1
|
Duan N, Hua Y, Yan X, He Y, Zeng T, Gong J, Fu Z, Li W, Yin Y. Unveiling Alterations of Epigenetic Modifications and Chromatin Architecture Leading to Lipid Metabolic Reprogramming during the Evolutionary Trastuzumab Adaptation of HER2-Positive Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309424. [PMID: 38460162 PMCID: PMC11095153 DOI: 10.1002/advs.202309424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Indexed: 03/11/2024]
Abstract
Secondary trastuzumab resistance represents an evolutionary adaptation of HER2-positive breast cancer during anti-HER2 treatment. Most current studies have tended to prioritize HER2 and its associated signaling pathways, often overlooking broader but seemingly less relevant cellular processes, along with their associated genetic and epigenetic mechanisms. Here, transcriptome data is not only characterized but also examined epigenomic and 3D genome architecture information in both trastuzumab-sensitive and secondary-resistant breast cancer cells. The findings reveal that the global metabolic reprogramming associated with trastuzumab resistance may stem from genome-wide alterations in both histone modifications and chromatin structure. Specifically, the transcriptional activities of key genes involved in lipid metabolism appear to be regulated by variant promoter H3K27me3 and H3K4me3 modifications, as well as promoter-enhancer interactions. These discoveries offer valuable insights into how cancer cells adapt to anti-tumor drugs and have the potential to impact future diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Ningjun Duan
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yijia Hua
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Xueqi Yan
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yaozhou He
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Tianyu Zeng
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Jue Gong
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Ziyi Fu
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Wei Li
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yongmei Yin
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| |
Collapse
|
2
|
Rittenhouse NL, Dowen JM. Cohesin regulation and roles in chromosome structure and function. Curr Opin Genet Dev 2024; 85:102159. [PMID: 38382406 PMCID: PMC10947815 DOI: 10.1016/j.gde.2024.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Chromosome structure regulates DNA-templated processes such as transcription of genes. Dynamic changes to chromosome structure occur during development and in disease contexts. The cohesin complex is a molecular motor that regulates chromosome structure by generating DNA loops that bring two distal genomic sites into close spatial proximity. There are many open questions regarding the formation and dissolution of DNA loops, as well as the role(s) of DNA loops in regulating transcription of the interphase genome. This review focuses on recent discoveries that provide molecular insights into the role of cohesin and chromosome structure in gene transcription during development and disease.
Collapse
Affiliation(s)
- Natalie L Rittenhouse
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jill M Dowen
- Department of Biophysics & Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Gong L, Qiu L, Hao M. Novel Insights into the Initiation, Evolution, and Progression of Multiple Myeloma by Multi-Omics Investigation. Cancers (Basel) 2024; 16:498. [PMID: 38339250 PMCID: PMC10854875 DOI: 10.3390/cancers16030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
The evolutionary history of multiple myeloma (MM) includes malignant transformation, followed by progression to pre-malignant stages and overt malignancy, ultimately leading to more aggressive and resistant forms. Over the past decade, large effort has been made to identify the potential therapeutic targets in MM. However, MM remains largely incurable. Most patients experience multiple relapses and inevitably become refractory to treatment. Tumor-initiating cell populations are the postulated population, leading to the recurrent relapses in many hematological malignancies. Clonal evolution of tumor cells in MM has been identified along with the disease progression. As a consequence of different responses to the treatment of heterogeneous MM cell clones, the more aggressive populations survive and evolve. In addition, the tumor microenvironment is a complex ecosystem which plays multifaceted roles in supporting tumor cell evolution. Emerging multi-omics research at single-cell resolution permits an integrative and comprehensive profiling of the tumor cells and microenvironment, deepening the understanding of biological features of MM. In this review, we intend to discuss the novel insights into tumor cell initiation, clonal evolution, drug resistance, and tumor microenvironment in MM, as revealed by emerging multi-omics investigations. These data suggest a promising strategy to unravel the pivotal mechanisms of MM progression and enable the improvement in treatment, both holistically and precisely.
Collapse
Affiliation(s)
- Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Tianjin 300020, China;
- Tianjin Institutes of Health Science, Tianjin 300020, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Tianjin 300020, China;
- Tianjin Institutes of Health Science, Tianjin 300020, China
- Gobroad Healthcare Group, Beijing 100072, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Tianjin 300020, China;
- Tianjin Institutes of Health Science, Tianjin 300020, China
| |
Collapse
|
4
|
Liu M, Wang W, Zhang H, Bi J, Zhang B, Shi T, Su G, Zheng Y, Fan S, Huang X, Chen B, Song Y, Zhao Z, Shi J, Li P, Lu W, Zhang L. Three-Dimensional Gene Regulation Network in Glioblastoma Ferroptosis. Int J Mol Sci 2023; 24:14945. [PMID: 37834393 PMCID: PMC10574000 DOI: 10.3390/ijms241914945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, which is reported to be associated with glioma progression and drug sensitivity. Targeting ferroptosis is a potential therapeutic approach for glioma. However, the molecular mechanism of glioma cell ferroptosis is not clear. In this study, we profile the change of 3D chromatin structure in glioblastoma ferroptosis by using HiChIP and study the 3D gene regulation network in glioblastoma ferroptosis. A combination of an analysis of HiChIP and RNA-seq data suggests that change of chromatin loops mediated by 3D chromatin structure regulates gene expressions in glioblastoma ferroptosis. Genes that are regulated by 3D chromatin structures include genes that were reported to function in ferroptosis, like HDM2 and TXNRD1. We propose a new regulatory mechanism governing glioblastoma cell ferroptosis by 3D chromatin structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| |
Collapse
|
5
|
Ding T, Zhang J, Xu H, Zhang X, Yang F, Shi Y, Bai Y, Yang J, Chen C, Zhang H. In-depth understanding of higher-order genome architecture in orphan cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188948. [PMID: 37394019 DOI: 10.1016/j.bbcan.2023.188948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The human genome is intertwined, folded, condensed, and gradually constitutes the 3D architecture, thereby affecting transcription and widely involving in tumorigenesis. Incidence and mortality rates for orphan cancers increase due to poor early diagnosis and lack of effective medical treatments, which are now getting attention. In-depth understanding in tumorigenesis has fast-tracked over the last decade, however, the further role and mechanism of 3D genome organization in variant orphan tumorigenesis remains to be fully understood. We summarize for the first time that higher-order genome organization can provide novel insights into the occurrence mechanisms of orphan cancers, and discuss probable future research directions for drug development and anti-tumor therapies.
Collapse
Affiliation(s)
- Tianyi Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Jixing Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Haowen Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Xiaoyu Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Fan Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Yibing Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Yiran Bai
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Jiaqi Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - Chaoqun Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China; Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi province, PR China; School of Life Science, Jinggangshan University, Ji'an, Jiangxi province, PR China.
| |
Collapse
|
6
|
Maksimova V, Popova V, Prus A, Lylova E, Usalka O, Sagitova G, Zhidkova E, Makus J, Trapeznikova E, Belitsky G, Yakubovskaya M, Kirsanov K. Insights into the Mechanism of Curaxin CBL0137 Epigenetic Activity: The Induction of DNA Demethylation and the Suppression of BET Family Proteins. Int J Mol Sci 2023; 24:12874. [PMID: 37629054 PMCID: PMC10454690 DOI: 10.3390/ijms241612874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The development of malignant tumors is caused by a complex combination of genetic mutations and epigenetic alterations, the latter of which are induced by either external environmental factors or signaling disruption following genetic mutations. Some types of cancer demonstrate a significant increase in epigenetic enzymes, and targeting these epigenetic alterations represents a compelling strategy to reverse cell transcriptome to the normal state, improving chemotherapy response. Curaxin CBL0137 is a new potent anticancer drug that has been shown to activate epigenetically silenced genes. However, its detailed effects on the enzymes of the epigenetic system of transcription regulation have not been studied. Here, we report that CBL0137 inhibits the expression of DNA methyltransferase DNMT3a in HeLa TI cells, both at the level of mRNA and protein, and it decreases the level of integral DNA methylation in Ca Ski cells. For the first time, it is shown that CBL0137 decreases the level of BET family proteins, BRD2, BRD3, and BRD4, the key participants in transcription elongation, followed by the corresponding gene expression enhancement. Furthermore, we demonstrate that CBL0137 does not affect the mechanisms of histone acetylation and methylation. The ability of CBL0137 to suppress DNMT3A and BET family proteins should be taken into consideration when combined chemotherapy is applied. Our data demonstrate the potential of CBL0137 to be used in the therapy of tumors with corresponding aberrant epigenetic profiles.
Collapse
Affiliation(s)
- Varvara Maksimova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Valeriia Popova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Anzhelika Prus
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, Russian Technological University (MIREA), 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Evgeniya Lylova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Olga Usalka
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
| | - Guzel Sagitova
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
| | - Ekaterina Zhidkova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Julia Makus
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Ekaterina Trapeznikova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
| | - Gennady Belitsky
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Marianna Yakubovskaya
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Kirill Kirsanov
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
- Institute of Medicine, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
7
|
Stefanova ME, Ing-Simmons E, Stefanov S, Flyamer I, Dorado Garcia H, Schöpflin R, Henssen AG, Vaquerizas JM, Mundlos S. Doxorubicin Changes the Spatial Organization of the Genome around Active Promoters. Cells 2023; 12:2001. [PMID: 37566080 PMCID: PMC10417312 DOI: 10.3390/cells12152001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
In this study, we delve into the impact of genotoxic anticancer drug treatment on the chromatin structure of human cells, with a particular focus on the effects of doxorubicin. Using Hi-C, ChIP-seq, and RNA-seq, we explore the changes in chromatin architecture brought about by doxorubicin and ICRF193. Our results indicate that physiologically relevant doses of doxorubicin lead to a local reduction in Hi-C interactions in certain genomic regions that contain active promoters, with changes in chromatin architecture occurring independently of Top2 inhibition, cell cycle arrest, and differential gene expression. Inside the regions with decreased interactions, we detected redistribution of RAD21 around the peaks of H3K27 acetylation. Our study also revealed a common structural pattern in the regions with altered architecture, characterized by two large domains separated from each other. Additionally, doxorubicin was found to increase CTCF binding in H3K27 acetylated regions. Furthermore, we discovered that Top2-dependent chemotherapy causes changes in the distance decay of Hi-C contacts, which are driven by direct and indirect inhibitors. Our proposed model suggests that doxorubicin-induced DSBs cause cohesin redistribution, which leads to increased insulation on actively transcribed TAD boundaries. Our findings underscore the significant impact of genotoxic anticancer treatment on the chromatin structure of the human genome.
Collapse
Affiliation(s)
- Maria E. Stefanova
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany (S.M.)
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Elizabeth Ing-Simmons
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; (E.I.-S.); (J.M.V.)
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Stefan Stefanov
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany;
- Department of Biology, Chemistry, and Pharmacology, Institute of Biochemistry, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ilya Flyamer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland;
| | - Heathcliff Dorado Garcia
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, 13125 Berlin, Germany; (H.D.G.); (A.G.H.)
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Robert Schöpflin
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany (S.M.)
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Anton G. Henssen
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, 13125 Berlin, Germany; (H.D.G.); (A.G.H.)
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Juan M. Vaquerizas
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; (E.I.-S.); (J.M.V.)
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Stefan Mundlos
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany (S.M.)
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
8
|
Walker RR, Rentia Z, Chiappinelli KB. Epigenetically programmed resistance to chemo- and immuno-therapies. Adv Cancer Res 2023; 158:41-71. [PMID: 36990538 PMCID: PMC10184181 DOI: 10.1016/bs.acr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Resistance to cancer treatments remains a major barrier in developing cancer cures. While promising combination chemotherapy treatments and novel immunotherapies have improved patient outcomes, resistance to these treatments remains poorly understood. New insights into the dysregulation of the epigenome show how it promotes tumor growth and resistance to therapy. By altering control of gene expression, tumor cells can evade immune cell recognition, ignore apoptotic cues, and reverse DNA damage induced by chemotherapies. In this chapter, we summarize the data on epigenetic remodeling during cancer progression and treatment that enable cancer cell survival and describe how these epigenetic changes are being targeted clinically to overcome resistance.
Collapse
Affiliation(s)
- Reddick R Walker
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Zainab Rentia
- The George Washington University Cancer Center (GWCC), Washington, DC, United States
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
9
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
10
|
Fan Z, Wu C, Chen M, Jiang Y, Wu Y, Mao R, Fan Y. The generation of PD-L1 and PD-L2 in cancer cells: From nuclear chromatin reorganization to extracellular presentation. Acta Pharm Sin B 2022; 12:1041-1053. [PMID: 35530130 PMCID: PMC9069407 DOI: 10.1016/j.apsb.2021.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
The immune checkpoint blockade (ICB) targeting on PD-1/PD-L1 has shown remarkable promise in treating cancers. However, the low response rate and frequently observed severe side effects limit its broad benefits. It is partially due to less understanding of the biological regulation of PD-L1. Here, we systematically and comprehensively summarized the regulation of PD-L1 from nuclear chromatin reorganization to extracellular presentation. In PD-L1 and PD-L2 highly expressed cancer cells, a new TAD (topologically associating domain) (chr9: 5,400,000-5,600,000) around CD274 and CD273 was discovered, which includes a reported super-enhancer to drive synchronous transcription of PD-L1 and PD-L2. The re-shaped TAD allows transcription factors such as STAT3 and IRF1 recruit to PD-L1 locus in order to guide the expression of PD-L1. After transcription, the PD-L1 is tightly regulated by miRNAs and RNA-binding proteins via the long 3'UTR. At translational level, PD-L1 protein and its membrane presentation are tightly regulated by post-translational modification such as glycosylation and ubiquitination. In addition, PD-L1 can be secreted via exosome to systematically inhibit immune response. Therefore, fully dissecting the regulation of PD-L1/PD-L2 and thoroughly detecting PD-L1/PD-L2 as well as their regulatory networks will bring more insights in ICB and ICB-based combinational therapy.
Collapse
Key Words
- 3′-UTR, 3′-untranslated region
- ADAM17, a disintegrin and metalloprotease 17
- APCs, antigen-presenting cells
- AREs, adenylate and uridylate (AU)-rich elements
- ATF3, activating transcription factor 3
- CD273/274, cluster of differentiation 273/274
- CDK4, cyclin-dependent kinase 4
- CMTM6, CKLF like MARVEL transmembrane domain containing 6
- CSN5, COP9 signalosome subunit 5
- CTLs, cytotoxic T lymphocytes
- EMT, epithelial to mesenchymal transition
- EpCAM, epithelial cell adhesion molecule
- Exosome
- FACS, fluorescence-activated cell sorting
- GSDMC, Gasdermin C
- GSK3β, glycogen synthase kinase 3 beta
- HSF1, heat shock transcription factor 1
- Hi-C, high throughput chromosome conformation capture
- ICB, immune checkpoint blockade
- IFN, interferon
- IL-6, interleukin 6
- IRF1, interferon regulatory factor 1
- Immune checkpoint blockade
- JAK, Janus kinase 1
- NFκB, nuclear factor kappa B
- NSCLC, non-small cell lung cancer
- OTUB1, OTU deubiquitinase, ubiquitin aldehyde binding 1
- PARP1, poly(ADP-ribose) polymerase 1
- PD-1, programmed cell death-1
- PD-L1
- PD-L1, programmed death-ligand 1
- PD-L2
- PD-L2, programmed death ligand 2
- Post-transcriptional regulation
- Post-translational regulation
- SP1, specificity protein 1
- SPOP, speckle-type POZ protein
- STAG2, stromal antigen 2
- STAT3, signal transducer and activator of transcription 3
- T2D, type 2 diabetes
- TADs, topologically associating domains
- TFEB, transcription factor EB
- TFs, transcription factors
- TNFα, tumor necrosis factor-alpha
- TTP, tristetraprolin
- Topologically associating domain
- Transcription
- UCHL1, ubiquitin carboxy-terminal hydrolase L1
- USP22, ubiquitin specific peptidase 22
- dMMR, deficient DNA mismatch repair
- irAEs, immune related adverse events
Collapse
Affiliation(s)
- Zhiwei Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Changyue Wu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Miaomiao Chen
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yuanyuan Wu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yihui Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
11
|
Lorber D, Volk T. Evaluation of chromatin mesoscale organization. APL Bioeng 2022; 6:010902. [PMID: 35071965 PMCID: PMC8758204 DOI: 10.1063/5.0069286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Chromatin organization in the nucleus represents an important aspect of transcription regulation. Most of the studies so far focused on the chromatin structure in cultured cells or in fixed tissue preparations. Here, we discuss the various approaches for deciphering chromatin 3D organization with an emphasis on the advantages of live imaging approaches.
Collapse
Affiliation(s)
- Dana Lorber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Simultaneous visualization of DNA loci in single cells by combinatorial multi-color iFISH. Sci Data 2022; 9:47. [PMID: 35145120 PMCID: PMC8831585 DOI: 10.1038/s41597-022-01139-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
Single-molecule DNA fluorescence in situ hybridization (FISH) techniques enable studying the three-dimensional (3D) organization of the genome at the single cell level. However, there is a major unmet need for open access, high quality, curated and reproducible DNA FISH datasets. Here, we describe a dataset obtained by applying our recently developed iFISH method to simultaneously visualize 16 small (size range: 62–73 kilobases, kb) DNA loci evenly spaced on chromosome 2 in human cells, in a single round of hybridization. We show how combinatorial color coding can be used to precisely localize multiple loci in 3D within single cells, and how inter-locus distances scale inversely with chromosome contact frequencies determined by high-throughput chromosome conformation capture (Hi-C). We provide raw images and 3D coordinates for nearly 10,000 FISH dots. Our dataset provides a free resource that can facilitate studies of 3D genome organization in single cells and can be used to develop automatic FISH analysis algorithms. Measurement(s) | DNA loci 3D coordinates | Technology Type(s) | Fluorescence In Situ Hybridization | Factor Type(s) | DNA FISH probe target (locus) | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.17281358
Collapse
|
13
|
Banerjee M. Pharmacoepigenomics: a key determinant in resolving epigenomic parameters in pathogenesis, and treatment response in complex diseases. Pharmacogenomics 2021; 23:81-84. [PMID: 34842441 DOI: 10.2217/pgs-2021-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
14
|
Multi-omics mapping of human papillomavirus integration sites illuminates novel cervical cancer target genes. Br J Cancer 2021; 125:1408-1419. [PMID: 34526665 PMCID: PMC8575955 DOI: 10.1038/s41416-021-01545-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Integration of human papillomavirus (HPV) into the host genome is a dominant feature of invasive cervical cancer (ICC), yet the tumorigenicity of cis genomic changes at integration sites remains largely understudied. METHODS Combining multi-omics data from The Cancer Genome Atlas with patient-matched long-read sequencing of HPV integration sites, we developed a strategy for using HPV integration events to identify and prioritise novel candidate ICC target genes (integration-detected genes (IDGs)). Four IDGs were then chosen for in vitro functional studies employing small interfering RNA-mediated knockdown in cell migration, proliferation and colony formation assays. RESULTS PacBio data revealed 267 unique human-HPV breakpoints comprising 87 total integration events in eight tumours. Candidate IDGs were filtered based on the following criteria: (1) proximity to integration site, (2) clonal representation of integration event, (3) tumour-specific expression (Z-score) and (4) association with ICC survival. Four candidates prioritised based on their unknown function in ICC (BNC1, RSBN1, USP36 and TAOK3) exhibited oncogenic properties in cervical cancer cell lines. Further, annotation of integration events provided clues regarding potential mechanisms underlying altered IDG expression in both integrated and non-integrated ICC tumours. CONCLUSIONS HPV integration events can guide the identification of novel IDGs for further study in cervical carcinogenesis and as putative therapeutic targets.
Collapse
|
15
|
Liu Y, Li H, Czajkowsky DM, Shao Z. Monocytic THP-1 cells diverge significantly from their primary counterparts: a comparative examination of the chromosomal conformations and transcriptomes. Hereditas 2021; 158:43. [PMID: 34740370 PMCID: PMC8569982 DOI: 10.1186/s41065-021-00205-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Immortalized cell lines have long been used as model systems to systematically investigate biological processes under controlled and reproducible conditions, providing insights that have greatly advanced cellular biology and medical sciences. Recently, the widely used monocytic leukemia cell line, THP-1, was comprehensively examined to understand mechanistic relationships between the 3D chromatin structure and transcription during the trans-differentiation of monocytes to macrophages. To corroborate these observations in primary cells, we analyze in situ Hi-C and RNA-seq data of human primary monocytes and their differentiated macrophages in comparison to that obtained from the monocytic/macrophagic THP-1 cells. Surprisingly, we find significant differences between the primary cells and the THP-1 cells at all levels of chromatin structure, from loops to topologically associated domains to compartments. Importantly, the compartment-level differences correlate significantly with transcription: those genes that are in A-compartments in the primary cells but are in B-compartments in the THP-1 cells exhibit a higher level of expression in the primary cells than in the THP-1 cells, and vice versa. Overall, the genes in these different compartments are enriched for a wide range of pathways, and, at least in the case of the monocytic cells, their altered expression in certain pathways in the THP-1 cells argues for a less immune cell-like phenotype, suggesting that immortalization or prolonged culturing of THP-1 caused a divergence of these cells from their primary counterparts. It is thus essential to reexamine phenotypic details observed in cell lines with their primary counterparts so as to ensure a proper understanding of functional cell states in vivo.
Collapse
Affiliation(s)
- Yulong Liu
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Li
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daniel M Czajkowsky
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhifeng Shao
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
16
|
Muhamedejevs R, Živković L, Dzintare M, Sjakste N. DNA-binding activities of compounds acting as enzyme inhibitors, ion channel blockers and receptor binders. Chem Biol Interact 2021; 348:109638. [PMID: 34508711 DOI: 10.1016/j.cbi.2021.109638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/25/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022]
Abstract
The DNA-binding activities of compounds used as remedies can display DNA-protection, but also damaging effects in biological systems. The current review compiles literature data on DNA-binding activities of drugs widely used as remedies with different therapeutic indications. The compounds are classified according their mechanism of action: enzyme inhibitors, ion channel inhibitors, inhibitors of viral RNA replication and HIV protease and receptor agonists. DNA binding was reported for such widely used drugs as paracetamol, aspirin, metformin, statins and many others. The capability of the drug to bind DNA is sometimes coupled to genotoxic effects, but in some cases - to genome protection. Data on atoms and chemical groups involved in the drug-DNA interactions are also presented. In many cases the same atoms are involved in both interactions of the compounds with proteins and DNA.
Collapse
Affiliation(s)
- Ruslans Muhamedejevs
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga, LV-1006, Latvia
| | - Lada Živković
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Maija Dzintare
- Department of Anatomy, Physiology, Biochemistry, Biomechanics, Hygiene and Informatics, Latvian Academy of Sport Education, Brivibas gatve 333, Riga, LV-1006, Latvia
| | - Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, Jelgavas Street 1, Riga, LV-1004, Latvia.
| |
Collapse
|
17
|
Behrends M, Engmann O. Loop Interrupted: Dysfunctional Chromatin Relations in Neurological Diseases. Front Genet 2021; 12:732033. [PMID: 34422024 PMCID: PMC8376151 DOI: 10.3389/fgene.2021.732033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
The majority of genetic variants for psychiatric disorders have been found within non-coding genomic regions. Physical interactions of gene promoters with distant regulatory elements carrying risk alleles may explain how the latter affect gene expression. Recently, whole genome maps of long-range chromosomal contacts from human postmortem brains have been integrated with gene sequence and chromatin accessibility data to decipher disease-specific alterations in chromatin architecture. Cell culture and rodent models provide a causal link between chromatin conformation, long-range chromosomal contacts, gene expression, and disease phenotype. Here, we give an overview of the techniques used to study chromatin contacts and their limitations in brain research. We present evidence for three-dimensional genome changes in physiological brain function and assess how its disturbance contributes to psychiatric disorders. Lastly, we discuss remaining questions and future research directions with a focus on clinical applications.
Collapse
Affiliation(s)
- Marthe Behrends
- Faculty of Medicine, Friedrich Schiller Universität, Jena, Thüringen, Germany
| | - Olivia Engmann
- Jena University Hospital, Institute for Human Genetics, Thüringen, Germany
| |
Collapse
|
18
|
DNA G-Quadruplexes Contribute to CTCF Recruitment. Int J Mol Sci 2021; 22:ijms22137090. [PMID: 34209337 PMCID: PMC8269367 DOI: 10.3390/ijms22137090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
G-quadruplex (G4) sites in the human genome frequently colocalize with CCCTC-binding factor (CTCF)-bound sites in CpG islands (CGIs). We aimed to clarify the role of G4s in CTCF positioning. Molecular modeling data suggested direct interactions, so we performed in vitro binding assays with quadruplex-forming sequences from CGIs in the human genome. G4s bound CTCF with Kd values similar to that of the control duplex, while respective i-motifs exhibited no affinity for CTCF. Using ChIP-qPCR assays, we showed that G4-stabilizing ligands enhance CTCF occupancy at a G4-prone site in STAT3 gene. In view of the reportedly increased CTCF affinity for hypomethylated DNA, we next questioned whether G4s also facilitate CTCF recruitment to CGIs via protecting CpG sites from methylation. Bioinformatics analysis of previously published data argued against such a possibility. Finally, we questioned whether G4s facilitate CTCF recruitment by affecting chromatin structure. We showed that three architectural chromatin proteins of the high mobility group colocalize with G4s in the genome and recognize parallel-stranded or mixed-topology G4s in vitro. One of such proteins, HMGN3, contributes to the association between G4s and CTCF according to our bioinformatics analysis. These findings support both direct and indirect roles of G4s in CTCF recruitment.
Collapse
|
19
|
Dozmorov MG, Tyc KM, Sheffield NC, Boyd DC, Olex AL, Reed J, Harrell JC. Chromatin conformation capture (Hi-C) sequencing of patient-derived xenografts: analysis guidelines. Gigascience 2021; 10:giab022. [PMID: 33880552 PMCID: PMC8058593 DOI: 10.1093/gigascience/giab022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/14/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sequencing of patient-derived xenograft (PDX) mouse models allows investigation of the molecular mechanisms of human tumor samples engrafted in a mouse host. Thus, both human and mouse genetic material is sequenced. Several methods have been developed to remove mouse sequencing reads from RNA-seq or exome sequencing PDX data and improve the downstream signal. However, for more recent chromatin conformation capture technologies (Hi-C), the effect of mouse reads remains undefined. RESULTS We evaluated the effect of mouse read removal on the quality of Hi-C data using in silico created PDX Hi-C data with 10% and 30% mouse reads. Additionally, we generated 2 experimental PDX Hi-C datasets using different library preparation strategies. We evaluated 3 alignment strategies (Direct, Xenome, Combined) and 3 pipelines (Juicer, HiC-Pro, HiCExplorer) on Hi-C data quality. CONCLUSIONS Removal of mouse reads had little-to-no effect on data quality as compared with the results obtained with the Direct alignment strategy. Juicer extracted more valid chromatin interactions for Hi-C matrices, regardless of the mouse read removal strategy. However, the pipeline effect was minimal, while the library preparation strategy had the largest effect on all quality metrics. Together, our study presents comprehensive guidelines on PDX Hi-C data processing.
Collapse
Affiliation(s)
- Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Katarzyna M Tyc
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Nathan C Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - David C Boyd
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23284, USA
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Amy L Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jason Reed
- Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, 23298, USA
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
20
|
Waihenya S, Şenel P, Osonga FJ, Erdoğan T, Altay F, Gölcü A, Sadik OA. Mechanism of Interactions of dsDNA Binding with Apigenin and Its Sulfamate Derivatives Using Multispectroscopic, Voltammetric, and Molecular Docking Studies. ACS OMEGA 2021; 6:5124-5137. [PMID: 33681554 PMCID: PMC7931193 DOI: 10.1021/acsomega.0c02612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/19/2020] [Indexed: 05/31/2023]
Abstract
DNA binding investigations are critical for designing better pharmaceutical compounds since the binding of a compound to dsDNA in the minor groove is critical in drug discovery. Although only one in vitro study on the DNA binding mode of apigenin (APG) has been conducted, there have been no electrochemical and theoretical studies reported. We hereby report the mechanism of binding interaction of APG and a new class of sulfonamide-modified flavonoids, apigenin disulfonamide (ADSAM) and apigenin trisulfonamide (ATSAM), with deoxyribonucleic acid (DNA). This study was conducted using multispectroscopic instrumentation techniques, which include UV-vis absorption, thermal denaturation, fluorescence, and Fourier transform infrared (FTIR) spectroscopy, and electrochemical and viscosity measurement methods. Also, molecular docking studies were conducted at room temperature under physiological conditions (pH 7.4). The molecular docking studies showed that, in all cases, the lowest energy docking poses bind to the minor groove of DNA and the apigenin-DNA complex was stabilized by several hydrogen bonds. Also, π-sulfur interactions played a role in the stabilization of the ADSAM-DNA and ATSAM-DNA complexes. The binding affinities of the lowest energy docking pose (schematic diagram of table of content (TOC)) of APG-DNA, ADSAM-DNA, and ATSAM-DNA complexes were found to be -8.2, -8.5, and -8.4 kcal mol-1, respectively. The electrochemical binding constants K b were determined to be (1.05 × 105) ± 0.04, (0.47 × 105) ± 0.02, and (8.13 × 105) ± 0.03 for APG, ADSAM, and ATSAM, respectively (all of the tests were run in triplicate and expressed as the mean and standard deviation (SD)). The K b constants calculated for APG, ADSAM, and ATSAM are in harmony for all techniques. As a result of the incorporation of dimethylsulfamate groups into the APG structure, in the ADSAM-dsDNA and ATSAM-dsDNA complexes, in addition to hydrogen bonds, π-sulfur interactions have also contributed to the stabilization of the ligand-DNA complexes. This work provides new insights that could lead to the development of prospective drugs and vaccines.
Collapse
Affiliation(s)
- Simon Waihenya
- Department
of Chemistry, Center for Research in Advanced Sensing Technologies
& Environmental Sustainability (CREATES), State University of New York at Binghamton, P.O. Box 6000, Binghamton, New York 13902-6000, United States
| | - Pelin Şenel
- Department
of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| | - Francis J. Osonga
- BioSensor
Materials for Advanced Research and Technology (BioSMART Center),
Chemistry and Environmental Science Department, New Jersey Institute of Technology, University Heights, 161 Warren Street, Newark, New Jersey 07102, United States
| | - Taner Erdoğan
- Kocaeli
Vocat Sch, Dept Chem & Chem Proc Technol, Kocaeli Univ, Kocaeli 41380, Turkey
| | - Filiz Altay
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ayşegül Gölcü
- Department
of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| | - Omowunmi A. Sadik
- BioSensor
Materials for Advanced Research and Technology (BioSMART Center),
Chemistry and Environmental Science Department, New Jersey Institute of Technology, University Heights, 161 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
21
|
Martella A, Fisher DI. Regulation of Gene Expression and the Elucidative Role of CRISPR-Based Epigenetic Modifiers and CRISPR-Induced Chromosome Conformational Changes. CRISPR J 2021; 4:43-57. [PMID: 33616442 DOI: 10.1089/crispr.2020.0108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In complex multicellular systems, gene expression is regulated at multiple stages through interconnected complex molecular pathways and regulatory networks. Transcription is the first step in gene expression and is subject to multiple layers of regulation in which epigenetic mechanisms such as DNA methylation, histone tail modifications, and chromosomal conformation play an essential role. In recent years, CRISPR-Cas9 systems have been employed to unearth this complexity and provide new insights on the contribution of chromatin dysregulation in the development of genetic diseases, as well as new tools to prevent or reverse this dysregulation. In this review, we outline the recent development of a variety of CRISPR-based epigenetic editors for targeted DNA methylation/demethylation, histone modification, and three-dimensional DNA conformational change, highlighting their relative performance and impact on gene regulation. Finally, we provide insights on the future developments aimed to accelerate our understanding of the causal relationship between epigenetic marks, genome organization, and gene regulation.
Collapse
Affiliation(s)
- Andrea Martella
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - David I Fisher
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
22
|
Wlasnowolski M, Sadowski M, Czarnota T, Jodkowska K, Szalaj P, Tang Z, Ruan Y, Plewczynski D. 3D-GNOME 2.0: a three-dimensional genome modeling engine for predicting structural variation-driven alterations of chromatin spatial structure in the human genome. Nucleic Acids Res 2020; 48:W170-W176. [PMID: 32442297 PMCID: PMC7319547 DOI: 10.1093/nar/gkaa388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/30/2022] Open
Abstract
Structural variants (SVs) that alter DNA sequence emerge as a driving force involved in the reorganisation of DNA spatial folding, thus affecting gene transcription. In this work, we describe an improved version of our integrated web service for structural modeling of three-dimensional genome (3D-GNOME), which now incorporates all types of SVs to model changes to the reference 3D conformation of chromatin. In 3D-GNOME 2.0, the default reference 3D genome structure is generated using ChIA-PET data from the GM12878 cell line and SVs data are sourced from the population-scale catalogue of SVs identified by the 1000 Genomes Consortium. However, users may also submit their own structural data to set a customized reference genome structure, and/or a custom input list of SVs. 3D-GNOME 2.0 provides novel tools to inspect, visualize and compare 3D models for regions that differ in terms of their linear genomic sequence. Contact diagrams are displayed to compare the reference 3D structure with the one altered by SVs. In our opinion, 3D-GNOME 2.0 is a unique online tool for modeling and analyzing conformational changes to the human genome induced by SVs across populations. It can be freely accessed at https://3dgnome.cent.uw.edu.pl/.
Collapse
Affiliation(s)
- Michal Wlasnowolski
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw 00-662, Poland
| | - Michal Sadowski
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
| | - Tymon Czarnota
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw 00-662, Poland
| | | | - Przemyslaw Szalaj
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.,Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok 15-089, Poland.,I-BioStat, Hasselt University, 3500 Hasselt, Belgium
| | - Zhonghui Tang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030-6403, USA
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw 00-662, Poland.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| |
Collapse
|