg2+ The Ca2+- and Mg2+-dependent regulation of S2-S3 loop RyR1 mutants are similar to those of the cardiac isoform of RyR (RyR2) rather than wild-type RyR1. Two mutations (T4825I and H4832Y) in the S4-S5 cytoplasmic loop increased Ca2+ affinities for channel activation and decreased Ca2+ affinities for inactivation, but impairment of Ca2+-dependent inactivation was not as prominent as those of S2-S3 loop mutants. Three mutations (T4082M, S4113L, and N4120Y) in the EF-hand domain showed essentially the same Ca2+-dependent channel regulation as that of wild-type RyR1. The results suggest that nine RyR1 mutants associated with skeletal muscle diseases were differently regulated by Ca2+ and Mg2+ Four malignant hyperthermia-associated RyR1 mutations in the S2-S3 loop conferred RyR2-type Ca2+- and Mg2+-dependent channel regulation.
Collapse
Affiliation(s)
- Angela C Gomez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina; and.,Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Timothy W Holford
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina; and.,Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Naohiro Yamaguchi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina; and .,Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| |
Collapse
|
28
|
Treves S, Jungbluth H, Voermans N, Muntoni F, Zorzato F. Ca 2+ handling abnormalities in early-onset muscle diseases: Novel concepts and perspectives. Semin Cell Dev Biol 2016; 64:201-212. [PMID: 27427513 DOI: 10.1016/j.semcdb.2016.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022]
Abstract
The physiological process by which Ca2+ is released from the sarcoplasmic reticulum is called excitation-contraction coupling; it is initiated by an action potential which travels deep into the muscle fiber where it is sensed by the dihydropyridine receptor, a voltage sensing L-type Ca2+channel localized on the transverse tubules. Voltage-induced conformational changes in the dihydropyridine receptor activate the ryanodine receptor Ca2+ release channel of the sarcoplasmic reticulum. The released Ca2+ binds to troponin C, enabling contractile thick-thin filament interactions. The Ca2+ is subsequently transported back into the sarcoplasmic reticulum by specialized Ca2+ pumps (SERCA), preparing the muscle for a new cycle of contraction. Although other proteins are involved in excitation-contraction coupling, the mechanism described above emphasizes the unique role played by the two Ca2+ channels (the dihydropyridine receptor and the ryanodine receptor), the SERCA Ca2+ pumps and the exquisite spatial organization of the membrane compartments endowed with the proteins responsible for this mechanism to function rapidly and efficiently. Research over the past two decades has uncovered the fine details of excitation-contraction coupling under normal conditions while advances in genomics have helped to identify mutations in novel genes in patients with neuromuscular disorders. While it is now clear that many patients with congenital muscle diseases carry mutations in genes encoding proteins directly involved in Ca2+ homeostasis, it has become apparent that mutations are also present in genes encoding for proteins not thought to be directly involved in Ca2+ regulation. Ongoing research in the field now focuses on understanding the functional effect of individual mutations, as well as understanding the role of proteins not specifically located in the sarcoplasmic reticulum which nevertheless are involved in Ca2+ regulation or excitation-contraction coupling. The principal challenge for the future is the identification of drug targets that can be pharmacologically manipulated by small molecules, with the ultimate aim to improve muscle function and quality of life of patients with congenital muscle disorders. The aim of this review is to give an overview of the most recent findings concerning Ca2+ dysregulation and its impact on muscle function in patients with congenital muscle disorders due to mutations in proteins involved in excitation-contraction coupling and more broadly on Ca2+ homeostasis.
Collapse
Affiliation(s)
- Susan Treves
- Departments of Biomedicine and Anesthesia, Basel University Hospital, 4031 Basel, Switzerland; Department of Life Sciences, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy.
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St. Thomas' Hospital, London, United Kingdom; Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, United Kingdom; Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, United Kingdom
| | - Nicol Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, United Kingdom
| | - Francesco Zorzato
- Departments of Biomedicine and Anesthesia, Basel University Hospital, 4031 Basel, Switzerland; Department of Life Sciences, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
29
|
Ríos E, Figueroa L, Manno C, Kraeva N, Riazi S. The couplonopathies: A comparative approach to a class of diseases of skeletal and cardiac muscle. ACTA ACUST UNITED AC 2016; 145:459-74. [PMID: 26009541 PMCID: PMC4442791 DOI: 10.1085/jgp.201411321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel category of diseases of striated muscle is proposed, the couplonopathies, as those that affect components of the couplon and thereby alter its operation. Couplons are the functional units of intracellular calcium release in excitation–contraction coupling. They comprise dihydropyridine receptors, ryanodine receptors (Ca2+ release channels), and a growing list of ancillary proteins whose alteration may lead to disease. Within a generally similar plan, the couplons of skeletal and cardiac muscle show, in a few places, marked structural divergence associated with critical differences in the mechanisms whereby they fulfill their signaling role. Most important among these are the presence of a mechanical or allosteric communication between voltage sensors and Ca2+ release channels, exclusive to the skeletal couplon, and the smaller capacity of the Ca stores in cardiac muscle, which results in greater swings of store concentration during physiological function. Consideration of these structural and functional differences affords insights into the pathogenesis of several couplonopathies. The exclusive mechanical connection of the skeletal couplon explains differences in pathogenesis between malignant hyperthermia (MH) and catecholaminergic polymorphic ventricular tachycardia (CPVT), conditions most commonly caused by mutations in homologous regions of the skeletal and cardiac Ca2+ release channels. Based on mechanistic considerations applicable to both couplons, we identify the plasmalemma as a site of secondary modifications, typically an increase in store-operated calcium entry, that are relevant in MH pathogenesis. Similar considerations help explain the different consequences that mutations in triadin and calsequestrin have in these two tissues. As more information is gathered on the composition of cardiac and skeletal couplons, this comparative and mechanistic approach to couplonopathies should be useful to understand pathogenesis, clarify diagnosis, and propose tissue-specific drug development.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Lourdes Figueroa
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Carlo Manno
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Natalia Kraeva
- Malignant Hyperthermia Investigation Unit, University Health Network, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, University Health Network, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
30
|
Zheng W. Toward decrypting the allosteric mechanism of the ryanodine receptor based on coarse-grained structural and dynamic modeling. Proteins 2015; 83:2307-18. [DOI: 10.1002/prot.24951] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Wenjun Zheng
- Department of Physics; State University of New York at Buffalo; Buffalo New York 14260
| |
Collapse
|
31
|
Centronuclear myopathies: genotype-phenotype correlation and frequency of defined genetic forms in an Italian cohort. J Neurol 2015; 262:1728-40. [PMID: 25957634 DOI: 10.1007/s00415-015-7757-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Centronuclear myopathies (CNMs) are a group of clinically and genetically heterogeneous muscle disorders. To date, mutation in 7 different genes has been reported to cause CNMs but 30 % of cases still remain genetically undefined. Genetic investigations are often expensive and time consuming. Clinical and morphological clues are needed to facilitate genetic tests and to choose the best approach for genetic screening. We aimed to describe genotype-phenotype correlation in an Italian cohort of patients affected by CNMs, to define the relative frequencies of its defined genetic forms and to draw a diagnostic algorithm to address genetic investigations. We recruited patients with CNMs from all the Italian tertiary neuromuscular centers following clinical and histological criteria. All selected patients were screened for the four 'canonical' genes related to CNMs: MTM1, DNM2, RYR1 and BIN1. Pathogenetic mutations were found in 38 of the 54 screened patients (70 %), mostly in patients with congenital onset (25 of 30 patients, 83 %): 15 in MTM1, 6 in DNM2, 3 in RYR1 and one in TTN. Among the 13 patients with a childhood-adolescence onset, mutations were found in 6 patients (46 %), all in DNM2. In the group of the 11 patients with adult onset, mutations were identified in 7 patients (63 %), again in DNM2, confirming that variants in this gene are relatively more common in late-onset phenotypes. The present study provides the relative molecular frequency of centronuclear myopathy and of its genetically defined forms in Italy and also proposes a diagnostic algorithm to be used in clinical practice to address genetic investigations.
Collapse
|
32
|
Characterization of excitation–contraction coupling components in human extraocular muscles. Biochem J 2015; 466:29-36. [DOI: 10.1042/bj20140970] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We show that the expression level of RyR1 in human extraocular muscles (EOMs) is low and that these muscles express different levels of proteins involved in excitation–contraction coupling (ECC) compared with leg muscles (LMs).
Collapse
|
33
|
McKie AB, Alsaedi A, Vogt J, Stuurman KE, Weiss MM, Shakeel H, Tee L, Morgan NV, Nikkels PGJ, van Haaften G, Park SM, van der Smagt JJ, Bugiani M, Maher ER. Germline mutations in RYR1 are associated with foetal akinesia deformation sequence/lethal multiple pterygium syndrome. Acta Neuropathol Commun 2014; 2:148. [PMID: 25476234 PMCID: PMC4271450 DOI: 10.1186/s40478-014-0148-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/06/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Foetal akinesia deformation sequence syndrome (FADS) is a genetically heterogeneous disorder characterised by the combination of foetal akinesia and developmental defects which may include pterygia (joint webbing). Traditionally multiple pterygium syndrome (MPS) has been divided into two forms: prenatally lethal (LMPS) and non-lethal Escobar type (EVMPS) types. Interestingly, FADS, LMPS and EVMPS may be allelic e.g. each of these phenotypes may result from mutations in the foetal acetylcholine receptor gamma subunit gene (CHRNG). Many cases of FADS and MPS do not have a mutation in a known FADS/MPS gene and we undertook molecular genetic studies to identify novel causes of these phenotypes. RESULTS After mapping a novel locus for FADS/LMPS to chromosome 19, we identified a homozygous null mutation in the RYR1 gene in a consanguineous kindred with recurrent LMPS pregnancies. Resequencing of RYR1 in a cohort of 66 unrelated probands with FADS/LMPS/EVMPS (36 with FADS/LMPS and 30 with EVMPS) revealed two additional homozygous mutations (in frame deletions). The overall frequency of RYR1 mutations in probands with FADS/LMPS was 8.3%. CONCLUSIONS Our findings report, for the first time, a homozygous RYR1 null mutation and expand the range of RYR1-related phenotypes to include early lethal FADS/LMPS. We suggest that RYR1 mutation analysis should be performed in cases of severe FADS/LMPS even in the absence of specific histopathological indicators of RYR1-related disease.
Collapse
Affiliation(s)
- Arthur B McKie
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| | - Atif Alsaedi
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's Hospital, Birmingham, B15 2TG, UK.
| | - Kyra E Stuurman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Marjan M Weiss
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Hassan Shakeel
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| | - Louise Tee
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Neil V Morgan
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Peter G J Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Gijs van Haaften
- Department of Medical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| | - Soo-Mi Park
- Department of Clinical Genetics, Addenbrooke's Treatment Centre, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Jasper J van der Smagt
- Department of Medical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands.
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Department of Clinical Genetics, Addenbrooke's Treatment Centre, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Addenbrooke's Treatment Centre, Cambridge Biomedical Campus, Box 238, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
34
|
Seo MD, Enomoto M, Ishiyama N, Stathopulos PB, Ikura M. Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1980-91. [PMID: 25461839 DOI: 10.1016/j.bbamcr.2014.11.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
The two major calcium (Ca²⁺) release channels on the sarco/endoplasmic reticulum (SR/ER) are inositol 1,4,5-trisphosphate and ryanodine receptors (IP3Rs and RyRs). They play versatile roles in essential cell signaling processes, and abnormalities of these channels are associated with a variety of diseases. Structural information on IP3Rs and RyRs determined using multiple techniques including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (EM), has significantly advanced our understanding of the mechanisms by which these Ca²⁺ release channels function under normal and pathophysiological circumstances. In this review, structural advances on the understanding of the mechanisms of IP3R and RyR function and dysfunction are summarized. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 443-749, Republic of Korea; College of Pharmacy, Ajou University, Suwon, Gyeonggi 443-749, Republic of Korea
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Noboru Ishiyama
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
35
|
Rebbeck RT, Karunasekara Y, Board PG, Beard NA, Casarotto MG, Dulhunty AF. Skeletal muscle excitation–contraction coupling: Who are the dancing partners? Int J Biochem Cell Biol 2014; 48:28-38. [DOI: 10.1016/j.biocel.2013.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 01/15/2023]
|
36
|
Chaube R, Hess DT, Wang YJ, Plummer B, Sun QA, Laurita K, Stamler JS. Regulation of the skeletal muscle ryanodine receptor/Ca2+-release channel RyR1 by S-palmitoylation. J Biol Chem 2014; 289:8612-9. [PMID: 24509862 DOI: 10.1074/jbc.m114.548925] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ryanodine receptor/Ca(2+)-release channels (RyRs) of skeletal and cardiac muscle are essential for Ca(2+) release from the sarcoplasmic reticulum that mediates excitation-contraction coupling. It has been shown that RyR activity is regulated by dynamic post-translational modifications of Cys residues, in particular S-nitrosylation and S-oxidation. Here we show that the predominant form of RyR in skeletal muscle, RyR1, is subject to Cys-directed modification by S-palmitoylation. S-Palmitoylation targets 18 Cys within the N-terminal, cytoplasmic region of RyR1, which are clustered in multiple functional domains including those implicated in the activity-governing protein-protein interactions of RyR1 with the L-type Ca(2+) channel CaV1.1, calmodulin, and the FK506-binding protein FKBP12, as well as in "hot spot" regions containing sites of mutations implicated in malignant hyperthermia and central core disease. Eight of these Cys have been identified previously as subject to physiological S-nitrosylation or S-oxidation. Diminishing S-palmitoylation directly suppresses RyR1 activity as well as stimulus-coupled Ca(2+) release through RyR1. These findings demonstrate functional regulation of RyR1 by a previously unreported post-translational modification and indicate the potential for extensive Cys-based signaling cross-talk. In addition, we identify the sarco/endoplasmic reticular Ca(2+)-ATPase 1A and the α1S subunit of the L-type Ca(2+) channel CaV1.1 as S-palmitoylated proteins, indicating that S-palmitoylation may regulate all principal governors of Ca(2+) flux in skeletal muscle that mediates excitation-contraction coupling.
Collapse
Affiliation(s)
- Ruchi Chaube
- From the Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals, Cleveland, Ohio 44106
| | | | | | | | | | | | | |
Collapse
|
37
|
Vervliet T, Decrock E, Molgó J, Sorrentino V, Missiaen L, Leybaert L, De Smedt H, Kasri NN, Parys JB, Bultynck G. Bcl-2 binds to and inhibits ryanodine receptors. J Cell Sci 2014; 127:2782-92. [DOI: 10.1242/jcs.150011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein not only counteracts apoptosis at the mitochondria by scaffolding pro-apoptotic Bcl-2-family members, but also acts at the endoplasmic reticulum, thereby controlling intracellular Ca2+ dynamics. Bcl-2 inhibits Ca2+ release by targeting the inositol 1,4,5-trisphosphate receptor (IP3R). Sequence analysis revealed that the Bcl-2-binding site on the IP3R displays strong homology with a conserved sequence present in all three ryanodine-receptor (RyR) isoforms. We now report that, Bcl-2 co-immunoprecipitated with RyRs in ectopic expression systems and in native rat hippocampi, indicating the existence of endogenous RyR/Bcl-2 complexes. Purified RyR domains containing the putative Bcl-2-binding site bound full-length Bcl-2 in pull-down experiments and interacted with Bcl-2's BH4 domain in surface-plasmon-resonance experiments, suggesting a direct interaction. Exogenous expression of full-length Bcl-2 or electroporation loading of Bcl-2's BH4-domain dampened RyR-mediated Ca2+ release in HEK293 cell models. Finally, introducing the BH4-domain peptide into hippocampal neurons via a patch pipette decreased RyR-mediated Ca2+ release. In conclusion, this study identifies Bcl-2 as a novel inhibitor of RyR-based intracellular Ca2+-release channels.
Collapse
|
38
|
Lam AK, Galione A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2542-59. [DOI: 10.1016/j.bbamcr.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
|
39
|
Variable myopathic presentation in a single family with novel skeletal RYR1 mutation. PLoS One 2013; 8:e69296. [PMID: 23894444 PMCID: PMC3722152 DOI: 10.1371/journal.pone.0069296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 06/11/2013] [Indexed: 01/24/2023] Open
Abstract
We describe an autosomal recessive heterogeneous congenital myopathy in a large consanguineous family. The disease is characterized by variable severity, progressive course in 3 of 4 patients, myopathic face without ophthalmoplegia and proximal muscle weakness. Absence of cores was noted in all patients. Genome wide linkage analysis revealed a single locus on chromosome 19q13 with Zmax = 3.86 at θ = 0.0 and homozygosity of the polymorphic markers at this locus in patients. Direct sequencing of the main candidate gene within the candidate region, RYR1, was performed. A novel homozygous A to G nucleotide substitution (p.Y3016C) within exon 60 of the RYR1 gene was found in patients. ARMS PCR was used to screen for the mutation in all available family members and in an additional 150 healthy individuals. This procedure confirmed sequence analysis and did not reveal the A to G mutation (p.Y3016C) in 300 chromosomes from healthy individuals. Functional analysis on EBV immortalized cell lines showed no effect of the mutation on RyR1 pharmacological activation or the content of intracellular Ca2+ stores. Western blot analysis demonstrated a significant reduction of the RyR1 protein in the patient’s muscle concomitant with a reduction of the DHPRα1.1 protein. This novel mutation resulting in RyR1 protein decrease causes heterogeneous clinical presentation, including slow progression course and absence of centrally localized cores on muscle biopsy. We suggest that RYR1 related myopathy should be considered in a wide variety of clinical and pathological presentation in childhood myopathies.
Collapse
|
40
|
Sun QA, Wang B, Miyagi M, Hess DT, Stamler JS. Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor/Ca2+ release channel (RyR1): sites and nature of oxidative modification. J Biol Chem 2013; 288:22961-71. [PMID: 23798702 DOI: 10.1074/jbc.m113.480228] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In mammalian skeletal muscle, Ca(2+) release from the sarcoplasmic reticulum (SR) through the ryanodine receptor/Ca(2+)-release channel RyR1 can be enhanced by S-oxidation or S-nitrosylation of separate Cys residues, which are allosterically linked. S-Oxidation of RyR1 is coupled to muscle oxygen tension (pO2) through O2-dependent production of hydrogen peroxide by SR-resident NADPH oxidase 4. In isolated SR (SR vesicles), an average of six to eight Cys thiols/RyR1 monomer are reversibly oxidized at high (21% O2) versus low pO2 (1% O2), but their identity among the 100 Cys residues/RyR1 monomer is unknown. Here we use isotope-coded affinity tag labeling and mass spectrometry (yielding 93% coverage of RyR1 Cys residues) to identify 13 Cys residues subject to pO2-coupled S-oxidation in SR vesicles. Eight additional Cys residues are oxidized at high versus low pO2 only when NADPH levels are supplemented to enhance NADPH oxidase 4 activity. pO2-sensitive Cys residues were largely non-overlapping with those identified previously as hyperreactive by administration of exogenous reagents (three of 21) or as S-nitrosylated. Cys residues subject to pO2-coupled oxidation are distributed widely within the cytoplasmic domain of RyR1 in multiple functional domains implicated in RyR1 activity-regulating interactions with the L-type Ca(2+) channel (dihydropyridine receptor) and FK506-binding protein 12 as well as in "hot spot" regions containing sites of mutation implicated in malignant hyperthermia and central core disease. pO2-coupled disulfide formation was identified, whereas neither S-glutathionylated nor sulfenamide-modified Cys residues were observed. Thus, physiological redox regulation of RyR1 by endogenously generated hydrogen peroxide is exerted through dynamic disulfide formation involving multiple Cys residues.
Collapse
Affiliation(s)
- Qi-An Sun
- Institute for Transformative Molecular Medicine, Case Western Reserve University and University Hospitals, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
41
|
Amador FJ, Stathopulos PB, Enomoto M, Ikura M. Ryanodine receptor calcium release channels: lessons from structure-function studies. FEBS J 2013; 280:5456-70. [PMID: 23413940 DOI: 10.1111/febs.12194] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
Ryanodine receptors (RyRs) are the largest known ion channels. They are Ca(2+) release channels found primarily on the sarcoplasmic reticulum of myocytes. Several hundred mutations in RyRs are associated with skeletal or cardiomyocyte disease in humans. Many of these mutations can now be mapped onto the high resolution structures of individual RyR domains and on full-length tetrameric cryo-electron microscopy structures. A closely related Ca(2+) release channel, the inositol 1,4,5-trisphospate receptor (IP3 R), shows a conserved structural architecture at the N-terminus, suggesting that both channels evolved from an ancestral unicellular RyR/IP3 R. The functional insights provided by recent structural studies for both channels will aid in the development of rationale treatments for a myriad of Ca(2+)-signaled malignancies.
Collapse
Affiliation(s)
- Fernando J Amador
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Canada
| | | | | | | |
Collapse
|