1
|
Taheri M, Tehrani HA, Farzad SA, Korourian A, Arefian E, Ramezani M. The potential of mesenchymal stem cell coexpressing cytosine deaminase and secretory IL18-FC chimeric cytokine in suppressing glioblastoma recurrence. Int Immunopharmacol 2024; 142:113048. [PMID: 39236459 DOI: 10.1016/j.intimp.2024.113048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Glioblastoma multiforme (GBM) patients have a high recurrence rate of 90%, and the 5-year survival rate is only about 5%. Cytosine deaminase (CDA)/5-fluorocytosine (5-FC) gene therapy is a promising glioma treatment as 5-FC can cross the blood-brain barrier (BBB), while 5-fluorouracil (5-FU) cannot. Furthermore, 5-FU can assist reversing the immunological status of cold solid tumors. This study developed mesenchymal stem cells (MSCs) co-expressing yeast CDA and the secretory IL18-FC superkine to prevent recurrent tumor progression by simultaneously exerting cytotoxic effects and enhancing immune responses. IL18 was fused with Igk and IgG2a FC domains to enhance its secretion and serum half-life. The study confirmed the expression and activity of the CDA enzyme, as well as the expression, secretion, and activity of secretory IL18 and IL18-FC superkine, which were expressed by lentiviruses transduced-MSCs. In the transwell tumor-tropism assay, it was observed that the genetically modified MSCs retained their selective tumor-tropism ability following transduction. CDA-expressing MSCs, in the presence of 5-FC (200 µg/ml), induced cell cycle arrest and apoptosis in glioma cells through bystander effects in an indirect transwell co-culture system. They reduced the viability of the direct co-culture system when they constituted only 12.5 % of the cell population. The effectiveness of engineered MSCs in suppressing tumor progression was assessed by intracerebral administration of a lethal dose of GL261 cells combined in a ratio of 1:1 with MSCs expressing CDA, or CDA and sIL18, or CDA and sIL18-FC, into C57BL/6 mice. PET scan showed no conspicuous tumor mass in the MSC-CDA-sIL18-FC group that received 5-FC treatment. The pathological analysis showed that tumor progression suppressed in this group until 20th day after cell inoculation. Cytokine assessment showed that both interferon-gamma (IFN-γ) and interleukin-4 (IL-4) increased in the serum of MSC-CDA-sIL18 and MSC-CDA-sIL18-FC, treated with normal saline (NS) compared to those of the control group. The MSC-CDA-sIL18-FC group that received 5-FC treatment showed reduced serum levels of IL-6 and a considerably improved survival rate compared to the control group. Therefore, MSCs co-expressing yeast CDA and secretory IL18-FC, with tumor tropism capability, may serve as a supplementary approach to standard GBM treatment to effectively inhibit tumor progression and prevent recurrence.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sara Amel Farzad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Korourian
- Quality Control Department Pathobiology Laboratory Center, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Stem Cells Technology and Tissue Regeneration Department, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zeng Y, Tao G, Zeng Y, He J, Cao H, Zhang L. Bibliometric and visualization analysis in the field of epigenetics and glioma (2009-2024). Front Oncol 2024; 14:1431636. [PMID: 39534093 PMCID: PMC11555291 DOI: 10.3389/fonc.2024.1431636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Glioma represents the most prevalent primary malignant tumor in the central nervous system, a deeper understanding of the underlying molecular mechanisms driving glioma is imperative for guiding future treatment strategies. Emerging evidence has implicated a close relationship between glioma development and epigenetic regulation. However, there remains a significant lack of comprehensive summaries in this domain. This study aims to analyze epigenetic publications pertaining to gliomas from 2009 to 2024 using bibliometric methods, consolidate the extant research, and delineate future prospects for investigation in this critical area. Methods For the purpose of this study, publications spanning the years 2009 to 2024 were extracted from the esteemed Web of Science Core Collection (WoSCC) database. Utilizing advanced visualization tools such as CiteSpace and VOSviewer, comprehensive data pertaining to various aspects including countries, authors, author co-citations, countries/regions, institutions, journals, cited literature, and keywords were systematically visualized and analyzed. Results A thorough analysis was conducted on a comprehensive dataset consisting of 858 publications, which unveiled a discernible trend of steady annual growth in research output within this specific field. The nations of the United States, China, and Germany emerged as the foremost contributors to this research domain. It is noteworthy that von Deimling A and the Helmholtz Association were distinguished as prominent authors and institutions, respectively, in this corpus of literature. A rigorous keyword search and subsequent co-occurrence analysis were executed, ultimately leading to the identification of seven distinct clusters: "epigenetic regulation", "DNA repair", "DNA methylation", "brain tumors", "diffuse midline glioma (DMG)", "U-87 MG" and "epigenomics". Furthermore, an intricate cluster analysis revealed that the primary foci of research within this field were centered around the exploration of glioma pathogenesis and the development of corresponding treatment strategies. Conclusion This article underscores the prevailing trends and hotspots in glioma epigenetics, offering invaluable insights that can guide future research endeavors. The investigation of epigenetic mechanisms primarily centers on DNA modification, non-coding RNAs (ncRNAs), and histone modification. Furthermore, the pursuit of overcoming temozolomide (TMZ) resistance and the exploration of diverse emerging therapeutic strategies have emerged as pivotal avenues for future research within the field of glioma epigenetics.
Collapse
Affiliation(s)
- Yijun Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Ge Tao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Jihong He
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Hui Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis. Biomed Pharmacother 2022; 148:112760. [PMID: 35228062 DOI: 10.1016/j.biopha.2022.112760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GB) is a highly aggressive cancer of the central nervous system, occurring in the brain or spinal cord. Many factors such as angiogenesis are associated with GB development. Angiogenesis is a procedure by which the pre-existing blood vessels create new vessels that play an essential role in health and disease, including tumors. Also, angiogenesis is one of the significant factors thought to be responsible for treatment resistance in many tumors, including GB. Hence, an improved understanding of the molecular processes underlying GB angiogenesis will pave the way for developing potential new treatments. Recently, it has been found that microRNAs (miRNAs) and exosomal miRNAs have a crucial role in inducing or inhibiting the angiogenesis process in GB development. A better knowledge of the miRNA's regulation pathway in the angiogenesis process in cancer offers unique mechanistic insight into the mechanism of tumor-associated neovascularization. Because of advancements in miRNA characterization and delivery methods, miRNAs can also be employed in clinical settings as potential biomarkers for anti-angiogenic treatment response as well as therapies targeting tumor angiogenesis. The recent finding and insights about miRNAs' angioregulatory role and exosomal miRNAs in GB are provided throughout the review. Also, we discuss the new concept of miRNAs-based therapies for GB in the future.
Collapse
|
4
|
Bomba HN, Carey‐Ewend A, Sheets KT, Valdivia A, Goetz M, Findlay IA, Mercer‐Smith A, Kass LE, Khagi S, Hingtgen SD. Use of
FLOSEAL
® as a scaffold and its impact on induced neural stem cell phenotype, persistence, and efficacy. Bioeng Transl Med 2022; 7:e10283. [PMID: 35600639 PMCID: PMC9115686 DOI: 10.1002/btm2.10283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023] Open
Abstract
Induced neural stem cells (iNSCs) have emerged as a promising therapeutic platform for glioblastoma (GBM). iNSCs have the innate ability to home to tumor foci, making them ideal carriers for antitumor payloads. However, the in vivo persistence of iNSCs limits their therapeutic potential. We hypothesized that by encapsulating iNSCs in the FDA‐approved, hemostatic matrix FLOSEAL®, we could increase their persistence and, as a result, therapeutic durability. Encapsulated iNSCs persisted for 95 days, whereas iNSCs injected into the brain parenchyma persisted only 2 weeks in mice. Two orthotopic GBM tumor models were used to test the efficacy of encapsulated iNSCs. In the GBM8 tumor model, mice that received therapeutic iNSCs encapsulated in FLOSEAL® survived 30 to 60 days longer than mice that received nonencapsulated cells. However, the U87 tumor model showed no significant differences in survival between these two groups, likely due to the more solid and dense nature of the tumor. Interestingly, the interaction of iNSCs with FLOSEAL® appears to downregulate some markers of proliferation, anti‐apoptosis, migration, and therapy which could also play a role in treatment efficacy and durability. Our results demonstrate that while FLOSEAL® significantly improves iNSC persistence, this alone is insufficient to enhance therapeutic durability.
Collapse
Affiliation(s)
- Hunter N. Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Abigail Carey‐Ewend
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kevin T. Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Morgan Goetz
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Ingrid A. Findlay
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Alison Mercer‐Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Lauren E. Kass
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Simon Khagi
- Department of Neurosurgery The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Shawn D. Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Lineberger Comprehensive Cancer Center The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| |
Collapse
|
5
|
Sun R, Kim AH. The multifaceted mechanisms of malignant glioblastoma progression and clinical implications. Cancer Metastasis Rev 2022; 41:871-898. [PMID: 35920986 PMCID: PMC9758111 DOI: 10.1007/s10555-022-10051-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
With the application of high throughput sequencing technologies at single-cell resolution, studies of the tumor microenvironment in glioblastoma, one of the most aggressive and invasive of all cancers, have revealed immense cellular and tissue heterogeneity. A unique extracellular scaffold system adapts to and supports progressive infiltration and migration of tumor cells, which is characterized by altered composition, effector delivery, and mechanical properties. The spatiotemporal interactions between malignant and immune cells generate an immunosuppressive microenvironment, contributing to the failure of effective anti-tumor immune attack. Among the heterogeneous tumor cell subpopulations of glioblastoma, glioma stem cells (GSCs), which exhibit tumorigenic properties and strong invasive capacity, are critical for tumor growth and are believed to contribute to therapeutic resistance and tumor recurrence. Here we discuss the role of extracellular matrix and immune cell populations, major components of the tumor ecosystem in glioblastoma, as well as signaling pathways that regulate GSC maintenance and invasion. We also highlight emerging advances in therapeutic targeting of these components.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA ,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
6
|
Blood-Brain Barrier in Brain Tumors: Biology and Clinical Relevance. Int J Mol Sci 2021; 22:ijms222312654. [PMID: 34884457 PMCID: PMC8657947 DOI: 10.3390/ijms222312654] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The presence of barriers, such as the blood–brain barrier (BBB) and brain–tumor barrier (BTB), limits the penetration of antineoplastic drugs into the brain, resulting in poor response to treatments. Many techniques have been developed to overcome the presence of these barriers, including direct injections of substances by intranasal or intrathecal routes, chemical modification of drugs or constituents of BBB, inhibition of efflux pumps, physical disruption of BBB by radiofrequency electromagnetic radiation (EMP), laser-induced thermal therapy (LITT), focused ultrasounds (FUS) combined with microbubbles and convection enhanced delivery (CED). However, most of these strategies have been tested only in preclinical models or in phase 1–2 trials, and none of them have been approved for treatment of brain tumors yet. Concerning the treatment of brain metastases, many molecules have been developed in the last years with a better penetration across BBB (new generation tyrosine kinase inhibitors like osimertinib for non-small-cell lung carcinoma and neratinib/tucatinib for breast cancer), resulting in better progression-free survival and overall survival compared to older molecules. Promising studies concerning neural stem cells, CAR-T (chimeric antigen receptors) strategies and immunotherapy with checkpoint inhibitors are ongoing.
Collapse
|
7
|
Targeting Brain Tumors with Mesenchymal Stem Cells in the Experimental Model of the Orthotopic Glioblastoma in Rats. Biomedicines 2021; 9:biomedicines9111592. [PMID: 34829821 PMCID: PMC8615766 DOI: 10.3390/biomedicines9111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Despite multimodal approaches for the treatment of multiforme glioblastoma (GBM) advances in outcome have been very modest indicating the necessity of novel diagnostic and therapeutic strategies. Currently, mesenchymal stem cells (MSCs) represent a promising platform for cell-based cancer therapies because of their tumor-tropism, low immunogenicity, easy accessibility, isolation procedure, and culturing. In the present study, we assessed the tumor-tropism and biodistribution of the superparamagnetic iron oxide nanoparticle (SPION)-labeled MSCs in the orthotopic model of C6 glioblastoma in Wistar rats. As shown in in vitro studies employing confocal microscopy, high-content quantitative image cytometer, and xCelligence system MSCs exhibit a high migratory capacity towards C6 glioblastoma cells. Intravenous administration of SPION-labeled MSCs in vivo resulted in intratumoral accumulation of the tagged cells in the tumor tissues that in turn significantly enhanced the contrast of the tumor when high-field magnetic resonance imaging was performed. Subsequent biodistribution studies employing highly sensitive nonlinear magnetic response measurements (NLR-M2) supported by histological analysis confirm the retention of MSCs in the glioblastoma. In conclusion, MSCs due to their tumor-tropism could be employed as a drug-delivery platform for future theranostic approaches.
Collapse
|
8
|
Mahjoor M, Afkhami H, Mollaei M, Nasr A, Shahriary S, Khorrami S. MicroRNA-30c delivered by bone marrow-mesenchymal stem cells induced apoptosis and diminished cell invasion in U-251 glioblastoma cell line. Life Sci 2021; 279:119643. [PMID: 34048811 DOI: 10.1016/j.lfs.2021.119643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Glioblastoma multiform (GBM) is the most belligerent and prevalent brain malignancy among adults. Due to the blood-brain barrier (BBB), drug administration is confronted by massive challenges, making resectional surgery the only treatment pipeline. MicroRNAs have recently absorbed the attention of studies for correlating with the progression of various malignancies. miR-30c has been reported to play a role in cell proliferation, metabolism, and apoptosis process. For instance, miR-30c has been reported to regulate apoptosis through the TNF-related apoptosis-inducing ligand (TRAIL). miR-30c also targets IL-6, which further induces apoptosis. Besides, miR-30c inhibits glioma proliferation and its migratory ability. Besides, the overexpression of miR-30c arrested cells at G0 as well as dampening their migration and invasion. However, it has been shown that the expression level of miR-30c was low in glioma. MSCs can migrate toward tumor cells which is called tumor-tropism, in which they are capable of delivering engineered miR-30c based on gap junction and non-intimacy mechanisms. MATERIAL AND METHODS MiR-30c was cloned into pCDH-CMV-MCS-EF1-copGFP vector utilizing XbaI and EcoRI in order to construct pCDH-miR-30c. Then psPAX2, pMD2.G, and pCDH-miR-30c were co-transfected into Hek-293T to yield lenti-miR-30c virus particles. Next, bone marrow-mesenchymal stem cells (BM-MSCs) were Transduced with lenti-miR-30c. Thereafter, we co-cultured U-251 cell line with BM-MCSs-miR-30c and evaluated the apoptosis rate and the relative expression level of IL-6, Klf4, Sox2, c-Myc, and Oct4 using Real-Time PCR and flow cytometry. RESULTS Wound healing assays represented low migratory ability in U-251 cells treated with BM-MSCs-miR-30c. Plus, apoptosis assay using Annexin V/7AAD showed an increased number of apoptotic U-251 cells following the treatment. miR-30 targeted IL-6 and induced apoptosis. It also impacted on the self-renewal and the anti-apoptotic cluster of genes, namely Klf4, Sox2, c-Myc, and Oct4, to induce apoptosis and dwindle the migration and invasion.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mollaei
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Atieh Nasr
- Bachelor Student of Biochemistry, Department of Biochemistry, Islamic Azad University of Najafabad, Esfahan, Iran
| | - Shamin Shahriary
- Bachelor Student of Microbiology, Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Samaneh Khorrami
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Li J, Lv H, Che Y, Fan J. Inhibition of U87 Glioblastoma in BALB/c Nude Mice by Serenoa Repens Extract. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.271.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Andreou T, Williams J, Brownlie RJ, Salmond RJ, Watson E, Shaw G, Melcher A, Wurdak H, Short SC, Lorger M. Hematopoietic stem cell gene therapy targeting TGFβ enhances the efficacy of irradiation therapy in a preclinical glioblastoma model. J Immunother Cancer 2021; 9:e001143. [PMID: 33707311 PMCID: PMC7957127 DOI: 10.1136/jitc-2020-001143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with glioblastoma (GBM) have a poor prognosis, and inefficient delivery of drugs to tumors represents a major therapeutic hurdle. Hematopoietic stem cell (HSC)-derived myeloid cells efficiently home to GBM and constitute up to 50% of intratumoral cells, making them highly appropriate therapeutic delivery vehicles. Because myeloid cells are ubiquitously present in the body, we recently established a lentiviral vector containing matrix metalloproteinase 14 (MMP14) promoter, which is active specifically in tumor-infiltrating myeloid cells as opposed to myeloid cells in other tissues, and resulted in a specific delivery of transgenes to brain metastases in HSC gene therapy. Here, we used this novel approach to target transforming growth factor beta (TGFβ) as a key tumor-promoting factor in GBM. Transplantation of HSCs transduced with lentiviral vector expressing green fluorescent protein (GFP) into lethally irradiated recipient mice was followed by intracranial implantation of GBM cells. Tumor-infiltrating HSC progeny was characterized by flow cytometry. In therapy studies, mice were transplanted with HSCs transduced with lentiviral vector expressing soluble TGFβ receptor II-Fc fusion protein under MMP14 promoter. This TGFβ-blocking therapy was compared with the targeted tumor irradiation, the combination of the two therapies, and control. Tumor growth and survival were quantified (statistical significance determined by t-test and log-rank test). T cell memory response was probed through a repeated tumor challenge. Myeloid cells were the most abundant HSC-derived population infiltrating GBM. TGFβ-blocking HSC gene therapy in combination with irradiation significantly reduced tumor burden as compared with monotherapies and the control, and significantly prolonged survival as compared with the control and TGFβ-blocking monotherapy. Long-term protection from GBM was achieved only with the combination treatment (25% of the mice) and was accompanied by a significant increase in CD8+ T cells at the tumor implantation site following tumor rechallenge. We demonstrated a preclinical proof-of-principle for tumor myeloid cell-specific HSC gene therapy in GBM. In the clinic, HSC gene therapy is being successfully used in non-cancerous brain disorders and the feasibility of HSC gene therapy in patients with glioma has been demonstrated in the context of bone marrow protection. This indicates an opportunity for clinical translation of our therapeutic approach.
Collapse
Affiliation(s)
| | | | | | | | - Erica Watson
- School of Medicine, University of Leeds, Leeds, UK
| | - Gary Shaw
- School of Medicine, University of Leeds, Leeds, UK
| | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Heiko Wurdak
- School of Medicine, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
11
|
Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide-drug conjugates to overcome the blood-brain barrier and target CNS diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1695. [PMID: 33470550 DOI: 10.1002/wnan.1695] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nearly one in six people worldwide suffer from disorders of the central nervous system (CNS). There is an urgent need for effective strategies to improve the success rates in CNS drug discovery and development. The lack of effective technologies for delivering drugs and genes to the brain due to the blood-brain barrier (BBB), a structural barrier that effectively blocks most neurotherapeutic agents from reaching the brain, has posed a formidable hurdle for CNS drug development. Brain-homing and brain-penetrating molecular transport vectors, such as brain permeable peptides or BBB shuttle peptides, have shown promise in overcoming the BBB and ferrying the drug molecules to the brain. The BBB shuttle peptides are discovered by phage display technology or derived from natural neurotropic proteins or certain viruses and harness the receptor-mediated transcytosis molecular machinery for crossing the BBB. Brain permeable peptide-drug conjugates (PDCs), composed of BBB shuttle peptides, linkers, and drug molecules, have emerged as a promising CNS drug delivery system by taking advantage of the endogenous transcytosis mechanism and tricking the brain into allowing these bioactive molecules to pass the BBB. Here, we examine the latest development of brain-penetrating peptide shuttles and brain-permeable PDCs as molecular vectors to deliver small molecule drug payloads across the BBB to reach brain parenchyma. Emerging knowledge of the contribution of the peptides and their specific receptors expressed on the brain endothelial cells, choice of drug payloads, the design of PDCs, brain entry mechanisms, and delivery efficiency to the brain are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Quentin R Smith
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| |
Collapse
|
12
|
Amero P, Khatua S, Rodriguez-Aguayo C, Lopez-Berestein G. Aptamers: Novel Therapeutics and Potential Role in Neuro-Oncology. Cancers (Basel) 2020; 12:cancers12102889. [PMID: 33050158 PMCID: PMC7600320 DOI: 10.3390/cancers12102889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
A relatively new paradigm in cancer therapeutics is the use of cancer cell-specific aptamers, both as therapeutic agents and for targeted delivery of anticancer drugs. After the first therapeutic aptamer was described nearly 25 years ago, and the subsequent first aptamer drug approved, many efforts have been made to translate preclinical research into clinical oncology settings. Studies of aptamer-based technology have unveiled the vast potential of aptamers in therapeutic and diagnostic applications. Among pediatric solid cancers, brain tumors are the leading cause of death. Although a few aptamer-related translational studies have been performed in adult glioblastoma, the use of aptamers in pediatric neuro-oncology remains unexplored. This review will discuss the biology of aptamers, including mechanisms of targeting cell surface proteins, various modifications of aptamer structure to enhance therapeutic efficacy, the current state and challenges of aptamer use in neuro-oncology, and the potential therapeutic role of aptamers in pediatric brain tumors.
Collapse
Affiliation(s)
- Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Soumen Khatua
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: (C.R.-A.); (G.L.-B.); Tel.: +1-713-563-6150 (C.R.-A.); +1-713-792-8140 (G.L.-B.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (C.R.-A.); (G.L.-B.); Tel.: +1-713-563-6150 (C.R.-A.); +1-713-792-8140 (G.L.-B.)
| |
Collapse
|
13
|
Xie Y, Liu W, Liu S, Wang L, Mu D, Cui Y, Cui Y, Wang B. The quality evaluation system establishment of mesenchymal stromal cells for cell-based therapy products. Stem Cell Res Ther 2020; 11:176. [PMID: 32404162 PMCID: PMC7222464 DOI: 10.1186/s13287-020-01696-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cell-based therapy products are supposed to be the most complex medicine products in the history of human medical care. In this study, we established a safety evaluation system for therapeutic stromal cells based on the existing regulations and current testing techniques to provide general quality requirements for human umbilical cord mesenchymal stromal cell (HUCMSC) therapy product. METHODS In this system, we comprehensively evaluate the environmental monitoring program, quality control of critical raw materials and reagents, donor screening criteria, cell safety, quality, and biological effects, not only in line with the basic criteria of biological products, but also following the general requirements of drugs. RESULTS The qualified HUCMSCs were tested for various clinical researches in our hospital, and no severe adverse reaction was observed in 225 patients during a 1-year follow-up period. CONCLUSION In this study, we establish a systemic quality control and potent assays to guarantee the safety and effectiveness of HUCMSCs based on a minimum set of standards in MSC-based product.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, People's Republic of China
| | - Wei Liu
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, People's Republic of China
| | - Shuo Liu
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, People's Republic of China
| | - Liudi Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, People's Republic of China
| | - Dan Mu
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, People's Republic of China
| | - Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, People's Republic of China
| | - Yanyan Cui
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, People's Republic of China.
| |
Collapse
|
14
|
Carvalho LA, Teng J, Fleming RL, Tabet EI, Zinter M, de Melo Reis RA, Tannous BA. Olfactory Ensheathing Cells: A Trojan Horse for Glioma Gene Therapy. J Natl Cancer Inst 2020; 111:283-291. [PMID: 30257000 DOI: 10.1093/jnci/djy138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/18/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The olfactory ensheathing cells (OECs) migrate from the peripheral nervous system to the central nervous system (CNS), a critical process for the development of the olfactory system and axonal extension after injury in neural regeneration. Because of their ability to migrate to the injury site and anti-inflammatory properties, OECs were tested against different neurological pathologies, but were never studied in the context of cancer. Here, we evaluated OEC tropism to gliomas and their potential as a "Trojan horse" to deliver therapeutic transgenes through the nasal pathway, their natural route to CNS. METHODS OECs were purified from the mouse olfactory bulb and engineered to express a fusion protein between cytosine deaminase and uracil phosphoribosyltransferase (CU), which convert the prodrug 5-fluorocytosine (5-FC) into cytotoxic metabolite 5-fluorouracil, leading to a bystander killing of tumor cells. These cells were injected into the nasal cavity of mice bearing glioblastoma tumors and OEC-mediated gene therapy was monitored by bioluminescence imaging and confirmed with survival and ex vivo histological analysis. All statistical tests were two-sided. RESULTS OECs migrated from the nasal pathway to the primary glioma site, tracked infiltrative glioma stemlike cells, and delivered therapeutic transgene, leading to a slower tumor growth and increased mice survival. At day 28, bioluminescence imaging revealed that mice treated with a single injection of OEC-expressing CU and 5-FC had tumor-associated photons (mean [SD]) of 1.08E + 08 [9.7E + 07] vs 4.1E + 08 [2.3E + 08] for control group (P < .001), with a median survival of 41 days vs 34 days, respectively (ratio = 0.8293, 95% confidence interval = 0.4323 to 1.226, P < .001) (n = 9 mice per group). CONCLUSIONS We show for the first time that autologous transplantation of OECs can target and deliver therapeutic transgenes to brain tumors upon intranasal delivery, the natural route of OECs to the CNS, which could be extended to other types of cancer.
Collapse
Affiliation(s)
- Litia A Carvalho
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Jian Teng
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Renata L Fleming
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Elie I Tabet
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Max Zinter
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Ricardo A de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Affinito A, Quintavalle C, Esposito CL, Roscigno G, Giordano C, Nuzzo S, Ricci-Vitiani L, Scognamiglio I, Minic Z, Pallini R, Berezovski MV, de Francisis V, Condorelli G. Targeting Ephrin Receptor Tyrosine Kinase A2 with a Selective Aptamer for Glioblastoma Stem Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:176-185. [PMID: 32169805 PMCID: PMC7068199 DOI: 10.1016/j.omtn.2020.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 12/29/2022]
Abstract
Despite the benefits associated with radiotherapy and chemotherapy for glioblastoma (GBM) treatment, most patients experience a relapse following initial therapy. Recurrent or progressive GBM usually does not respond anymore to standard therapy, and this is associated with poor patient outcome. GBM stem cells (GSCs) are a subset of cells resistant to radiotherapy and chemotherapy and play a role in tumor recurrence. The targeting of GSCs and the identification of novel markers are crucial issues in the development of innovative strategies for GBM eradication. By differential cell SELEX (systematic evolution of ligands by exponential enrichment), we have recently described two RNA aptamers, that is, the 40L sequence and its truncated form A40s, able to bind the cell surface of human GSCs. Both aptamers were selective for stem-like growing GBM cells and are rapidly internalized into target cells. In this study, we demonstrate that their binding to cells is mediated by direct recognition of the ephrin type-A receptor 2 (EphA2). Functionally, the two aptamers were able to inhibit cell growth, stemness, and migration of GSCs. Furthermore, A40s was able to cross the blood-brain barrier (BBB) and was stable in serum in in vitro experiments. These results suggest that 40L and A40s represent innovative potential therapeutic tools for GBM.
Collapse
Affiliation(s)
- Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy; Percuros B.V., Enschede, the Netherlands
| | - Cristina Quintavalle
- Percuros B.V., Enschede, the Netherlands; IEOS, CNR, Via Tommaso de Amicis 95, 80131 Naples, Italy.
| | | | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Catello Giordano
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy
| | | | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Iolanda Scognamiglio
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; John L. Holmes Mass Spectrometry Facility, Ottawa, ON K1N 6N5, Canada
| | - Roberto Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; John L. Holmes Mass Spectrometry Facility, Ottawa, ON K1N 6N5, Canada
| | | | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy; IRCCS Neuromed-Istituto Neurologico Mediterraneo Pozzilli, Pozzilli, Italy.
| |
Collapse
|
16
|
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer 2020; 20:26-41. [PMID: 31601988 PMCID: PMC8246629 DOI: 10.1038/s41568-019-0205-x] [Citation(s) in RCA: 967] [Impact Index Per Article: 193.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
Abstract
For a blood-borne cancer therapeutic agent to be effective, it must cross the blood vessel wall to reach cancer cells in adequate quantities, and it must overcome the resistance conferred by the local microenvironment around cancer cells. The brain microenvironment can thwart the effectiveness of drugs against primary brain tumours as well as brain metastases. In this Review, we highlight the cellular and molecular components of the blood-brain barrier (BBB), a specialized neurovascular unit evolved to maintain brain homeostasis. Tumours are known to compromise the integrity of the BBB, resulting in a vasculature known as the blood-tumour barrier (BTB), which is highly heterogeneous and characterized by numerous distinct features, including non-uniform permeability and active efflux of molecules. We discuss the challenges posed by the BBB and BTB for drug delivery, how multiple cell types dictate BBB function and the role of the BTB in disease progression and treatment. Finally, we highlight emerging molecular, cellular and physical strategies to improve drug delivery across the BBB and BTB and discuss their impact on improving conventional as well as emerging treatments, such as immune checkpoint inhibitors and engineered T cells. A deeper understanding of the BBB and BTB through the application of single-cell sequencing and imaging techniques, and the development of biomarkers of BBB integrity along with systems biology approaches, should enable new personalized treatment strategies for primary brain malignancies and brain metastases.
Collapse
Affiliation(s)
- Costas D Arvanitis
- School of Mechanical Engineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Qi SG, Quan LQ, Cui XY, Li HM, Zhao XD, Li RT. A natural compound obtained from Valeriana jatamansi selectively inhibits glioma stem cells. Oncol Lett 2019; 19:1384-1392. [PMID: 32002029 PMCID: PMC6960388 DOI: 10.3892/ol.2019.11239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/22/2019] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma is one of the most malignant tumors with very poor prognosis. Glioma stem cells (GSCs) occupy a small proportion in glioma, but they are closely associated with radiotherapy and chemotherapy resistance, promoting tumor angiogenesis, hypoxia response, invasion and recurrence. Therefore, GSCs have become a new target for tumor treatment and are used in drug screening. Rupesin E is a natural compound obtained from Valeriana jatamansi, and its antitumor activity has not been reported. In the present study, the antitumor activity of rupesin E was investigated, and the results demonstrated that it inhibited the proliferation of GSCs (GSC-3#, GSC-12#, GSC-18#) with the IC50 values of 7.13±1.41, 13.51±1.46 and 4.44±0.22 µg/ml, respectively. In addition, immunofluorescence cell staining and flow cytometry techniques demonstrated that rupesin E inhibited GSC proliferation and induced apoptosis. Furthermore, rupesin E inhibited the ability of GSC colony formation, indicating its antitumor activity against GSCs in vitro.
Collapse
Affiliation(s)
- Shi-Gang Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
| | - Li-Qiu Quan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xiao-Yue Cui
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
| | - Hong-Mei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xu-Dong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
18
|
Taverner WK, Jacobus EJ, Christianson J, Champion B, Paton AW, Paton JC, Su W, Cawood R, Seymour LW, Lei-Rossmann J. Calcium Influx Caused by ER Stress Inducers Enhances Oncolytic Adenovirus Enadenotucirev Replication and Killing through PKCα Activation. Mol Ther Oncolytics 2019; 15:117-130. [PMID: 31890865 PMCID: PMC6931121 DOI: 10.1016/j.omto.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/22/2019] [Indexed: 01/17/2023] Open
Abstract
Oncolytic viruses represent an emerging approach to cancer therapy. However, better understanding of their interaction with the host cancer cell and approaches to enhance their efficacy are needed. Here, we investigate the effect of chemically induced endoplasmic reticulum (ER) stress on the activity of the chimeric group B adenovirus Enadenotucirev, its closely related parental virus Ad11p, and the archetypal group C oncolytic adenovirus Ad5. We show that treatment of colorectal and ovarian cancer cell lines with thapsigargin or ionomycin caused an influx of Ca2+, leading to an upregulation in E1A transcript and protein levels. Increased E1A protein levels, in turn, increased levels of expression of the E2B viral DNA polymerase, genome replication, late viral protein expression, infectious virus particle production, and cell killing during Enadenotucirev and Ad11p, but not Ad5, infection. This effect was not due to the induction of ER stress, but rather the influx of extracellular Ca2+ and consequent increase in protein kinase C activity. These results underscore the importance of Ca2+ homeostasis during adenoviral infection, indicate a signaling pathway between protein kinase C and E1A, and raise the possibility of using Ca2+ flux-modulating agents in the manufacture and potentiation of oncolytic virotherapies.
Collapse
Affiliation(s)
- William K. Taverner
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Egon J. Jacobus
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - John Christianson
- NDORMS, Botnar Research Centre, University of Oxford, Headington, Oxford OX3 7LD, UK
| | - Brian Champion
- PsiOxus Therapeutics, Ltd., Milton Park, Abingdon OX14 3YS, UK
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia
| | - Weiheng Su
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Ryan Cawood
- Oxford Genetics Ltd., Medawar Centre, Robert Robinson Avenue, Oxford OX4 4HG, UK
| | - Len W. Seymour
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Janet Lei-Rossmann
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
19
|
Affinito A, Quintavalle C, Esposito CL, Roscigno G, Vilardo C, Nuzzo S, Ricci-Vitiani L, De Luca G, Pallini R, Kichkailo AS, Lapin IN, de Franciscis V, Condorelli G. The Discovery of RNA Aptamers that Selectively Bind Glioblastoma Stem Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:99-109. [PMID: 31541799 PMCID: PMC6796606 DOI: 10.1016/j.omtn.2019.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 11/30/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults. Despite progress in surgical and medical neuro-oncology, prognosis for GBM patients remains dismal, with a median survival of only 14–15 months. The modest benefit of conventional therapies is due to the presence of GBM stem cells (GSCs) that cause tumor relapse and chemoresistance and, therefore, that play a key role in GBM aggressiveness and recurrence. So far, strategies to identify and target GSCs have been unsuccessful. Thus, the development of an approach for GSC detection and targeting would be fundamental for improving the survival of GBM patients. Here, using the cell-systematic evolution of ligand by exponential (SELEX) methodology on human primary GSCs, we generated and characterized RNA aptamers that selectively bind GSCs versus undifferentiated GBM cells. We found that the shortened version of the aptamer 40L, which we have called A40s, costained with CD133-labeled cells in human GBM tissue, suggestive of an ability to specifically recognize GSCs in fixed human tissues. Of note, both 40L and A40s were rapidly internalized by cells, allowing for the delivery of the microRNA miR-34c and the anti-microRNA anti-miR-10b, demonstrating that these aptamers can serve as selective vehicles for therapeutics. In conclusion, the aptamers 40L and A40s can selectively target GSCs. Given the crucial role of GSCs in GBM recurrence and therapy resistance, these aptamers represent innovative drug delivery candidates with a great potential in the treatment of GBM.
Collapse
Affiliation(s)
- Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, 80131 Naples, Italy; Percuros B.V., Enschede, the Netherlands
| | - Cristina Quintavalle
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, 80131 Naples, Italy; Percuros B.V., Enschede, the Netherlands.
| | | | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Claudia Vilardo
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, 80131 Naples, Italy
| | | | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriele De Luca
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Anna S Kichkailo
- Federal Research Center, Krasnoyarsk Research Center Siberian Branch of Russian Academy of Science, Krasnoyarsk, Russia; Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Ivan N Lapin
- Siberian Physical-Technical Institute of Tomsk State University, Tomsk, Russia
| | | | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, 80131 Naples, Italy; IRCCS Neuromed - Istituto Neurologico Mediterraneo Pozzilli, Pozzilli, Italy.
| |
Collapse
|
20
|
Carvalho LA, Tannous BA. Olfactory ensheathing cells travel their natural nasal pathway to deliver therapeutics to brain tumors. Oncotarget 2019; 10:4351-4353. [PMID: 31320988 PMCID: PMC6633892 DOI: 10.18632/oncotarget.27043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Litia A Carvalho
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA, USA; Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA, USA; Neuroscience Program, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Ma Z, Cui X, Lu L, Chen G, Yang Y, Hu Y, Lu Y, Cao Z, Wang Y, Wang X. Exosomes from glioma cells induce a tumor-like phenotype in mesenchymal stem cells by activating glycolysis. Stem Cell Res Ther 2019; 10:60. [PMID: 30770778 PMCID: PMC6377719 DOI: 10.1186/s13287-019-1149-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/23/2018] [Accepted: 01/21/2019] [Indexed: 02/08/2023] Open
Abstract
Background Exosomes are nanoscale membrane vesicles secreted by both normal and cancer cells, and cancer cell-derived exosomes play an important role in the cross-talk between cancer cells and other cellular components in the tumor microenvironment. Mesenchymal stem cells (MSCs) have tropism for tumors and have been used as tumor-tropic vectors for tumor therapy; however, the safety of such therapeutic use of MSCs is unknown. In this study, we investigated the role of glioma cell-derived exosomes in the tumor-like phenotype transformation of human bone marrow mesenchymal stem cells (hBMSCs) and explored the underlying molecular mechanisms. Methods The effect of exosomes from U251 glioma cells on the growth of hBMSCs was evaluated with the CCK-8 assay, KI67 staining, and a cell cycle distribution assessment. The migration and invasion of hBMSCs were evaluated with a Transwell assay. A proteomics and bioinformatics approach, together with Western blotting and reverse transcriptase-polymerase chain reaction, was used to investigate the effect of U251 cell-derived exosomes on the proteome of hBMSCs. Results U251 cell-derived exosomes induced a tumor-like phenotype in hBMSCs by enhancing their proliferation, migration, and invasion and altering the production of proteins involved in the regulation of the cell cycle. Moreover, U251 cell-derived exosomes promoted the production of the metastasis-related proteins MMP-2 and MMP-9, glioma marker GFAP, and CSC markers (CD133 and Nestin). The ten differentially expressed proteins identified participated in several biological processes and exhibited various molecular functions, mainly related to the inactivation of glycolysis. Western blotting showed that U251 cell-derived exosomes upregulated the levels of Glut-1, HK-2, and PKM-2, leading to the induction of glucose consumption and generation of lactate and ATP. Treatment with 2-deoxy-d-glucose significantly reversed these effects of U251 cell-derived exosomes on hBMSCs. Conclusions Our data demonstrate that glioma cell-derived exosomes activate glycolysis in hBMSCs, resulting in their tumor-like phenotype transformation. This suggests that interfering with the interaction between exosomes and hBMSCs in the tumor microenvironment has potential as a therapeutic approach for glioma. Graphical abstract ᅟ![]()
Collapse
Affiliation(s)
- Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xue Cui
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Li Lu
- Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, Gansu, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, 730000, Gansu, China. .,School of Basic Medical Sciences of Lanzhou University, School of Medicine, 205 Tianshui Rd South, Lanzhou, 730000, Gansu, China.
| | - Guohu Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yan Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhangqi Cao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yan Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, 730000, Gansu, China. .,School of Basic Medical Sciences of Lanzhou University, School of Medicine, 205 Tianshui Rd South, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
22
|
Wildes TJ, Flores CT, Mitchell DA. Concise Review: Modulating Cancer Immunity with Hematopoietic Stem and Progenitor Cells. Stem Cells 2019; 37:166-175. [PMID: 30353618 PMCID: PMC6368859 DOI: 10.1002/stem.2933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/19/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are the progenitor cells that can regenerate the entire blood compartment, including the immune system. Recent studies have unearthed considerable immune-modulating potential of these cells. They can migrate through chemotactic gradients, differentiate into functional immune cells, and crosstalk with immune cells during infections, autoimmune diseases, and cancers. Although the primary role of HSPCs during solid malignancies is considered immunosuppressive, recent studies have discovered immune-activating HSPCs and progeny. In this review, we will discuss the recent evidence that HSPCs act as immunomodulators during solid cancers and highlight the future directions of discovery. Stem Cells 2019;37:166-175.
Collapse
Affiliation(s)
- Tyler J. Wildes
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of NeurosurgeryMcKnight Brain Institute, University of FloridaGainesvilleFloridaUSA
| | - Catherine T. Flores
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of NeurosurgeryMcKnight Brain Institute, University of FloridaGainesvilleFloridaUSA
| | - Duane A. Mitchell
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of NeurosurgeryMcKnight Brain Institute, University of FloridaGainesvilleFloridaUSA
| |
Collapse
|
23
|
Yang J, Yang Y, Kawazoe N, Chen G. Encapsulation of individual living cells with enzyme responsive polymer nanoshell. Biomaterials 2019; 197:317-326. [PMID: 30685690 DOI: 10.1016/j.biomaterials.2019.01.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/18/2022]
Abstract
Cell delivery in cell therapy is typically challenged by the low cell survival rate and immunological rejection during cells injection and circulation. Encapsulation of cells with semipermeable hydrogels or membranes can improve cell viability by resisting high shear force and inhibit immune response with the physical isolation effect. Herein, the individual HeLa cells and human mesenchymal stem cells (hMSCs) were encapsulated with enzyme responsive polymer nanoshell. The encapsulation shell was prepared via the Layer-by-Layer (LbL) assembly of functionalized gelatin and click chemistry of peptide linker and gelatin. The encapsulated cells showed high cell viability and could resist the physical stress. Moreover, the encapsulation shell had a prolonged encapsulation sustaining period and could effectively prevent the invasion of external entities. In addition, on-site cell release was realized via enzymolysis of the encapsulation shell by human matrix metalloproteinase-7 (MMP-7), an overexpressed enzyme on tumor area. The finding of this study proved a potential approach in cell therapy, especially for cell-based cancer therapy.
Collapse
Affiliation(s)
- Jianmin Yang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Yingjun Yang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
24
|
Zhang Q, Xiang W, Yi DY, Xue BZ, Wen WW, Abdelmaksoud A, Xiong NX, Jiang XB, Zhao HY, Fu P. Current status and potential challenges of mesenchymal stem cell-based therapy for malignant gliomas. Stem Cell Res Ther 2018; 9:228. [PMID: 30143053 PMCID: PMC6109313 DOI: 10.1186/s13287-018-0977-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioma, which accounts for more than 30% of primary central nervous system tumours, is characterised by symptoms such as headaches, epilepsy, and blurred vision. Glioblastoma multiforme is the most aggressive, malignant, and lethal brain tumour in adults. Even with progressive combination treatment with surgery, radiotherapy, and chemotherapy, the prognosis for glioma patients is still extremely poor. Compared with the poor outcome and slowly developing technologies for surgery and radiotherapy, the application of targeted chemotherapy with a new mechanism has become a research focus in this field. Moreover, targeted therapy is promising for most solid tumours. The tumour-tropic ability of stem cells, including neural stem cells and mesenchymal stem cells, provides an alternative therapeutic approach. Thus, mesenchymal stem cell-based therapy is based on a tumour-selective capacity and has been thought to be an effective anti-tumour option over the past decades. An increasing number of basic studies on mesenchymal stem cell-based therapy for gliomas has yielded complex outcomes. In this review, we summarise the biological characteristics of human mesenchymal stem cells, and the current status and potential challenges of mesenchymal stem cell-based therapy in patients with malignant gliomas.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Wan-Wan Wen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Ahmed Abdelmaksoud
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Nan-Xiang Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
25
|
Ho P, Chen YY. Synthetic Biology in Immunotherapy and Stem Cell Therapy Engineering. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Patrick Ho
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, Boelter Hall 5532, Los Angeles CA 90095 USA
| | - Yvonne Y. Chen
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, Boelter Hall 5532, Los Angeles CA 90095 USA
| |
Collapse
|
26
|
Zhu T, Xie P, Gao YF, Huang MS, Li X, Zhang W, Zhou HH, Liu ZQ. Nucleolar and spindle-associated protein 1 is a tumor grade correlated prognosis marker for glioma patients. CNS Neurosci Ther 2018; 24:178-186. [PMID: 29336114 DOI: 10.1111/cns.12803] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/26/2017] [Accepted: 12/24/2017] [Indexed: 02/02/2023] Open
Abstract
AIMS Despite therapeutic advances in glioma management including surgery, radiation, and chemotherapy, the improvement of patient outcome is far from satisfactory. Nucleolar and spindle-associated protein 1 (NUSAP1) is an important functional protein during mitosis, and its abnormal expression is implicated in progression of different types of tumors. However, the role of NUSAP1 in gliomas remains unclear. METHODS NUSAP1 expression in gliomas with different grades was investigated based on GEO glioma datasets. Kaplan-Meier survival analysis was used to evaluate its prognostic significance. In vitro assays were also performed to evaluate effects of NUSAP1 on malignant phenotypes of glioma cells by silencing NUSAP1. RESULTS NUSAP1 expression was correlated not only with glioma grade but also with prognosis of glioma patients. NUSAP1 depletion suppressed proliferation of U251 cells by inducing cell cycle arrest at G2/M phase and apoptosis. NUSAP1 depletion rendered U251 cells impaired migratory ability as well. CONCLUSION NUSAP1 is a potential prognosis marker for glioma patients and therapeutic strategies targeting NUSAP1 might hold promise in improving glioma treatment.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Pan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Ma-Sha Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| |
Collapse
|
27
|
Cao M, Mao J, Duan X, Lu L, Zhang F, Lin B, Chen M, Zheng C, Zhang X, Shen J. In vivo tracking of the tropism of mesenchymal stem cells to malignant gliomas using reporter gene-based MR imaging. Int J Cancer 2017; 142:1033-1046. [PMID: 29047121 DOI: 10.1002/ijc.31113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/13/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising cellular vehicle for gene therapy of malignant gliomas due to their property of tumor tropism. However, MSCs may show bidirectional and divergent effects on tumor growth. Therefore, a robust surveillance system with a capacity for noninvasive monitoring of the homing, distribution and fate of stem cells in vivo is highly desired for developing stem cell-based gene therapies for tumors. In this study, we used ferritin gene-based magnetic resonance imaging (MRI) to track the tumor tropism of MSCs in a rat orthotopic xenograft model of malignant glioma. MSCs were transduced with lentiviral vectors expressing ferritin heavy chain (FTH) and enhanced green fluorescent protein (eGFP). Intra-arterial, intravenous and intertumoral injections of these FTH transgenic MSCs (FTH-MSCs) were performed in rats bearing intracranial orthotopic C6 gliomas. The FTH-MSCs were detected as hypointense signals on T2- and T2*-weighted images on a 3.0 T clinical MRI. After intra-arterial injection, 17% of FTH-MSCs migrated toward the tumor and gradually diffused throughout the orthotopic glioma. This dynamic process could be tracked in vivo by MRI up to 10 days of follow-up, as confirmed by histology. Moreover, the tumor tropism of MSCs showed no appreciable impact on the progression of the tumor. These results suggest that FTH reporter gene-based MRI can be used to reliably track the tropism and fate of MSCs after their systemic transplantation in orthotopic gliomas. This real-time in vivo tracking system will facilitate the future development of stem cell-based therapies for malignant gliomas.
Collapse
Affiliation(s)
- Minghui Cao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Jiaji Mao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Bingling Lin
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Meiwei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Chushan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
28
|
Tan B, Shen L, Yang K, Huang D, Li X, Li Y, Zhao L, Chen J, Yi Q, Xu H, Tian J, Zhu J. C6 glioma-conditioned medium induces malignant transformation of mesenchymal stem cells: Possible role of S100B/RAGE pathway. Biochem Biophys Res Commun 2017; 495:78-85. [PMID: 29050939 DOI: 10.1016/j.bbrc.2017.10.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have been widely studied as an attractive therapeutic agent for the treatment of tumors. However, the adverse effects of the tumor paracrine factors who affect MSCs are still unclear. In this study, we report for the first time that C6 glioma-conditioned medium (GCM) induces malignant transformation of MSCs. In contrast to MSCs, the transformed mesenchymal stem cells (TMCs) exhibited tumor cell characterizations in vitro and highly tumorigenic in vivo. Furthermore, GCM and recombinant S100B increased receptor for advanced glycation end products (RAGE) and its downstream Akt1, STAT3 genes expression as well as phosphorylation and transcriptional activation. Finally, blockage of S100B-RAGE interaction by RAGE inhibitor FPS-ZM1 attenuated GCM and S100B-induced Akt1, STAT3 activation, abolished its cell proliferation, migration and invasion actions. Together, these results suggest that the RAGE pathway may play a possible role in malignant transformation procedure of MSCs, and that this process may be mediated through S100B.
Collapse
Affiliation(s)
- Bin Tan
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Lianju Shen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
| | - Ke Yang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China
| | - Daochao Huang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Xin Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Yasha Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Li Zhao
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Jie Chen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Qing Yi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Hao Xu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Jie Tian
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Jing Zhu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.
| |
Collapse
|
29
|
de Paula LB, Primo FL, Pinto MR, Morais PC, Tedesco AC. Evaluation of a chloroaluminium phthalocyanine-loaded magnetic nanoemulsion as a drug delivery device to treat glioblastoma using hyperthermia and photodynamic therapy. RSC Adv 2017. [DOI: 10.1039/c6ra26105a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The study describes the development of magnetic nanoemulsion loaded with citrate-coated maghemite nanoparticles and photosensitizer and the in vitro studies using cell lines while combining the use of hyperthermia and photodynamic therapy therapies.
Collapse
Affiliation(s)
- L. B. de Paula
- Department of Chemistry
- Center of Nanotechnology and Tissue Engineering – Photobiology and Photomedicine Research Group
- Faculty of Philosophy
- Science and Letters of Ribeirão Preto
- University of São Paulo
| | - F. L. Primo
- São Paulo State University (UNESP)
- School of Pharmaceutical Sciences
- Brazil
| | - M. R. Pinto
- Department of Chemistry
- Laboratory of Enzymology
- Faculty of Philosophy
- Science and Letters of Ribeirão Preto
- University of São Paulo
| | - P. C. Morais
- Institute of Physics
- University of Brasilia
- 70910-900 Brasília
- Brazil
- College of Chemistry and Chemical Engineering
| | - A. C. Tedesco
- Department of Chemistry
- Center of Nanotechnology and Tissue Engineering – Photobiology and Photomedicine Research Group
- Faculty of Philosophy
- Science and Letters of Ribeirão Preto
- University of São Paulo
| |
Collapse
|
30
|
Effects of a Supernatant of Fetal Neurogenic Cells on Proliferative Activity in Glioma C6 Cell Culture. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Lett 2016; 385:12-20. [PMID: 27826040 DOI: 10.1016/j.canlet.2016.10.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 12/30/2022]
Abstract
Vascular recovery or re-angiogenesis after radiotherapy plays a significant role in tumor recurrence, whereas molecular mechanisms of this process remain elusive. In this work, we found that dying glioma cells promoted post-irradiation angiogenesis through a caspase 3 dependent mechanism. Evidence in vitro and in vivo indicated that caspase 3 inhibition undermined proangiogenic effects of dying glioma cells. Proteolytic inactivation of caspase 3 in glioma cells reduced tumorigenicity. Importantly, we identified that NF-κB/COX-2/PGE2 axis acted as downstream signaling of caspase 3, mediating proangiogenic response after irradiation. Additionally, VEGF-A, regulated by caspase 3 possibly through phosphorylated eIF4E, was recognized as another downstream factor participating in the proangiogenic response. In conclusion, these data demonstrated that caspase 3 in dying glioma cells supported the proangiogenic response after irradiation by governing NF-κB/COX-2/PGE2 axis and p-eIF4E/VEGF-A signaling. While inducing caspase 3 activation has been a generally-adopted notion in cancer therapeutics, our study counterintuitively illustrated that caspase 3 activation in dying glioma cells unfavorably supported post-irradiation angiogenesis. This double-edged role of caspase 3 suggested that taming caspase 3 from the opposite side, not always activating it, may provide novel therapeutic strategies due to restricted post-irradiation angiogenesis.
Collapse
|
32
|
Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim AJ. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 2016; 22:1177-1193. [PMID: 26685681 PMCID: PMC4900538 DOI: 10.2174/1381612822666151221150733] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/18/2015] [Indexed: 01/10/2023]
Abstract
The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Graeme F. Woodworth
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| | - Anthony J. Kim
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| |
Collapse
|
33
|
Kim SM, Jeong CH, Woo JS, Ryu CH, Lee JH, Jeun SS. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells: tropism for brain tumors and biodistribution. Int J Nanomedicine 2015; 11:13-23. [PMID: 26719691 PMCID: PMC4690647 DOI: 10.2147/ijn.s97073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based gene therapy is a promising tool for the treatment of various neurological diseases, including brain tumors. However, the tracking of in vivo stem cell migration, distribution, and survival need to be defined for their clinical application. The systemic routes of stem cell delivery must be determined because direct intracerebral injection as a cure for brain tumors is an invasive method. In this study, we show for the first time that near-infrared (NIR) imaging can reveal the distribution and tumor tropism of intravenously injected MSCs in an intracranial xenograft glioma model. MSCs were labeled with NIR fluorescent nanoparticles, and the effects of the NIR dye on cell proliferation and migratory capacity were evaluated in vitro. We investigated the tumor-targeting properties and tissue distribution of labeled MSCs introduced by intravenous injection and followed by in vivo imaging analysis, histological analysis, and real-time quantitative polymerase chain reaction. We observed no cytotoxicity or change in the overall growth rate and characteristics of labeled MSCs compared with control MSCs. NIR fluorescent imaging showed the organ distribution and targeted tumor tropism of systemically injected human MSCs. A significant number of MSCs accumulated specifically at the tumor site in the mouse brain. These results suggest that NIR-based cell tracking is a potentially useful imaging technique to visualize cell survival, migration, and distribution for the application of MSC-mediated therapies in the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Seong Muk Kim
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang Hyun Jeong
- Department of Neurosurgery, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Ji Sun Woo
- Department of Neurosurgery, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chung Heon Ryu
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sin-Soo Jeun
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea ; Department of Neurosurgery, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
34
|
Krasikova LS, Karshieva SS, Cheglakov IB, Belyavsky AV. Mesenchymal stem cells expressing cytosine deaminase inhibit growth of murine melanoma B16F10 in vivo. Mol Biol 2015. [DOI: 10.1134/s0026893315060126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Zhang F, Xu CL, Liu CM. Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2089-100. [PMID: 25926719 PMCID: PMC4403597 DOI: 10.2147/dddt.s79592] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gliomas are amongst the most insidious and destructive types of brain cancer and are associated with a poor prognosis, frequent recurrences, and extremely high lethality despite combination treatment of surgery, radiotherapy, and chemotherapy. The existence of the blood–brain barrier (BBB) restricts the delivery of therapeutic molecules into the brain and offers the clinical efficacy of many pharmaceuticals that have been demonstrated to be effective for other kinds of tumors. This challenge emphasizes the need to be able to deliver drugs effectively across the BBB to reach the brain parenchyma. Enhancement of the permeability of the BBB and being able to transport drugs across it has been shown to be a promising strategy to improve drug absorption and treatment efficacy. This review highlights the innovative technologies that have been introduced to enhance the permeability of the BBB and to obtain an optimal distribution and concentration of drugs in the brain to treat gliomas, such as nanotechniques, hyperthermia techniques, receptor-mediated transport, cell-penetrating peptides, and cell-mediated delivery.
Collapse
Affiliation(s)
- Fang Zhang
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chun-Lei Xu
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chun-Mei Liu
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
36
|
Burns TC, Verfaillie CM. From mice to mind: Strategies and progress in translating neuroregeneration. Eur J Pharmacol 2015; 759:90-100. [PMID: 25814255 DOI: 10.1016/j.ejphar.2015.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/18/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022]
Abstract
Decisions about what experimental therapies are advanced to clinical trials are based almost exclusively on findings in preclinical animal studies. Over the past 30 years, animal models have forecast the success of hundreds of neuroprotective pharmacological therapies for stroke, Alzheimer׳s disease, spinal cord injury, traumatic brain injury and amyotrophic lateral sclerosis. Yet almost without exception, all have failed. Rapid advances in stem cell technologies have raised new hopes that these neurological diseases may one day be treatable. Still, how can neuroregenerative therapies be translated into clinical realities if available animal models are such poor surrogates of human disease? To address this question we discuss human and rodent neurogenesis, evaluate mechanisms of action for cellular therapies and describe progress in translating neuroregeneration to date. We conclude that not only are appropriate animal models critical to the development of safe and effective therapies, but that the multiple mechanisms of stem cell-mediated therapies may be particularly well suited to the mechanistically diverse nature of central nervous system diseases in mice and man.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurosurgery and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, USA.
| | | |
Collapse
|
37
|
Yamazoe T, Koizumi S, Yamasaki T, Amano S, Tokuyama T, Namba H. Potent tumor tropism of induced pluripotent stem cells and induced pluripotent stem cell-derived neural stem cells in the mouse intracerebral glioma model. Int J Oncol 2014; 46:147-52. [PMID: 25310640 DOI: 10.3892/ijo.2014.2702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/12/2014] [Indexed: 11/05/2022] Open
Abstract
Although neural and mesenchymal stem cells have been well-known to have a strong glioma tropism, this activity in induced pluripotent stem cells (iPSCs) has not yet been fully studied. In the present study, we tested tumor tropic activity of mouse iPSCs and neural stem cells derived from the iPSC (iPS-NSCs) using in vitro Matrigel invasion chamber assay and in vivo mouse intracranial tumor model. Both iPSC and iPS-NSC had a similar potent in vitro tropism for glioma conditioned media. The migrated iPSCs to the gliomas kept expressing Nanog-GFP gene, suggesting no neuronal or glial differentiation. iPSCs or iPS-NSCs labeled with 5-bromo-2-deoxyuridine were intracranially implanted in the contralateral hemisphere to the GL261 glioma cell implantation in the allogeneic C57BL/6 mouse. Active migration of both stem cells was observed 7 days after implantation. Again, the iPSCs located in the tumor area expressed Nanog-GFP gene, suggesting that the migrated cells were still iPSCs. These findings demonstrated that both iPSCs and iPS-NSCs had potent glioma tropism and could be candidates as vehicles in stem cell-based glioma therapy.
Collapse
Affiliation(s)
- Tomohiro Yamazoe
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Shinichiro Koizumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tomohiro Yamasaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Shinji Amano
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tsutomu Tokuyama
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
38
|
Chemical induction of unfolded protein response enhances cancer cell killing through lytic virus infection. J Virol 2014; 88:13086-98. [PMID: 25187554 DOI: 10.1128/jvi.02156-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Cancer cells are susceptible to oncolytic viruses, albeit variably. Human adenoviruses (HAdVs) are widely used oncolytic agents that have been engineered to produce progeny within the tumor and elicit bystander effects. We searched for host factors enhancing bystander effects and conducted a targeted RNA interference screen against guanine nucleotide exchange factors (GEFs) of small GTPases. We show that the unfolded protein response (UPR), which is readily inducible in aggressive tumor cells, enhances melanoma or epithelial cancer cell killing upon HAdV infection. UPR was triggered by knockdown of Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF-1) or the GBF-1 inhibitor golgicide A (GCA) and stimulated HAdV infection. GBF-1 is a GEF for ADP ribosylation factors (Arfs) regulating endoplasmic reticulum (ER)-to-Golgi apparatus and intra-Golgi apparatus membrane transport. Cells treated with GCA enhanced HAdV-induced cytopathic effects in epithelial and melanoma cancer cells but not normal cells, if the drug was applied several hours prior to HAdV inoculation. This was shown by real-time label-free impedance measurements using the xCELLigence system. GCA-treated cells contained fewer incoming HAdVs than control cells, but GCA treatment boosted HAdV titers and spreading in cancer cells. GCA enhanced viral gene expression or transgene expression from the cytomegalovirus promoter of B- or C-species HAdVs but did not enhance viral early region 1A (E1A) expression in uninfected cell lines or cells transfected with plasmid reporter DNA. The UPR-enhanced cell killing required the nuclease activity of the UPR sensor inositol-requiring enzyme 1 (IRE-1) and X box binding protein 1 (XBP-1), which alleviate ER stress. The collective results show that chemical UPR induction and viruses boost tumor cell killing by enhancing oncolytic viral efficacy. IMPORTANCE Cancer is difficult to combat. A wide range of oncolytic viruses show promise for killing cancer cells, yet the efficacy of oncolytic killing is low. We searched for host factors enhancing adenovirus cancer cell killing and found that the knockdown of Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF-1) or chemical inhibition of GBF-1 enhanced adenovirus infection by triggering the IRE-1/XBP-1 branch of the unfolded protein response (UPR). IRE-1/XBP-1 promote cell survival and enhanced the levels of the adenoviral immediate early gene product E1A, virus spreading, and killing of cancer cells. Aggressive tumor cells depend on a readily inducible UPR and, hence, present prime targets for a combined strategy involving adenoviruses and small chemicals inducing UPR.
Collapse
|
39
|
Teng J, Hejazi S, Badr CE, Tannous BA. Systemic anticancer neural stem cells in combination with a cardiac glycoside for glioblastoma therapy. Stem Cells 2014; 32:2021-32. [PMID: 24801379 PMCID: PMC4454401 DOI: 10.1002/stem.1727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/20/2014] [Indexed: 12/26/2022]
Abstract
The tumor-tropic properties of neural stem cells (NSCs) have been shown to serve as a novel strategy to deliver therapeutic genes to tumors. Recently, we have reported that the cardiac glycoside lanatoside C (Lan C) sensitizes glioma cells to the anticancer agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Here, we engineered an FDA-approved human NSC line to synthesize and secrete TRAIL and the Gaussia luciferase (Gluc) blood reporter. We showed that upon systemic injection, these cells selectively migrate toward tumors in the mice brain across the blood-brain barrier, target invasive glioma stem-like cells, and induce tumor regression when combined with Lan C. Gluc blood assay revealed that 30% of NSCs survived 1 day postsystemic injection and around 0.5% of these cells remained viable after 5 weeks in glioma-bearing mice. This study demonstrates the potential of systemic injection of NSCs to deliver anticancer agents, such as TRAIL, which yields glioma regression when combined with Lan C.
Collapse
Affiliation(s)
- Jian Teng
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Seyedali Hejazi
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian E. Badr
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Abstract
Cell-based therapeutics have advanced significantly over the past decade and are poised to become a major pillar of modern medicine. Three cell types in particular have been studied in detail for their ability to home to tumors and to deliver a variety of different payloads. Neural stem cells, mesenchymal stem cells and monocytes have each been shown to have great potential as future delivery systems for cancer therapy. A variety of other cell types have also been studied. These results demonstrate that the field of cell-based therapeutics will only continue to grow.
Collapse
|