1
|
Tamburri S, Zucchelli C, Matafora V, Zapparoli E, Jevtic Z, Farris F, Iannelli F, Musco G, Bachi A. SP140 represses specific loci by recruiting polycomb repressive complex 2 and NuRD complex. Nucleic Acids Res 2025; 53:gkae1215. [PMID: 39718989 DOI: 10.1093/nar/gkae1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
SP140, a lymphocytic-restricted protein, is an epigenetic reader working as a corepressor of genes implicated in inflammation and orchestrating macrophage transcriptional programs to maintain cellular identity. Reduced SP140 expression is associated both to autoimmune diseases and blood cancers. However, the molecular mechanisms that link SP140 altered protein levels to detrimental effects on the immune response and cellular growth, as well as the interactors through which SP140 promotes gene silencing, remain elusive. In this work, we have applied a multi-omics approach (i.e. interactomics, ChIP-seq and proteomics) in two Burkitt lymphoma cell lines to identify both interactors and target genes of endogenous SP140. We found that SP140 interacts with the PRC2 and NuRD complexes, and we showed that these interactions are functional as SP140 directs H3K27me3 deposition and NuRD binding on a set of target genes implicated in cellular growth and leukemia progression.
Collapse
Affiliation(s)
- Simone Tamburri
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Division of Genetics and Cell biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Vittoria Matafora
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Ettore Zapparoli
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Zivojin Jevtic
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Francesco Farris
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Fabio Iannelli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| |
Collapse
|
2
|
Han Y, Pu Q, Fan T, Wei T, Xu Y, Zhao L, Liu S. Long non-coding RNAs as promising targets for controlling disease vector mosquitoes. INSECT SCIENCE 2025; 32:24-41. [PMID: 38783627 DOI: 10.1111/1744-7917.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Hematophagous female mosquitoes are important vectors of numerous devastating human diseases, posing a major public health threat. Effective prevention and control of mosquito-borne diseases rely considerably on progress in understanding the molecular mechanisms of various life activities, and accordingly, the molecules that regulate the various life activities of mosquitoes are potential targets for implementing future vector control strategies. Many long non-coding RNAs (lncRNAs) have been identified in mosquitoes and significant progress has been made in determining their functions. Here, we present a comprehensive overview of the research advances on mosquito lncRNAs, including their molecular identification, function, and interaction with other non-coding RNAs, as well as their synergistic regulatory roles in mosquito life activities. We also highlight the potential roles of competitive endogenous RNAs in mosquito growth and development, as well as in insecticide resistance and virus-host interactions. Insights into the biological functions and mechanisms of lncRNAs in mosquito life activities, viral replication, pathogenesis, and transmission will contribute to the development of novel drugs and safe vaccines.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Yankun Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| |
Collapse
|
3
|
Javidi-Aghdam K, Faghfouri A, Jafarpour M, Akbarzadeh-Khiavi M, Safary A, Pourbagherian O, Khabbazi A. Role of NEAT1 and HOTAIR long non-coding RNAs in Behcet's Disease pathogenesis and their correlation with target inflammatory cytokines. Mol Biol Rep 2025; 52:111. [PMID: 39776276 DOI: 10.1007/s11033-025-10218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
BACKGROUND Recent studies have highlighted the potential role of several long non-coding RNAs (lncRNAs) in the pathogenesis of Behçet's disease (BD). This study investigated the expression profiles of lncRNA NEAT1 and lncRNA HOTAIR, and their target cytokine genes, IL-6 and TNF-α, in active and inactive BD patients. METHODS This cross-sectional study was conducted on peripheral blood mononuclear cells (PBMCs) obtained from 25 BD patients and 25 age-sex-matched healthy controls (HCs). BD activity was evaluated using the BDCAF (Behcet's Disease Current Activity Form) score. Correlation analysis assessed the relationship between BD activity and the expression levels of lncRNAs and their target cytokine genes. The diagnostic potential of the genes was evaluated using Receiver Operating Characteristic (ROC) curve analysis. RESULTS The expression levels of NEAT1, HOTAIR, IL-6, and TNF-α were significantly higher in the BD group compared to the HCs. However, there was no significant correlation between the expression levels of these genes and BD activity or the involvement of various organs. A positive correlation was observed between HOTAIR gene expression and IL-6 (R = 0.594, P-value = 0.009) in the BD group. In contrast, no significant correlation was found between HOTAIR and TNF-α or between NEAT1 and TNF-α or IL-6. The ROC curve analysis indicated strong diagnostic potential for the lncRNAs, with area under the curve (AUC) values of 0.90 for NEAT1 and 0.86 for HOTAIR. CONCLUSION The elevated expression levels of NEAT1 and HOTAIR in BD patients suggest their potential involvement in the disease's pathogenesis, indicating promising targets for future diagnostic and therapeutic strategies in BD.
Collapse
Affiliation(s)
- Kamran Javidi-Aghdam
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Faghfouri
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jafarpour
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Omid Pourbagherian
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
5
|
Polunina YA, Pravednikova AE, Ghassah M, Georgiev PG, Shidlovskii YV, Kachaev ZM. Escherichia coli and Micrococcus luteus Activate the CG45045 Gene in Drosophila S2 Cell Line. DOKL BIOCHEM BIOPHYS 2024; 519:482-485. [PMID: 39400767 DOI: 10.1134/s160767292460074x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 10/15/2024]
Abstract
The humoral immune system of Drosophila melanogaster, which is the best studied of all eukaryotes, is activated by the canonical IMD and Toll signalling pathways. Recently, long non-coding RNAs (lncRNAs) and genes encoding short polypeptides have been identified as potential regulators of the innate immune response. S2 cells are a macrophage-like cell line. They are used as a model system to study the molecular mechanisms of immune response gene activation. We used this cell line to study the effect of Escherichia coli and Micrococcus luteus bacteria on the transcription of the lncRNA-CR30055 and the CG45045 and CG44404 genes, encoding short polypeptides. We found that pathogens activate only CG45045, while the transcription levels of CR30055 and CG44404 remain unchanged. No activation of Cecropin C and some Bomanin family genes was observed, suggesting differing patterns of immune response gene activation in S2 cells and adult flies. The highest activation of CG45045 was observed between 6 and 12 hours of cell incubation with pathogens. The activation patterns of CG45045 after exposure to E. coli and M. luteus were similar, suggesting common mechanisms of transcriptional activation of this gene. Thus, CG45045 may be a novel gene involved in the humoral immune response of Drosophila.
Collapse
Affiliation(s)
- Yu A Polunina
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A E Pravednikova
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - M Ghassah
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - P G Georgiev
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yu V Shidlovskii
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Z M Kachaev
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
6
|
Altoum AA, Oghenemaro EF, Pallathadka H, Sanghvi G, Hjazi A, Abbot V, Kumar MR, Sharma R, Zwamel AH, Taha ZA. lncRNA-mediated immune system dysregulation in RIF; a comprehensive insight into immunological modifications and signaling pathways' dysregulation. Hum Immunol 2024; 85:111170. [PMID: 39549305 DOI: 10.1016/j.humimm.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
The initial stage of biological pregnancy is referred to as implantation, during which the interaction between the endometrium and the fetus is crucial for successful implantation. Around 10% of couples undergoing in vitro fertilization and embryo transfer encounter recurrent implantation failure (RIF), a clinical condition characterized by the absence of implantation after multiple embryo transfers. It is believed that implantation failure may be caused by inadequate or excessive endometrial inflammatory responses during the implantation window, as the female immune system plays a complex role in regulating endometrial receptivity and embryo implantation. Recent approaches to enhance the likelihood of pregnancy in RIF patients have focused on modifying the mother's immune response during implantation by regulating inflammation. Long non-coding RNAs (lncRNAs) play a significant role in gene transcription during the inflammatory response. Current research suggests that dysfunctional lncRNAs are linked to various human disorders, such as cancer, diabetes, allergies, asthma, and inflammatory bowel disease. These non-coding RNAs are crucial for immune functions as they control protein interactions or the ability of RNA and DNA to form complexes, which are involved in differentiation, cell migration, and the production of inflammatory mediators. Given the apparent involvement of the immune system in RIF and the modulatory effect of lncRNAs on the immune system, this review aims to delve into the role of lncRNAs in immune system modulation and their potential contribution to RIF.
Collapse
Affiliation(s)
- Abdelgadir Alamin Altoum
- Department of Medical Laboratory Sciences, College of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1, Abraka, Delta State, Nigeria
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Rajesh Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 302131, India
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Zahraa Ahmed Taha
- Medical Laboratory Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001 Babylon, Iraq
| |
Collapse
|
7
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
8
|
Li X, Yang X, You F, Miao C, Li M, Wang K, Niu Q, Ji T, Wang Z, Lin Z. Differences between uncapping and removal behaviors in Apis cerana from the perspective of long non-coding RNAs. BMC Genomics 2024; 25:912. [PMID: 39350014 PMCID: PMC11440941 DOI: 10.1186/s12864-024-10817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Hygienic behavior, a specialized form of immune response evolved in social insects, plays a crucial role in safeguarding colonies from disease spread. In honeybee colonies, such behavior typically entails the dual steps of uncapping and removal of unhealthy and deceased brood. Although in recent years, numerous studies have examined the development of hygienic behavior, the mechanisms underlying the division in the performance of uncapping and removal have yet to be sufficiently elucidated. In this regard, long non-coding RNAs (lncRNAs) have been evidenced to be engaged in regulating the physiological activities of honeybees; however, whether lncRNAs are likewise involved in the uncapping and removal tasks has not been clarified. RESULTS In this study, the strong hygienic Apis cerana worker bees were used and the processes of uncapping and removal behaviors in three colonies were assayed with freeze-killed brood in the field. We then sequenced the antennal RNAs of honeybees to identify differentially expressed lncRNAs and performed lncRNA-mRNA association analysis to establish the differences between uncapping and removal. We detected 1,323 differentially expressed lncRNAs in the antennae, and the findings of lncRNA-mRNA association analyses revealed that the target genes of differentially expressed lncRNAs between uncapping and removal worker bees were predominantly linked to response to stimulus, receptor activity, and synapse. Notably, among the lncRNAs enriched in cellular response to stimulus, XR_001766094.2 was exclusively expressed in the uncapping worker bees. Based on these findings, we hypothesize that XR_001766094.2 plays a key role in distinguishing uncapping from removal behaviors by responding to external stimulus, thereby suggesting that the division of hygienic behaviors is governed by differential thresholds of responsiveness to environmental cues. CONCLUSION We characterized differences in the uncapping and removal behaviors of worker bees from a perspective of lncRNAs. Uncapping bees may be equipped with a more rapid stimulatory response and more acute olfactory sensitivity, contributing to the rapid hygienic behavior in honeybee colonies. Our results thus establish a foundation for potential lncRNA-mediated gene expression regulation in hygienic behavior.
Collapse
Affiliation(s)
- Xiao Li
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoxiao Yang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Fangdong You
- Yunnan Animal Husbandry Station, Kunming, 650225, China
| | - Chunhui Miao
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, China
| | - Meng Li
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kang Wang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin, 132108, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhi Wang
- Apiculture Science Institute of Jilin Province, Jilin, 132108, China.
| | - Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Connor MG, Hamon MA. Advances in regulation of homeostasis through chromatin modifications by airway commensals. Curr Opin Microbiol 2024; 80:102505. [PMID: 38936013 DOI: 10.1016/j.mib.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Commensal bacteria are residents of the human airway where they interact with both colonizing pathogens and host respiratory epithelial cells of this mucosal surface. It is here that commensals exert their influence through host signaling cascades, host transcriptional responses and host immunity, all of which are rooted in chromatin remodeling and histone modifications. Recent studies show that airway commensals impact host chromatin, but compared the what is known for gut commensals, the field remains in its infancy. The mechanisms by which airway commensals regulate respiratory health and homeostasis through chromatin modifications is of increasing interest, specifically since their displacement precedes the increased potential for respiratory disease. Herein we will discuss recent advances and intriguing avenues of future work aimed at deciphering how airway commensals protect and influence respiratory health.
Collapse
Affiliation(s)
- Michael G Connor
- Institut Pasteur, Université de Paris Cité, Unité Chromatine et Infection, F-75015 Paris, France.
| | - Melanie A Hamon
- Institut Pasteur, Université de Paris Cité, Unité Chromatine et Infection, F-75015 Paris, France.
| |
Collapse
|
11
|
Yin G, Hu J, Huang X, Cai Y, Gao Z, Guo X, Feng X. The Identification and Function of Linc01615 on Influenza Virus Infection and Antiviral Response. Int J Mol Sci 2024; 25:6584. [PMID: 38928290 PMCID: PMC11203770 DOI: 10.3390/ijms25126584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza virus infection poses a great threat to human health globally each year. Non-coding RNAs (ncRNAs) in the human genome have been reported to participate in the replication process of the influenza virus, among which there are still many unknowns about Long Intergenic Non-Coding RNAs (LincRNAs) in the cell cycle of viral infections. Here, we observed an increased expression of Linc01615 in A549 cells upon influenza virus PR8 infection, accompanied by the successful activation of the intracellular immune system. The knockdown of Linc01615 using the shRNAs promoted the proliferation of the influenza A virus, and the intracellular immune system was inhibited, in which the expressions of IFN-β, IL-28A, IL-29, ISG-15, MX1, and MX2 were decreased. Predictions from the catRAPID website suggested a potential interaction between Linc01615 and DHX9. Also, knocking down Linc01615 promoted influenza virus proliferation. The subsequent transcriptome sequencing results indicated a decrease in Linc01615 expression after influenza virus infection when DHX9 was knocked down. Further analysis through cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) in HEK293 cells stably expressing DHX9 confirmed the interaction between DHX9 and Linc01615. We speculate that DHX9 may interact with Linc01615 to partake in influenza virus replication and that Linc01615 helps to activate the intracellular immune system. These findings suggest a deeper connection between DHX9 and Linc01615, which highlights the significant role of Linc01615 in the influenza virus replication process. This research provides valuable insights into understanding influenza virus replication and offers new targets for preventing influenza virus infections.
Collapse
Affiliation(s)
- Guihu Yin
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangyu Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zichen Gao
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Guo
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Ghahramani Almanghadim H, Karimi B, Poursalehi N, Sanavandi M, Atefi Pourfardin S, Ghaedi K. The biological role of lncRNAs in the acute lymphocytic leukemia: An updated review. Gene 2024; 898:148074. [PMID: 38104953 DOI: 10.1016/j.gene.2023.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Negareh Poursalehi
- Department of Medical Biotechnology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441 Isfahan, Iran.
| |
Collapse
|
13
|
Xu M, Li C, Xiang L, Chen S, Chen L, Ling G, Hu Y, Yang L, Yuan X, Xia X, Zhang H. Assessing the causal relationship between 731 immunophenotypes and the risk of lung cancer: a bidirectional mendelian randomization study. BMC Cancer 2024; 24:270. [PMID: 38408977 PMCID: PMC10898084 DOI: 10.1186/s12885-024-12014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Previous studies have observed a link between immunophenotypes and lung cancer, both of which are closely associated with genetic factors. However, the causal relationship between them remains unclear. METHODS Bidirectional Mendelian randomization (MR) was performed on publicly available genome-wide association study (GWAS) summary statistics to analyze the causal relationships between 731 immunophenotypes and lung cancer. Sensitivity analyses were conducted to verify the robustness, heterogeneity, and potential horizontal pleiotropy of our findings. RESULTS Following Bonferroni adjustment, CD14- CD16+ monocyte (OR = 0.930, 95%CI 0.900-0.960, P = 8.648 × 10- 6, PBonferroni = 0.006) and CD27 on CD24+ CD27+ B cells (OR = 1.036, 95%CI 1.020-1.053, P = 1.595 × 10 - 5, PBonferroni = 0.012) were identified as having a causal role in lung cancer via the inverse variance weighted (IVW) method. At a more relaxed threshold, CD27 on IgD+ CD24+ B cell (OR = 1.035, 95%CI 1.017-1.053, P = 8.666 × 10- 5, PBonferroni = 0.063) and CD27 on switched memory B cell (OR = 1.037, 95%CI 1.018-1.056, P = 1.154 × 10- 4, PBonferroni = 0.084) were further identified. No statistically significant effects of lung cancer on immunophenotypes were found. CONCLUSIONS The elevated level of CD14- CD16+ monocytes was a protective factor against lung cancer. Conversely, CD27 on CD24+ CD27+ B cell was a risk factor. CD27 on class-switched memory B cells and IgD+ CD24+ B cells were potential risk factors for lung cancer. This research enhanced our comprehension of the interplay between immune responses and lung cancer risk. Additionally, these findings offer valuable perspectives for the development of immunologically oriented therapeutic strategies.
Collapse
Affiliation(s)
- Ming Xu
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Chengkai Li
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Liyan Xiang
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Siyue Chen
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Lin Chen
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Gongxia Ling
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Yanqing Hu
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Lan Yang
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Xiang Yuan
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Xiaodong Xia
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China.
| | - Hailin Zhang
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China.
- Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, 325027, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
14
|
Huang Y, Wang T, Jiang C, Li S, Zhou H, Li R. Relish-facilitated lncRNA-CR11538 suppresses Drosophila Imd immune response and maintains immune homeostasis via decoying Relish away from antimicrobial peptide promoters. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105098. [PMID: 37956726 DOI: 10.1016/j.dci.2023.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Innate immunity plays a crucial role in host defense against pathogen invasion and its strength and duration requires precise control. Long non-coding RNAs (lncRNAs) have become important regulators of innate immunity, yet their roles in Drosophila immune responses remain largely unknown. In this study, we identified that the overexpression of lncRNA-CR11538 inhibits the expression of antimicrobial peptides (AMPs) Dpt and AttA in Drosophila upon Escherichia coli (E. coli) infection, and influences the survival rate of flies after E. cloacae infection. Mechanically, lncRNA-CR11538 decoys Relish away from AMPs promoter region. We further revealed that Relish can promote the transcription of lncRNA-CR11538. After analyzing the dynamic expression profile of lncRNA-CR11538 during Imd immune response, we put forward a hypothesis that in the late stage of Imd immune response, lncRNA-CR11538 can be activated by Relish and further decoy Relish away from the AMPs promoter to suppress excessive immune signal and maintain immune homeostasis. This mechanism we proposed provides insights into the complex regulatory networks controlling immune responses in Drosophila and suggests potential targets for therapeutic intervention in diseases involving dysregulated immune responses.
Collapse
Affiliation(s)
- Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Tan Wang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Chun Jiang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China; Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, Jiangsu, PR China
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China; Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, Jiangsu, PR China.
| | - Ruimin Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, PR China.
| |
Collapse
|
15
|
Santana-da-Silva MN, Sena-dos-Santos C, Cáceres-Durán MÁ, de Souza FG, Gobbo AR, Pinto P, Salgado CG, dos Santos SEB. ncRNAs: an unexplored cellular defense mechanism in leprosy. Front Genet 2023; 14:1295586. [PMID: 38116294 PMCID: PMC10729009 DOI: 10.3389/fgene.2023.1295586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023] Open
Abstract
Leprosy is an infectious disease primarily caused by the obligate intracellular parasite Mycobacterium leprae. Although it has been considered eradicated in many countries, leprosy continues to be a health issue in developing nations. Besides the social stigma associated with it, individuals affected by leprosy may experience nerve damage leading to physical disabilities if the disease is not properly treated or early diagnosed. Leprosy is recognized as a complex disease wherein socioenvironmental factors, immune response, and host genetics interact to contribute to its development. Recently, a new field of study called epigenetics has emerged, revealing that the immune response and other mechanisms related to infectious diseases can be influenced by noncoding RNAs. This review aims to summarize the significant advancements concerning non-coding RNAs in leprosy, discussing the key perspectives on this novel approach to comprehending the pathophysiology of the disease and identifying molecular markers. In our view, investigations on non-coding RNAs in leprosy hold promise and warrant increased attention from researches in this field.
Collapse
Affiliation(s)
- Mayara Natália Santana-da-Silva
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
- Laboratório de Imunologia, Seção de Virologia (SAVIR), Instituto Evandro Chagas, Ananindeua, Brazil
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Miguel Ángel Cáceres-Durán
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Felipe Gouvea de Souza
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Angelica Rita Gobbo
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Pablo Pinto
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Claudio Guedes Salgado
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Sidney Emanuel Batista dos Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Belém, Brazil
| |
Collapse
|
16
|
Chai D, Yang C, Liu Y, Li H, Lian B, Bai Z, Li J. Knockdown of LINC00702 inhibits the growth and induces apoptosis of breast cancer through the Wnt/β-catenin pathway. Heliyon 2023; 9:e20651. [PMID: 37860544 PMCID: PMC10582296 DOI: 10.1016/j.heliyon.2023.e20651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are essential in many biological areas like cell growth and apoptosis. The role of recently discovered LINC00702 is yet to be explored. Therefore, we wanted to elucidate its role in breast cancer (BC) with bioinformatic and various methods. LINC00702 expression was predicted using bioinformatic analysis and confirmed by RT-qPCR. Furthermore, the impact of LINC00702 knockdown on BC progression was evaluated. High LINC00702 level could lead to a worse outcome in BC patients. Additionally, CCK-8, EdU,and Annexin V-APC7/AAD experiments showed that LINC00702 knockdown inhibited the growth of BT-474 and T-47D cells and promoted their apoptosis. Moreover, in vivo experiments showed that shLINC00702-2 significantly reduced tumor sizes and suppressed c-Myc and β-catenin expressions. On the contrary, a rescue assay showed that HLY78, an activator of the Wnt/β-catenin pathway, reversed the cell-inhibiting impact of LINC00702 knockdown. LINC00702 is an oncogenic lncRNA that promotes BC progression by stimulating the Wnt/β-catenin pathway and downstream proteins, making it a promising target for further research on BC treatment.
Collapse
Affiliation(s)
- Dahai Chai
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Chunli Yang
- Medical Affairs Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yaobang Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Bin Lian
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Zhengyang Bai
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jinping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| |
Collapse
|
17
|
Zhang T, Yu H, Bai Y, Guo Y. Mutation density analyses on long noncoding RNA reveal comparable patterns to protein-coding RNA and prognostic value. Comput Struct Biotechnol J 2023; 21:4887-4894. [PMID: 37860228 PMCID: PMC10582829 DOI: 10.1016/j.csbj.2023.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Mutations and gene expression are the two most studied genomic features in cancer research. In the last decade, the combined advances in genomic technology and computational algorithms have broadened mutation research with the concept of mutation density and expanded the traditional scope of protein-coding RNA to noncoding RNAs. However, mutation density analysis had yet to be integrated with non-coding RNAs. In this study, we examined long non-coding RNA (lncRNA) mutation density patterns of 57 unique cancer types using 80 cancer cohorts. Our analysis revealed that lncRNAs exhibit mutation density patterns reminiscent to those of protein-coding mRNAs. These patterns include mutation peak and dip around transcription start sites of lncRNA. In many cohorts, these patterns justified statistically significant transcription strand bias, and the transcription strand bias was shared between lncRNAs and mRNAs. We further quantified transcription strand biases with a Log Odds Ratio metric and showed that some of these biases are associated with patient prognosis. The prognostic effect may be exerted due to strong Transcription-coupled repair mechanisms associated with the individual patient. For the first time, our study combined mutational density patterns with lncRNA mutations, and the results demonstrated remarkably comparable patterns between protein-coding mRNA and lncRNA, further illustrating lncRNA's potential roles in cancer research.
Collapse
Affiliation(s)
- Troy Zhang
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Hui Yu
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Yongsheng Bai
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Yan Guo
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
18
|
Davoodvandi A, Rafiyan M, Mansournia MA, Rajabpoor Nikoo N, Saati M, Samimi M, Asemi Z. MicroRNA and gynecological cancers: Focus on miR-195. Pathol Res Pract 2023; 249:154784. [PMID: 37639954 DOI: 10.1016/j.prp.2023.154784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Different cancer types have been shown to have down-regulated expression levels of miR-195 as an anti-tumor agent. MiR-195 family members can inhibit cancer cell proliferation, angiogenesis, epithelial-mesenchymal transition and metastases, immunosuppression, glycolysis, drug resistance, and cancer stem cell development by targeting the 3'-UTR of the mRNA of different pro-tumor genes. MiR-195 identified as a tumor suppressor miR in a variety of cancers, most notably gynecological malignancies such as cervical, endometrial, and ovarian carcinoma. As a result, restoring miR-195 expression should be regarded as a potential therapy for either prevention or treatment of gynecological cancers. This review will present the most recent data about miR-195-mediated anti-tumor effects in gynecological malignancies, emphasizing its downstream signaling pathways and target genes, as well as prospective treatment techniques.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Islamic Republic of Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nesa Rajabpoor Nikoo
- Department of Gynecology and Obstetrics, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Maryam Saati
- Department of Nursing, Semnan Branch, Islamic Azad University, Semnan, Islamic Republic of Iran
| | - Mansooreh Samimi
- Department of Gynecology and Obstetrics, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
19
|
Shmuel-Galia L, Humphries F, Vierbuchen T, Jiang Z, Santos N, Johnson J, Shklyar B, Joannas L, Mustone N, Sherman S, Ward D, Houghton J, Baer CE, O'Hara A, Henao-Mejia J, Hoebe K, Fitzgerald KA. The lncRNA HOXA11os regulates mitochondrial function in myeloid cells to maintain intestinal homeostasis. Cell Metab 2023; 35:1441-1456.e9. [PMID: 37494932 DOI: 10.1016/j.cmet.2023.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
This study reveals a previously uncharacterized mechanism to restrict intestinal inflammation via a regulatory RNA transcribed from a noncoding genomic locus. We identified a novel transcript of the lncRNA HOXA11os specifically expressed in the distal colon that is reduced to undetectable levels in colitis. HOXA11os is localized to mitochondria under basal conditions and interacts with a core subunit of complex 1 of the electron transport chain (ETC) to maintain its activity. Deficiency of HOXA11os in colonic myeloid cells results in complex I deficiency, dysfunctional oxidative phosphorylation (OXPHOS), and the production of mitochondrial reactive oxygen species (mtROS). As a result, HOXA11os-deficient mice develop spontaneous intestinal inflammation and are hypersusceptible to colitis. Collectively, these studies identify a new regulatory axis whereby a lncRNA maintains intestinal homeostasis and restricts inflammation in the colon through the regulation of complex I activity.
Collapse
Affiliation(s)
- Liraz Shmuel-Galia
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tim Vierbuchen
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zhaozhao Jiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nolan Santos
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - John Johnson
- Immunology Discovery, Janssen Research and Development LLC, Spring House, PA 19477, USA
| | - Boris Shklyar
- Bioimaging Unit, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Mustone
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shany Sherman
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Doyle Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - JeanMarie Houghton
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Christina E Baer
- Sanderson Center for Optical Imaging and Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Aisling O'Hara
- Immunology Discovery, Janssen Research and Development LLC, Spring House, PA 19477, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kasper Hoebe
- Immunology Discovery, Janssen Research and Development LLC, Spring House, PA 19477, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
Graham ML, Li M, Gong AY, Deng S, Jin K, Wang S, Chen XM. Cryptosporidium parvum hijacks a host's long noncoding RNA U90926 to evade intestinal epithelial cell-autonomous antiparasitic defense. Front Immunol 2023; 14:1205468. [PMID: 37346046 PMCID: PMC10280636 DOI: 10.3389/fimmu.2023.1205468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Cryptosporidium is a zoonotic apicomplexan parasite that infects the gastrointestinal epithelium and other mucosal surfaces in humans. It is an important opportunistic pathogen in AIDS patients and a leading cause of infectious diarrhea and diarrheal-related death in children worldwide. The intestinal epithelial cells provide the first line of defense against Cryptosporidium infection and play a central role in activating and regulating the host's antiparasitic response. Increasing evidence suggests that long noncoding RNAs (lncRNAs) participate in host-pathogen interactions and play a regulatory role in the pathogenesis of diseases but the underlying molecular mechanisms are not fully understood. We previously identified a panel of host lncRNAs that are upregulated in murine intestinal epithelial cells following Cryptosporidium infection, including U90926. We demonstrate here that U90926 is acting in a pro-parasitic manner in regulating intestinal epithelial cell-autonomous antiparasitic defense. Inhibition of U90926 resulted in a decreased infection burden of the parasite while overexpression of U90926 showed an increase in infection burden in cultured murine intestinal epithelial cells. Induction of U90926 suppressed transcription of epithelial defense genes involved in controlling Cryptosporidium infection through epigenetic mechanisms. Specifically, transcription of Aebp1, which encodes the Aebp1 protein, a potent modulator of inflammation and NF-κB signaling, was suppressed by U90926. Gain- or loss-of-function of Aebp1 in the host's epithelial cells caused reciprocal alterations in the infection burden of the parasite. Interestingly, Cryptosporidium carries the Cryptosporidium virus 1 (CSpV1), a double-stranded (ds) RNA virus coding two dsRNA fragments, CSpV1-dsRdRp and CSpV1-dsCA. Both CSpV1-dsRdRp and CSpV1-dsCA can be delivered into infected cells as previously reported. We found that cells transfected with in vitro transcribed CSpV1-dsCA or CSpV1-dsRdRp displayed an increased level of U90926, suggesting that CSpV1 is involved in the upregulation of U90926 during Cryptosporidium infection. Our study highlights a new strategy by Cryptosporidium to hijack a host lncRNA to suppress epithelial cell-autonomous antiparasitic defense and allow for a robust infection.
Collapse
Affiliation(s)
- Marion L. Graham
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Min Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Ai-Yu Gong
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Silu Deng
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Kehua Jin
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Shuhong Wang
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Xian-Ming Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
21
|
Sherazi SAM, Abbasi A, Jamil A, Uzair M, Ikram A, Qamar S, Olamide AA, Arshad M, Fried PJ, Ljubisavljevic M, Wang R, Bashir S. Molecular hallmarks of long non-coding RNAs in aging and its significant effect on aging-associated diseases. Neural Regen Res 2023; 18:959-968. [PMID: 36254975 PMCID: PMC9827784 DOI: 10.4103/1673-5374.355751] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer's disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes (e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA- and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
Collapse
Affiliation(s)
- Syed Aoun Mehmood Sherazi
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Asim Abbasi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Abdullah Jamil
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shanzay Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Peter J. Fried
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center (KS 158), Harvard Medical School, Boston, MA, USA
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
22
|
Bozgeyik E, Ege B, Erdogmus Z, Bozgeyik I, Koparal M, Bayazit S, Kurt MY. Inflammation-associated long non-coding RNA signature in radicular cyst tissues. Pathol Res Pract 2023; 245:154456. [PMID: 37116367 DOI: 10.1016/j.prp.2023.154456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023]
Abstract
Radicular cysts are characterized by significant levels of changes in inflammatory biomarkers. Among them, interleukins and growth factors have been reported to be deregulated in radicular cyst tissues. Moreover, long non-coding RNAs are recently discovered non-coding RNA molecules that regulate various intracellular stimuli to keep homeostasis in balance. A growing body of evidence suggests that lncRNAs are significantly involved in the regulation of inflammation by targeting various inflammatory biomarkers. Accordingly, the present study was aimed to investigate the gene expression levels of inflammation-related lncRNAs in radicular cysts and show their possible roles in the development of radicular cysts. For the study, a total of 25 patients with a radiologically and pathologically confirmed radicular cyst were enrolled. For the determination of non-coding RNA expression levels, real-time qPCR was used. As a result of the current study, expression levels of PACER and THRIL were found to be significantly elevated in radicular cyst tissues compared to control tissue samples. However, MALAT1, ANRIL, and NEAT1 expression levels were not significantly altered in radicular cyst tissues compared to control tissue samples. In conclusion, long non-coding RNAs, PACER and THRIL, seem to have significant pathophysiological roles by acquiring molecular changes during inflammation and might be involved in the development and formation of radicular cysts.
Collapse
Affiliation(s)
- Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey.
| | - Bilal Ege
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Adiyaman University, Adiyaman, Turkey
| | - Zozan Erdogmus
- Oral and Maxillofacial Surgery Clinic, Diyarbakir Oral and Dental Health Center, Diyarbakir, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Mahmut Koparal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Adiyaman University, Adiyaman, Turkey
| | - Seyma Bayazit
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Adiyaman University, Adiyaman, Turkey
| | - Muhammed Yusuf Kurt
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
23
|
Wang Z, Wang S, Fan X, Zhang K, Zhang J, Zhao H, Gao X, Zhang Y, Guo S, Zhou D, Li Q, Na Z, Chen D, Guo R. Systematic Characterization and Regulatory Role of lncRNAs in Asian Honey Bees Responding to Microsporidian Infestation. Int J Mol Sci 2023; 24:ijms24065886. [PMID: 36982959 PMCID: PMC10058195 DOI: 10.3390/ijms24065886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are pivotal regulators in gene expression and diverse biological processes, such as immune defense and host-pathogen interactions. However, little is known about the roles of lncRNAs in the response of the Asian honey bee (Apis cerana) to microsporidian infestation. Based on our previously obtained high-quality transcriptome datasets from the midgut tissues of Apis cerana cerana workers at 7 days post inoculation (dpi) and 10 dpi with Nosema ceranae (AcT7 and AcT10 groups) and the corresponding un-inoculated midgut tissues (AcCK7 and AcCK10 groups), the transcriptome-wide identification and structural characterization of lncRNAs were conducted, and the differential expression pattern of lncRNAs was then analyzed, followed by investigation of the regulatory roles of differentially expressed lncRNAs (DElncRNAs) in host response. Here, 2365, 2322, 2487, and 1986 lncRNAs were, respectively, identified in the AcCK7, AcT7, AcCK7, and AcT10 groups. After removing redundant ones, a total of 3496 A. c. cerana lncRNAs were identified, which shared similar structural characteristics with those discovered in other animals and plants, such as shorter exons and introns than mRNAs. Additionally, 79 and 73 DElncRNAs were screened from the workers' midguts at 7 dpi and 10 dpi, respectively, indicating the alteration of the overall expression pattern of lncRNAs in host midguts after N. ceranae infestation. These DElncRNAs could, respectively, regulate 87 and 73 upstream and downstream genes, involving a suite of functional terms and pathways, such as metabolic process and Hippo signaling pathway. Additionally, 235 and 209 genes co-expressed with DElncRNAs were found to enrich in 29 and 27 terms, as well as 112 and 123 pathways, such as ABC transporters and the cAMP signaling pathway. Further, it was detected that 79 (73) DElncRNAs in the host midguts at 7 (10) dpi could target 321 (313) DEmiRNAs and further target 3631 (3130) DEmRNAs. TCONS_00024312 and XR_001765805.1 were potential precursors for ame-miR-315 and ame-miR-927, while TCONS_00006120 was the putative precursor for both ame-miR-87-1 and ame-miR-87-2. These results together suggested that DElncRNAs are likely to play regulatory roles in the host response to N. ceranae infestation through the regulation of neighboring genes via a cis-acting effect, modulation of co-expressed mRNAs via trans-acting effect, and control of downstream target genes' expression via competing endogenous RNA networks. Our findings provide a basis for disclosing the mechanism underlying DElncRNA-mediated host N. ceranae response and a new perspective into the interaction between A. c. cerana and N. ceranae.
Collapse
Affiliation(s)
- Zixin Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyi Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaiyao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxin Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haodong Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuze Gao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiqiong Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingding Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiming Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihao Na
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
24
|
Chini A, Guha P, Malladi VS, Guo Z, Mandal SS. Novel long non-coding RNAs associated with inflammation and macrophage activation in human. Sci Rep 2023; 13:4036. [PMID: 36899011 PMCID: PMC10006430 DOI: 10.1038/s41598-023-30568-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Inflammation plays a central role in immune response and macrophage activation. Emerging studies demonstrate that along with proteins and genomic factors, noncoding RNA are potentially involved in regulation of immune response and inflammation. Our recent study demonstrated that lncRNA HOTAIR plays key roles in cytokine expression and inflammation in macrophages. The primary goal of this study is to discover novel lncRNAs that are crucial players in inflammation, macrophage activation, and immune response in humans. Towards this, we have stimulated THP1-derived macrophages (THP1-MΦ) with lipopolysaccharides (LPS) and performed the whole transcriptome RNA-seq analysis. Based on this analysis, we discovered that along with well-known marker for inflammation (such as cytokines), a series of long noncoding RNAs (lncRNAs) expression were highly induced upon LPS-stimulation of macrophages, suggesting their potential roles in inflammation and macrophage activation. We termed these family of lncRNAs as Long-noncoding Inflammation Associated RNA (LinfRNA). Dose and time dependent analysis demonstrated that many human LinfRNA (hLinfRNAs) expressions follow similar patterns as cytokine expressions. Inhibition of NF-κB suppressed the expression of most hLinfRNAs suggesting their potential regulation via NF-κB activation during inflammation and macrophage activation. Antisense-mediated knockdown of hLinfRNA1 suppressed the LPS-induced expression of cytokines and pro-inflammatory genes such as IL6, IL1β, and TNFα expression, suggesting potential functionality of the hLinfRNAs in cytokine regulation and inflammation. Overall, we discovered a series of novel hLinfRNAs that are potential regulators of inflammation and macrophage activation and may be linked to inflammatory and metabolic diseases.
Collapse
Affiliation(s)
- Avisankar Chini
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Prarthana Guha
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Venkat S Malladi
- Lyda Hill Department of Bioinformatics, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zibiao Guo
- North Texas Genome Center, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Subhrangsu S Mandal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
25
|
Chen JW, Shrestha L, Green G, Leier A, Marquez-Lago TT. The hitchhikers' guide to RNA sequencing and functional analysis. Brief Bioinform 2023; 24:bbac529. [PMID: 36617463 PMCID: PMC9851315 DOI: 10.1093/bib/bbac529] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 01/10/2023] Open
Abstract
DNA and RNA sequencing technologies have revolutionized biology and biomedical sciences, sequencing full genomes and transcriptomes at very high speeds and reasonably low costs. RNA sequencing (RNA-Seq) enables transcript identification and quantification, but once sequencing has concluded researchers can be easily overwhelmed with questions such as how to go from raw data to differential expression (DE), pathway analysis and interpretation. Several pipelines and procedures have been developed to this effect. Even though there is no unique way to perform RNA-Seq analysis, it usually follows these steps: 1) raw reads quality check, 2) alignment of reads to a reference genome, 3) aligned reads' summarization according to an annotation file, 4) DE analysis and 5) gene set analysis and/or functional enrichment analysis. Each step requires researchers to make decisions, and the wide variety of options and resulting large volumes of data often lead to interpretation challenges. There also seems to be insufficient guidance on how best to obtain relevant information and derive actionable knowledge from transcription experiments. In this paper, we explain RNA-Seq steps in detail and outline differences and similarities of different popular options, as well as advantages and disadvantages. We also discuss non-coding RNA analysis, multi-omics, meta-transcriptomics and the use of artificial intelligence methods complementing the arsenal of tools available to researchers. Lastly, we perform a complete analysis from raw reads to DE and functional enrichment analysis, visually illustrating how results are not absolute truths and how algorithmic decisions can greatly impact results and interpretation.
Collapse
Affiliation(s)
- Jiung-Wen Chen
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa Shrestha
- Department of Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - George Green
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Leier
- Department of Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Tatiana T Marquez-Lago
- Department of Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| |
Collapse
|
26
|
Xu D, Li C, Xu Y, Huang M, Cui D, Xie J. Myeloid-derived suppressor cell: A crucial player in autoimmune diseases. Front Immunol 2022; 13:1021612. [PMID: 36569895 PMCID: PMC9780445 DOI: 10.3389/fimmu.2022.1021612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are identified as a highly heterogeneous group of immature cells derived from bone marrow and play critical immunosuppressive functions in autoimmune diseases. Accumulating evidence indicates that the pathophysiology of autoimmune diseases was closely related to genetic mutations and epigenetic modifications, with the latter more common. Epigenetic modifications, which involve DNA methylation, covalent histone modification, and non-coding RNA-mediated regulation, refer to inheritable and potentially reversible changes in DNA and chromatin that regulate gene expression without altering the DNA sequence. Recently, numerous reports have shown that epigenetic modifications in MDSCs play important roles in the differentiation and development of MDSCs and their suppressive functions. The molecular mechanisms of differentiation and development of MDSCs and their regulatory roles in the initiation and progression of autoimmune diseases have been extensively studied, but the exact function of MDSCs remains controversial. Therefore, the biological and epigenetic regulation of MDSCs in autoimmune diseases still needs to be further characterized. This review provides a detailed summary of the current research on the regulatory roles of DNA methylation, histone modifications, and non-coding RNAs in the development and immunosuppressive activity of MDSCs, and further summarizes the distinct role of MDSCs in the pathogenesis of autoimmune diseases, in order to provide help for the diagnosis and treatment of diseases from the perspective of epigenetic regulation of MDSCs.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China
| | - Cheng Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yushan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China
| | - Mingyue Huang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China,*Correspondence: Dawei Cui, ; Jue Xie,
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China,*Correspondence: Dawei Cui, ; Jue Xie,
| |
Collapse
|
27
|
Corral A, Alcala M, Carmen Duran-Ruiz M, Arroba AI, Ponce-Gonzalez JG, Todorčević M, Serra D, Calderon-Dominguez M, Herrero L. Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies. Biochem Pharmacol 2022; 206:115305. [DOI: 10.1016/j.bcp.2022.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
28
|
Deng Y, Guo K, Tang Z, Feng Y, Cai S, Ye J, Xi Y, Li J, Liu R, Cai C, Tan Z, Zhang Y, Han Z, Zeng G, Zhong W. Identification and experimental validation of a tumor-infiltrating lymphocytes-related long noncoding RNA signature for prognosis of clear cell renal cell carcinoma. Front Immunol 2022; 13:1046790. [PMID: 36505457 PMCID: PMC9730408 DOI: 10.3389/fimmu.2022.1046790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common aggressive malignant tumor of the urinary system. Given the heterogeneity of the tumor microenvironment, immunotherapy may not fully exert its role in the treatment of advanced patients. Long noncoding RNA (lncRNA) has been reported to be critically associated with the differentiation and maturation of tumor-infiltrating lymphocytes (TILs), which work against tumor cells. In this study, we identified 10 TIL-related lncRNAs (AL590094.1, LINC02027, LINC00460, AC147651.1, AC026401.3, LINC00944, LINC01615, AP000439.2, AL162586.1, and AC084876.1) by Pearson correlation, univariate Cox regression, Lasso regression, and multivariate Cox regression based on The Cancer Genome Atlas (TCGA) database. A risk score model was established based on these lncRNAs. Next, a nomogram was constructed to predict the overall survival. By employing differentially expressed genes (DEGs) between groups with high and low risk scores, gene ontology (GO) enrichment analysis was performed to identify the major biological processes (BP) related to immune DEGs. We analyzed the mutation data of the groups and demonstrated that SETD2 and BAP1 had the highest mutation frequency in the high-risk group. The "CIBERSORT" R package was used to detect the abundance of TILs in the groups. The expression of lymphocyte markers was compared. We also determined the expression of two lncRNAs (AC084876.1 and AC026401.3) and their relationship with lymphocyte markers in the kidney tissue of ccRCC patients and showed that there was a positive correlation between AC084876.1 and FoxP3. Proliferation, migration, and invasion of AC084876.1-downregulated ccRCC cell lines were inhibited, and the expression of PD-L1 and TGF-β secretion decreased. To our knowledge, this is the first bioinformatics study to establish a prognostic model for ccRCC using TIL-related lncRNAs. These lncRNAs were associated with T-cell activities and may serve as biomarkers of disease prognosis.
Collapse
Affiliation(s)
- Yulin Deng
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai Guo
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenfeng Tang
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanfa Feng
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shanghua Cai
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China,Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianheng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuanxue Xi
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jinchuang Li
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ren Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zeheng Tan
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yixun Zhang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhaodong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China,*Correspondence: Weide Zhong, ; Guohua Zeng, ; Zhaodong Han,
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China,*Correspondence: Weide Zhong, ; Guohua Zeng, ; Zhaodong Han,
| | - Weide Zhong
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China,Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, China,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China,*Correspondence: Weide Zhong, ; Guohua Zeng, ; Zhaodong Han,
| |
Collapse
|
29
|
Wang MN, Lei LL, He W, Ding DW. SPCMLMI: A structural perturbation-based matrix completion method to predict lncRNA–miRNA interactions. Front Genet 2022; 13:1032428. [DOI: 10.3389/fgene.2022.1032428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence indicated that the interaction between lncRNA and miRNA is crucial for gene regulation, which can regulate gene transcription, further affecting the occurrence and development of many complex diseases. Accurate identification of interactions between lncRNAs and miRNAs is helpful for the diagnosis and therapeutics of complex diseases. However, the number of known interactions of lncRNA with miRNA is still very limited, and identifying their interactions through biological experiments is time-consuming and expensive. There is an urgent need to develop more accurate and efficient computational methods to infer lncRNA–miRNA interactions. In this work, we developed a matrix completion approach based on structural perturbation to infer lncRNA–miRNA interactions (SPCMLMI). Specifically, we first calculated the similarities of lncRNA and miRNA, including the lncRNA expression profile similarity, miRNA expression profile similarity, lncRNA sequence similarity, and miRNA sequence similarity. Second, a bilayer network was constructed by integrating the known interaction network, lncRNA similarity network, and miRNA similarity network. Finally, a structural perturbation-based matrix completion method was used to predict potential interactions of lncRNA with miRNA. To evaluate the prediction performance of SPCMLMI, five-fold cross validation and a series of comparison experiments were implemented. SPCMLMI achieved AUCs of 0.8984 and 0.9891 on two different datasets, which is superior to other compared methods. Case studies for lncRNA XIST and miRNA hsa-mir-195–5-p further confirmed the effectiveness of our method in inferring lncRNA–miRNA interactions. Furthermore, we found that the structural consistency of the bilayer network was higher than that of other related networks. The results suggest that SPCMLMI can be used as a useful tool to predict interactions between lncRNAs and miRNAs.
Collapse
|
30
|
Macovei LA, Burlui A, Bratoiu I, Rezus C, Cardoneanu A, Richter P, Szalontay A, Rezus E. Adult-Onset Still's Disease-A Complex Disease, a Challenging Treatment. Int J Mol Sci 2022; 23:12810. [PMID: 36361602 PMCID: PMC9655522 DOI: 10.3390/ijms232112810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
Adult-onset Still's disease (AOSD) is a systemic inflammatory disorder with an unknown cause characterized by high-spiking fever, lymphadenopathy, hepatosplenomegaly, hyperferritinemia, and leukocytosis. The clinical course can be divided into three significant patterns, each with a different prognosis: Self-limited or monophasic, intermittent or polycyclic systemic, and chronic articular. Two criteria sets have been validated. The Yamaguchi criteria are the most generally used, although the Fautrel criteria offer the benefit of adding ferritin and glycosylated ferritin values. AOSD's pathogenesis is not yet completely understood. Chemokines and pro-inflammatory cytokines, including interferon (IFN)-γ, tumor necrosis factor α (TNFα), interleukin (IL)-1, IL-6, IL-8, and IL-18, play a crucial role in the progression of illness, resulting in the development of innovative targeted therapeutics. There are no treatment guidelines for AOSD due to its rarity, absence of controlled research, and lack of a standard definition for remission and therapy objectives. Non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids (CS), and conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) are used in AOSD treatment. Biological therapy, including IL-1, IL-6, IL-18, and IL-17 inhibitors, as well as TNFα or Janus-kinases (JAKs) inhibitors, is administered to patients who do not react to CS and csDMARDs or achieve an inadequate response.
Collapse
Affiliation(s)
- Luana Andreea Macovei
- Department of Rheumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandra Burlui
- Department of Rheumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Department of Rheumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Anca Cardoneanu
- Department of Rheumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Patricia Richter
- Department of Rheumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Andreea Szalontay
- Department of Psychiatry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, 700282 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
31
|
Han Q, Wang M, Dong X, Wei F, Luo Y, Sun X. Non-coding RNAs in hepatocellular carcinoma: Insights into regulatory mechanisms, clinical significance, and therapeutic potential. Front Immunol 2022; 13:985815. [PMID: 36300115 PMCID: PMC9590653 DOI: 10.3389/fimmu.2022.985815] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex and heterogeneous malignancy with high incidence and poor prognosis. In addition, owing to the lack of diagnostic and prognostic markers, current multimodal treatment options fail to achieve satisfactory outcomes. Tumor immune microenvironment (TIME), angiogenesis, epithelial-mesenchymal transition (EMT), invasion, metastasis, metabolism, and drug resistance are important factors influencing tumor development and therapy. The intercellular communication of these important processes is mediated by a variety of bioactive molecules to regulate pathophysiological processes in recipient cells. Among these bioactive molecules, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), account for a large part of the human transcriptome, and their dysregulation affects the progression of HCC. The purpose of this review is to evaluate the potential regulatory mechanisms of ncRNAs in HCC, summarize novel biomarkers from somatic fluids (plasma/serum/urine), and explore the potential of some small-molecule modulators as drugs. Thus, through this review, we aim to contribute to a deeper understanding of the regulatory mechanisms, early diagnosis, prognosis, and precise treatment of HCC.
Collapse
Affiliation(s)
- Qin Han
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wei
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
32
|
Qualification of Necroptosis-Related lncRNA to Forecast the Treatment Outcome, Immune Response, and Therapeutic Effect of Kidney Renal Clear Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3283343. [PMID: 36226251 PMCID: PMC9550517 DOI: 10.1155/2022/3283343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is considered as a highly immune infiltrative tumor. Necroptosis is an inflammatory programmed cell death associated with a wide range of diseases. Long noncoding RNAs (lncRNAs) play important roles in gene regulation and immune function. lncRNA associated with necroptosis could systematically explore the prognostic value, regulate tumor microenvironment (TME), etc. Method The patients' data was collected from TCGA datasets. We used the univariate Cox regression (UCR) to select prediction lncRNAs that are related to necroptosis. Meanwhile, risk models were constructed using LASSO Cox regression (LCR). Kaplan–Meier (KM) analysis, accompanied with receiver operating characteristic (ROC) curves, was performed to assess the independent risk factors of different clinical characteristics. The evaluated factors are age, gender, disease staging, grade, and their related risk score. Databases such as Gene Ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and Gene set enrichment analysis (GSEA) were used to search the probable biological characteristics that could influence the risk groups, containing signaling pathway and immue-related pathways. The single-sample gene set enrichment analysis (ssGSEA) was chosen to perform gene set variation analysis (GSVA), and the GSEABase package was selected to detect the immune and inflammatory infiltration profiles. The TIDE and IC50 evaluation were used to estimate the effectiveness of clinical treatment on KIRC. Results Based on the above analysis, we have got a conclusion that patients who show high risk had higher immune infiltration, immune checkpoint expression, and poorer prognosis. We identified 19 novel prognostic necroptosis-related lncRNAs, which could offer opinions for a deeper study of KIRC. Conclusion The risk model we constructed makes it possible to predict the prognosis of KIRC patients and offers directions for further research on the prognostication and treatment strategies for KIRC.
Collapse
|
33
|
Malmström E, Khan HN, Veer CV‘, Stunnenberg M, Meijer MT, Matsumoto H, Otto NA, Geijtenbeek TBH, de Vos AF, van der Poll T, Scicluna BP. The Long Non-Coding Antisense RNA JHDM1D-AS1 Regulates Inflammatory Responses in Human Monocytes. Front Cell Infect Microbiol 2022; 12:934313. [PMID: 35903199 PMCID: PMC9315269 DOI: 10.3389/fcimb.2022.934313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Monocytes are key players in innate immunity, with their ability to regulate inflammatory responses and combat invading pathogens. There is a growing body of evidence indicating that long non-coding RNA (lncRNA) participate in various cellular biological processes, including the innate immune response. The immunoregulatory properties of numerous lncRNAs discovered in monocytes remain largely unexplored. Here, by RNA sequencing, we identified a lncRNA JHDM1D-AS1, which was upregulated in blood monocytes obtained from patients with sepsis relative to healthy controls. JHDM1D-AS1 expression was induced in primary human monocytes exposed to Toll-like receptor ligands, such as lipopolysaccharide (LPS), or bacteria. The inducibility of JHDM1D-AS1 expression in monocytes depended, at least in part, on nuclear factor-κB activation. JHDM1D-AS1 knockdown experiments in human monocyte-derived macrophages revealed significantly enhanced expression of inflammatory mediators, before and after exposure to LPS, relative to control cells. Specifically, genes involved in inflammatory responses were upregulated (e.g., CXCL2, CXCL8, IL1RN, TREM1, TNF, and IL6), whereas genes involved in anti-inflammatory pathways were downregulated (e.g., SOCS1 and IL10RA). JHDM1D-AS1 overexpression in a pro-monocytic cell line revealed diminished pro-inflammatory responses subsequent to LPS challenge. Collectively, these findings identify JHDM1D-AS1 as a potential anti-inflammatory mediator induced in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Erik Malmström
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- Emergency Medicine, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Hina N. Khan
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam University Medical Centers, Clinical Epidemiology and Data Science, University of Amsterdam, Amsterdam, Netherlands
| | - Cornelis van ‘t Veer
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Melissa Stunnenberg
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Amsterdam University Medical Centers, Experimental Immunology, University of Amsterdam, Amsterdam, Netherlands
| | - Mariska T. Meijer
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Hisatake Matsumoto
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Natasja A. Otto
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Amsterdam University Medical Centers, Experimental Immunology, University of Amsterdam, Amsterdam, Netherlands
| | - Alex F. de Vos
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Tom van der Poll
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Amsterdam University Medical Centers, Division of Infectious Diseases, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Brendon P. Scicluna
- Amsterdam University Medical Centers, Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam University Medical Centers, Clinical Epidemiology and Data Science, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
34
|
Pan J, Zheng W, Sun Y, Xu T. The long noncoding RNA LTCONS5539 up-regulates the TRAF6-mediated immune responses in miiuy croaker (Miichthys miiuy). FISH & SHELLFISH IMMUNOLOGY 2022; 126:263-270. [PMID: 35618171 DOI: 10.1016/j.fsi.2022.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
With the further study of long noncoding RNAs (lncRNAs), an increasing number of biological studies have demonstrated that lncRNAs are involved in various physiological processes, including cell proliferation, apoptosis, invasion, development and disease states. However, unlike mammals, little is known about the role of lncRNAs in the innate immunity of teleost fish. Here, we identify a lncRNA, named LTCONS5539, as critical role in the antiviral and antibacterial response of miiuy croaker and the results showed that lncRNA LTCONS5539 plays a critical regulatory role on TRAF6. Firstly, we found that LPS and poly(I:C) can up-regulate the expression of lncRNA LTCONS5539. Elevated lncRNA LTCONS5539 is capable of increasing the production of inflammatory factors and antiviral genes. Furthermore, the over-expression of lncRNA LTCONS5539 increases the expression of TRAF6 which was confirmed by qPCR and western blotting. On these foundations, we also proved that lncRNA LTCONS5539 modulates innate immunity through TRAF6-mediated immune responses through dual luciferase reporter assay. These results will help to further understand the immunomodulatory mechanisms of lncRNA in teleost fish.
Collapse
Affiliation(s)
- Jiajia Pan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
35
|
lncRNA FR215775 Regulates Th2 Differentiation in Murine Allergic Rhinitis. J Immunol Res 2022; 2022:7783481. [PMID: 35755169 PMCID: PMC9214652 DOI: 10.1155/2022/7783481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
To identify the effect of long noncoding RNA (lncRNA) FR215775 in regulating CD4+ T cells on murine models of allergic rhinitis (AR), the expression of lncRNA FR215775 in primary Th2 cells was detected through qRT-PCR. After knocking down the expression of lncRNA FR215775 via Sh-FR215775-Ads, Cell Counting Kit-8, cytometric bead array, and fluorescence-activated cell sorting were performed to determine its functions in vitro. Moreover, lncRNA FR215775-silencing or nonsilencing cells were injected intravenously into AR mice. Then, hematoxylin and eosin, Alcian blue-periodic acid Schiff, and toluidine blue staining were performed, and the levels of IL-2, IL-4, IL-5, IL-6, IL-10, IL-17A, IFN-γ, and TNF in the AR mice were also determined. We found that the expression of lncRNA FR215775 was specifically higher in the murine primary Th2 cells. After the knockdown of lncRNA FR215775, the proliferation of CD4+ T cells was inhibited, and the expressions of IL-4 and IL-5 in the cell culture supernatant were significantly decreased (P < 0.001), along with the percentage of Th2 cells (P < 0.05). The lncRNA FR215775-silencing AR group showed less serious allergic symptoms and a low level of ovalbumin-specific immunoglobulin E (P < 0.01). Meanwhile, the eosinophilia inflammation, goblet cell hyperplasia, and mast cell inflammation in the nasal mucosa all decreased, which indicated attenuated allergic inflammation in the lncRNA FR215775-silencing AR group. In addition, the Th2-related cytokines IL-4 and IL-5 were downregulated in the serum and nasal lavage fluid of this group (P < 0.01). In conclusion, lncRNA FR215775 may play a vital role in the function and differentiation of Th2 cells, which may encourage allergic inflammation. These results may provide significant insights into AR pathogenesis and offer new treatment targets for alleviating AR.
Collapse
|
36
|
N6-Methyladenosine-Related lncRNAs Are Anticipated Biomarkers for Sarcoma Patients. JOURNAL OF ONCOLOGY 2022; 2022:1093805. [PMID: 35669241 PMCID: PMC9166981 DOI: 10.1155/2022/1093805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Background. Soft tissue sarcomas (STSs) are rare tumors and occur at any site in the body. Our goal was to identify a putative molecular mechanism for N6-methyladenosine (m6A) lncRNA alteration and to develop predictive biomarkers for sarcoma. Methods. The lncRNA levels were obtained from TCGA datasets. Pearson correlation analysis was used to select all the lncRNAs that are connected to m6A. An m6A-related lncRNA model was built using LASSO Cox regression. To assess the prognostic efficiency of the model and potential lncRNAs, we performed univariate survival analysis and receiver operating characteristic (ROC) analysis. We also performed enrichment analysis to evaluate the roles of the potential genes. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to confirm m6A-related lncRNA expression in tissues. Results. Following Pearson correlation analysis on TCGA datasets, we identified 78 m6A-related lncRNAs. Next, we used LASSO Cox regression analysis and identified 13 m6A-related lncRNAs as prognostic lncRNAs. After calculating risk scores, sarcoma patients were divided into high- and low-risk groups depending on the median of risk scores. We also found that these lncRNAs were immune associated via enrichment analysis. Conclusions. Here, we found that SNHG1, FIRRE, and YEATS2-AS1 could serve as biomarkers to predict overall survival of sarcoma patients, which provides a new insight into treatment of STS.
Collapse
|
37
|
Shan DD, Zheng QX, Wang J, Chen Z. Small nucleolar RNA host gene 3 functions as a novel biomarker in liver cancer and other tumour progression. World J Gastroenterol 2022; 28:1641-1655. [PMID: 35581965 PMCID: PMC9048787 DOI: 10.3748/wjg.v28.i16.1641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the most life-threatening disease in the world. Mutations in and aberrant expression of genes encoding proteins and mutations in noncoding RNAs, especially long noncoding RNAs (lncRNAs), have significant effects in human cancers. LncRNAs have no protein-coding ability but function extensively in numerous physiological and pathological processes. Small nucleolar RNA host gene 3 (SNHG3) is a novel lncRNA and has been reported to be differentially expressed in various tumors, such as liver cancer, gastric cancer, and glioma. However, the interaction mechanisms for the regulation between SNHG3 and tumor progression are poorly understood. In this review, we summarize the results of SNHG3 studies in humans, animal models, and cells to underline the expression and role of SNHG3 in cancer. SNHG3 expression is upregulated in most tumors and is detrimental to patient prognosis. SNHG3 expression in lung adenocarcinoma remains controversial. Concurrently, SNHG3 affects oncogenes and tumor suppressor genes through various mechanisms, including competing endogenous RNA effects. A deeper understanding of the contribution of SNHG3 in clinical applications and tumor development may provide a new target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
38
|
Zhou H, Li S, Pan W, Wu S, Ma F, Jin P. Interaction of lncRNA-CR33942 with Dif/Dorsal Facilitates Antimicrobial Peptide Transcriptions and Enhances Drosophila Toll Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1978-1988. [PMID: 35379744 DOI: 10.4049/jimmunol.2100658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/02/2022] [Indexed: 01/08/2023]
Abstract
The Drosophila Toll signaling pathway mainly responds to Gram-positive (G+) bacteria or fungal infection, which is highly conserved with mammalian TLR signaling pathway. Although many positive and negative regulators involved in the immune response of the Toll pathway have been identified in Drosophila, the roles of long noncoding RNAs (lncRNAs) in Drosophila Toll immune responses are poorly understood to date. In this study, our results demonstrate that lncRNA-CR33942 is mainly expressed in the nucleus and upregulated after Micrococcus luteus infection. Especially, lncRNA-CR33942 not only modulates differential expressions of multiple antimicrobial peptide genes but also affects the Drosophila survival rate during response to G+ bacterial infection based on the transiently overexpressing and the knockdown lncRNA-CR33942 assays in vivo. Mechanically, lncRNA-CR33942 interacts with the NF-κB transcription factors Dorsal-related immunity factor/Dorsal to promote the transcriptions of antimicrobial peptides drosomycin and metchnikowin, thus enhancing Drosophila Toll immune responses. Taken together, this study identifies lncRNA-CR33942 as a positive regulator of Drosophila innate immune response to G+ bacterial infection to facilitate Toll signaling via interacting with Dorsal-related immunity factor/Dorsal. It would be helpful to reveal the roles of lncRNAs in Toll immune response in Drosophila and provide insights into animal innate immunity.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and.,Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing, People's Republic of China
| | - Wanwan Pan
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| |
Collapse
|
39
|
Galozzi P, Bindoli S, Doria A, Sfriso P. Progress in Biological Therapies for Adult-Onset Still’s Disease. Biologics 2022; 16:21-34. [PMID: 35481241 PMCID: PMC9038152 DOI: 10.2147/btt.s290329] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022]
Abstract
Adult-onset Still’s disease (AOSD) is a rare multifactorial autoinflammatory disorder of unknown etiology, characterized by an excessive release of cytokines triggered by dysregulated inflammation and articular and systemic manifestations. The clinical spectrum of AOSD ranges from self-limiting forms with mild symptoms to life-threatening cases and presents clinical and biological similarities with the juvenile form (sJIA). Nowadays, the advances in biologic agents no longer limit the treatment to NSAIDs, glucocorticoids, or conventional synthetic DMARDs. The blockade of IL-1 and IL-6 is effective in the treatment of systemic and articular inflammation of AOSD patients; however, novel compounds with different properties and targets are now available and others are being studied. In this review, starting from the pathogenesis of AOSD, we summarized the current and emerging biological therapies, possible effective agents for achieving AOSD control and remission.
Collapse
Affiliation(s)
- Paola Galozzi
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
- Correspondence: Paola Galozzi, Rheumatology Unit, Department of Medicine DIMED, University of Padova, via Giustiniani, 2, Padova, 35128, Italy, Tel +39 049 821 8654, Email
| | - Sara Bindoli
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| |
Collapse
|
40
|
Liu J, Geng R, Ni S, Cai L, Yang S, Shao F, Bai J. Pyroptosis-related lncRNAs are potential biomarkers for predicting prognoses and immune responses in patients with UCEC. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1036-1055. [PMID: 35228898 PMCID: PMC8844853 DOI: 10.1016/j.omtn.2022.01.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/21/2022] [Indexed: 12/21/2022]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is a malignant disease globally, and there is no unified prognostic signature at present. In our study, two clusters were identified. Cluster 1 showed better prognosis and higher infiltration level, such as tumor microenvironment (TME), tumor mutation burden (TMB), and immune checkpoint genes expression. Gene set enrichment analysis (GSEA) indicated that some tumor-related pathways and immune-associated pathways were exposed. What is more, six pyroptosis-related long noncoding RNAs (lncRNAs) (PRLs) were applied to establish a prognostic signature through multiple Cox regression analysis. In both training and testing sets, patients with higher risk score had poorer survival than patients with low risk. The area under the curve (AUC) of receiver operating characteristic (ROC) curves performed that the survival probability was better in people with lower risk score. Mechanism analysis revealed that high risk score was correlated with reduced immune infiltration and T cells exhaustion, matching the definition of an "immune-desert" phenotype. Patients with lower risk score were characterized by higher immune checkpoint gene expression and TMB and have a sensitive response to immunotherapy and chemotherapy compared with patients with high risk score. The signature has accurate prediction ability of UCEC and is a promising therapeutic target to improve the effect of immunotherapy.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Rui Geng
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Senmiao Ni
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Lixin Cai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Sheng Yang
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Fang Shao
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| | - Jianling Bai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| |
Collapse
|
41
|
Abstract
As sequencing technologies improved, new classes of genes were uncovered. Initially, many of these were considered non-functional given their low protein-coding potential but have now emerged as important regulators of biological processes. One of the new classes of genes are called long noncoding RNAs (lncRNAs). LncRNAs are the largest group of transcribed RNA. As their name suggests, they are non-protein coding genes. To differentiate them from other smaller, noncoding RNAs, lncRNAs are transcripts whose length are greater than 200 nucleotides. According to GENCODE Release 38, there are approximately 18,000 lncRNAs, of which only 4% have a known function. Of the lncRNAs characterized, many of them play regulatory roles in many biological processes, including regulation of gene expression, alternative splicing, chromatin modification, protein activity, and posttranscriptional mechanisms. Compared to protein coding genes, lncRNAs show high cell type specificity. Many lncRNAs have been shown to be expressed in distinct immune cell populations and play RNA-mediated immune-regulatory roles. Many aspects of the immune response, including the duration, magnitude, and subsequent return to homeostasis are carefully controlled. Dysregulation of lncRNAs can result in an uncontrolled immune response, which can lead to a variety of immune-related diseases. This introduction aims to summarize the chapters highlighting the discovery of lncRNAs, their role in the immune response, and their functional characterization, either through interaction with DNA, RNA, and/or proteins in distinct immune cell populations or cells implicated in immune-related diseases. Additionally, the immune regulatory role of lncRNAs will be covered, and how lncRNA localization, sequence and secondary structure can inform function. Delving into this largely unexplored field can identify lncRNAs as potential therapeutic targets.
Collapse
|
42
|
王 冲, 黄 海, 王 宏, 李 椿, 刘 晓. [Research progress on the relationship between lncRNA and the pathogenesis of allergic rhinitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:233-238. [PMID: 35193349 PMCID: PMC10128298 DOI: 10.13201/j.issn.2096-7993.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/11/2021] [Indexed: 04/30/2023]
Abstract
Long non-coding RNA(lncRNA) belongs to the category of non-coding RNA, which length exceeds 200 nucleotides and can hardly encode the expression of proteins. Based on the data from several clinical researches, it is considered that lncRNA not only plays the biological role in epigenetics, transcriptional and post-transcriptional levels, but also abnormally expresses in inflammatory response and the related diseases. In recent years, with the intensive study of gene expression regulation of allergic rhinitis(AR), it has been found that a variety of non-coding RNA, including lncRNA, have close relationship with the occurrence and development of AR. This review mainly summarized the biological function, immunomodulatory effect of lncRNA and the relationship between the lncRNA and the pathogenesis of AR, providing new thoughts and strategies for the further research, prevention as well as the treatment of AR.
Collapse
|
43
|
Pandey PR, Young KH, Kumar D, Jain N. RNA-mediated immunotherapy regulating tumor immune microenvironment: next wave of cancer therapeutics. Mol Cancer 2022; 21:58. [PMID: 35189921 PMCID: PMC8860277 DOI: 10.1186/s12943-022-01528-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
AbstractAccumulating research suggests that the tumor immune microenvironment (TIME) plays an essential role in regulation of tumor growth and metastasis. The cellular and molecular nature of the TIME influences cancer progression and metastasis by altering the ratio of immune- suppressive versus cytotoxic responses in the vicinity of the tumor. Targeting or activating the TIME components show a promising therapeutic avenue to combat cancer. The success of immunotherapy is both astounding and unsatisfactory in the clinic. Advancements in RNA-based technology have improved understanding of the complexity and diversity of the TIME and its effects on therapy. TIME-related RNA or RNA regulators could be promising targets for anticancer immunotherapy. In this review, we discuss the available RNA-based cancer immunotherapies targeting the TIME. More importantly, we summarize the potential of various RNA-based therapeutics clinically available for cancer treatment. RNA-dependent targeting of the TIME, as monotherapy or combined with other evolving therapeutics, might be beneficial for cancer patients’ treatment in the near future.
Collapse
|
44
|
Cristoferi I, Giacon TA, Boer K, van Baardwijk M, Neri F, Campisi M, Kimenai HJAN, Clahsen-van Groningen MC, Pavanello S, Furian L, Minnee RC. The applications of DNA methylation as a biomarker in kidney transplantation: a systematic review. Clin Epigenetics 2022; 14:20. [PMID: 35130936 PMCID: PMC8822833 DOI: 10.1186/s13148-022-01241-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although kidney transplantation improves patient survival and quality of life, long-term results are hampered by both immune- and non-immune-mediated complications. Current biomarkers of post-transplant complications, such as allograft rejection, chronic renal allograft dysfunction, and cutaneous squamous cell carcinoma, have a suboptimal predictive value. DNA methylation is an epigenetic modification that directly affects gene expression and plays an important role in processes such as ischemia/reperfusion injury, fibrosis, and alloreactive immune response. Novel techniques can quickly assess the DNA methylation status of multiple loci in different cell types, allowing a deep and interesting study of cells' activity and function. Therefore, DNA methylation has the potential to become an important biomarker for prediction and monitoring in kidney transplantation. PURPOSE OF THE STUDY The aim of this study was to evaluate the role of DNA methylation as a potential biomarker of graft survival and complications development in kidney transplantation. MATERIAL AND METHODS: A systematic review of several databases has been conducted. The Newcastle-Ottawa scale and the Jadad scale have been used to assess the risk of bias for observational and randomized studies, respectively. RESULTS Twenty articles reporting on DNA methylation as a biomarker for kidney transplantation were included, all using DNA methylation for prediction and monitoring. DNA methylation pattern alterations in cells isolated from different tissues, such as kidney biopsies, urine, and blood, have been associated with ischemia-reperfusion injury and chronic renal allograft dysfunction. These alterations occurred in different and specific loci. DNA methylation status has also proved to be important for immune response modulation, having a crucial role in regulatory T cell definition and activity. Research also focused on a better understanding of the role of this epigenetic modification assessment for regulatory T cells isolation and expansion for future tolerance induction-oriented therapies. CONCLUSIONS Studies included in this review are heterogeneous in study design, biological samples, and outcome. More coordinated investigations are needed to affirm DNA methylation as a clinically relevant biomarker important for prevention, monitoring, and intervention.
Collapse
Affiliation(s)
- Iacopo Cristoferi
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
| | - Tommaso Antonio Giacon
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, Padua University Hospital, Via Giustiniani 2, 35128, Padua, Italy
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Environmental and Respiratory Physiology Laboratory, Department of Biomedical Sciences, Padua University, Via Marzolo 3, 35131, Padua, Italy
- Institute of Anaesthesia and Intensive Care, Department of Medicine - DIMED, Padua University Hospital, Via Cesare Battisti 267, 35128, Padua, Italy
| | - Karin Boer
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Myrthe van Baardwijk
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Flavia Neri
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, Padua University Hospital, Via Giustiniani 2, 35128, Padua, Italy
| | - Manuela Campisi
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Via Giustiniani 2, 35128, Padua, Italy
| | - Hendrikus J A N Kimenai
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Marian C Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Via Giustiniani 2, 35128, Padua, Italy
| | - Lucrezia Furian
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, Padua University Hospital, Via Giustiniani 2, 35128, Padua, Italy
| | - Robert C Minnee
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| |
Collapse
|
45
|
Adams DE, Shao WH. Epigenetic Alterations in Immune Cells of Systemic Lupus Erythematosus and Therapeutic Implications. Cells 2022; 11:cells11030506. [PMID: 35159315 PMCID: PMC8834103 DOI: 10.3390/cells11030506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that is characterized by autoantibody production and dysregulated immune cell activation. Although the exact etiology of SLE remains unknown, genetic, hormonal, and complex environmental factors are known to be critical for pathologic immune activation. In addition to the inherited genetic predisposition, epigenetic processes that do not change the genomic code, such as DNA methylation, histone modification, and noncoding RNAs are increasingly appreciated to play important roles in lupus pathogenesis. We herein focus on the up-to-date findings of lupus-associated epigenetic alterations and their pathophysiology in lupus development. We also summarize the therapeutic potential of the new findings. It is likely that advances in the epigenetic study will help to predict individual disease outcomes, promise diagnostic accuracy, and design new target-directed immunotherapies.
Collapse
|
46
|
Zhou Y, Li X, Duan Y, Luo Y, Tang S, Wang J. LncRNA MALAT-1 regulates the growth of interleukin-22-stimulated keratinocytes via the miR-330-5p/S100A7 axis. Autoimmunity 2022; 55:32-42. [PMID: 34761722 DOI: 10.1080/08916934.2021.2001802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/30/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Psoriasis is a chronic autoimmune disorder related to abnormal keratinocyte proliferation. Long noncoding RNAs (lncRNAs) are significant regulators in the progression of skin diseases. In this study, we explored how lncRNA MALAT-1 controls the pathogenesis of psoriasis by examining its impact on keratinocyte proliferation, inflammation, and apoptosis. A psoriasis cell model was established by treating HaCaT keratinocytes with the inflammatory factor, IL-22 (100 ng/ml), for 24 h. The MALAT-1 and S100A7 levels in psoriatic lesions, normal skin tissues, and IL-22-stimulated HaCaT cells were determined by RT-qPCR and western blotting. Cell proliferation, inflammation, and apoptosis were detected by the MTT assay, western blotting, and flow cytometry analysis, respectively. Bioinformatics analysis was used to identify the miRNAs that bind to MALAT-1 and S100A7. The relationships between MALAT-1 or miR-330-5p and S100A7 were assessed using a luciferase reporter assay. The MALAT-1 and S100A7 levels were upregulated in both psoriatic lesion samples and IL-22-stimulated HaCaT cells. Silencing MALAT-1 significantly reversed the IL-22-stimulated promotion of HaCaT proliferation and changes in Ki67 and KRT5/14/1/10 protein levels, and MALAT-1 deficiency also reversed the upregulation of TNF-α, IL-17, and IL-23 protein levels as well as suppression of cell apoptosis. As a ceRNA, MALAT-1 competed with S100A7 to prevent miR-330-5p-induced inhibition of S100A7 expression. There was a negative correlation between miR-330-5p and MALAT-1 (or S100A7) expression in psoriatic lesion tissues. In response to IL-22 treatment, miR-330-5p silencing eliminated the effects of MALAT-1 knockdown in HaCaT cells. Thus, these findings demonstrated that MALAT-1 modulates the IL-22-induced changes in HaCaT cells through the miR-330-5p/S100A7 axis.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Cosmetic Dermatology, Liyuan Hospital of Tongji Medical College of Huazhong University of Science &Technology, Wuhan, Hubei, China
| | - Xiaohong Li
- Department of Cosmetic Dermatology, Liyuan Hospital of Tongji Medical College of Huazhong University of Science &Technology, Wuhan, Hubei, China
| | - Yaju Duan
- Department of Cosmetic Dermatology, Liyuan Hospital of Tongji Medical College of Huazhong University of Science &Technology, Wuhan, Hubei, China
| | - Yong Luo
- Department of Cosmetic Dermatology, Liyuan Hospital of Tongji Medical College of Huazhong University of Science &Technology, Wuhan, Hubei, China
| | - Shuling Tang
- Department of Cosmetic Dermatology, Liyuan Hospital of Tongji Medical College of Huazhong University of Science &Technology, Wuhan, Hubei, China
| | - Jian Wang
- Department of Cosmetic Dermatology, Liyuan Hospital of Tongji Medical College of Huazhong University of Science &Technology, Wuhan, Hubei, China
| |
Collapse
|
47
|
Dai S, Liu T, Liu YY, He Y, Liu T, Xu Z, Wang ZW, Luo F. Long Non-Coding RNAs in Lung Cancer: The Role in Tumor Microenvironment. Front Cell Dev Biol 2022; 9:795874. [PMID: 35047506 PMCID: PMC8762058 DOI: 10.3389/fcell.2021.795874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
The development of various therapeutic interventions, particularly immune checkpoint inhibitor therapy, have effectively induced tumor remission for patients with advanced lung cancer. However, few cancer patients can obtain significant and long-lasting therapeutic effects for the limitation of immunological nonresponse and resistance. For this case, it’s urgent to identify new biomarkers and develop therapeutic targets for future immunotherapy. Over the past decades, tumor microenvironment (TME)-related long non-coding RNAs (lncRNAs) have gradually become well known to us. A large number of existing studies have indicated that TME-related lncRNAs are one of the major factors to realize precise diagnosis and treatment of lung cancer. Herein, this paper discusses the roles of lncRNAs in TME, and the potential application of lncRNAs as biomarkers or therapeutic targets for immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Yang Liu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingying He
- Oncology Department, People's Hospital of Deyang City, Deyang, China
| | - Tao Liu
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Wu Wang
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Jiang H, Wang S, Hou L, Huang JA, Su B. Resveratrol inhibits cell apoptosis by suppressing long noncoding RNA (lncRNA) XLOC_014869 during lipopolysaccharide-induced acute lung injury in rats. J Thorac Dis 2022; 13:6409-6426. [PMID: 34992821 PMCID: PMC8662516 DOI: 10.21037/jtd-21-1113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022]
Abstract
Background Acute lung injury (ALI) is a common clinical complication with a high mortality rate. Resveratrol (Res) has been shown to protect against ALI, but the role of long noncoding RNAs (lncRNAs) in this process is still unclear. Methods Male rats (n=20) aged 7–8 weeks were randomly divided into four groups: control, lipopolysaccharide (LPS), LPS + Res, and LPS + dexamethasone (Dexa). Intragastric administration of Res (0.5 mg/kg) or Dexa (1.5 mg/kg) was performed 1 h before intraperitoneal injection of LPS (5 mg/kg). Lung tissue, serum, and bronchoalveolar lavage fluid were sampled 6 h after LPS treatment for inflammatory factor detection, pathological detection, lncRNA sequencing and bioinformatical analysis, and TdT-mediated dUTP Nick-End Labeling. Quantitative real time polymerase chain reaction and western blotting were used to verify the sequencing results. LPS, Res, and RNA interference were used in rat alveolar epithelial cells experiments to confirm the protective of Res/lncRNA against ALI. Results Res pretreatment inhibited lung injury and the increase of inflammatory cytokines induced by LPS. The differentially expressed lncRNAs and mRNAs (P<0.05 and |fold change| >2) were mainly involved in the signaling pathway of immunity, infection, signaling molecules and interactions. Among the lncRNAs and mRNAs, 26 mRNAs and 23 lncRNAs had high levels in lungs treated with LPS but decreased with Res, and 17 mRNAs and 27 lncRNAs were at lower levels in lungs treated with LPS but increased with Res. lncRNA and adjacent mRNA analysis showed that lncRNAs XLOC_014869 and the adjacent gene Fos, and the possible downstream genes Jun and Faslg were increased by LPS, but these changes were attenuated by Res. Pretreatment with Res reduced LPS-induced lung tissue apoptosis. Similarly, Res treatment and knockdown of lncRNA XLOC_014869 reduced LPS-induced apoptosis and the levels of Fos, c-Jun, and Fas-L. Conclusions Res can inhibit the increase of lncRNAs XLOC_014869 caused by LPS stimulation and inhibit lung cell apoptosis. These effects may be due to lncRNA XLOC_014869 mediation of the pro-apoptotic factors (Fos, c-Jun, and Fas-L).
Collapse
Affiliation(s)
- Hongbin Jiang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Emergency, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanmei Wang
- Department of Emergency, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian-An Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
A Bioinformatics Approach to Identifying Potential Biomarkers for Cryptosporidium parvum: A Coccidian Parasite Associated with Fetal Diarrhea. Vaccines (Basel) 2021; 9:vaccines9121427. [PMID: 34960172 PMCID: PMC8705633 DOI: 10.3390/vaccines9121427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/07/2023] Open
Abstract
Cryptosporidium parvum (C. parvum) is a protozoan parasite known for cryptosporidiosis in pre-weaned calves. Animals and patients with immunosuppression are at risk of developing the disease, which can cause potentially fatal diarrhoea. The present study aimed to construct a network biology framework based on the differentially expressed genes (DEGs) of C. parvum infected subjects. In this way, the gene expression profiling analysis of C. parvum infected individuals can give us a snapshot of actively expressed genes and transcripts under infection conditions. In the present study, we have analyzed microarray data sets and compared the gene expression profiles of the patients with the different data sets of the healthy control. Using a network medicine approach to identify the most influential genes in the gene interaction network, we uncovered essential genes and pathways related to C. parvum infection. We identified 164 differentially expressed genes (109 up- and 54 down-regulated DEGs) and allocated them to pathway and gene set enrichment analysis. The results underpin the identification of seven significant hub genes with high centrality values: ISG15, MX1, IFI44L, STAT1, IFIT1, OAS1, IFIT3, RSAD2, IFITM1, and IFI44. These genes are associated with diverse biological processes not limited to host interaction, type 1 interferon production, or response to IL-gamma. Furthermore, four genes (IFI44, IFIT3, IFITM1, and MX1) were also discovered to be involved in innate immunity, inflammation, apoptosis, phosphorylation, cell proliferation, and cell signaling. In conclusion, these results reinforce the development and implementation of tools based on gene profiles to identify and treat Cryptosporidium parvum-related diseases at an early stage.
Collapse
|
50
|
Haahtela T, Alenius H, Lehtimäki J, Sinkkonen A, Fyhrquist N, Hyöty H, Ruokolainen L, Mäkelä MJ. Immunological resilience and biodiversity for prevention of allergic diseases and asthma. Allergy 2021; 76:3613-3626. [PMID: 33959980 DOI: 10.1111/all.14895] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Increase of allergic conditions has occurred at the same pace with the Great Acceleration, which stands for the rapid growth rate of human activities upon earth from 1950s. Changes of environment and lifestyle along with escalating urbanization are acknowledged as the main underlying causes. Secondary (tertiary) prevention for better disease control has advanced considerably with innovations for oral immunotherapy and effective treatment of inflammation with corticosteroids, calcineurin inhibitors, and biological medications. Patients are less disabled than before. However, primary prevention has remained a dilemma. Factors predicting allergy and asthma risk have proven complex: Risk factors increase the risk, while protective factors counteract them. Interaction of human body with environmental biodiversity with micro-organisms and biogenic compounds as well as the central role of epigenetic adaptation in immune homeostasis have given new insight. Allergic diseases are good indicators of the twisted relation to environment. In various non-communicable diseases, the protective mode of the immune system indicates low-grade inflammation without apparent cause. Giving microbes, pro- and prebiotics, has shown some promise in prevention and treatment. The real-world public health programme in Finland (2008-2018) emphasized nature relatedness and protective factors for immunological resilience, instead of avoidance. The nationwide action mitigated the allergy burden, but in the lack of controls, primary preventive effect remains to be proven. The first results of controlled biodiversity interventions are promising. In the fast urbanizing world, new approaches are called for allergy prevention, which also has a major cost saving potential.
Collapse
Affiliation(s)
- Tari Haahtela
- Skin and Allergy Hospital Helsinki University HospitalUniversity of Helsinki Helsinki Finland
| | - Harri Alenius
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
- Department of Bacteriology and Immunology Medicum University of Helsinki Helsinki Finland
| | | | - Aki Sinkkonen
- Natural Resources Institute Finland, Horticulture Technologies Turku Finland
| | - Nanna Fyhrquist
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
- Department of Bacteriology and Immunology Medicum University of Helsinki Helsinki Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Fimlab Laboratories Pirkanmaa Hospital District Tampere Finland
| | - Lasse Ruokolainen
- Lasse Ruokolainen Department of Biosciences University of Helsinki Helsinki Finland
| | - Mika J. Mäkelä
- Skin and Allergy Hospital Helsinki University HospitalUniversity of Helsinki Helsinki Finland
| |
Collapse
|