1
|
Yang Q, Diao N, Ma F, Huang Z, Lin M, Liu X, Guo Q, Li P, Tang J, Gao X, Chao K. PI(4,5)P2 alleviates colitis by inhibiting intestinal epithelial cell pyroptosis through NNMT-mediated RBP4 m6A modification. Cell Death Dis 2024; 15:923. [PMID: 39706833 DOI: 10.1038/s41419-024-07276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Lipid metabolism disorder is a critical feature of Crohn's disease (CD). Phosphatidylinositol (PI) and its derivative, phosphatidylinositol bisphosphate (PIP2), are associated with CD. The mechanisms underlying such association remain unknown. In this study, we explored the role played by the major PI derivative, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], in CD pathogenesis. The relationship between CD activity and PI or PIP2 was analyzed via lipidomics. The mucosal expression of PI(4,5)P2 in patients with CD was measured using immunofluorescence. The function and mechanism of PI(4,5)P2 were examined in dextran sulfate sodium (DSS)-induced colitis mice and lipopolysaccharide (LPS)-induced Caco-2 cell models, along with MeRIP and mRNA sequencing. The results suggested lipid PI and PIP2 were substantially negatively associated with disease activity and high-sensitivity C-reactive protein. PI(4,5)P2 was substantially downregulated in the inflamed mucosa of patients with CD. PI(4,5)P2 alleviated mouse colitis, with improvements in survival rate, colon length, weight, and disease activity index. PI(4,5)P2 also alleviated DSS-induced tissue damage, tight junction loss, and intestinal epithelial cell (IEC) pyroptosis. In the in vitro LPS-induced cell model, PI(4,5)P2 inhibited pyroptosis, as well as NLRP3, and caspase-1 expression, in addition to reducing interleukin (IL)-18, IL-1β, and lactate dehydrogenase (LDH) secretion. PI(4,5)P2 mediated NNMT upregulation in mice and Caco-2 cells and suppressed pyroptosis in IECs. NNMT knockdown restricted the inhibitory effect of PI(4,5)P2 on IEC pyroptosis. NNMT inhibited the stability of RBP4 mRNA via m6A modification, thereby preventing pyroptosis following PI(4,5)P2 treatment. Significant correlations were also observed between PI(4,5)P2 and NNMT, NNMT and RBP4, and RBP4 and GSDMD expression in the intestinal tissues from patients with CD. Our results indicated that PI(4,5)P2 ameliorates colitis by inhibiting IEC pyroptosis via NNMT-mediated RBP4 m6A modification. Thus, PI(4,5)P2 shows potential as a therapeutic target in CD.
Collapse
Affiliation(s)
- Qingfan Yang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Na Diao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Ma
- Maternal & Child Health Research Institute, Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Zicheng Huang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minzhi Lin
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Liu
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qin Guo
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pan Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Medicine, Jianghan University, Wuhan, China
| | - Jian Tang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiang Gao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Kang Chao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Dong D, Yu X, Tao X, Wang Q, Zhao L. S1P/S1PR1 signaling is involved in the development of nociceptive pain. Front Pharmacol 2024; 15:1407347. [PMID: 39045057 PMCID: PMC11263082 DOI: 10.3389/fphar.2024.1407347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Background Pain is a complex perception involving unpleasant somatosensory and emotional experiences. However, the underlying mechanisms that mediate its different components remain unclear. Sphingosine-1-phosphate (S1P), a metabolite of sphingomyelin and a potent lipid mediator, initiates signaling via G protein-coupled receptors (S1PRs) on cell surfaces. It serves as a second messenger in cellular processes such as proliferation and apoptosis. Nevertheless, the neuropharmacology of sphingolipid signaling in pain conditions within the central nervous system remains largely unexplored and controversial. Methods Chronic nociceptive pain models were induced in vivo by intraplantar injection of 20 μL complete Freund's adjuvant (CFA) into the left hind paws. We assessed S1P and S1PR1 expression in the spinal cords of CFA model mice. Functional antagonists of S1PR1 or S1PR1-specific siRNA were administered daily following CFA model establishment. Paw withdrawal response frequency (PWF) and paw withdrawal latency (PWL) were measured to evaluate mechanical allodynia and thermal hyperalgesia, respectively. RT-PCR assessed interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels. Western blotting and immunofluorescence were used to analyze glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule (Iba1), STAT3, ERK, and p38 MAPK protein expression. Results In the chronic nociceptive pain model induced by CFA, S1P and S1PR1 expression levels were significantly elevated, leading to activation of spinal cord glial cells. S1PR1 activation also promoted MMP2-mediated cleavage of mature IL-1β. Additionally, S1PR1 activation upregulated phosphorylation of STAT3, ERK, and p38 MAPK in glial cells, profoundly impacting downstream signaling pathways and contributing to chronic nociceptive pain. Conclusion The S1P/S1PR1 axis plays a pivotal role in the cellular and molecular mechanisms underlying nociceptive pain. This signaling pathway modulates glial cell activation and the expression of pain-related genes (STAT3, ERK, p38 MAPK) and inflammatory factors in the spinal dorsal horn. These findings underscore the potential of targeting the S1P system for developing novel analgesic therapies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| | - Xue Yu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Ministry of Education, Shenyang, China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| | - Qian Wang
- Medical Oncology, Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Lin Zhao
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Darpo B, Connor K, Cabell CH, Grundy JS. Cardiovascular Evaluation of Etrasimod, a Selective Sphingosine 1-phosphate Receptor Modulator, in Healthy Adults: Results of a Randomized, Thorough QT/QTc Study. Clin Pharmacol Drug Dev 2024; 13:326-340. [PMID: 38441346 DOI: 10.1002/cpdd.1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 01/25/2024] [Indexed: 04/05/2024]
Abstract
Etrasimod is an investigational, once-daily, oral, selective sphingosine 1-phosphate receptor 1,4,5 modulator used as an oral treatment option for immune-mediated inflammatory disorders. This randomized, double-blind, placebo- and positive-controlled, parallel-group, healthy adult study investigated etrasimod's effect on the QT interval and other electrocardiogram parameters. All participants received etrasimod-matched placebo on day 1. Group A received once-daily, multiple ascending doses of etrasimod (2-4 mg) on days 1-14 and moxifloxacin-matched placebo on days 1 and 15. Group B received etrasimod-matched placebo on days 1-14 and either moxifloxacin 400 mg or moxifloxacin-matched placebo on days 1 and 15. The primary analysis was a concentration-QTc analysis using a corrected QT interval by Fridericia (QTcF). The etrasimod concentration-QTc analysis predicted placebo-corrected change from baseline QTcF (ΔΔQTcF) values and associated 90% confidence intervals remained <10 milliseconds over the observed etrasimod plasma concentration range (≤279 ng/mL). Etrasimod was associated with mild, transient, asymptomatic heart rate slowing that was most pronounced on day 1 (2 mg, first dose). The largest-by-time point mean placebo-corrected changes in heart rate from time-matched day -1 baseline (∆∆HR) on days 1, 7 (2 mg, last dose), and 14 (4 mg, last dose) were -15.1, -8.5, and -6.0 bpm, respectively. Etrasimod's effects on PR interval were small, with the largest least squares mean placebo-corrected change from baseline in PR interval (∆∆PR) being 6.6 milliseconds. No episodes of atrioventricular block were observed. Thus, multiple ascending doses of etrasimod were not associated with clinically relevant QT/QTc effects in healthy adults and only had a mild, transient, and asymptomatic impact on heart rate.
Collapse
Affiliation(s)
| | | | - Christopher H Cabell
- Arena Pharmaceuticals, San Diego, CA, USA, a wholly-owned subsidiary of Pfizer Inc, New York, NY, USA
| | - John S Grundy
- Arena Pharmaceuticals, San Diego, CA, USA, a wholly-owned subsidiary of Pfizer Inc, New York, NY, USA
| |
Collapse
|
4
|
Dong X, Gong LL, Hong MZ, Pan JS. Investigating the shared genetic architecture between primary sclerosing cholangitis and inflammatory bowel diseases: a Mendelian randomization study. BMC Gastroenterol 2024; 24:77. [PMID: 38373892 PMCID: PMC10875759 DOI: 10.1186/s12876-024-03162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Several studies have found that primary sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD) are closely associated. However, the direction and causality of their interactions remain unclear. Thus, this study employs Mendelian Randomization to explore whether there are causal associations of genetically predicted PSC with IBD. METHODS Genetic variants associated with the genome-wide association study (GWAS) of PSC were used as instrumental variables. The statistics for IBD, including ulcerative colitis (UC), and Crohn's disease (CD) were derived from GWAS. Then, five methods were used to estimate the effects of genetically predicted PSC on IBD, including MR Egger, Weighted median (WM), Inverse variance weighted (IVW), Simple mode, and Weighted mode. Last, we also evaluated the pleiotropic effects, heterogeneity, and a leave-one-out sensitivity analysis that drives causal associations to confirm the validity of the analysis. RESULTS Genetically predicted PSC was significantly associated with an increased risk of UC, according to the study (odds ratio [OR] IVW= 1.0014, P<0.05). However, none of the MR methods found significant causal evidence of genetically predicted PSC in CD (All P>0.05). The sensitivity analysis results showed that the causal effect estimations of genetically predicted PSC on IBD were robust, and there was no horizontal pleiotropy or statistical heterogeneity. CONCLUSIONS Our study corroborated a causal association between genetically predicted PSC and UC but did not between genetically predicted PSC and CD. Then, we identification of shared SNPs for PSC and UC, including rs3184504, rs9858213, rs725613, rs10909839, and rs4147359. More animal experiments and clinical observational studies are required to further clarify the underlying mechanisms of PSC and IBD.
Collapse
Affiliation(s)
- Xuan Dong
- Department of Hepatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Hepatology Research Institute, Fujian Medical University, Fuzhou, Fujian, China
- Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hosptial, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, Fuzhou, Fujian, China
| | - Li-Li Gong
- Department of General Practice, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Mei-Zhu Hong
- Department of Traditional Chinese Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Jin-Shui Pan
- Department of Hepatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
- Hepatology Research Institute, Fujian Medical University, Fuzhou, Fujian, China.
- Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hosptial, Fujian Medical University, Fuzhou, Fujian, China.
- Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Temby M, Boye TL, Hoang J, Nielsen OH, Gubatan J. Kinase Signaling in Colitis-Associated Colon Cancer and Inflammatory Bowel Disease. Biomolecules 2023; 13:1620. [PMID: 38002302 PMCID: PMC10669043 DOI: 10.3390/biom13111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Colorectal cancer is a known complication of chronic inflammation of the colon ("colitis-associated colon cancer"). Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract. Patients with IBD are at increased risk of colon cancer compared to the general population. Kinase signaling pathways play critical roles in both the inflammation and regulating cellular processes such as proliferation and survival that contribute to cancer development. Here we review the interplay of kinase signaling pathways (mitogen-activated protein kinases, cyclin-dependent kinases, autophagy-activated kinases, JAK-STAT, and other kinases) and their effects on colitis-associated colon cancer. We also discuss the role of JAK-STAT signaling in the pathogenesis of IBD and the therapeutic landscape of JAK inhibitors for the treatment of IBD.
Collapse
Affiliation(s)
- Michelle Temby
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA; (M.T.); (J.H.)
| | - Theresa L. Boye
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark; (T.L.B.); (O.H.N.)
| | - Jacqueline Hoang
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA; (M.T.); (J.H.)
| | - Ole H. Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark; (T.L.B.); (O.H.N.)
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA; (M.T.); (J.H.)
| |
Collapse
|
6
|
Zou F, Wang S, Xu M, Wu Z, Deng F. The role of sphingosine-1-phosphate in the gut mucosal microenvironment and inflammatory bowel diseases. Front Physiol 2023; 14:1235656. [PMID: 37560160 PMCID: PMC10407793 DOI: 10.3389/fphys.2023.1235656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a type of bioactive sphingolipid, can regulate various cellular functions of distinct cell types in the human body. S1P is generated intracellularly by the catalysis of sphingosine kinase 1/2 (SphK1/2). S1P is transferred to the extracellular environment via the S1P transporter, binds to cellular S1P receptors (S1PRs) and subsequently activates S1P-S1PR downstream signaling. Dysbiosis of the intestinal microbiota, immune dysregulation and damage to epithelial barriers are associated with inflammatory bowel disease (IBD). Generally, S1P mainly exerts a proinflammatory effect by binding to S1PR1 on lymphocytes to facilitate lymphocyte migration to inflamed tissues, and increased S1P was found in the intestinal mucosa of IBD patients. Notably, there is an interaction between the distribution of gut bacteria and SphK-S1P signaling in the intestinal epithelium. S1P-S1PR signaling can also regulate the functions of intestinal epithelial cells (IECs) in mucosa, including cell proliferation and apoptosis. Additionally, increased S1P in immune cells of the lamina propria aggravates the inflammatory response by increasing the production of proinflammatory cytokines. Several novel drugs targeted at S1PRs have recently been used for IBD treatment. This review provides an overview of the S1P-S1PR signaling pathway and, in particular, summarizes the various roles of S1P in the gut mucosal microenvironment to deeply explore the function of S1P-S1PR signaling during intestinal inflammation and, more importantly, to identify potential therapeutic targets for IBD in the SphK-S1P-S1PR axis.
Collapse
Affiliation(s)
- Fei Zou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Su Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Mengmeng Xu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Nielsen OH, Boye TL, Gubatan J, Chakravarti D, Jaquith JB, LaCasse EC. Selective JAK1 inhibitors for the treatment of inflammatory bowel disease. Pharmacol Ther 2023; 245:108402. [PMID: 37004800 DOI: 10.1016/j.pharmthera.2023.108402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Janus kinase (JAK) inhibitors, also known as jakinibs, are third-generation oral small molecules that have expanded the therapeutic options for the management of chronic inflammatory diseases, including inflammatory bowel disease (IBD). Tofacitinib, a pan-JAK inhibitor, has spearheaded the new JAK class for IBD treatment. Unfortunately, serious adverse effects, including cardiovascular complications such as pulmonary embolism and venous thromboembolism or even death from any cause, have been reported for tofacitinib. However, it is anticipated that next-generation selective JAK inhibitors may limit the development of serious adverse events, leading to a safer treatment course with these novel targeted therapies. Nevertheless, although this drug class was recently introduced, following the launch of second-generation biologics in the late 1990s, it is breaking new ground and has been shown to efficiently modulate complex cytokine-driven inflammation in both preclinical models and human studies. Herein, we review the clinical opportunities for targeting JAK1 signaling in the pathophysiology of IBD, the biology and chemistry underpinning these target-selective compounds, and their mechanisms of actions. We also discuss the potential for these inhibitors in efforts to balance their benefits and harms.
Collapse
|
8
|
Tourkochristou E, Mouzaki A, Triantos C. Unveiling the biological role of sphingosine-1-phosphate receptor modulators in inflammatory bowel diseases. World J Gastroenterol 2023; 29:110-125. [PMID: 36683721 PMCID: PMC9850947 DOI: 10.3748/wjg.v29.i1.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is chronic inflammation of the gastrointestinal tract that has a high epidemiological prevalence worldwide. The increasing disease burden worldwide, lack of response to current biologic therapeutics, and treatment-related immunogenicity have led to major concerns regarding the clinical management of IBD patients and treatment efficacy. Understanding disease pathogenesis and disease-related molecular mechanisms is the most important goal in developing new and effective therapeutics. Sphingosine-1-phosphate (S1P) receptor (S1PR) modulators form a class of oral small molecule drugs currently in clinical development for IBD have shown promising effects on disease improvement. S1P is a sphingosine-derived phospholipid that acts by binding to its receptor S1PR and is involved in the regulation of several biological processes including cell survival, differentiation, migration, proliferation, immune response, and lymphocyte trafficking. T lymphocytes play an important role in regulating inflammatory responses. In inflamed IBD tissue, an imbalance between T helper (Th) and regulatory T lymphocytes and Th cytokine levels was found. The S1P/S1PR signaling axis and metabolism have been linked to inflammatory responses in IBD. S1P modulators targeting S1PRs and S1P metabolism have been developed and shown to regulate inflammatory responses by affecting lymphocyte trafficking, lymphocyte number, lymphocyte activity, cytokine production, and contributing to gut barrier function.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| |
Collapse
|
9
|
Redox and Metabolic Regulation of Intestinal Barrier Function and Associated Disorders. Int J Mol Sci 2022; 23:ijms232214463. [PMID: 36430939 PMCID: PMC9699094 DOI: 10.3390/ijms232214463] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
The intestinal epithelium forms a physical barrier assembled by intercellular junctions, preventing luminal pathogens and toxins from crossing it. The integrity of tight junctions is critical for maintaining intestinal health as the breakdown of tight junction proteins leads to various disorders. Redox reactions are closely associated with energy metabolism. Understanding the regulation of tight junctions by cellular metabolism and redox status in cells may lead to the identification of potential targets for therapeutic interventions. In vitro and in vivo models have been utilized in investigating intestinal barrier dysfunction and in particular the free-living soil nematode, Caenorhabditis elegans, may be an important alternative to mammalian models because of its convenience of culture, transparent body for microscopy, short generation time, invariant cell lineage and tractable genetics.
Collapse
|
10
|
Becher N, Swaminath A, Sultan K. A Literature Review of Ozanimod Therapy in Inflammatory Bowel Disease: From Concept to Practical Application. Ther Clin Risk Manag 2022; 18:913-927. [PMID: 36106049 PMCID: PMC9467694 DOI: 10.2147/tcrm.s336139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Inflammatory bowel disease (IBD), namely Ulcerative Colitis (UC) and Crohn's Disease (CD), is believed to be due to a dysregulation of the innate immune response. The complexity of the immune cascade offers both a challenge and an opportunity to researchers seeking out new treatments for IBD, as various points along the inflammatory pathways can be targeted for interruption. Sphinogosine-1-phosphate (S1P) is a phospholipid molecule with wide ranging biological effects caused by binding five known S1P receptor subtypes. Ozanimod is a small molecule drug that selectively targets S1P receptors 1 and 5 which play a crucial role in lymphocyte trafficking. In clinical trials for both UC and CD, it has been shown to induce a reversible lymphopenia which correlates with response to therapy. Reported adverse events include infection, anemia, and elevated liver enzymes. Rare instances of bradycardia, heart block, and macular edema were also reported. As a newly available therapy approved for UC patients, we aim to summarize ozanimod's novel mechanism of action, pre-clinical and clinical trial results, and to give context to this newly available drug that gastroenterologists may utilize in their treatment algorithm.
Collapse
Affiliation(s)
- Noah Becher
- Department of Medicine, Hofstra/Northwell Health at Staten Island University Hospital, Staten Island, NY, USA
| | - Arun Swaminath
- Division of Gastroenterology and Hepatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Keith Sultan
- Division of Gastroenterology and Hepatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
11
|
Tackling Inflammatory Bowel Diseases: Targeting Proinflammatory Cytokines and Lymphocyte Homing. Pharmaceuticals (Basel) 2022; 15:ph15091080. [PMID: 36145301 PMCID: PMC9502105 DOI: 10.3390/ph15091080] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic inflammatory disorders that are a result of an abnormal immune response mediated by a cytokine storm and immune cell infiltration. Proinflammatory cytokine therapeutic agents, represented by TNF inhibitors, have developed rapidly over recent years and are promising options for treating IBD. Antagonizing interleukins, interferons, and Janus kinases have demonstrated their respective advantages in clinical trials and are candidates for anti-TNF therapeutic failure. Furthermore, the blockade of lymphocyte homing contributes to the excessive immune response in colitis and ameliorates inflammation and tissue damage. Factors such as integrins, selectins, and chemokines jointly coordinate the accumulation of immune cells in inflammatory regions. This review assembles the major targets and agents currently targeting proinflammatory cytokines and lymphatic trafficking to facilitate subsequent drug development.
Collapse
|
12
|
Miao RR, Zhan S, Cui SX, Qu XJ. Intestinal aberrant sphingolipid metabolism shaped-gut microbiome and bile acids metabolome in the development of hepatic steatosis. FASEB J 2022; 36:e22398. [PMID: 35792869 DOI: 10.1096/fj.202200148rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Conjugated bile acids (CBAs) play major roles in hepatic gene regulation via nuclear S1P-inhibited histone deacetylase (HDACs). Gut microbiota modifies bile acid pool to generate CBAs and then CBAs returned to liver to regulate hepatic genes, fatty liver, and non-alcoholic fatty liver disease (NAFLD). However, it is not yet known how the gut microbiota was modified under the environment of inflammatory bowel disease (IBD). Here, we revealed that aberrant intestinal sphingosine kinases (SphKs), a major risk factor of IBD, modified gut microbiota by increasing the proportions of Firmicutes and Verrucomicrobia, which were associated with the increase in CBAs. When exposed to a high-fat diet (HFD), sphingosine kinases 2 knockout (SphK2KO) mice developed more severity of intestinal inflammation and hepatic steatosis than their wild-type (WT) littermates. Due to knockdown of nuclear SphK2, Sphk2KO mice exhibited an increase in sphingosine kinases 1 (SphK1) and sphingosine-1-phosphate (S1P) in intestinal epithelial cells. Therefore, the microbiota was modified in the environment of the SphK1/S1P-induced IBD. 16S rDNA amplicon sequencing of cecal contents indicated an increase of Firmicutes and Verrucomicrobia. Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) measured an increase in CBAs, including taurocholic acid (TCA), taurodeoxycholic acid (TDCA), and glycocholic acid (GCA), in cecal contents and liver tissues of Sphk2KO mice. These CBAs accumulated in the liver promoted hepatic steatosis through downregulating the acetylation of H3K9, H3K14, H3K18 and H3K27 due to the CBAs-S1PR2-nuclear SphK2-S1P signaling pathway was blocked in HFD-SphK2KO mice. In summary, intestinal aberrant sphingolipid metabolism developed hepatic steatosis through the increase in CBAs associated with an increase in Firmicutes and Verrucomicrobia.
Collapse
Affiliation(s)
- Rong-Rong Miao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sheng Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shu-Xiang Cui
- Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Xian-Jun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Nielsen OH, Fernandez-Banares F, Sato T, Pardi DS. Microscopic colitis: Etiopathology, diagnosis, and rational management. eLife 2022; 11:e79397. [PMID: 35913459 PMCID: PMC9342949 DOI: 10.7554/elife.79397] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
Microscopic colitis is an inflammatory bowel disease divided into two subtypes: collagenous colitis and lymphocytic colitis. With an increasing incidence of microscopic colitis exceeding those of ulcerative and Crohn's disease among elderly people in some countries, microscopic colitis is a debilitating life experience. Therefore, physicians should be familiar with its clinical features and management strategies because the disease deserves the same attention as the classical inflammatory bowel diseases. Here, state-of-the-art knowledge of microscopic colitis is provided from a global perspective with reference to etiopathology and how to establish the diagnosis with the overall aim to create awareness and improve rational management in clinical practice. The immune system and a dysregulated immune response seem to play a key role combined with risk factors (e.g. cigarette smoking) in genetically predisposed individuals. The symptoms are characterized by recurrent or chronic nonbloody, watery diarrhea, urgency, weight loss, and a female preponderance. As biomarkers are absent, the diagnosis relies on colonoscopy with a histological assessment of biopsy specimens from all parts of the colon. Although the disease is not associated with a risk of colorectal cancer, a recent nationwide, population-based cohort study found an increased risk of lymphoma and lung cancer. Budesonide is the first-line therapy for management, whereas immunomodulatory drugs (including biologics) and drugs with antidiarrheal properties may be indicated in those failing, dependent, or intolerant to budesonide. In microscopic colitis induced by checkpoint inhibitors, a drug class used increasingly for a wide range of malignancies, a more aggressive therapeutic approach with biologics introduced early seems reasonable. However, particular attention needs to be drawn to the existence of incomplete forms of microscopic colitis with the risk of being overlooked in routine clinical settings.
Collapse
Affiliation(s)
- Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of CopenhagenHerlevDenmark
| | - Fernando Fernandez-Banares
- Department of Gastroenterology, Hospital Universitari Mutua TerrassaBarcelonaSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivasCIBERehdSpain
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of MedicineTokyoJapan
| | - Darrell S Pardi
- Division of Gastroenterology and Hepatology, Mayo ClinicRochesterUnited States
| |
Collapse
|
14
|
Wang X, Chen S, Xiang H, Wang X, Xiao J, Zhao S, Shu Z, Ouyang J, Liang Z, Deng M, Chen X, Zhang J, Liu H, Quan Q, Gao P, Fan J, Chen AF, Lu H. S1PR2/RhoA/ROCK1 pathway promotes inflammatory bowel disease by inducing intestinal vascular endothelial barrier damage and M1 macrophage polarization. Biochem Pharmacol 2022; 201:115077. [PMID: 35537530 DOI: 10.1016/j.bcp.2022.115077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022]
Abstract
Vascular and immune dysfunctions are thought to be related to the pathogenesis of inflammatory bowel disease (IBD), but behind this, the exact mechanism of mucosal vascular endothelial barrier dysfunction and macrophage phenotypic transition is not fully understood. Here, we explored the mechanistic role of sphingosine 1-phosphate receptor 2 (S1PR2) and its downstream G protein RhoA/Rho kinase 1 (ROCK1) signaling pathway in the intestinal endothelial barrier damage and M1 macrophage polarization in IBD. We found that the expression of S1PR2 in intestinal mucosal vascular endothelial cells and macrophages of IBD patients and DSS-induced colitis mice as well as vascular endothelial cells and macrophages treated with LPS in vitro was significantly increased. Knocking down or pharmacologically inhibiting S1PR2 significantly downregulated the expression of RhoA and ROCK1 in vascular endothelial cells and macrophages. Furthermore, inhibition of S1PR2 and ROCK1 reversed the impaired vascular barrier function and M1 macrophage polarization in vivo and in vitro, while reducing ER stress in vascular endothelial cells and glycolysis in macrophages. In addition, inhibition of ER stress or glycolysis reversed LPS-induced impairment of vascular endothelial cell barrier function and M1 macrophage polarization. Collectively, our results indicate that the S1PR2/RhoA/ROCK1 signaling pathway may participate in the pathogenesis of IBD by regulating vascular endothelial barrier function and M1 macrophage polarization.
Collapse
Affiliation(s)
- Xuewen Wang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xiao
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shaoli Zhao
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhihao Shu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Ouyang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Liang
- Department of Clinical laboratory, Yueyang People's Hospital, Yueyang, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Zhang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huiqin Liu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qisheng Quan
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Peng Gao
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianing Fan
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Alex F Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hongwei Lu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China; Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
15
|
Aoun R, Hanauer S. A critical review of ozanimod for the treatment of adults with moderately to severely active ulcerative colitis. Expert Rev Gastroenterol Hepatol 2022; 16:411-423. [PMID: 35400292 DOI: 10.1080/17474124.2022.2065258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Ozanimod is a sphingosine-1-phosphate (S1P) modulator that inhibits lymphocyte trafficking from lymph nodes to the circulation. It is approved by the US Food and Drug Administration (FDA) for the treatment of relapsing multiple sclerosis and most recently for the management of moderate-severe ulcerative colitis (UC). AREAS COVERED Here we review the status of drugs approved for moderate-severe UC, the unmet needs in the management of UC, proposed mechanisms of action of S1P modulators, clinical data regarding ozanimod in UC, and emerging S1P modulators being evaluated in inflammatory bowel disease. EXPERT OPINION Ozanimod is superior to placebo in inducing and maintaining clinical and endoscopic remission in UC. Adverse events include transient asymptomatic bradycardia, first-degree atrioventricular blocks, transient asymptomatic hepatotoxicity, macular edema in patients with preexisting risk factors, and increased risk of nasopharyngitis. Ozanimod is contraindicated in patients with clinically significant cardiovascular diseases, type II second-, or third-degree atrioventricular blocks, and females of childbearing age who do not use contraception. Ozanimod is the first S1P modulator to be approved for UC, offering a new therapeutic class option for patients. It has the advantages of being convenient with a once-daily oral administration, non-immunogenic, and overall safe when used in patients without contraindications.
Collapse
Affiliation(s)
- Roni Aoun
- Division of Gastroenterology and Hepatology, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephen Hanauer
- Division of Gastroenterology and Hepatology, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
16
|
Hanzel J, Hulshoff MS, Grootjans J, D'Haens G. Emerging therapies for ulcerative colitis. Expert Rev Clin Immunol 2022; 18:513-524. [PMID: 35477319 DOI: 10.1080/1744666x.2022.2069562] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Despite advances in the medical management of ulcerative colitis (UC), a subgroup of patients does not respond to currently available therapies. A number of novel drugs are in late stages of clinical development or have recently received regulatory approval for UC. AREAS COVERED This review focuses on three drug classes that have recently been approved or are awaiting approval for UC: antibodies against interleukin (IL)-23, sphingosine-1-phosphate receptor (S1PR) modulators, and selective inhibitors of Janus kinases (JAK). We provide an overview of their mechanism of action and summarize available evidence for their efficacy and safety. Finally, we discuss expected future challenges in UC management. EXPERT OPINION The evaluated drugs have demonstrated efficacy with an acceptable safety profile. IL-23 antagonists appear to be safest with very few (serious) adverse events, while the use of S1PR modulators or JAK inhibitors has been associated with infectious and cardiovascular/thromboembolic events, albeit in low numbers. Although advances in drug development are promising, there is an urgent need for (validated) biomarkers to guide rational treatment selection. The scarcity of head-to-head trials also complicates comparisons between available drugs. Breaking the therapeutic ceiling of efficacy in UC will require marked advances in management extending well beyond drug development.
Collapse
Affiliation(s)
- Jurij Hanzel
- Faculty of Medicine, University of Ljubljana, Department of Gastroenterology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Melanie S Hulshoff
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Academic Medical Centre, Amsterdam, the Netherlands
| | - Joep Grootjans
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Academic Medical Centre, Amsterdam, the Netherlands
| | - Geert D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Academic Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Li Y, Nicholson RJ, Summers SA. Ceramide signaling in the gut. Mol Cell Endocrinol 2022; 544:111554. [PMID: 34998898 PMCID: PMC8828712 DOI: 10.1016/j.mce.2022.111554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
Abstract
Sphingolipids are essential lipid components in the intestinal epithelial cells (IEC) along the intestinal tract. They play crucial roles in maintaining barrier integrity, regulating nutrient absorption, and acting as signaling molecules to regulate regeneration and differentiation of intestinal mucosa (Kurek et al., 2012). Ceramide is the central sphingolipid species and the precursor of all complex sphingolipids and other downstream simple intermediates like sphingosine (SPH), ceramide-1-phosphate (C-1-P), and sphingosine-1-phosphate (S-1-P). It is also a critical signaling molecule regulating numerous physiologic and pathologic processes. This review will summarize the metabolism of ceramides in the gut and their regulation in inflammatory bowel diseases and colorectal cancer.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, 15 North 2030 East, UT, 84112, Salt Lake City, USA.
| | - Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, 15 North 2030 East, UT, 84112, Salt Lake City, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, 15 North 2030 East, UT, 84112, Salt Lake City, USA
| |
Collapse
|
18
|
Nielsen OH, Boye TL, Chakravarti D, Gubatan J. Selective tyrosine kinase 2 inhibitors in inflammatory bowel disease. Trends Pharmacol Sci 2022; 43:424-436. [PMID: 35277286 DOI: 10.1016/j.tips.2022.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
Abstract
Recent significant advances have been made in the treatment of chronic inflammatory diseases with initiation of the era of biologics. However, an unmet medical need still exists for novel targeted therapies. Compared with biologics, Janus kinase inhibitors (JAKis) are a new drug class of orally administered small molecules that have been shown to efficiently modulate complex cytokine-driven inflammation in preclinical models and human studies. Unfortunately, serious adverse effects have been reported with the first introduced pan-JAKi, tofacitinib. Here, we review tyrosine kinase 2 (TYK2) signaling in the pathophysiology of inflammatory bowel disease (IBD), examine mechanisms of action of selective TYK2 inhibitors (TYK2is), and discuss the potential for these inhibitors in efforts to balance benefits and harms.
Collapse
Affiliation(s)
- Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Theresa Louise Boye
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Wang J, Goren I, Yang B, Lin S, Li J, Elias M, Fiocchi C, Rieder F. Review article: the sphingosine 1 phosphate/sphingosine 1 phosphate receptor axis - a unique therapeutic target in inflammatory bowel disease. Aliment Pharmacol Ther 2022; 55:277-291. [PMID: 34932238 PMCID: PMC8766911 DOI: 10.1111/apt.16741] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/03/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Ozanimod, a high selective sphingosine 1 phosphate (S1P) receptor (S1PR) 1/5 modulator was approved by the Food and Drug Administration for the treatment of adult patients with moderately to severely active ulcerative colitis. Additional S1PR modulators are being tested in clinical development programmes for both ulcerative colitis and Crohn's disease. AIM To provide an overview of advances in understanding S1PRs biology and summarise preclinical and clinical investigations of S1P receptor modulators in chronic inflammatory disease with special emphasis on inflammatory bowel diseases (IBD). METHODS We performed a narrative review using PubMed and ClinicalTrials.gov. RESULTS Through S1PRs, S1P regulates multiple cellular processes, including proliferation, migration, survival, and vascular barrier integrity. The S1PRs function of regulating lymphocyte trafficking is well known, but new functions of S1PRs expand our knowledge of S1PRs biology. Several S1PR modulators are in clinical development for both ulcerative colitis and Crohn's disease and have shown promise in phase II and III studies with ozanimod now being approved for ulcerative colitis. CONCLUSIONS S1P receptor modulators constitute a novel, promising, safe, and convenient strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, Henan Province, China,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel, Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Bo Yang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute; Cleveland Clinic Foundation, Cleveland, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute; Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|
20
|
Thibaut MM, Bindels LB. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med 2022; 28:223-236. [DOI: 10.1016/j.molmed.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
|
21
|
Li Y, Chen J, Bolinger AA, Chen H, Liu Z, Cong Y, Brasier AR, Pinchuk IV, Tian B, Zhou J. Target-Based Small Molecule Drug Discovery Towards Novel Therapeutics for Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 27:S38-S62. [PMID: 34791293 DOI: 10.1093/ibd/izab190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a class of severe and chronic diseases of the gastrointestinal (GI) tract with recurrent symptoms and significant morbidity. Long-term persistence of chronic inflammation in IBD is a major contributing factor to neoplastic transformation and the development of colitis-associated colorectal cancer. Conversely, persistence of transmural inflammation in CD is associated with formation of fibrosing strictures, resulting in substantial morbidity. The recent introduction of biological response modifiers as IBD therapies, such as antibodies neutralizing tumor necrosis factor (TNF)-α, have replaced nonselective anti-inflammatory corticosteroids in disease management. However, a large proportion (~40%) of patients with the treatment of anti-TNF-α antibodies are discontinued or withdrawn from therapy because of (1) primary nonresponse, (2) secondary loss of response, (3) opportunistic infection, or (4) onset of cancer. Therefore, the development of novel and effective therapeutics targeting specific signaling pathways in the pathogenesis of IBD is urgently needed. In this comprehensive review, we summarize the recent advances in drug discovery of new small molecules in preclinical or clinical development for treating IBD that target biologically relevant pathways in mucosal inflammation. These include intracellular enzymes (Janus kinases, receptor interacting protein, phosphodiesterase 4, IκB kinase), integrins, G protein-coupled receptors (S1P, CCR9, CXCR4, CB2) and inflammasome mediators (NLRP3), etc. We will also discuss emerging evidence of a distinct mechanism of action, bromodomain-containing protein 4, an epigenetic regulator of pathways involved in the activation, communication, and trafficking of immune cells. We highlight their chemotypes, mode of actions, structure-activity relationships, characterizations, and their in vitro/in vivo activities and therapeutic potential. The perspectives on the relevant challenges, new opportunities, and future directions in this field are also discussed.
Collapse
Affiliation(s)
- Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianping Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew A Bolinger
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhiqing Liu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Allan R Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin, Madison, WI, USA
| | - Irina V Pinchuk
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, PA, USA
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
22
|
Yang L, Luo H, Tan D, Zhang S, Zhong Z, Wang S, Vong CT, Wang Y. A recent update on the use of Chinese medicine in the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153709. [PMID: 34560518 DOI: 10.1016/j.phymed.2021.153709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic idiopathic disease that is characterized by inflammation of the gastrointestinal tract. Proper management of IBD requires both early diagnosis and novel therapies and management programs. Many reports have suggested that Chinese medicine has unique properties favorable to the treatment of IBD. However, there are no systematic analyses on this topic. PURPOSE This review summarizes recent studies that assessed the effects and mechanisms of Chinese medicine in the treatment of IBD in order to fully understand the advantages of Chinese medicine in the management of IBD. METHODS A literature search was conducted using peer-reviewed and clinical databases, including PubMed, Web of Science, ClinicalTrials.gov, MEDLINE, EMBASE, Springer LINK, Wan-fang database, the Chinese Biomedicine Database, and the China National Knowledge Infrastructure (CNKI). Keywords used were inflammatory bowel disease (including Ulcerative colitis or Crohn's disease) and Chinese medicine. All selected articles were from 1997 to 2021, and each were assessed critically for our exclusion criteria. Studies describing the pathogenesis of IBD, the effects and mechanisms of Chinese medicine in the treatment of IBD, in particular their roles in immune regulation, intestinal flora regulation, and improvement of intestinal barrier function, were included. CONCLUSION This review highlights recent progress in the use of Chinese medicine in the treatment of IBD. It also provides a reference for further evaluation and exploration of the potential of classical multi-herbal Chinese medicine in the treatment of IBD.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dechao Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
23
|
Yang XX, Yang C, Wang L, Zhou YB, Yuan X, Xiang N, Wang YP, Li XM. Molecular Mechanism of Sphingosine-1-Phosphate Receptor 1 Regulating CD4 + Tissue Memory in situ T Cells in Primary Sjogren's Syndrome. Int J Gen Med 2021; 14:6177-6188. [PMID: 34611431 PMCID: PMC8485922 DOI: 10.2147/ijgm.s327304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Although extensive research has been carried out on CD4+T cells infiltrating the labial glands in patients with primary Sjögren’s Syndrome (pSS), it is still unclear how CD4+T cells remain in the labial gland tissue and develop into tissue resident cells. The aim of this study was to investigate the molecular mechanism by which CD4+T reside in labial glandular tissue of pSS patients. Methods Lymphocyte infiltration in labial salivary glands (LSG) of pSS patients was detected by H&E staining. Expression of sphingosine-1-phosphate receptor 1 (S1PR1) in LSG was examined by Immunohistochemistry. Immunofluorescence analyses were utilized to detect the co-expression of CD4, CD69 and S1PR1 in T cells of LSG of pSS patients. Expression of gene S1pr1 in peripheral blood CD4+T cells of healthy controls and pSS patients was detected by quantitative real-time PCR (QPCR). QPCR was used to examine the expression of gene S1pr1, Klf2, and Cd69 in the CD4+T cells that were co-cultured in vitro with cytokines TNF-α, TGF-β, and IL-33. Results S1PR1 was expressed in the infiltrating monocytes in LSG of pSS patients, and S1PR1 was weakly or even not expressed in cytoplasm of CD4+CD69+TRM cells of LSG in patients with pSS. Expression of gene S1pr1 in peripheral blood CD4+T cells of pSS patients was about three-fifths of that of healthy controls (P < 0.05). Expression of genes S1pr1 (P < 0.001) and Klf-2 (P < 0.001) was significantly decreased, and the expression of gene Cd69 (P < 0.05) was significantly increased in peripheral blood CD4+T cells of pSS patients co-cultured in vitro with cytokines TNF-α, TGF-β, and IL-33. Conclusion Our study suggests that the decrease of S1pr1 gene expression may provide a molecular basis for promoting the tissue retention and development of CD4+CD69+TRM cells.
Collapse
Affiliation(s)
- Xiao-Xiao Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.,The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chao Yang
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Li Wang
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Ying-Bo Zhou
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xiang Yuan
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Nan Xiang
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yi-Ping Wang
- Westmead Institute for Medical Research, University of Sydney, Sdyney, NSW, 2145, Australia
| | - Xiao-Mei Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.,The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
24
|
Tian N, Hu L, Lu Y, Tong L, Feng M, Liu Q, Li Y, Zhu Y, Wu L, Ji Y, Zhang P, Xu T, Tong X. TKT maintains intestinal ATP production and inhibits apoptosis-induced colitis. Cell Death Dis 2021; 12:853. [PMID: 34535624 PMCID: PMC8448773 DOI: 10.1038/s41419-021-04142-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Inflammatory bowel disease (IBD) has a close association with transketolase (TKT) that links glycolysis and the pentose phosphate pathway (PPP). However, how TKT functions in the intestinal epithelium remains to be elucidated. To address this question, we specifically delete TKT in intestinal epithelial cells (IECs). IEC TKT-deficient mice are growth retarded and suffer from spontaneous colitis. TKT ablation brings about striking alterations of the intestine, including extensive mucosal erosion, aberrant tight junctions, impaired barrier function, and increased inflammatory cell infiltration. Mechanistically, TKT deficiency significantly accumulates PPP metabolites and decreases glycolytic metabolites, thereby reducing ATP production, which results in excessive apoptosis and defective intestinal barrier. Therefore, our data demonstrate that TKT serves as an essential guardian of intestinal integrity and barrier function as well as a potential therapeutic target for intestinal disorders.
Collapse
Affiliation(s)
- Na Tian
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Hu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfeng Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Feng
- Department of Physiology , Weifang Medical University, Weifang, Shandong, China
| | - Qi Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yakui Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yemin Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifang Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingning Ji
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianle Xu
- Department of Anatomy and Physiology, Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Wang J, Chen YL, Li YK, Chen DK, He JF, Yao N. Functions of Sphingolipids in Pathogenesis During Host-Pathogen Interactions. Front Microbiol 2021; 12:701041. [PMID: 34408731 PMCID: PMC8366399 DOI: 10.3389/fmicb.2021.701041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids are a class of membrane lipids that serve as vital structural and signaling bioactive molecules in organisms ranging from yeast to animals. Recent studies have emphasized the importance of sphingolipids as signaling molecules in the development and pathogenicity of microbial pathogens including bacteria, fungi, and viruses. In particular, sphingolipids play key roles in regulating the delicate balance between microbes and hosts during microbial pathogenesis. Some pathogens, such as bacteria and viruses, harness host sphingolipids to promote development and infection, whereas sphingolipids from both the host and pathogen are involved in fungus-host interactions. Moreover, a regulatory role for sphingolipids has been described, but their effects on host physiology and metabolism remain to be elucidated. Here, we summarize the current state of knowledge about the roles of sphingolipids in pathogenesis and interactions with host factors, including how sphingolipids modify pathogen and host metabolism with a focus on pathogenesis regulators and relevant metabolic enzymes. In addition, we discuss emerging perspectives on targeting sphingolipids that function in host-microbe interactions as new therapeutic strategies for infectious diseases.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Fan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW In the rapidly progressing world of inflammatory bowel disease, this review discusses and summarizes new drug targets and results from major clinical trials in order to provide an update to physicians treating patients with inflammatory bowel diseases (IBD). RECENT FINDINGS Multiple new mechanisms in the treatment of IBD are being developed and many are showing promising results in both ulcerative colitis and Crohn's disease patients. In addition to efficacy, some of these treatments may provide safety benefits over existing therapies. SUMMARY The IBD physicians' therapeutic armamentarium is rapidly expanding and keeping abreast of these developments is required in order to provide patients with optimized individualized care.
Collapse
Affiliation(s)
- Nathaniel A Cohen
- The University of Chicago Medicine Inflammatory Bowel Disease Center, Chicago, Illinois, USA
| | | |
Collapse
|
27
|
Pérez-Jeldres T, Alvarez-Lobos M, Rivera-Nieves J. Targeting Sphingosine-1-Phosphate Signaling in Immune-Mediated Diseases: Beyond Multiple Sclerosis. Drugs 2021; 81:985-1002. [PMID: 33983615 PMCID: PMC8116828 DOI: 10.1007/s40265-021-01528-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid metabolite that exerts its actions by engaging 5 G-protein-coupled receptors (S1PR1-S1PR5). S1P receptors are involved in several cellular and physiological events, including lymphocyte/hematopoietic cell trafficking. An S1P gradient (low in tissues, high in blood), maintained by synthetic and degradative enzymes, regulates lymphocyte trafficking. Because lymphocytes live long (which is critical for adaptive immunity) and recirculate thousands of times, the S1P-S1PR pathway is involved in the pathogenesis of immune-mediated diseases. The S1PR1 modulators lead to receptor internalization, subsequent ubiquitination, and proteasome degradation, which renders lymphocytes incapable of following the S1P gradient and prevents their access to inflammation sites. These drugs might also block lymphocyte egress from lymph nodes by inhibiting transendothelial migration. Targeting S1PRs as a therapeutic strategy was first employed for multiple sclerosis (MS), and four S1P modulators (fingolimod, siponimod, ozanimod, and ponesimod) are currently approved for its treatment. New S1PR modulators are under clinical development for MS, and their uses are being evaluated to treat other immune-mediated diseases, including inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and psoriasis. A clinical trial in patients with COVID-19 treated with ozanimod is ongoing. Ozanimod and etrasimod have shown promising results in IBD; while in phase 2 clinical trials, ponesimod has shown improvement in 77% of the patients with psoriasis. Cenerimod and amiselimod have been tested in SLE patients. Fingolimod, etrasimod, and IMMH001 have shown efficacy in RA preclinical studies. Concerns relating to S1PR modulators are leukopenia, anemia, transaminase elevation, macular edema, teratogenicity, pulmonary disorders, infections, and cardiovascular events. Furthermore, S1PR modulators exhibit different pharmacokinetics; a well-established first-dose event associated with S1PR modulators can be mitigated by gradual up-titration. In conclusion, S1P modulators represent a novel and promising therapeutic strategy for immune-mediated diseases.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Pontificia Universidad Católica de Chile, Santiago, Chile
- Hospital San Borja-Arriarán, Santiago, Chile
| | - Manuel Alvarez-Lobos
- Pontificia Universidad Católica de Chile, Santiago, Chile
- Hospital San Borja-Arriarán, Santiago, Chile
| | - Jesús Rivera-Nieves
- San Diego VA Medical Center (SDVAMC), San Diego, CA, USA.
- Division of Gastroenterology, Department of Medicine, University of California San Diego (UCSD), 9500 Gilman Drive Bldg. BRF-II Rm. 4A32, San Diego, CA, 92093-0063, USA.
| |
Collapse
|
28
|
Treatments of inflammatory bowel disease toward personalized medicine. Arch Pharm Res 2021; 44:293-309. [PMID: 33763844 DOI: 10.1007/s12272-021-01318-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammatory disease characterized by intestinal inflammation and epithelial injury. For the treatment of IBD, 5-aminosalicylic acids, corticosteroids, immunomodulators, and biologic agents targeting tumor necrosis factor (TNF)-α, α4β7-integrin, and interleukin (IL)-12/23 have been widely used. Especially, anti-TNF-α antibodies are the first biologic agents that presently remain at the forefront. However, 10-30% of patients resist biologic agents, including anti-TNF-α agents (primary non-responder; PNR), and 20-50% of primary responders develop treatment resistance within one year (secondary loss of response; SLR). Nonetheless, the etiologies of PNR and SLR are not clearly understood, and predictors of response to biologic agents are also not defined yet. Numerous studies are being performed to discover prediction markers of the response to biologic agents, and this review will introduce currently available therapeutic options for IBD, biologics under investigation, and recent studies exploring various predictive factors related to PNR and SLR.
Collapse
|
29
|
Jin QW, Wang XD. Progress in research of vedolizumab in treatment of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2021; 29:248-255. [DOI: 10.11569/wcjd.v29.i5.248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease is a kind of chronic inflammatory disease of the gastrointestinal tract with unclear etiology. At present, its main therapeutic drugs include aminosalicylates, glucocorticoids, immunosuppressive agents, and biological agents. With the deepening study of the disease and the progress of science and technology, there have been more and more studies on the targets for biological agents, including tumor necrosis factor-α, Janus kinase, interleukin, intestinal integrin, etc. As a humanized integrin antagonist, vedolizumab can selectively inhibit the interaction between integrin α4β7 and mucosal addressin cell adhesion molecule-1, and block the migration of lymphocytes to the intestinal tract to alleviate the intestinal inflammation, so as to achieve the therapeutic effect. This article reviews the mechanism, clinical efficacy, and application of vedolizumab in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Qi-Wen Jin
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Xiao-Di Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
30
|
Wang X, Chen S, Xiang H, Liang Z, Lu H. Role of sphingosine-1-phosphate receptors in vascular injury of inflammatory bowel disease. J Cell Mol Med 2021; 25:2740-2749. [PMID: 33595873 PMCID: PMC7957208 DOI: 10.1111/jcmm.16333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Sphingosine‐1‐phosphate receptors (S1PRs) have an impact on the intestinal inflammation of inflammatory bowel disease (IBD) by regulating lymphocyte migration and differentiation. S1PR modulators as an emerging therapeutic approach are being investigated for the treatment of IBD. However, the role of S1PRs in intestinal vessels has not drawn much attention. Intestinal vascular damage is one of the major pathophysiological features of IBD, characterized by increased vascular density and impaired barrier function. S1PRs have pleiotropic effects on vascular endothelial cells, including proliferation, migration, angiogenesis and barrier homeostasis. Mounting evidence shows that S1PRs are abnormally expressed on intestinal vascular endothelial cells in IBD. Unexpectedly, S1PR modulators may damage intestinal vasculature, for example increase intestinal bleeding; therefore, S1PRs are thought to be involved in the regulation of intestinal vascular function in IBD. However, little is understood about how S1PRs regulate intestinal vascular function and participate in the initiation and progression of IBD. In this review, we summarize the pathogenic role of S1PRs in and the underlying mechanisms behind the intestinal vascular injury in IBD in order for improving IBD practice including S1PR‐targeted therapies.
Collapse
Affiliation(s)
- Xuewen Wang
- Center for Experimental Medicine, the Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medicine, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Liang
- Department of Clinical laboratory, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, China
| | - Hongwei Lu
- Center for Experimental Medicine, the Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
31
|
Alhouayek M, Ameraoui H, Muccioli GG. Bioactive lipids in inflammatory bowel diseases - From pathophysiological alterations to therapeutic opportunities. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158854. [PMID: 33157277 DOI: 10.1016/j.bbalip.2020.158854] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBDs), such as Crohn's disease and ulcerative colitis, are lifelong diseases that remain challenging to treat. IBDs are characterized by alterations in intestinal barrier function and dysregulation of the innate and adaptive immunity. An increasing number of lipids are found to be important regulators of inflammation and immunity as well as gut physiology. Therefore, the study of lipid mediators in IBDs is expected to improve our understanding of disease pathogenesis and lead to novel therapeutic opportunities. Here, through selected examples - such as fatty acids, specialized proresolving mediators, lysophospholipids, endocannabinoids, and oxysterols - we discuss how lipid signaling is involved in IBD physiopathology and how modulating lipid signaling pathways could affect IBDs.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Bruxelles, Belgium.
| | - Hafsa Ameraoui
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Bruxelles, Belgium.
| |
Collapse
|
32
|
Small molecule drugs in the treatment of inflammatory bowel diseases: which one, when and why? - a systematic review. Eur J Gastroenterol Hepatol 2020; 32:669-677. [PMID: 32282548 DOI: 10.1097/meg.0000000000001730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the 'treat-to-target' era of inflammatory bowel disease (IBD) management, small molecule drugs (SMDs) represent a promising alternative to biomolecular drugs. Moreover, increasing failure rates of anti-tumor necrosis factor α agents have contributed to the development of new molecules with different mechanisms of action and bioavailability. This review focuses on the positioning of new, orally targeted therapies in the treatment algorithm of both Crohn's disease (CD) and ulcerative colitis (UC), with special consideration to their efficacy and safety. We performed a comprehensive search of PubMed and clinical trial registries to identify randomized controlled trials assessing SMDs in adult patients with moderate-to-severe IBD, irrespective of previous exposure to other biologics. In this review, we included 15 double-blind, placebo-controlled trials that assessed the efficacy and safety of Janus kinase inhibitors, sphingosine-1-phosphate modulators (S1P), SMAD blockers, phosphodiesterase 4 inhibitors and α-4 antagonists. The primary endpoints in UC were achieved for tofacitinib in the phase III OCTAVE study and AJM-300, with a favorable safety profile. S1P receptor agonists, such as etrasimod and ozanimod, demonstrated favorable results in induction studies. For CD, filgotinib and upadacitinib also met the primary outcome criteria. Available data have demonstrated so far that SMDs have an advantageous safety and efficacy profile. However, their use in a clinical setting will eventually require a personalized, mechanism-based therapeutic approach.
Collapse
|
33
|
Yang B, Zhang G, Elias M, Zhu Y, Wang J. The role of cytokine and immune responses in intestinal fibrosis. J Dig Dis 2020; 21:308-314. [PMID: 32410365 DOI: 10.1111/1751-2980.12879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
The rapidly increasing incidence of inflammatory bowel disease (IBD) in South America, eastern Europe, Asia, and Africa has resulted in a global public health challenge. Intestinal fibrosis is a common complication in patients with long-term IBD, which may develop into stenosis and subsequent obstruction. Hitherto, the origin of IBD is unclear and several factors may be involved, including genetic, immune, environmental and microbial influences. Little is known about how the recurrent inflammation in patients with IBD develops into intestinal fibrosis and currently, there is no suitable treatment to reverse intestinal fibrosis in these patients. Here, we review the role of immune components in the pathogenesis of IBD and intestinal fibrosis, including cytokine networks, host-microbiome interactions, and immune cell trafficking.
Collapse
Affiliation(s)
- Bo Yang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ge Zhang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yijun Zhu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jie Wang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Mizoguchi E, Low D, Ezaki Y, Okada T. Recent updates on the basic mechanisms and pathogenesis of inflammatory bowel diseases in experimental animal models. Intest Res 2020; 18:151-167. [PMID: 32326669 PMCID: PMC7206339 DOI: 10.5217/ir.2019.09154] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
The specific pathogenesis underlining inflammatory bowel disease (IBD) is very complicated, and it is further more difficult to clearly explain the pathophysiology of 2 major forms of IBD, Crohn’s disease (CD) and ulcerative colitis (UC), and both disorders affect individuals throughout life. Despite every extensive effort, the interplay among genetic factors, immunological factors, environmental factors and intestinal microbes is still completely unrevealed. Animal models are indispensable to find out mechanistic details that will facilitate better preclinical setting to target specific components involved in the pathogenesis of IBD. Based on many recent reports, dysbiosis of the commensal microbiota is implicated in the pathogenesis of several diseases, not only IBD but also colon cancer, obesity, psoriasis as well as allergic disorders, in both human and animal models. Advanced technologies including cell-specific and inducible knockout systems, which are recently employed to mouse IBD models, have further enhanced the ability of developing new therapeutic strategies for IBD. Furthermore, data from these mouse models highlight the critical involvement of dysregulated immune responses and impaired colonic epithelial defense system in the pathogenesis of IBD. In this review, we will explain from the history of animal models of IBD to the recent reports of the latest compounds, therapeutic strategies, and approaches tested on IBD animal models.
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume, Japan.,Department of Molecular Microbiology and Immunology, Brown University Warren Alpert Medical School, Providence, RI, USA
| | - Daren Low
- Crohn's & Colitis Society of Singapore, Singapore
| | - Yui Ezaki
- Department of Immunology, Kurume University School of Medicine, Kurume, Japan
| | - Toshiyuki Okada
- Department of Immunology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
35
|
Pugliese N, Roda G, Peyrin-Biroulet L, Danese S. Emerging therapies for the treatment of ulcerative colitis. Expert Opin Emerg Drugs 2020; 25:1-9. [PMID: 32148112 DOI: 10.1080/14728214.2020.1737009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
Introduction: Ulcerative colitis (UC) is a chronic idiopathic autoimmune inflammatory disorder, primarily affecting the gastrointestinal system. There are many patients affected that do not respond well to therapy and many others to which there is a loss of efficacy every year. The proportion of patients who have already experienced anti-TNF therapy is constantly increasing, making the development of new drugs with alternative mechanisms of action an important need for the treatment of UC.Areas covered: This review aims on emerging drugs in the treatment of UC and reviews data on their efficacy and safety.Expert opinion: UC, for many years, comparatively to CD, received little attention for several possible reasons, especially because it was not considered as a progressive disease able to induce irreversible bowel damage. This has led to lower investments by the scientific community and a slower development of therapeutic options for UC. In the past few years, this trend has started to change. In fact, new promising drugs have been developed and others are emerging with positive results. Although many treatment modalities have recently been approved, additional drugs are currently being investigated and will probably be part of the UC treatment regimen in the coming years.
Collapse
Affiliation(s)
- Nicola Pugliese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giulia Roda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Hepato-Gastroenterology and Inserm U954, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
36
|
Sukocheva OA, Furuya H, Ng ML, Friedemann M, Menschikowski M, Tarasov VV, Chubarev VN, Klochkov SG, Neganova ME, Mangoni AA, Aliev G, Bishayee A. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol Ther 2020; 207:107464. [PMID: 31863815 DOI: 10.1016/j.pharmthera.2019.107464] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory gastrointestinal (GI) diseases and malignancies are associated with growing morbidity and cancer-related mortality worldwide. GI tumor and inflammatory cells contain activated sphingolipid-metabolizing enzymes, including sphingosine kinase 1 (SphK1) and SphK2, that generate sphingosine-1-phosphate (S1P), a highly bioactive compound. Many inflammatory responses, including lymphocyte trafficking, are directed by circulatory S1P, present in high concentrations in both the plasma and the lymph of cancer patients. High fat and sugar diet, disbalanced intestinal flora, and obesity have recently been linked to activation of inflammation and SphK/S1P/S1P receptor (S1PR) signaling in various GI pathologies, including cancer. SphK1 overexpression and activation facilitate and enhance the development and progression of esophageal, gastric, and colon cancers. SphK/S1P axis, a mediator of inflammation in the tumor microenvironment, has recently been defined as a target for the treatment of GI disease states, including inflammatory bowel disease and colitis. Several SphK1 inhibitors and S1PR antagonists have been developed as novel anti-inflammatory and anticancer agents. In this review, we analyze the mechanisms of SphK/S1P signaling in GI tissues and critically appraise recent studies on the role of SphK/S1P/S1PR in inflammatory GI disorders and cancers. The potential role of SphK/S1PR inhibitors in the prevention and treatment of inflammation-mediated GI diseases, including GI cancer, is also evaluated.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Hideki Furuya
- Department of Surgery, Samuel Oschin Cancer Center Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mei Li Ng
- Advanced Medical and Dental Institute, University Sains 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Vladimir N Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia; GALLY International Research Institute, San Antonio, TX 78229, USA; Research Institute of Human Morphology, Moscow 117418, Russia
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
37
|
Jensen S, Seidelin JB, LaCasse EC, Nielsen OH. SMAC mimetics and RIPK inhibitors as therapeutics for chronic inflammatory diseases. Sci Signal 2020; 13:13/619/eaax8295. [PMID: 32071170 DOI: 10.1126/scisignal.aax8295] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New therapeutic approaches for chronic inflammatory diseases such as inflammatory bowel disease, rheumatoid arthritis, and psoriasis are needed because current treatments are often suboptimal in terms of both efficacy and the risks of serious adverse events. Inhibitor of apoptosis proteins (IAPs) are E3 ubiquitin ligases that inhibit cell death pathways and are themselves inhibited by second mitochondria-derived activator of caspases (SMAC). SMAC mimetics (SMs), small-molecule antagonists of IAPs, are being evaluated as cancer therapies in clinical trials. IAPs are also crucial regulators of inflammatory pathways because they influence both the activation of inflammatory genes and the induction of cell death through the receptor-interacting serine-threonine protein kinases (RIPKs), nuclear factor κB (NF-κB)-inducing kinase, and mitogen-activated protein kinases (MAPKs). Furthermore, there is an increasing interest in specifically targeting the substrates of IAP-mediated ubiquitylation, especially RIPK1, RIPK2, and RIPK3, as druggable nodes in inflammation control. Several studies have revealed an anti-inflammatory potential of RIPK inhibitors that either block inflammatory signaling or block the form of inflammatory cell death known as necroptosis. Expanding research on innate immune signaling through pattern recognition receptors that stimulate proinflammatory NF-κB and MAPK signaling may further contribute to uncovering the complex molecular roles used by IAPs and downstream RIPKs in inflammatory signaling. This may benefit and guide the development of SMs or selective RIPK inhibitors as anti-inflammatory therapeutics for various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Simone Jensen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark.
| | - Eric Charles LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark
| |
Collapse
|
38
|
Brown EM, Ke X, Hitchcock D, Jeanfavre S, Avila-Pacheco J, Nakata T, Arthur TD, Fornelos N, Heim C, Franzosa EA, Watson N, Huttenhower C, Haiser HJ, Dillow G, Graham DB, Finlay BB, Kostic AD, Porter JA, Vlamakis H, Clish CB, Xavier RJ. Bacteroides-Derived Sphingolipids Are Critical for Maintaining Intestinal Homeostasis and Symbiosis. Cell Host Microbe 2019; 25:668-680.e7. [PMID: 31071294 DOI: 10.1016/j.chom.2019.04.002] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/19/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022]
Abstract
Sphingolipids are structural membrane components and important eukaryotic signaling molecules. Sphingolipids regulate inflammation and immunity and were recently identified as the most differentially abundant metabolite in stool from inflammatory bowel disease (IBD) patients. Commensal bacteria from the Bacteroidetes phylum also produce sphingolipids, but the impact of these metabolites on host pathways is largely uncharacterized. To determine whether bacterial sphingolipids modulate intestinal health, we colonized germ-free mice with a sphingolipid-deficient Bacteroides thetaiotaomicron strain. A lack of Bacteroides-derived sphingolipids resulted in intestinal inflammation and altered host ceramide pools in mice. Using lipidomic analysis, we described a sphingolipid biosynthesis pathway and revealed a variety of Bacteroides-derived sphingolipids including ceramide phosphoinositol and deoxy-sphingolipids. Annotating Bacteroides sphingolipids in an IBD metabolomic dataset revealed lower abundances in IBD and negative correlations with inflammation and host sphingolipid production. These data highlight the role of bacterial sphingolipids in maintaining homeostasis and symbiosis in the gut.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaobo Ke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | | | - Sarah Jeanfavre
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Toru Nakata
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Nadine Fornelos
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cortney Heim
- Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Eric A Franzosa
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nicki Watson
- W. M. Keck Microscopy Facility, The Whitehead Institute, Cambridge, MA 02142, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Henry J Haiser
- Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Glen Dillow
- Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aleksandar D Kostic
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey A Porter
- Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
39
|
Small-molecule agents for the treatment of inflammatory bowel disease. Bioorg Med Chem Lett 2019; 29:2034-2041. [DOI: 10.1016/j.bmcl.2019.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023]
|
40
|
Schreiner P, Neurath MF, Ng SC, El-Omar EM, Sharara AI, Kobayashi T, Hisamatsu T, Hibi T, Rogler G. Mechanism-Based Treatment Strategies for IBD: Cytokines, Cell Adhesion Molecules, JAK Inhibitors, Gut Flora, and More. Inflamm Intest Dis 2019; 4:79-96. [PMID: 31559260 DOI: 10.1159/000500721] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Background Although TNF inhibitors revolutionized the therapy of inflammatory bowel disease (IBD), we have been reaching a point where other therapies with different mechanisms of action are necessary. A rising number of elderly IBD patients with contraindications to established therapies and a growing group of patients losing response to anti-TNF therapy compel us to find safer, better-tolerated, and, ideally, personalized treatment options. However, in order to choose the right drug to fit a patient, it is indispensable to understand the pathomechanism involved in IBD. Summary The aim of this review is to explain the inflammatory signaling pathways in IBD and how to inhibit them with current and future therapeutic approaches. Next to biologic agents targeting inflammatory cytokines (anti-TNF agents, anti-IL-12/-23 agents, and specific inhibitors of IL-23), biologics blocking leukocyte trafficking to the gut (anti-integrin antibodies) are available nowadays. More recently, small molecules inhibiting the JAK-STAT pathway (JAK inhibitors) or preventing lymphocyte trafficking (sphingosine-1-phosphate modulators) have been approved or are under investigation. Furthermore, modifying the microbiota has potential therapeutic effects on IBD, and autologous hematopoietic or mesenchymal stem cell transplantation may be considered for a highly selected group of IBD patients. Key Message Physicians should understand the different mechanisms of action of the potential therapies for IBD to select the right drug for the right patient.
Collapse
Affiliation(s)
- Philipp Schreiner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Markus F Neurath
- Medizinische Klinik 1, Universitätsklinikum Erlangen-Nürnberg, Erlangen, Germany
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Emad M El-Omar
- St. George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ala I Sharara
- Division of Gastroenterology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | | | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Pagnini C, Pizarro TT, Cominelli F. Novel Pharmacological Therapy in Inflammatory Bowel Diseases: Beyond Anti-Tumor Necrosis Factor. Front Pharmacol 2019; 10:671. [PMID: 31316377 PMCID: PMC6611384 DOI: 10.3389/fphar.2019.00671] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic conditions of the gastrointestinal tract in which dysregulated immune responses cause persistent inflammation of the gut mucosa. Biologic therapy with anti-TNF blockers has revolutionized the therapeutic management of IBD for their remarkable efficacy and potential impact on disease course and for many years has represented the sole treatment option for patients refractory or intolerant to conventional therapy. In recent years, more molecules, both biologically and chemically synthetized, have been developed as potential therapeutic options for IBD that target different molecular pathways aside from TNF blockade, and which have been proposed as targets for novel drugs. This is particularly relevant for the present, as well as future, management of IBD, considering that some patients are refractory to anti-TNF. This review will summarize the pharmacological options, either currently available or in the pipeline, for market approval to treat IBD, besides anti-TNF strategies, based on their mechanism(s) of action. We will also analyze the current evidence for effectiveness and safety, as well as offer perspective, regarding the potential implementation for such therapies in the future.
Collapse
Affiliation(s)
- Cristiano Pagnini
- Department of Gastroenterology and Digestive Endoscopy, S. Giovanni Addolorata Hospital, Rome, Italy
| | - Theresa T Pizarro
- Department of Medicine and Pathology, Case Western Reserve University, Digestive Health Institute, University Hospitals of Cleveland, Cleveland, OH, United States
| | - Fabio Cominelli
- Department of Medicine and Pathology, Case Western Reserve University, Digestive Health Institute, University Hospitals of Cleveland, Cleveland, OH, United States
| |
Collapse
|
42
|
Sabino J, Verstockt B, Vermeire S, Ferrante M. New biologics and small molecules in inflammatory bowel disease: an update. Therap Adv Gastroenterol 2019; 12:1756284819853208. [PMID: 31205488 PMCID: PMC6537282 DOI: 10.1177/1756284819853208] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/03/2019] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a spectrum of immune-mediated inflammatory disorders with a complex multifactorial pathogenesis, where different pathways may predominate in different individuals. This complexity will most likely require a panoply of drugs targeting different pathways if one wants to treat to steroid-free sustained remission and mucosal healing. Presently, the mainstay of medical management of IBD is based on 5-aminosalicylates, corticosteroids, thiopurines, methotrexate, antitumor necrosis factor, anti-alpha4 beta7 (α4β7) integrin and anti-interleukin (IL)-12/IL-23 therapies. The discovery of new pathways involved in the pathogenesis of IBD resulted in new drugs targeting Janus kinase/signal transducers and activators of transcription, IL-6, spingosine-1-phosphate, and phosphodiesterase 4, among others. These new therapies might result in more advantageous safety profiles. Several of these new drugs have already been successfully tested in other inflammatory disorders, such as psoriasis or rheumatoid arthritis. In this review, evidence from phase II and phase III randomized controlled clinical trials in patients with IBD involving new biologicals and small molecules are summarized.
Collapse
Affiliation(s)
| | | | | | - Marc Ferrante
- Universtaire Ziekenhuizen Leuven, Herestraat 49,
Leuven B3000, Belgium
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The biologic era revolutionized the medical management of inflammatory bowel disease (IBD) and allowed for a paradigm shift away from a therapeutic strategy that traditionally relied on corticosteroids and immunomodulators. IBD treatment has now further evolved to encompass novel non-biologic agents. RECENT FINDINGS An electronic database search, spanning up to September 2018, was conducted using PubMed, Web of Science, Google Scholar, and Scopus. Abstracts were also reviewed from Digestive Diseases Week, European Crohn's and Colitis Organization congress, Canadian Digestive Diseases Week, and United European Gastroenterology Week. The JAK1/3 inhibitor, tofacitinib, was shown to both induce and maintain clinical remission and mucosal healing in ulcerative colitis (UC). Also, the sphingosine-1-phosphate (SIP) S1P1/S1P5 receptor agonist ozanimod showed benefit with clinical remission and mucosal healing in UC. Anti-trafficking non-biologic therapies such as AJM300 and a phosphodiesterase (PDE) PDE4 inhibitor, apremilast, have shown benefit in terms of clinical response, clinical remission, and mucosal healing in UC. Upadacitinib and filgotinib have shown initial favorable outcomes in CD patients, with further ongoing trials. Non-biologic agents comprise a growing number of mechanisms of action with the promise of safe and effective oral therapy for patients with IBD.
Collapse
Affiliation(s)
- Tushar Shukla
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1069, New York, NY, 10029, USA
| | - Bruce E Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1069, New York, NY, 10029, USA.
| |
Collapse
|
44
|
Abstract
The liver is the central organ involved in lipid metabolism and the gastrointestinal (GI) tract is responsible for nutrient absorption and partitioning. Obesity, dyslipidemia and metabolic disorders are of increasing public health concern worldwide, and novel therapeutics that target both the liver and the GI tract (gut-liver axis) are much needed. In addition to aiding fat digestion, bile acids act as important signaling molecules that regulate lipid, glucose and energy metabolism via activating nuclear receptor, G protein-coupled receptors (GPCRs), Takeda G protein receptor 5 (TGR5) and sphingosine-1-phosphate receptor 2 (S1PR2). Sphingosine-1-phosphate (S1P) is synthesized by two sphingosine kinase isoforms and is a potent signaling molecule that plays a critical role in various diseases such as fatty liver, inflammatory bowel disease (IBD) and colorectal cancer. In this review, we will focus on recent findings related to the role of S1P-mediated signaling pathways in the gut-liver axis.
Collapse
Affiliation(s)
- Eric K. Kwong
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,McGuire VA Medical Center, Richmond, VA, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,McGuire VA Medical Center, Richmond, VA, USA,Corresponding author. Department of Microbiology and Immunology, Virginia Commonwealth University, McGuire Veterans Affairs Medical Center, Richmond, VA, USA. (H. Zhou)
| |
Collapse
|
45
|
Pérez-Jeldres T, Tyler CJ, Boyer JD, Karuppuchamy T, Bamias G, Dulai PS, Boland BS, Sandborn WJ, Patel DR, Rivera-Nieves J. Cell Trafficking Interference in Inflammatory Bowel Disease: Therapeutic Interventions Based on Basic Pathogenesis Concepts. Inflamm Bowel Dis 2019; 25:270-282. [PMID: 30165490 PMCID: PMC6327230 DOI: 10.1093/ibd/izy269] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 12/27/2022]
Abstract
After 20 years of successful targeting of pro-inflammatory cytokines for the treatment of IBD, an alternative therapeutic strategy has emerged, based on several decades of advances in understanding the pathogenesis of IBD. The targeting of molecules involved in leukocyte traffic has recently become a safe and effective alternative. With 2 currently approved drugs (ie, natalizumab, vedolizumab) and several others in phase 3 trials (eg, etrolizumab, ozanimod, anti-MAdCAM-1), the blockade of trafficking molecules has firmly emerged as a new therapeutic era for IBD. We discuss the targets that have been explored in clinical trials: chemokines and its receptors (eg, IP10, CCR9), integrins (eg, natalizumab, AJM300, vedolizumab, and etrolizumab), and its endothelial ligands (MAdCAM-1, ICAM-1). We also discuss a distinct strategy that interferes with lymphocyte recirculation by blocking lymphocyte egress from lymph nodes (small molecule sphingosine-phosphate receptor [S1PR] agonists: fingolimod, ozanimod, etrasimod, amiselimod). Strategies on the horizon include additional small molecules, allosteric inhibitors that specifically bind to the active integrin form and nanovectors that allow for the use of RNA interference in the quest to modulate pro-inflammatory leukocyte trafficking in IBD.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- Hospital San Borja Arriarán, Santiago, Chile
- Universidad Católica de Chile, Santiago, Chile
| | - Christopher J Tyler
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Joshua D Boyer
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Thangaraj Karuppuchamy
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Parambir S Dulai
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Brigid S Boland
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - William J Sandborn
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Derek R Patel
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
46
|
Yagci ZB, Esvap E, Ozkara HA, Ulgen KO, Olmez EO. Inflammatory response and its relation to sphingolipid metabolism proteins: Chaperones as potential indirect anti-inflammatory agents. MOLECULAR CHAPERONES IN HUMAN DISORDERS 2019; 114:153-219. [PMID: 30635081 DOI: 10.1016/bs.apcsb.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Yousefi‐Ahmadipour A, Rashidian A, Mirzaei MR, Farsinejad A, PourMohammadi‐Nejad F, Ghazi‐Khansari M, Ai J, Shirian S, Allahverdi A, Saremi J, Ebrahimi‐Barough S. Combination therapy of mesenchymal stromal cells and sulfasalazine attenuates trinitrobenzene sulfonic acid induced colitis in the rat: The S1P pathway. J Cell Physiol 2018; 234:11078-11091. [DOI: 10.1002/jcp.27944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Aliakbar Yousefi‐Ahmadipour
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Amir Rashidian
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Reza Mirzaei
- Department of Clinical Biochemistry Faculty of Medicine Rafsanjan University of Medical Sciences Rafsanjan Iran
| | - Alireza Farsinejad
- Department of Hematology and Laboratory Sciences Faculty of Allied Medicine, Kerman University of Medical Sciences Kerman Iran
| | - Fatemeh PourMohammadi‐Nejad
- Department of Periodontics School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan Kerman Iran
| | - Mahmoud Ghazi‐Khansari
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Sadegh Shirian
- Department of Pathology School of Veterinary Medicine, Shahrekord University Shahrekord Iran
| | - Amir Allahverdi
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Jamileh Saremi
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Somayeh Ebrahimi‐Barough
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
48
|
Hemperly A, Sandborn WJ, Vande Casteele N. Clinical Pharmacology in Adult and Pediatric Inflammatory Bowel Disease. Inflamm Bowel Dis 2018; 24:2527-2542. [PMID: 29788338 PMCID: PMC11187819 DOI: 10.1093/ibd/izy189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Indexed: 12/14/2022]
Abstract
This review describes the clinical pharmacology of the major drugs used for the treatment of patients with inflammatory bowel disease (IBD). Pharmacokinetics, drug metabolism, mechanism of action, efficacy, and safety profile are discussed. Some small molecules were developed to act systemically (eg, ozanimod) or locally (eg, aminosalicylates) and thus have disparate pharmacokinetic properties. In addition, locally acting compounds have been optimized to mitigate systemic exposure-eg, budesonide, which undergoes extensive first-pass metabolism-thereby reducing systemic bioavailability and side effects. Other small molecules such as thiopurines are precursors of their active metabolites and differences in genotype or phenotype of metabolizing enzymes may affect efficacy and safety, requiring therapeutic drug monitoring (TDM). Monoclonal antibodies (MAs) are large molecules administered parenterally, and their pharmacokinetics may be influenced not only by the general immunoglobulin (Ig) G metabolism and recycling pathways but also by antigen properties such as antigen distribution and antigen concentration. In addition, antibody structure, host factors, concurrent medications, and immunogenicity may contribute to the substantial inter- and intrapatient variability in drug exposure and response observed for MAs. Current guidelines recommend reactive TDM of tumor necrosis factor antagonists at the time of loss of response. Evidence for proactive TDM and for the role of TDM for biologics with a different mechanism of action is emerging. Although small molecules offer potential benefits over biologics with oral administration and lack of immunogenicity, there may be risk for more systemic side effects due to off-target binding. Understanding drug metabolism, pharmacokinetic characteristics, and mechanism of action are important in selecting the right drug at the right time at the right dose for patients with IBD.10.1093/ibd/izy189_video1izy189.video15786062223001.
Collapse
Affiliation(s)
- Amy Hemperly
- Department of Pediatric Gastroenterology, La Jolla, California
| | - William J Sandborn
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Niels Vande Casteele
- Department of Pediatric Gastroenterology, La Jolla, California
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, California
| |
Collapse
|
49
|
FTY720 attenuates intestinal injury and suppresses inflammation in experimental necrotizing enterocolitis via modulating CXCL5/CXCR2 axis. Biochem Biophys Res Commun 2018; 505:1032-1037. [PMID: 30314693 DOI: 10.1016/j.bbrc.2018.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 01/16/2023]
Abstract
Necrotizing enterocolitis (NEC) remains one of the leading causes of death in neonatal infants and new therapeutic strategies for NEC are urgently required. The immunomodulatory agent FTY720 has been shown to have protective effects in various inflammatory diseases. In this study, we hypothesized that treatment with FTY720 confers protection against experimental NEC. Experimental NEC was induced in five-day-old C57BL/6 neonatal mice by hyperosmolar formula feeding plus hypoxia and lipopolysaccharide (LPS) challenges. Induction of NEC resulted in substantial weight loss and high mortality compared to the control group, whereas FTY720 treatment significantly attenuated weight loss and improved survival in NEC-challenged neonatal mice. FTY720 treatment strongly ameliorated NEC-induced intestinal injury with reduced apoptosis and up-regulation of intestinal barrier proteins in the ileal tissues. Furthermore, FTY720 treatment abrogated NEC-initiated intestinal and systemic inflammation with markedly diminished inflammatory cytokines and chemokines. Moreover, FTY720 treatment suppressed NEC-activated CXCL5/CXCR2 axis with down-regulated expression of CXCL5 and CXCR2 at both mRNA and protein levels. Thus, we demonstrate that FTY720 protects neonatal mice against NEC-associated lethality by ameliorating intestinal injury and attenuating inflammation, possibly via its down-regulation of NEC-induced activation of intestinal CXCL5/CXCR2 axis.
Collapse
|
50
|
Soendergaard C, Bergenheim FH, Bjerrum JT, Nielsen OH. Targeting JAK-STAT signal transduction in IBD. Pharmacol Ther 2018; 192:100-111. [PMID: 30048708 DOI: 10.1016/j.pharmthera.2018.07.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An unmet medical need exists for novel targeted therapies for inflammatory bowel disease (IBD) as many patients experience inadequate responses to antibody-based biologics. An oral drug formulation with reduced production costs and redundancy for healthcare staff to administer therapy ideally should result in diminished healthcare expenses and improved patient compliance. A new drug class of small molecules, the Janus kinase (JAK) inhibitors (jakinibs), fulfills these criteria and has recently shown efficacy in IBD. Here we provide an overview of the mode of action of jakinibs and provide a comprehensive overview of existing clinical studies. Convincing clinical data show that a complex cytokine-driven inflammation can efficiently be modulated by therapeutic inhibition of the JAK proteins.
Collapse
Affiliation(s)
| | | | | | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark.
| |
Collapse
|