1
|
Juras PK, Racioppi L, Mukherjee D, Artham S, Gao X, D’Agostino LA, Chang CY, McDonnell DP. Increased CaMKK2 Expression Is an Adaptive Response That Maintains the Fitness of Tumor-Infiltrating Natural Killer Cells. Cancer Immunol Res 2023; 11:109-122. [PMID: 36301267 PMCID: PMC9812906 DOI: 10.1158/2326-6066.cir-22-0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Accepted: 10/21/2022] [Indexed: 01/21/2023]
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a key regulator of energy homeostasis in several cell types. Expression of this enzyme in tumor cells promotes proliferation and migration, and expression in tumor-associated immune cells facilitates M2 macrophage polarization and the development of myeloid-derived suppressor cells. Thus, there has been interest in developing CaMKK2 inhibitors as potential anticancer therapeutics. One impediment to clinical development of these agents is that the roles of CaMKK2 in other cellular compartments within the tumor immune microenvironment remain to be established. We report herein that CaMKK2 is expressed at low basal levels in natural killer (NK) cells but is upregulated in tumor-infiltrating NK cells where it suppresses apoptosis and promotes proliferation. NK cell-intrinsic deletion of CaMKK2 increased metastatic progression in several murine models, establishing a critical role for this enzyme in NK cell-mediated antitumor immunity. Ablation of the CaMKK2 protein, but not inhibition of its kinase activity, resulted in decreased NK-cell survival. These results indicate an important scaffolding function for CaMKK2 in NK cells and suggest that competitive CaMKK2 inhibitors and ligand-directed degraders (LDD) are likely to have distinct therapeutic utilities. Finally, we determined that intracellular lactic acid is a key driver of CaMKK2 expression, suggesting that upregulated expression of this enzyme is an adaptive mechanism by which tumor-infiltrating NK cells mitigate the deleterious effects of a lactic acid-rich tumor microenvironment. The findings of this study should inform strategies to manipulate the CaMKK2-signaling axis as a therapeutic approach in cancer.
Collapse
Affiliation(s)
- Patrick K. Juras
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Luigi Racioppi
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Debarati Mukherjee
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sandeep Artham
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xia Gao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA,Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laura Akullian D’Agostino
- Small Molecule Drug Discovery, Bristol Myers Squibb, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
2
|
Neuronal CaMKK2 promotes immunosuppression and checkpoint blockade resistance in glioblastoma. Nat Commun 2022; 13:6483. [PMID: 36309495 PMCID: PMC9617949 DOI: 10.1038/s41467-022-34175-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/14/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is notorious for its immunosuppressive tumor microenvironment (TME) and is refractory to immune checkpoint blockade (ICB). Here, we identify calmodulin-dependent kinase kinase 2 (CaMKK2) as a driver of ICB resistance. CaMKK2 is highly expressed in pro-tumor cells and is associated with worsened survival in patients with GBM. Host CaMKK2, specifically, reduces survival and promotes ICB resistance. Multimodal profiling of the TME reveals that CaMKK2 is associated with several ICB resistance-associated immune phenotypes. CaMKK2 promotes exhaustion in CD8+ T cells and reduces the expansion of effector CD4+ T cells, additionally limiting their tumor penetrance. CaMKK2 also maintains myeloid cells in a disease-associated microglia-like phenotype. Lastly, neuronal CaMKK2 is required for maintaining the ICB resistance-associated myeloid phenotype, is deleterious to survival, and promotes ICB resistance. Our findings reveal CaMKK2 as a contributor to ICB resistance and identify neurons as a driver of immunotherapeutic resistance in GBM.
Collapse
|
3
|
Pulliam TL, Awad D, Han JJ, Murray MM, Ackroyd JJ, Goli P, Oakhill JS, Scott JW, Ittmann MM, Frigo DE. Systemic Ablation of Camkk2 Impairs Metastatic Colonization and Improves Insulin Sensitivity in TRAMP Mice: Evidence for Cancer Cell-Extrinsic CAMKK2 Functions in Prostate Cancer. Cells 2022; 11:1890. [PMID: 35741020 PMCID: PMC9221545 DOI: 10.3390/cells11121890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Despite early studies linking calcium-calmodulin protein kinase kinase 2 (CAMKK2) to prostate cancer cell migration and invasion, the role of CAMKK2 in metastasis in vivo remains unclear. Moreover, while CAMKK2 is known to regulate systemic metabolism, whether CAMKK2's effects on whole-body metabolism would impact prostate cancer progression and/or related comorbidities is not known. Here, we demonstrate that germline ablation of Camkk2 slows, but does not stop, primary prostate tumorigenesis in the TRansgenic Adenocarcinoma Mouse Prostate (TRAMP) genetic mouse model. Consistent with prior epidemiological reports supporting a link between obesity and prostate cancer aggressiveness, TRAMP mice fed a high-fat diet exhibited a pronounced increase in the colonization of lung metastases. We demonstrated that this effect on the metastatic spread was dependent on CAMKK2. Notably, diet-induced lung metastases exhibited a highly aggressive neuroendocrine phenotype. Concurrently, Camkk2 deletion improved insulin sensitivity in the same mice. Histological analyses revealed that cancer cells were smaller in the TRAMP;Camkk2-/- mice compared to TRAMP;Camkk2+/+ controls. Given the differences in circulating insulin levels, a known regulator of cell growth, we hypothesized that systemic CAMKK2 could promote prostate cancer cell growth and disease progression in part through cancer cell-extrinsic mechanisms. Accordingly, host deletion of Camkk2 impaired the growth of syngeneic murine prostate tumors in vivo, confirming nonautonomous roles for CAMKK2 in prostate cancer. Cancer cell size and mTOR signaling was diminished in tumors propagated in Camkk2-null mice. Together, these data indicate that, in addition to cancer cell-intrinsic roles, CAMKK2 mediates prostate cancer progression via tumor-extrinsic mechanisms. Further, we propose that CAMKK2 inhibition may also help combat common metabolic comorbidities in men with advanced prostate cancer.
Collapse
Affiliation(s)
- Thomas L. Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
| | - Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jenny J. Han
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
| | - Mollianne M. Murray
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
| | - Jeffrey J. Ackroyd
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
| | - Pavithr Goli
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
| | - Jonathan S. Oakhill
- St Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia; (J.S.O.); (J.W.S.)
| | - John W. Scott
- St Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia; (J.S.O.); (J.W.S.)
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3065, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Michael M. Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L. Duncan Cancer Center, Houston, TX 77030, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Daniel E. Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
4
|
Mangiola S, McCoy P, Modrak M, Souza-Fonseca-Guimaraes F, Blashki D, Stuchbery R, Keam SP, Kerger M, Chow K, Nasa C, Le Page M, Lister N, Monard S, Peters J, Dundee P, Williams SG, Costello AJ, Neeson PJ, Pal B, Huntington ND, Corcoran NM, Papenfuss AT, Hovens CM. Transcriptome sequencing and multi-plex imaging of prostate cancer microenvironment reveals a dominant role for monocytic cells in progression. BMC Cancer 2021; 21:846. [PMID: 34294073 PMCID: PMC8296706 DOI: 10.1186/s12885-021-08529-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/23/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Prostate cancer is caused by genomic aberrations in normal epithelial cells, however clinical translation of findings from analyses of cancer cells alone has been very limited. A deeper understanding of the tumour microenvironment is needed to identify the key drivers of disease progression and reveal novel therapeutic opportunities. RESULTS In this study, the experimental enrichment of selected cell-types, the development of a Bayesian inference model for continuous differential transcript abundance, and multiplex immunohistochemistry permitted us to define the transcriptional landscape of the prostate cancer microenvironment along the disease progression axis. An important role of monocytes and macrophages in prostate cancer progression and disease recurrence was uncovered, supported by both transcriptional landscape findings and by differential tissue composition analyses. These findings were corroborated and validated by spatial analyses at the single-cell level using multiplex immunohistochemistry. CONCLUSIONS This study advances our knowledge concerning the role of monocyte-derived recruitment in primary prostate cancer, and supports their key role in disease progression, patient survival and prostate microenvironment immune modulation.
Collapse
Affiliation(s)
- Stefano Mangiola
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick McCoy
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Martin Modrak
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Fernando Souza-Fonseca-Guimaraes
- University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Daniel Blashki
- The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Ryan Stuchbery
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Simon P Keam
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Michael Kerger
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ken Chow
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Chayanica Nasa
- Flow Cytometry Facility, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Melanie Le Page
- Flow Cytometry Facility, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Natalie Lister
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Simon Monard
- Flow Cytometry Facility, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Justin Peters
- Epworth Center of Cancer Research, Clayton, Victoria, Australia
| | - Phil Dundee
- Epworth Center of Cancer Research, Clayton, Victoria, Australia
| | - Scott G Williams
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Anthony J Costello
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Paul J Neeson
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Bhupinder Pal
- The Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
| | - Nicholas D Huntington
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Niall M Corcoran
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Urology, Frankston Hospital, Frankston, Victoria, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Christopher M Hovens
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
- Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Yu Q, Zheng B, Ji X, Li P, Guo Z. miR-378c suppresses Wilms tumor development via negatively regulating CAMKK2. Acta Biochim Biophys Sin (Shanghai) 2021; 53:739-747. [PMID: 33956079 DOI: 10.1093/abbs/gmab047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 01/03/2023] Open
Abstract
Wilms tumor is a rare kidney malignancy primarily developed in children. Treatment for Wilms tumor includes surgery, radiotherapy, and chemotherapy. Recent studies have demonstrated that microRNAs (miRNAs) play important roles in regulating Wilms tumor development. In this study, we aimed to elucidate the expression and function of miR-378c in Wilms tumor. Quantitative real-time PCR (qRT-PCR) results showed that miR-378c was downregulated in Wilms tumor tissues and cell lines. Functionally, further CCK-8, would healing, and transwell assays revealed that overexpression of miR-378c impaired Wilms tumor cell growth and metastasis in vitro. In addition, xenograft assay showed that miR-378c overexpression inhibited Wilms tumor development in vivo. Mechanistically, luciferase reporter assay confirmed that miR-378c directly targets CAMKK2 in Wilms tumor. qRT-PCR and western blot assays demonstrated that CAMKK2 was highly expressed in Wilms tumor tissues and cell lines. Rescue experiments were performed to further evaluate the functional relationship between miR-378c and CAMKK2. Overexpression of miR-378c suppressed Wilms tumor cell metastasis via negatively regulating CAMKK2 expression. Consistently, inhibition of miR-378c enhanced Wilms tumor cell malignancy behavior via augmenting CAMKK2 expression, which could be abrogated by CAMKK2 knockdown. In summary, our findings suggest that miR-378c inhibits the development and metastasis of Wilms tumor via negatively regulating CAMKK2 expression, which could be utilized to develop new therapy strategy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Paediatric Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Baijun Zheng
- Department of Paediatric Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Xiang Ji
- Department of Paediatric Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Peng Li
- Department of Paediatric Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhengtuan Guo
- Department of Paediatric Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Department of Paediatric Surgery, Xi’an International Medical Center Hospital, Xi’an 710100, China
| |
Collapse
|
6
|
A complete map of the Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) signaling pathway. J Cell Commun Signal 2020; 15:283-290. [PMID: 33136287 DOI: 10.1007/s12079-020-00592-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine-protein kinase belonging to the Ca2+/calmodulin-dependent protein kinase subfamily. CAMKK2 has an autocatalytic site, which gets exposed when Ca2+/calmodulin (CAM) binds to it. This results in autophosphorylation and complete activation of CAMKK2. The three major known downstream targets of CAMKK2 are 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPKα), calcium/calmodulin-dependent protein kinase 1 (CAMK1) and calcium/calmodulin-dependent protein kinase 4 (CAMK4). Activation of these targets by CAMKK2 is important for the maintenance of different cellular and physiological processes within the cell. CAMKK2 is found to be important in neuronal development, bone remodeling, adipogenesis, and systemic glucose homeostasis, osteoclastgensis and postnatal myogensis. CAMKK2 is reported to be involved in pathologies like Duchenne muscular dystrophy, inflammation, osteoporosis and bone remodeling and is also reported to be overexpressed in prostate cancer, hepatic cancer, ovarian and gastric cancer. CAMKK2 is involved in increased cell proliferation and migration through CAMKK2/AMPK pathway in prostate cancer and activation of AKT in ovarian cancer. Although CAMKK2 is a molecule of great importance, a public resource of the CAMKK2 signaling pathway is currently lacking. Therefore, we carried out detailed data mining and documentation of the signaling events associated with CAMKK2 from published literature and developed an integrated reaction map of CAMKK2 signaling. This resulted in the cataloging of 285 reactions belonging to the CAMKK2 signaling pathway, which includes 33 protein-protein interactions, 74 post-translational modifications, 7 protein translocation events, and 22 activation/inhibition events. Besides, 124 gene regulation events and 25 activator/inhibitors involved in CAMKK2 activation were also cataloged. The CAMKK2 signaling pathway map data is made freely accessible through WikiPathway database ( https://www.wikipathways.org/index.php/Pathway:WP4874 ). We expect that data on a signaling map of CAMKK2 will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on CAMKK2 and its utility in the development of biomarkers and therapeutic targets.
Collapse
|
7
|
Sabbir MG, Taylor CG, Zahradka P. Hypomorphic CAMKK2 in EA.hy926 endothelial cells causes abnormal transferrin trafficking, iron homeostasis and glucose metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118763. [DOI: 10.1016/j.bbamcr.2020.118763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
|
8
|
Yuan J, Tan L, Yin Z, Tao K, Wang G, Shi W, Gao J. Bioinformatics analysis identifies potential chemoresistance-associated genes across multiple types of cancer. Oncol Lett 2019; 18:2576-2583. [PMID: 31402953 DOI: 10.3892/ol.2019.10533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Despite the fact that studies have revealed mechanisms underlying tumor chemoresistance, the functions of numerous potential chemoresistance-associated genes have yet to be elucidated. A bioinformatics analysis was conducted to screen differentially expressed genes (DEGs) across four types of chemoresistant tumors and functional enrichment analysis was used to examine the biological significance of these genes. Furthermore, a gene network was constructed using weighted gene co-expression network analysis to identify hub genes. A total of 6,015, 2,074, 2,141 and 954 differentially expressed genes were identified in estrogen receptor-negative breast cancer, ovarian cancer, rectal cancer and gastric cancer, respectively; however, only five of these DEGs were dysregulated in all four types of cancer. Functional enrichment analysis of the DEGs suggested that genomic stability and immune response are crucial determinants of tumor chemoresistance. In addition, 14, 8, 6 and 1 co-expressed gene modules were identified in estrogen receptor-negative breast cancer, ovarian cancer, rectal cancer and gastric cancer, respectively, and protein-protein interaction networks were created. The analysis identified only calcium-calmodulin-dependent protein kinase kinase 2, erythropoietin receptor, mitochondrial poly(A) RNA polymerase, α-parvin, and zinc finger and BTB domain-containing protein 44 to be dysregulated in all four cancer types, indicating varying mechanisms of chemoresistance in different tumor types. Furthermore, our analysis suggests that type I collagen α1, fibroblast growth factor 14 and major histocompatibility complex, class II, DR β1 potentially serve key roles in the development of chemoresistance. In conclusion, the present study proposes a simple and effective strategy for identifying genes involved in chemoresistance and predicting their potential functional roles, which may guide subsequent experimental studies.
Collapse
Affiliation(s)
- Jingsheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lulu Tan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhijie Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guobing Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenjia Shi
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
9
|
Racioppi L, Nelson ER, Huang W, Mukherjee D, Lawrence SA, Lento W, Masci AM, Jiao Y, Park S, York B, Liu Y, Baek AE, Drewry DH, Zuercher WJ, Bertani FR, Businaro L, Geradts J, Hall A, Means AR, Chao N, Chang CY, McDonnell DP. CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer. Nat Commun 2019; 10:2450. [PMID: 31164648 PMCID: PMC6547743 DOI: 10.1038/s41467-019-10424-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 05/09/2019] [Indexed: 01/21/2023] Open
Abstract
Tumor-associated myeloid cells regulate tumor growth and metastasis, and their accumulation is a negative prognostic factor for breast cancer. Here we find calcium/calmodulin-dependent kinase kinase (CaMKK2) to be highly expressed within intratumoral myeloid cells in mouse models of breast cancer, and demonstrate that its inhibition within myeloid cells suppresses tumor growth by increasing intratumoral accumulation of effector CD8+ T cells and immune-stimulatory myeloid subsets. Tumor-associated macrophages (TAMs) isolated from Camkk2-/- mice expressed higher levels of chemokines involved in the recruitment of effector T cells compared to WT. Similarly, in vitro generated Camkk2-/- macrophages recruit more T cells, and have a reduced capability to suppress T cell proliferation, compared to WT. Treatment with CaMKK2 inhibitors blocks tumor growth in a CD8+ T cell-dependent manner, and facilitates a favorable reprogramming of the immune cell microenvironment. These data, credential CaMKK2 as a myeloid-selective checkpoint, the inhibition of which may have utility in the immunotherapy of breast cancer.
Collapse
Affiliation(s)
- Luigi Racioppi
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy.
| | - Erik R Nelson
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- University of Illinois Cancer Center, Chicago, IL, 60612, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wei Huang
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Debarati Mukherjee
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Scott A Lawrence
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - William Lento
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Anna Maria Masci
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27710, USA
| | - Yiquin Jiao
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yaping Liu
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Amy E Baek
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - David H Drewry
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, NC, 27709, USA
- UNC Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - William J Zuercher
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, NC, 27709, USA
- UNC Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | | | - Luca Businaro
- CNR IFN Institute for Photonics and Nanotechnologies, Rome, 00156, Italy
| | - Joseph Geradts
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Allison Hall
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Anthony R Means
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nelson Chao
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
Han F, Li CF, Cai Z, Zhang X, Jin G, Zhang WN, Xu C, Wang CY, Morrow J, Zhang S, Xu D, Wang G, Lin HK. The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat Commun 2018; 9:4728. [PMID: 30413706 PMCID: PMC6226490 DOI: 10.1038/s41467-018-07188-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
PI3K/Akt signaling is activated in cancers and governs tumor initiation and progression, but how Akt is activated under diverse stresses is poorly understood. Here we identify AMPK as an essential regulator for Akt activation by various stresses. Surprisingly, AMPK is also activated by growth factor EGF through Ca2+/Calmodulin-dependent kinase and is essential for EGF-mediated Akt activation and biological functions. AMPK phosphorylates Skp2 at S256 and promotes the integrity and E3 ligase activity of Skp2 SCF complex leading to K63-linked ubiquitination and activation of Akt and subsequent oncogenic processes. Importantly, AMPK-mediated Skp2 S256 phosphorylation promotes breast cancer progression in mouse tumor models, correlates with Akt and AMPK activation in breast cancer patients, and predicts poor survival outcomes. Finally, targeting AMPK-mediated Skp2 S256 phosphorylation sensitizes cells to anti-EGF receptor targeted therapy. Our study sheds light on how stress and EGF induce Akt activation and new mechanisms for AMPK-mediated oncogenesis and drug resistance. How Akt pathway is activated under stress is poorly understood. Here, the authors demonstrate the crucial role of AMPK for cellular stresses and growth factors- mediated Akt activation through a mechanism involving the E3 ubiquitin ligase Skp2 and Cullin-1.
Collapse
Affiliation(s)
- Fei Han
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Foundational Medical Center, Tainan, 710, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xian Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guoxiang Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei-Na Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Chuan Xu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Chi-Yun Wang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Morrow
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shuxing Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dazhi Xu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Department of Gastric and Pancreatic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Guihua Wang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Graduate Institute of Basic Medical Science, China Medical University, Taichung, 404, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
11
|
Asquith CRM, Godoi PH, Couñago RM, Laitinen T, Scott JW, Langendorf CG, Oakhill JS, Drewry DH, Zuercher WJ, Koutentis PA, Willson TM, Kalogirou AS. 1,2,6-Thiadiazinones as Novel Narrow Spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) Inhibitors. Molecules 2018; 23:molecules23051221. [PMID: 29783765 PMCID: PMC6019134 DOI: 10.3390/molecules23051221] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
We demonstrate for the first time that 4H-1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4H-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Paulo H Godoi
- Structural Genomics Consortium, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo 13083-886, Brazil.
| | - Rafael M Couñago
- Structural Genomics Consortium, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo 13083-886, Brazil.
- Center for Molecular and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Avenida Cândido Rondon 400, P. O. Box 6010, 13083-875 Campinas, São Paulo 13083-886, Brazil.
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland.
| | - John W Scott
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne 3000, Australia.
- The Florey Institute of Neuroscience and Mental Health, Parkville 3052, Australia.
| | - Christopher G Langendorf
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia.
| | - Jonathan S Oakhill
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne 3000, Australia.
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | - Timothy M Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Andreas S Kalogirou
- Department of Chemistry, University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus.
- Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenis Str., Engomi, P. O. Box 22006, 1516 Nicosia, Cyprus.
| |
Collapse
|
12
|
Dadwal UC, Chang ES, Sankar U. Androgen Receptor-CaMKK2 Axis in Prostate Cancer and Bone Microenvironment. Front Endocrinol (Lausanne) 2018; 9:335. [PMID: 29967592 PMCID: PMC6015873 DOI: 10.3389/fendo.2018.00335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
The skeletal system is of paramount importance in advanced stage prostate cancer (PCa) as it is the preferred site of metastasis. Complex mechanisms are employed sequentially by PCa cells to home to and colonize the bone. Bone-resident PCa cells then recruit osteoblasts (OBs), osteoclasts (OCs), and macrophages within the niche into entities that promote cancer cell growth and survival. Since PCa is heavily reliant on androgens for growth and survival, androgen-deprivation therapy (ADT) is the standard of care for advanced disease. Although it significantly improves survival rates, ADT detrimentally affects bone health and significantly increases the risk of fractures. Moreover, whereas the majority patients with advanced PCa respond favorably to androgen deprivation, most experience a relapse of the disease to a hormone-refractory form within 1-2 years of ADT. The tumor adapts to surviving under low testosterone conditions by selecting for mutations in the androgen receptor (AR) that constitutively activate it. Thus, AR signaling remains active in PCa cells and aids in its survival under low levels of circulating androgens and additionally allows the cancer cells to manipulate the bone microenvironment to fuel its growth. Hence, AR and its downstream effectors are attractive targets for therapeutic interventions against PCa. Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2), was recently identified as a key downstream target of AR in coordinating PCa cell growth, survival, and migration. Additionally, this multifunctional serine/threonine protein kinase is a critical mediator of bone remodeling and macrophage function, thus emerging as an attractive therapeutic target downstream of AR in controlling metastatic PCa and preventing ADT-induced bone loss. Here, we discuss the role played by AR-CaMKK2 signaling axis in PCa survival, metabolism, cell growth, and migration as well as the cell-intrinsic roles of CaMKK2 in OBs, OCs, and macrophages within the bone microenvironment.
Collapse
|
13
|
Quantitative assessment of cell fate decision between autophagy and apoptosis. Sci Rep 2017; 7:17605. [PMID: 29242632 PMCID: PMC5730598 DOI: 10.1038/s41598-017-18001-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/05/2017] [Indexed: 01/14/2023] Open
Abstract
Autophagy and apoptosis are cellular processes that regulate cell survival and death, the former by eliminating dysfunctional components in the cell, the latter by programmed cell death. Stress signals can induce either process, and it is unclear how cells 'assess' cellular damage and make a 'life' or 'death' decision upon activating autophagy or apoptosis. A computational model of coupled apoptosis and autophagy is built here to analyze the underlying signaling and regulatory network dynamics. The model explains the experimentally observed differential deployment of autophagy and apoptosis in response to various stress signals. Autophagic response dominates at low-to-moderate stress; whereas the response shifts from autophagy (graded activation) to apoptosis (switch-like activation) with increasing stress intensity. The model reveals that cytoplasmic Ca2+ acts as a rheostat that fine-tunes autophagic and apoptotic responses. A G-protein signaling-mediated feedback loop maintains cytoplasmic Ca2+ level, which in turn governs autophagic response through an AMP-activated protein kinase (AMPK)-mediated feedforward loop. Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ) emerges as a determinant of the competing roles of cytoplasmic Ca2+ in autophagy regulation. The study demonstrates that the proposed model can be advantageously used for interrogating cell regulation events and developing pharmacological strategies for modulating cell decisions.
Collapse
|
14
|
Rhie SK, Guo Y, Tak YG, Yao L, Shen H, Coetzee GA, Laird PW, Farnham PJ. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits. Epigenetics Chromatin 2016; 9:50. [PMID: 27833659 PMCID: PMC5103450 DOI: 10.1186/s13072-016-0102-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Background Although technological advances now allow increased tumor profiling, a detailed understanding of the mechanisms leading to the development of different cancers remains elusive. Our approach toward understanding the molecular events that lead to cancer is to characterize changes in transcriptional regulatory networks between normal and tumor tissue. Because enhancer activity is thought to be critical in regulating cell fate decisions, we have focused our studies on distal regulatory elements and transcription factors that bind to these elements. Results Using DNA methylation data, we identified more than 25,000 enhancers that are differentially activated in breast, prostate, and kidney tumor tissues, as compared to normal tissues. We then developed an analytical approach called Tracing Enhancer Networks using Epigenetic Traits that correlates DNA methylation levels at enhancers with gene expression to identify more than 800,000 genome-wide links from enhancers to genes and from genes to enhancers. We found more than 1200 transcription factors to be involved in these tumor-specific enhancer networks. We further characterized several transcription factors linked to a large number of enhancers in each tumor type, including GATA3 in non-basal breast tumors, HOXC6 and DLX1 in prostate tumors, and ZNF395 in kidney tumors. We showed that HOXC6 and DLX1 are associated with different clusters of prostate tumor-specific enhancers and confer distinct transcriptomic changes upon knockdown in C42B prostate cancer cells. We also discovered de novo motifs enriched in enhancers linked to ZNF395 in kidney tumors. Conclusions Our studies characterized tumor-specific enhancers and revealed key transcription factors involved in enhancer networks for specific tumor types and subgroups. Our findings, which include a large set of identified enhancers and transcription factors linked to those enhancers in breast, prostate, and kidney cancers, will facilitate understanding of enhancer networks and mechanisms leading to the development of these cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0102-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suhn Kyong Rhie
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT G511B, Los Angeles, CA 90089-9601 USA
| | - Yu Guo
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT G511B, Los Angeles, CA 90089-9601 USA
| | - Yu Gyoung Tak
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT G511B, Los Angeles, CA 90089-9601 USA
| | - Lijing Yao
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT G511B, Los Angeles, CA 90089-9601 USA
| | - Hui Shen
- Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | | | - Peter W Laird
- Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT G511B, Los Angeles, CA 90089-9601 USA
| |
Collapse
|
15
|
Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2016; 1866:232-251. [PMID: 27681874 DOI: 10.1016/j.bbcan.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Subbannayya Y, Syed N, Barbhuiya MA, Raja R, Marimuthu A, Sahasrabuddhe N, Pinto SM, Manda SS, Renuse S, Manju HC, Zameer MAL, Sharma J, Brait M, Srikumar K, Roa JC, Vijaya Kumar M, Kumar KVV, Prasad TSK, Ramaswamy G, Kumar RV, Pandey A, Gowda H, Chatterjee A. Calcium calmodulin dependent kinase kinase 2 - a novel therapeutic target for gastric adenocarcinoma. Cancer Biol Ther 2015; 16:336-45. [PMID: 25756516 DOI: 10.4161/15384047.2014.972264] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is one of the most common gastrointestinal malignancies and is associated with poor prognosis. Exploring alterations in the proteomic landscape of gastric cancer is likely to provide potential biomarkers for early detection and molecules for targeted therapeutic intervention. Using iTRAQ-based quantitative proteomic analysis, we identified 22 proteins that were overexpressed and 17 proteins that were downregulated in gastric tumor tissues as compared to the adjacent normal tissue. Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) was found to be 7-fold overexpressed in gastric tumor tissues. Immunohistochemical labeling of tumor tissue microarrays for validation of CAMKK2 overexpression revealed that it was indeed overexpressed in 94% (92 of 98) of gastric cancer cases. Silencing of CAMKK2 using siRNA significantly reduced cell proliferation, colony formation and invasion of gastric cancer cells. Our results demonstrate that CAMKK2 signals in gastric cancer through AMPK activation and suggest that CAMKK2 could be a novel therapeutic target in gastric cancer.
Collapse
|
17
|
Qu F, Zhao Z, Yuan B, Qi W, Li C, Shen X, Liu C, Li H, Zhao G, Wang J, Guo Q, Liu Y. CaMKII plays a part in the chondrogenesis of bone marrow-derived mesenchymal stem cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5981-5987. [PMID: 26191331 PMCID: PMC4503202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
AIMS The purpose of the study is to observe the functions of calcium/calmodulin dependent protein kinase II (CaMKII) in the induced chondrogenic differentiation of bone marrow derived mesenchymal stem cells (BMSCs). METHODS BMSCs was in vitro isolated and cultured for induced chondrogenesis. Western blot was used to ascertain the expression of CaMKII and phosphorylated CaMKII (PCaMKII, activatory CaMKII) in chondrogenic induced BMSCs. MTT method was utilized to observe the impact of CaMKII on the proliferation of BMSCs. The generation of cartilage matrix in BMSCs cells was detected by toluidine blue staining. The levels of cartilage marker genes COL2A1, Aggrecan and SOX9 in BMSCs were gained by real-time fluorescence quantitative polymerase chain reaction (RT-QPCR). Finally, BMSCs proliferation, cartilage matrix generation and the changes of COL2A1, Aggrecan and SOX9 were surveyed after CaMKII being blocked by CaMKII inhibitor KN93. RESULTS Expression of CaMKII and PCaMKII could be found in chondrogenic induced BMSCs. CaMKII had no significant influence on BMSCs proliferation, but the toluidine blue staining was obviously lighter, indicating a significant decline in the expression of COL2A1, Aggrecan and SOX9. CONCLUSION As one of the factors influencing the chondrogenic capacity of BMSCs, CaMKII does not impact on BMSCs proliferation, but it can inhibit the chondrogenic ability of BMSCs by influencing its differentiation.
Collapse
Affiliation(s)
- Feng Qu
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhikun Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chinese PLA General Hospital51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Bangtuo Yuan
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Wei Qi
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Chunbao Li
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xuezhen Shen
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Chang Liu
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Hongliang Li
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Gang Zhao
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jiangtao Wang
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Qi Guo
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yujie Liu
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
18
|
MicroRNA-224 and its target CAMKK2 synergistically influence tumor progression and patient prognosis in prostate cancer. Tumour Biol 2014; 36:1983-91. [PMID: 25394900 DOI: 10.1007/s13277-014-2805-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022] Open
Abstract
We previously demonstrated that microRNA (miR)-224 expression was significantly reduced in human prostate cancer (PCa) tissues and predicted unfavorable prognosis in patients. However, the underlying mechanisms of miR-224 have not been fully elucidated. In this study, calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) was identified as a target gene of miR-224. Then, we found that enforced expression of miR-224 could suppress PCa cell proliferation and cell cycle by regulating the expression of CAMKK2 in vitro. In addition, the expression levels of miR-224 in PCa tissues were negatively correlated with those of CAMKK2 mRNA significantly (Spearman's correlation: r = -0.66, P = 0.004). Moreover, combined low miR-224 expression and high CAMKK2 expression (miR-224-low/CAMKK2-high) was closely correlated with advanced clinical stage (P = 0.028). Furthermore, PCa patients with miR-224-low/CAMKK2-high expression more frequently had shorter overall survival than those in groups with other expression patterns of two molecules. In conclusion, our data offer the convincing evidence that miR-224 and its target gene CAMKK2 may synergistically contribute to the malignant progression of PCa. Combined detection of miR-224 and CAMKK2 expressions represents an efficient predictor of patient prognosis and may be a novel marker which can provide additional prognostic information in PCa.
Collapse
|
19
|
Sun Y, Sukumaran P, Varma A, Derry S, Sahmoun AE, Singh BB. Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1839-50. [PMID: 24769209 DOI: 10.1016/j.bbamcr.2014.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 12/20/2022]
Abstract
Cholesterol has been shown to promote cell proliferation/migration in many cells; however the mechanism(s) have not yet been fully identified. Here we demonstrate that cholesterol increases Ca(2+) entry via the TRPM7 channel, which promoted proliferation of prostate cells by inducing the activation of the AKT and/or the ERK pathway. Additionally, cholesterol mediated Ca(2+) entry induced calpain activity that showed a decrease in E-cadherin expression, which together could lead to migration of prostate cancer cells. An overexpression of TRPM7 significantly facilitated cholesterol dependent Ca(2+) entry, cell proliferation and tumor growth. Whereas, TRPM7 silencing or inhibition of cholesterol synthesis by statin showed a significant decrease in cholesterol-mediated activation of TRPM7, cell proliferation, and migration of prostate cancer cells. Consistent with these results, statin intake was inversely correlated with prostate cancer patients and increase in TRPM7 expression was observed in samples obtained from prostate cancer patients. Altogether, we provide evidence that cholesterol-mediated activation of TRPM7 is important for prostate cancer and have identified that TRPM7 could be essential for initiation and/or progression of prostate cancer.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA
| | - Pramod Sukumaran
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA
| | - Archana Varma
- Department of Internal Medicine, School of Medicine and Health Sciences, Fargo, ND 58102, USA
| | - Susan Derry
- Department of Internal Medicine, School of Medicine and Health Sciences, Fargo, ND 58102, USA
| | - Abe E Sahmoun
- Department of Internal Medicine, School of Medicine and Health Sciences, Fargo, ND 58102, USA
| | - Brij B Singh
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA.
| |
Collapse
|