1
|
Shree M, Vaishnav J, Gurudayal, Ampapathi RS. In-silico assessment of novel peptidomimetics inhibitor targeting STAT3 and STAT4 N-terminal domain dimerization: A comprehensive study using molecular docking, molecular dynamics simulation, and binding free energy analysis. Biochem Biophys Res Commun 2024; 733:150584. [PMID: 39208642 DOI: 10.1016/j.bbrc.2024.150584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Dysregulation in Janus kinase-Signal Transducer and Activation of Transcription (JAK-STAT) pathway is closely linked to various cancer types. The N-terminal domain (NTD) of STAT proteins, upon dimerization, assumes a multifaceted role with remarkable adaptability in mediating interactions between proteins. Consequently, the strategic targeting of the N-terminal domain of STATs has emerged as a promising tactic for disrupting dimerization and impeding the translocation of STAT proteins. In this study, we have deployed an integrated in-silico methodology to rationally design Peptidomimetic foldamers as inhibitors of the N-terminal domains of STAT3 and STAT4, with the objective of disrupting protein dimerization. Consequently, we have judiciously designed a series of peptidomimetics that encompass β3-amino acids, bearing side chains that mimic the residues within interface II of the dimeric structures of the NTDs. Employing molecular docking techniques; we have assessed the binding affinity of these designed peptidomimetics toward both the NTDs. Furthermore, we have conducted an evaluation of the stability and conformational alterations within the docked complexes over an extensive Molecular Dynamics, subsequently computing the binding free energy utilizing MM/PBSA calculations. Our findings unequivocally demonstrate that the peptidomimetic foldamers we have devised (Peptide-A, Peptide-B, and Peptide-C) exhibit a propensity to bind to and impede the dimerization process of the NTDs of both STAT3 and STAT4. These outcomes serve to underscore the potential of these meticulously designed peptidomimetics as potential candidates meriting further exploration in the realm of cancer prevention and management.
Collapse
Affiliation(s)
- Megha Shree
- Sophisticated Analytical Instrumentation Facility & Research (SAIF-R), CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Jayanti Vaishnav
- Sophisticated Analytical Instrumentation Facility & Research (SAIF-R), CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Gurudayal
- Sophisticated Analytical Instrumentation Facility & Research (SAIF-R), CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Ravi Sankar Ampapathi
- Sophisticated Analytical Instrumentation Facility & Research (SAIF-R), CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
Palollathil A, Nandakumar R, Ahmed M, Velikkakath AKG, Nisar M, Nisar M, Devasahayam Arokia Balaya R, Parate SS, Hanehalli V, Mahin A, Mathew RT, Shetty R, Codi JAK, Revikumar A, Vijayakumar M, Prasad TSK, Raju R. HNCDrugResDb: a platform for deciphering drug resistance in head and neck cancers. Sci Rep 2024; 14:25327. [PMID: 39455682 PMCID: PMC11511878 DOI: 10.1038/s41598-024-75861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Drug resistance poses a significant obstacle to the success of anti-cancer therapy in head and neck cancers (HNCs). We aim to develop a platform for visualizing and analyzing molecular expression alterations associated with HNC drug resistance. Through data mining, we convened differentially expressed molecules and context-specific signaling events involved in drug resistance. The driver genes, interaction networks and transcriptional regulations were explored using bioinformatics approaches. A total of 2364 differentially expressed molecules were identified in 78 distinct drug-resistant cells against 14 anti-cancer drugs, comprising 1131 mRNAs, 746 proteins, 62 lncRNAs, 257 miRNAs, 1 circRNA, and 166 post-translational modifications. Among these, 255 molecules were considerably, the signature driver genes of HNC drug resistance. Further, we also developed a landscape of signaling pathways and their cross-talk with diverse signaling modules involved in drug resistance. Additionally, a publicly-accessible database named "HNCDrugResDb" was designed with browse, query, and pathway explorer options to fetch and enrich molecular alterations and signaling pathways altered in drug resistance. HNCDrugResDb is also enabled with a Drug Resistance Analysis tool as an initial platform to infer the likelihood of resistance based on the expression pattern of driver genes. HNCDrugResDb is anticipated to have substantial implications for future advancements in drug discovery and optimization of personalized medicine approaches.
Collapse
Affiliation(s)
- Akhina Palollathil
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Revathy Nandakumar
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Kingdom of Saudi Arabia, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Anoop Kumar G Velikkakath
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | - Mahammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Muhammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Rex Devasahayam Arokia Balaya
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Sakshi Sanjay Parate
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Vidyarashmi Hanehalli
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Althaf Mahin
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Rohan Thomas Mathew
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, Kerala, 695014, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| |
Collapse
|
3
|
Abdoulaye AH, Yuhua C, Xiaoyan Z, Yiwei Y, Wang H, Yinhua C. Computational analysis and expression profiling of NAC transcription factor family involved in biotic stress response in Manihot esculenta. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39265049 DOI: 10.1111/plb.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
The Nascent polypeptide-Associated Complex (NAC) family is among the largest plant-specific TF families and plays an important role in plant growth, development, and stress responses. NAC TFs have been extensively studied in plants such as rice and Arabidopsis; however, their characterization, functions, evolution, and expression patterns in Manihot esculenta (cassava) under environmental stress remain largely unexplored. Here, we used bioinformatic analyses and biotic stress responses to investigate the physicochemical properties, chromosome location, phylogeny, gene structure, expression patterns, and cis-elements in promoter regions of the NAC TFs in cassava. We identified 119 M. esculenta NAC (MeNAC) gene families, unevenly distributed on 16 chromosomes. We investigated expression patterns of all identified MeNAC TFs under Xanthomonas axonopodis pv. manihotis (Xam) infection, strain CHN11, at different time points. Only 20 MeNAC TFs showed expression of significant bacterial resistance. Six MeNACs (MeNAC7, 26, 63, 65, 77, and 113) were selected for functional analysis. qRT-PCR assays revealed that MeNAC7, 26, 63, 65, 77, and 113 were induced in response to XamCHN11 infection and may participate in the molecular interaction of cassava and bacterial blight. Interestingly, MeNAC26, MeNAC63, MeNAC65, and MeNAC113 responded to XamCHN11 infection at 3 h post-inoculation. Furthermore, we identified 13 stress-related cis-elements in promoter regions of the MeNAC genes that are involved in diverse environmental stress responses. Phylogenetic analysis revealed that MeNAC genes with similar structures and motif distributions were grouped. This study provides valuable insights into the evolution, diversity, and characterization of MeNAC TFs. It lays the groundwork for a better understanding of their biological roles and molecular mechanisms in cassava.
Collapse
Affiliation(s)
- A H Abdoulaye
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - C Yuhua
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Z Xiaoyan
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Y Yiwei
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - H Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - C Yinhua
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| |
Collapse
|
4
|
Niu W, Yu H, Fan X, Li S, Sun S, Gong M, Zhang S, Bi W, Chen X, Fang Z. Development of stemness-related signature to optimize prognosis prediction and identify XMD8-85 as a novel therapeutic compound for glioma. Cell Signal 2024; 120:111231. [PMID: 38768760 DOI: 10.1016/j.cellsig.2024.111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Glioma is a highly invasive and aggressive type of brain cancer with poor treatment response. Stemness-related transcription factors form a regulatory network that sustains the malignant phenotype of gliomas. We conducted an integrated analysis of stemness-related transcription factors using The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets, established the characteristics of stemness-related transcription factors, including Octamer-Binding Protein 4 (OCT4), Meis Homeobox 1 (MEIS1), E2F Transcription Factor 1 (E2F1), Transcription Factor CP2 Like 1 (TFCP2L1), and RUNX Family Transcription Factor 1 (RUNX1). The characteristic of stemness-related transcription factors was identified as an independent prognostic factor for glioma patients. Patients in the high-risk group have a worse prognosis than those in the low-risk group. The glioma microenvironment in the high-risk group exhibited a more active immune status. Single-cell level analysis revealed that stem cell-like cells exhibited stronger intercellular communication than glioma cells. Meanwhile, patients in different risk stratification exhibited varying sensitivities to immunotherapy and small molecule drug therapy. XMD8-85 was more effective in the high-risk group, and its antitumor effects were validated both in vivo and in vitro. Our results indicate that this prognostic feature will assist clinicians in predicting the prognosis of glioma patients, guiding immunotherapy and personalized treatment, as well as the potential clinical application of XMD8-85 in glioma treatment, and helping to develop effective treatment strategies.
Collapse
Affiliation(s)
- Wanxiang Niu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China
| | - Huihan Yu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, No. 81, Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoqing Fan
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China
| | - Shuyang Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, No. 81, Meishan Road, Hefei 230032, Anhui, China
| | - Suling Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China
| | - Meiting Gong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, No. 81, Meishan Road, Hefei 230032, Anhui, China
| | - Siyu Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China
| | - Wenxu Bi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China
| | - Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China.
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China.
| |
Collapse
|
5
|
Wang S, Li H, Liu X, Yin T, Li T, Zheng M, Liu M, Meng X, Zhou J, Wang Y, Chen Y. VHL suppresses UBE3B-mediated breast tumor growth and metastasis. Cell Death Dis 2024; 15:446. [PMID: 38914543 PMCID: PMC11196597 DOI: 10.1038/s41419-024-06844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Protein homeostasis is predominantly governed through post-translational modification (PTM). UBE3B, identified as an oncoprotein, exhibits elevated protein levels in breast cancer. However, the impact of PTM on UBE3B remains unexplored. In this study, we show that VHL is a bona fide E3 ligase for UBE3B. Mechanistically, VHL directly binds to UBE3B, facilitating its lysine 48 (K48)-linked polyubiquitination at K286 and K427 in a prolyl hydroxylase (PHD)-independent manner. Consequently, this promotes the proteasomal degradation of UBE3B. The K286/427R mutation of UBE3B dramatically abolishes the inhibitory effect of VHL on breast tumor growth and lung metastasis. Additionally, the protein levels of UBE3B and VHL exhibit a negative correlation in breast cancer tissues. These findings delineate an important layer of UBE3B regulation by VHL.
Collapse
Affiliation(s)
- Shuo Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Huiyan Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Tingting Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Tingru Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Miaomiao Zheng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiaoqian Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yijie Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Yan Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
6
|
Binder M, Szalat RE, Talluri S, Fulciniti M, Avet-Loiseau H, Parmigiani G, Samur MK, Munshi NC. Bone marrow stromal cells induce chromatin remodeling in multiple myeloma cells leading to transcriptional changes. Nat Commun 2024; 15:4139. [PMID: 38755155 PMCID: PMC11098817 DOI: 10.1038/s41467-024-47793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
The natural history of multiple myeloma is characterized by its localization to the bone marrow and its interaction with bone marrow stromal cells. The bone marrow stromal cells provide growth and survival signals, thereby promoting the development of drug resistance. Here, we show that the interaction between bone marrow stromal cells and myeloma cells (using human cell lines) induces chromatin remodeling of cis-regulatory elements and is associated with changes in the expression of genes involved in the cell migration and cytokine signaling. The expression of genes involved in these stromal interactions are observed in extramedullary disease in patients with myeloma and provides the rationale for survival of myeloma cells outside of the bone marrow microenvironment. Expression of these stromal interaction genes is also observed in a subset of patients with newly diagnosed myeloma and are akin to the transcriptional program of extramedullary disease. The presence of such adverse stromal interactions in newly diagnosed myeloma is associated with accelerated disease dissemination, predicts the early development of therapeutic resistance, and is of independent prognostic significance. These stromal cell induced transcriptomic and epigenomic changes both predict long-term outcomes and identify therapeutic targets in the tumor microenvironment for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Moritz Binder
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Raphael E Szalat
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, USA
| | - Srikanth Talluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | | | - Hervé Avet-Loiseau
- University Cancer Center of Toulouse, Institut National de la Santé, Toulouse, France
| | - Giovanni Parmigiani
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mehmet K Samur
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
7
|
Andres J, Schmunk LJ, Grau-Enguix F, Braguy J, Samodelov SL, Blomeier T, Ochoa-Fernandez R, Weber W, Al-Babili S, Alabadí D, Blázquez MA, Zurbriggen MD. Ratiometric gibberellin biosensors for the analysis of signaling dynamics and metabolism in plant protoplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:927-939. [PMID: 38525669 DOI: 10.1111/tpj.16725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Gibberellins (GAs) are major regulators of developmental and growth processes in plants. Using the degradation-based signaling mechanism of GAs, we have built transcriptional regulator (DELLA)-based, genetically encoded ratiometric biosensors as proxies for hormone quantification at high temporal resolution and sensitivity that allow dynamic, rapid and simple analysis in a plant cell system, i.e. Arabidopsis protoplasts. These ratiometric biosensors incorporate a DELLA protein as a degradation target fused to a firefly luciferase connected via a 2A peptide to a renilla luciferase as a co-expressed normalization element. We have implemented these biosensors for all five Arabidopsis DELLA proteins, GA-INSENSITIVE, GAI; REPRESSOR-of-ga1-3, RGA; RGA-like1, RGL1; RGL2 and RGL3, by applying a modular design. The sensors are highly sensitive (in the low pm range), specific and dynamic. As a proof of concept, we have tested the applicability in three domains: the study of substrate specificity and activity of putative GA-oxidases, the characterization of GA transporters, and the use as a discrimination platform coupled to a GA agonists' chemical screening. This work demonstrates the development of a genetically encoded quantitative biosensor complementary to existing tools that allow the visualization of GA in planta.
Collapse
Affiliation(s)
- Jennifer Andres
- Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Lisa J Schmunk
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Federico Grau-Enguix
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - Justine Braguy
- Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- The BioActives Lab, Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sophia L Samodelov
- Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tim Blomeier
- Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Rocio Ochoa-Fernandez
- Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Salim Al-Babili
- The BioActives Lab, Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| |
Collapse
|
8
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
9
|
Wang W, Lopez McDonald MC, Hariprasad R, Hamilton T, Frank DA. Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation. Cancers (Basel) 2024; 16:1387. [PMID: 38611065 PMCID: PMC11011165 DOI: 10.3390/cancers16071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - Melanie Cristina Lopez McDonald
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | | | - Tiara Hamilton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - David A. Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| |
Collapse
|
10
|
Abay T, Stickels RR, Takizawa MT, Nalbant BN, Hsieh YH, Hwang S, Snopkowski C, Yu KKH, Abou-Mrad Z, Tabar V, Ludwig LS, Chaligné R, Satpathy AT, Lareau CA. Transcript-specific enrichment enables profiling rare cell states via scRNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587039. [PMID: 38586040 PMCID: PMC10996707 DOI: 10.1101/2024.03.27.587039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing (scRNA-seq) identifies many rare populations of interest that express specific marker transcript combinations, traditional flow sorting limits our ability to enrich these populations for further profiling, including requiring cell surface markers with high-fidelity antibodies. Additionally, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers. To address these limitations, we describe Programmable Enrichment via RNA Flow-FISH by sequencing (PERFF-seq), a scalable assay that enables scRNA-seq profiling of subpopulations from complex cellular mixtures defined by the presence or absence of specific RNA transcripts. Across immune populations (n = 141,227 cells) and fresh-frozen and formalin-fixed paraffin-embedded brain tissue (n = 29,522 nuclei), we demonstrate the sorting logic that can be used to enrich for cell populations via RNA-based cytometry followed by high-throughput scRNA-seq. Our approach provides a rational, programmable method for studying rare populations identified by one or more marker transcripts.
Collapse
Affiliation(s)
- Tsion Abay
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford CA, USA
- Program in Biological and Biomedical Sciences, Harvard University, Boston, MA, USA
| | - Robert R. Stickels
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford CA, USA
| | - Meril T. Takizawa
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benan N. Nalbant
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Hsin Hsieh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Charité Universitätsmedizin Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Sidney Hwang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford CA, USA
| | - Catherine Snopkowski
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenny Kwok Hei Yu
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaki Abou-Mrad
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leif S. Ludwig
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Ronan Chaligné
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ansuman T. Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Caleb A. Lareau
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
11
|
Martinsen E, Jinnurine T, Subramani S, Rogne M. Advances in RNA therapeutics for modulation of 'undruggable' targets. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:249-294. [PMID: 38458740 DOI: 10.1016/bs.pmbts.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Over the past decades, drug discovery utilizing small pharmacological compounds, fragment-based therapeutics, and antibody therapy have significantly advanced treatment options for many human diseases. However, a major bottleneck has been that>70% of human proteins/genomic regions are 'undruggable' by the above-mentioned approaches. Many of these proteins constitute essential drug targets against complex multifactorial diseases like cancer, immunological disorders, and neurological diseases. Therefore, alternative approaches are required to target these proteins or genomic regions in human cells. RNA therapeutics is a promising approach for many of the traditionally 'undruggable' targets by utilizing methods such as antisense oligonucleotides, RNA interference, CRISPR/Cas-based genome editing, aptamers, and the development of mRNA therapeutics. In the following chapter, we will put emphasis on recent advancements utilizing these approaches against challenging drug targets, such as intranuclear proteins, intrinsically disordered proteins, untranslated genomic regions, and targets expressed in inaccessible tissues.
Collapse
Affiliation(s)
| | | | - Saranya Subramani
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Marie Rogne
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
12
|
Hwang KW, Yun JW, Kim HS. Unveiling the Molecular Landscape of FOXA1 Mutant Prostate Cancer: Insights and Prospects for Targeted Therapeutic Strategies. Int J Mol Sci 2023; 24:15823. [PMID: 37958805 PMCID: PMC10650174 DOI: 10.3390/ijms242115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Prostate cancer continues to pose a global health challenge as one of the most prevalent malignancies. Mutations of the Forkhead box A1 (FOXA1) gene have been linked to unique oncogenic features in prostate cancer. In this study, we aimed to unravel the intricate molecular characteristics of FOXA1 mutant prostate cancer through comprehensive in silico analysis of transcriptomic data from The Cancer Genome Atlas (TCGA). A comparison between FOXA1 mutant and control groups unearthed 1525 differentially expressed genes (DEGs), which map to eight intrinsic and six extrinsic signaling pathways. Interestingly, the majority of intrinsic pathways, but not extrinsic pathways, were validated using RNA-seq data of 22Rv1 cells from the GEO123619 dataset, suggesting complex biology in the tumor microenvironment. As a result of our in silico research, we identified novel therapeutic targets and potential drug candidates for FOXA1 mutant prostate cancer. KDM1A, MAOA, PDGFB, and HSP90AB1 emerged as druggable candidate targets, as we found that they have approved drugs throughout the drug database CADDIE. Notably, as most of the approved drugs targeting MAOA and KDM1A were monoamine inhibitors used for mental illness or diabetes, we suggest they have a potential to cure FOXA1 mutant primary prostate cancer without lethal side effects.
Collapse
Affiliation(s)
- Kyung Won Hwang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jae Won Yun
- Veterans Health Service Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
| | - Hong Sook Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
13
|
Liang D, Luo L, Wang J, Liu T, Guo C. CENPA-driven STMN1 Transcription Inhibits Ferroptosis in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1118-1129. [PMID: 37577230 PMCID: PMC10412702 DOI: 10.14218/jcth.2023.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims The growing knowledge of ferroptosis has suggested the regulatory role of ferroptosis in hepatocellular carcinoma (HCC), but the pertinent molecular mechanisms remain unclear. Herein, this study investigated the mechanistic basis of ferroptosis-related genes (ferrGenes) in the growth of HCC. Methods Differentially expressed human ferrGenes and tumor-related transcription factors (TFs) were obtained from the The Cancer Genome Atlas (TCGA) dataset and the GTEx dataset. Spearman method-based correlation analysis were conducted to construct TF-ferrGene coexpression regulatory network. Key genes associated with prognosis were singled out with Lasso regression and multivariate Cox analysis to construct the prognostic risk model. Then the accuracy and independent prognostic ability of the model were evaluated. Expression of CENPA and STMN1 was determined in clinical HCC tissues and HCC cells, and their binding was analyzed with dual-luciferase and chromatin immunoprecipitation (ChIP) assays. Furthermore, ectopic expression and knockdown assays were performed in HCC cells to assess the effect of CENPA and STMN1 on ferroptosis and malignant phenotypes. Results The prognostic risk model constructed based on the eight TF-ferrGene regulatory network-related genes accurately predicted the prognosis of HCC patients. It was strongly related to the clinical characteristics of HCC patients. Moreover, CENPA/STMN1 might be a key TF-ferrGene regulatory network in ferroptosis of HCC. CENPA and STMN1 were overexpressed in HCC tissues and cells. Additionally, CENPA facilitated STMN1 transcription by binding to STMN1 promoter, thus facilitating the malignant phenotypes and suppressing the ferroptosis of HCC cells. Conclusions Taken together, CENPA curbs the ferroptosis of HCC cells by upregulating STMN1 transcription, thereby promoting HCC growth.
Collapse
Affiliation(s)
- Daomiao Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Lanzhu Luo
- Children’s Medical Center, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan China
| | - Jiang Wang
- Children’s Medical Center, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan China
| | - Tongyu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Chao Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| |
Collapse
|
14
|
Meng H, Li J, Sun H, Lin Y, Xu H, Zhang N. The transcription factor ATF2 promotes gastric cancer progression by activating the METTL3/cyclin D1 pathway. Drug Dev Res 2023; 84:1325-1334. [PMID: 37421203 DOI: 10.1002/ddr.22092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Globally, gastric cancer (GC) is a major cause of cancer death. This study is aimed at investigating the biological functions of activating transcription factor 2 (ATF2) and the underlying mechanism in GC. In the present work, GEPIA, UALCAN, Human Protein Atlas and StarBase databases were adopted to analyze ATF2 expression characteristics in GC tissues and normal gastric tissues, and its relationships with tumor grade and patients' survival time. Quantitative real-time polymerase chain reaction (qRT-PCR) method was employed to examine ATF2 mRNA expression in normal gastric tissues, GC tissues, and GC cell lines. Cell counting kit-8 (CCK-8) and EdU assays were utilized for detecting GC cell proliferation. Cell apoptosis was detected by flow cytometry. PROMO database was applied to predict the binding site of ATF2 with the METTL3 promoter region. The binding relationship between ATF2 and the METTL3 promoter region was verified through dual-luciferase reporter gene assay and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay. Western blot was performed to evaluate the effect of ATF2 on METTL3 expression. METTL3-related signaling pathways were predicted using Gene Set Enrichment Analysis (GSEA) in the LinkedOmics database. It was found that, ATF2 level was elevated in GC tissues and cell lines in comparison with normal tissues and correlated with short patients' survival time. ATF2 overexpression facilitated GC cell growth and suppressed the apoptosis, whereas ATF2 knockdown suppressed GC cell proliferation and facilitated the apoptosis. ATF2 bound to the METTL3 promoter region, and ATF2 overexpression promoted the transcription of METTL3, and ATF2 knockdown restrained the transcription of METTL3. METTL3 was associated with cell cycle progression, and ATF2 overexpression enhanced cyclin D1 expression, and METTL3 knockdown reduced cyclin D1 expression. In summary, ATF2 facilitates GC cell proliferation and suppresses the apoptosis via activating the METTL3/cyclin D1 signaling pathway, and ATF2 is promising to be an anti-drug target for GC.
Collapse
Affiliation(s)
- Hong Meng
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jing Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Huapeng Sun
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yanxin Lin
- Xinjiang Medical University, Urumchi, China
| | - Haisheng Xu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Na Zhang
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
15
|
Faida P, Attiogbe MKI, Majeed U, Zhao J, Qu L, Fan D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell Signal 2023:110797. [PMID: 37423343 DOI: 10.1016/j.cellsig.2023.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Lung cancer is one of the mortal cancers and the leading cause of cancer-related mortality, with a cancer survival rate of fewer than 5% in developing nations. This low survival rate can be linked to things like late-stage detection, quick postoperative recurrences in patients receiving therapy, and chemoresistance developing against various lung cancer treatments. Signal transducer and activator of transcription (STAT) family of transcription factors are involved in lung cancer cell proliferation, metastasis, immunological control, and treatment resistance. By interacting with specific DNA sequences, STAT proteins trigger the production of particular genes, which in turn result in adaptive and incredibly specific biological responses. In the human genome, seven STAT proteins have been discovered (STAT1 to STAT6, including STAT5a and STAT5b). Many external signaling proteins can activate unphosphorylated STATs (uSTATs), which are found inactively in the cytoplasm. When STAT proteins are activated, they can increase the transcription of several target genes, which leads to unchecked cellular proliferation, anti-apoptotic reactions, and angiogenesis. The effects of STAT transcription factors on lung cancer are variable; some are either pro- or anti-tumorigenic, while others maintain dual, context-dependent activities. Here, we give a succinct summary of the various functions that each member of the STAT family plays in lung cancer and go into more detail about the advantages and disadvantages of pharmacologically targeting STAT proteins and their upstream activators in the context of lung cancer treatment.
Collapse
Affiliation(s)
- Paison Faida
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
16
|
Luo H, Chen J, Jiang Q, Yu Y, Yang M, Luo Y, Wang X. Comprehensive DNA methylation profiling of COVID-19 and hepatocellular carcinoma to identify common pathogenesis and potential therapeutic targets. Clin Epigenetics 2023; 15:100. [PMID: 37309005 DOI: 10.1186/s13148-023-01515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND & AIMS The effects of SARS-CoV-2 infection can be more complex and severe in patients with hepatocellular carcinoma (HCC) as compared to other cancers. This is due to several factors, including pre-existing conditions such as viral hepatitis and cirrhosis, which are commonly associated with HCC. METHODS We conducted an analysis of epigenomics in SARS-CoV-2 infection and HCC patients, and identified common pathogenic mechanisms using weighted gene co-expression network analysis (WGCNA) and other analyses. Hub genes were identified and analyzed using LASSO regression. Additionally, drug candidates and their binding modes to key macromolecular targets of COVID-19 were identified using molecular docking. RESULTS The epigenomic analysis of the relationship between SARS-CoV-2 infection and HCC patients revealed that the co-pathogenesis was closely linked to immune response, particularly T cell differentiation, regulation of T cell activation and monocyte differentiation. Further analysis indicated that CD4+ T cells and monocytes play essential roles in the immunoreaction triggered by both conditions. The expression levels of hub genes MYLK2, FAM83D, STC2, CCDC112, EPHX4 and MMP1 were strongly correlated with SARS-CoV-2 infection and the prognosis of HCC patients. In our study, mefloquine and thioridazine were identified as potential therapeutic agents for COVID-19 in combined with HCC. CONCLUSIONS In this research, we conducted an epigenomics analysis to identify common pathogenetic processes between SARS-CoV-2 infection and HCC patients, providing new insights into the pathogenesis and treatment of HCC patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Huiyan Luo
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jixin Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiyin Jiang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Yu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaolun Yang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuehua Luo
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiongwen Wang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
17
|
Bloom SMK, O’Hare N, Forbes NS. Bacterial delivery of therapeutic proteins to the nuclei of cancer cells. Biotechnol Bioeng 2023; 120:1437-1448. [PMID: 36710503 PMCID: PMC10101893 DOI: 10.1002/bit.28340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Targeting nucleic targets with therapeutic proteins would enhance the treatment of hard-to-treat cancers. However, exogenous proteins are excluded from the nucleus by both the cellular and nuclear membranes. We have recently developed Salmonella that deliver active proteins into the cytoplasm of cancer cells. Here, we hypothesized that bacterially delivered proteins accumulate within nuclei, nuclear localization sequences (NLSs) increase delivery, and bacterially delivered proteins kill cancer cells. To test this hypothesis, we developed intranuclear delivering (IND) Salmonella and quantified the delivery of three model proteins. IND Salmonella delivered both ovalbumin and green fluorescent protein to nuclei of MCF7 cancer cells. The amount of protein in nuclei was linearly dependent on the amount delivered to the cytoplasm. The addition of a NLSs increased both the amount of protein in each nucleus and the number of nuclei that received protein. Delivery of Omomyc, a protein inhibitor of the nuclear transcript factor, Myc, altered cell physiology, and significantly induced cell death. These results show that IND Salmonella deliver functional proteins to the nucleus of cancerous cells. Extending this method to other transcription factors will increase the number of accessible targets for cancer therapy.
Collapse
Affiliation(s)
| | - Nicholas O’Hare
- Department of Chemical Engineering, University of Massachusetts, Amherst
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst
- Institute for Applied Life Sciences, University of Massachusetts, Amherst
| |
Collapse
|
18
|
Hartl L, Duitman J, Maarten FB, Spek CA. The Dual Role of C/EBPδ in Cancer. Crit Rev Oncol Hematol 2023; 185:103983. [PMID: 37024021 DOI: 10.1016/j.critrevonc.2023.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
CCAAT/Enhancer-Binding Protein delta (C/EBPδ) is a transcription factor involved in differentiation and inflammation. While sparsely expressed in adult tissues, aberrant expression of C/EBPδ has been associated with different cancers. Initially, re-expression of C/EBPδ in cell cultures limited tumor cell proliferation, assigning it a tumor suppressor role. However, opposing observations were made in pre-clinical models and patients, suggesting that C/EBPδ not only mediates cell proliferation but dictates a broader spectrum of tumorigenesis-related effects. It is now widely accepted that C/EBPδ contributes to an inflammatory, tumor-promoting microenvironment, aids hypoxia adaption and contributes to the recruitment of blood vessels for improved nutrient supply to tumor cells and facilitated extravasation. This review summarizes the work published on this transcription factor in the field of cancer over the past decade. It points out areas in which a consensus on C/EBPδ's role appears to emerge and seek to explain seemingly contradictory results.
Collapse
Affiliation(s)
- Leonie Hartl
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands.
| | - JanWillem Duitman
- Amsterdam UMC Location University of Amsterdam, Department of Pulmonary Medicine, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, 1105 AZ Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, the Netherlands
| | - F Bijlsma Maarten
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands
| | - C Arnold Spek
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
19
|
Zhu H, Wang J, Zhang Q, Pan X, Zhang J. Novel strategies and promising opportunities for targeted protein degradation: An innovative therapeutic approach to overcome cancer resistance. Pharmacol Ther 2023; 244:108371. [PMID: 36871783 DOI: 10.1016/j.pharmthera.2023.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Targeted Protein Degradation is an emerging and rapidly developing technique for designing and treating new drugs. With the emergence of a promising class of pharmaceutical molecules, Heterobifunctional Proteolysis-targeting chimeras (PROTACs), TPD has become a powerful tool to completely tackle pathogenic proteins with traditional small molecule inhibitors. However, the conventional PROTACs have gradually exposed potential disadvantages of poor oral bioavailability and pharmacokinetic (PK) and absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics due to their larger molecular weight and more complex structure than the conventional small-molecule inhibitors. Therefore, 20 years after the concept of PROTAC was proposed, more and more scientists are committed to developing new TPD technology to overcome its defects. And several new technologies and means have been explored based on "PROTAC" to target "undruggable proteins". Here, we aim to comprehensively summarize and profoundly analyze the research progress of targeted protein degradation based on PROTAC targeting the degradation of "undruggable" targets. In order to clarify the significance of emerging and highly effective strategies based PROTACs in the treatment of various diseases especially in overcoming drug resistance in cancer, we will focus on the molecular structure, action mechanism, design concepts, development advantages and challenges of these emerging methods(e.g., aptamer-PROTAC conjugates, antibody-PROTACs and folate-PROTACs).
Collapse
Affiliation(s)
- Huanjie Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
20
|
Current Status of Oligonucleotide-Based Protein Degraders. Pharmaceutics 2023; 15:pharmaceutics15030765. [PMID: 36986626 PMCID: PMC10055846 DOI: 10.3390/pharmaceutics15030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Transcription factors (TFs) and RNA-binding proteins (RBPs) have long been considered undruggable, mainly because they lack ligand-binding sites and are equipped with flat and narrow protein surfaces. Protein-specific oligonucleotides have been harnessed to target these proteins with some satisfactory preclinical results. The emerging proteolysis-targeting chimera (PROTAC) technology is no exception, utilizing protein-specific oligonucleotides as warheads to target TFs and RBPs. In addition, proteolysis by proteases is another type of protein degradation. In this review article, we discuss the current status of oligonucleotide-based protein degraders that are dependent either on the ubiquitin–proteasome system or a protease, providing a reference for the future development of degraders.
Collapse
|
21
|
Halvorsen SC, Benita Y, Hopton M, Hoppe B, Gunnlaugsson HO, Korgaonkar P, Vanderburg CR, Nielsen GP, Trepanowski N, Cheah JH, Frosch MP, Schwab JH, Rosenberg AE, Hornicek FJ, Sassi S. Transcriptional Profiling Supports the Notochordal Origin of Chordoma and Its Dependence on a TGFΒ1-TBXT Network. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:532-547. [PMID: 36804377 DOI: 10.1016/j.ajpath.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
Chordoma is a rare malignant tumor demonstrating notochordal differentiation. It is dependent on brachyury (TBXT), a hallmark notochordal gene and transcription factor, and shares histologic features and the same anatomic location as the notochord. In this study, we perform a molecular comparison of chordoma and notochord to identify dysregulated cellular pathways. The lack of a molecular reference from appropriate control tissue limits our understanding of chordoma and its relationship to notochord. Accordingly, we conducted an unbiased comparison of chordoma, human notochord, and an atlas of normal and cancerous tissue using gene expression profiling to clarify the chordoma/notochord relationship and potentially identify novel drug targets. We found striking consistency in gene expression profiles between chordoma and notochord, supporting the hypothesis that chordoma develops from notochordal remnants. We identified a 12-gene diagnostic chordoma signature and found that the TBXT/transforming growth factor (TGF)-β/SOX6/SOX9 pathway is hyperactivated in the tumor, suggesting that pathways associated with chondrogenesis are a central driver of chordoma development. Experimental validation in chordoma cells confirms these findings and emphasizes the dependence of chordoma proliferation and survival on TGF-β. Our computational and experimental evidence provides the first molecular connection between notochord and chordoma and identifies core members of a chordoma regulatory pathway involving TBXT. This pathway provides new therapeutic targets for this unique malignant neoplasm and highlights TGF-β as a prime druggable candidate.
Collapse
Affiliation(s)
- Stefan C Halvorsen
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Yair Benita
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Megan Hopton
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Brooke Hoppe
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hilmar Orn Gunnlaugsson
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Parimal Korgaonkar
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Charles R Vanderburg
- Harvard NeuroDiscovery Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - G Petur Nielsen
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Nicole Trepanowski
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jaime H Cheah
- High Throughput Sciences Facility, Koch Institute of MIT, Cambridge, Massachusetts
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Joseph H Schwab
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew E Rosenberg
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts.
| | - Slim Sassi
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
22
|
Hargadon KM, Strong EW. The FOXC2 Transcription Factor: A Master Regulator of Chemoresistance in Cancer. Technol Cancer Res Treat 2023; 22:15330338231155284. [PMID: 36740986 PMCID: PMC9903043 DOI: 10.1177/15330338231155284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
FOXC2, a member of the forkhead box family of transcription factors, is an emerging oncogene that has been linked to several hallmarks of cancer progression. Among its many oncogenic functions is the promotion of drug resistance, with evidence supporting roles for FOXC2 in escape from broad classes of chemotherapeutics across an array of cancer types. In this Mini-Review, we highlight the current understanding of the mechanisms by which FOXC2 drives cancer chemoresistance, including its roles in the promotion of epithelial-mesenchymal transition, induction of multidrug transporters, activation of the oxidative stress response, and deregulation of cell survival signaling pathways. We discuss the clinical implications of these findings, including strategies for modulating FOXC2-associated chemoresistance in cancer. Particular attention is given to ways in which FOXC2 and its downstream gene products and pathways can be targeted to restore chemosensitivity in cancer cells. In addition, the utility of FOXC2 expression as a predictor of patient response to chemotherapy is also highlighted, with emphasis on the value of FOXC2 as a novel biomarker that can be used to guide therapeutic choice towards regimens most likely to achieve clinical benefit during frontline therapy.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon Laboratory, Hampden-Sydney College, Hampden-Sydney, VA, USA,Kristian M. Hargadon, PhD, Hampden-Sydney College, Brown Student Center, Box 837, Hampden-Sydney, VA 23943, USA.
| | - Elijah W. Strong
- Hargadon Laboratory, Hampden-Sydney College, Hampden-Sydney, VA, USA
| |
Collapse
|
23
|
Bao H, Shen Y. Unmasking BACE1 in aging and age-related diseases. Trends Mol Med 2023; 29:99-111. [PMID: 36509631 DOI: 10.1016/j.molmed.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
The beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) has long been considered a conventional target for Alzheimer's disease (AD). Unfortunately, AD clinical trials of most BACE1 inhibitors were discontinued due to ineffective cognitive improvement or safety challenges. Recent studies investigating the involvement of BACE1 in metabolic, vascular, and immune functions have indicated a role in aging, diabetes, hypertension, and cancer. These novel BACE1 functions have helped to identify new 'druggable' targets for BACE1 against aging comorbidities. In this review, we discuss BACE1 regulation during aging, and then provide recent insights into its enzymatic and nonenzymatic involvement in aging and age-related diseases. Our study not only proposes the perspective of BACE1's actions in various systems, but also provides new directions for using BACE1 inhibitors and modulators to delay aging and to treat age-related diseases.
Collapse
Affiliation(s)
- Hong Bao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Provincial Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, Division of Biological and Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
24
|
Shiah JV, Johnson DE, Grandis JR. Transcription Factors and Cancer: Approaches to Targeting. Cancer J 2023; 29:38-46. [PMID: 36693157 PMCID: PMC9881838 DOI: 10.1097/ppo.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ABSTRACT Cancer is defined by the presence of uncontrollable cell growth, whereby improper proliferative signaling has overcome regulation by cellular mechanisms. Transcription factors are uniquely situated at the helm of signaling, merging extracellular stimuli with intracellular responses. Therefore, this class of proteins plays a pivotal role in coordinating the correct gene expression levels for maintaining normal cellular functions. Dysregulation of transcription factor activity unsurprisingly drives tumorigenesis and oncogenic transformation. Although this imparts considerable therapeutic potential to targeting transcription factors, their lack of enzymatic activity renders intervention challenging and has contributed to a sense that transcription factors are "undruggable." Yet, enduring efforts to elucidate strategies for targeting transcription factors as well as a deeper understanding of their interactions with binding partners have led to advancements that are emerging to counter this narrative. Here, we highlight some of these approaches, focusing primarily on therapeutics that have advanced to the clinic.
Collapse
Affiliation(s)
- Jamie V Shiah
- From the Department Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA
| | | | | |
Collapse
|
25
|
Activation of OSM-STAT3 Epigenetically Regulates Tumor-Promoting Transcriptional Programs in Cervical Cancer. Cancers (Basel) 2022; 14:cancers14246090. [PMID: 36551576 PMCID: PMC9775986 DOI: 10.3390/cancers14246090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Despite improvements in preventative strategies, such as regular screenings with Pap tests and human papillomavirus (HPV) tests as well as HPV vaccinations, effective treatment for advanced cervical cancer remains poor. Deregulation of STAT3 is an oncogenic factor that promotes tumorigenesis and epithelial-to-mesenchymal transition (EMT) in various cancers. Oncostatin M (OSM), a pleiotropic cytokine, induces STAT3 activation, exacerbating cervical cancer. However, the mechanism by which the OSM-STAT3 axis epigenetically regulates tumor-progression-related genes in cervical cancer is not well understood. Here, we show that OSM-mediated STAT3 activation promotes pro-tumorigenic gene expression programs, with chromatin remodeling in cervical cancer. Reanalysis of scRNA-seq data performed in cervical cancer uncovered an interaction between the oncostatin M receptor (OSMR) on tumor cells and OSM induced by tumor-associated macrophages (TAMs). Our gene expression profiling (bulk RNA-seq) shows that OSM-induced genes were involved in hypoxia, wound healing, and angiogenesis, which were significantly inhibited by SD-36, a STAT3-selective degrader. Additionally, ATAC-seq experiments revealed that STAT3 binding motifs were preferentially enriched in open chromatin regions of the OSM-STAT3-regulated genes. Among the 50 candidate genes that were regulated epigenetically through the OSM-STAT3 axis, we found that the expression levels of NDRG1, HK2, PLOD2, and NPC1 were significantly correlated with those of OSMR and STAT3 in three independent cervical cancer cohorts. Also, higher expression levels of these genes are significantly associated with poor prognosis in cervical cancer patients. Collectively, our findings demonstrate that the OSM-STAT3 signaling pathway regulates crucial transcriptomic programs through epigenetic changes and that selective inhibition of STAT3 may be a novel therapeutic strategy for patients with advanced cervical cancer.
Collapse
|
26
|
Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy. Semin Cancer Biol 2022; 87:84-97. [PMID: 36371028 DOI: 10.1016/j.semcancer.2022.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Evidence has revealed that transcription factors play essential roles in regulation of multiple cellular processes, including cell proliferation, metastasis, EMT, cancer stem cells and chemoresistance. Dysregulated expression levels of transcription factors contribute to tumorigenesis and malignant progression. The expression of transcription factors is tightly governed by several signaling pathways, noncoding RNAs and E3 ubiquitin ligases. Cancer stem cells (CSCs) have been validated in regulation of tumor metastasis, reoccurrence and chemoresistance in human cancer. Transcription factors have been verified to participate in regulation of CSC formation, including Oct4, SOX2, KLF4, c-Myc, Nanog, GATA, SALL4, Bmi-1, OLIG2, POU3F2 and FOX proteins. In this review article, we will describe the critical role of CSC-related transcription factors. We will further discuss which E3 ligases regulate the degradation of these CSC-related transcription factors and their underlying mechanisms. We also mentioned the functions and mechanisms of EMT-associated transcription factors such as ZEB1, ZEB2, Snail, Slug, Twist1 and Twist2. Furthermore, we highlight the therapeutic potential via targeting E3 ubiquitin ligases for modulation of these transcription factors.
Collapse
|
27
|
Ruprecht B, Wei L, Zheng L, Bodea S, Mo X, Maschberger M, Stoehr G, Hahne H, Cornella-Taracido I, Chi A. Chemoproteomic profiling to identify activity changes and functional inhibitors of DNA-binding proteins. Cell Chem Biol 2022; 29:1639-1648.e4. [PMID: 36356585 DOI: 10.1016/j.chembiol.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 07/04/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
DNA-binding proteins are promising therapeutic targets but are notoriously difficult to drug. Here, we evaluate a chemoproteomic DNA interaction platform as a complementary strategy for parallelized compound profiling. To enable this approach, we determined the proteomic binding landscape of 92 immobilized DNA sequences. Perturbation-induced activity changes of captured transcription factors in disease-relevant settings demonstrated functional relevance of the enriched subproteome. Chemoproteomic profiling of >300 cysteine-directed compounds against a coverage optimized bead mixture, which specifically captures >150 DNA binders, revealed competition of several DNA-binding proteins, including the transcription factors ELF1 and ELF2. We also discovered the first compound that displaces the DNA-repair complex MSH2-MSH3 from DNA. Compound binding to cysteine 252 on MSH3 was confirmed using chemoproteomic reactive cysteine profiling. Overall, these results suggested that chemoproteomic DNA bead pull-downs enable the specific readout of transcription factor activity and can identify functional "hotspots" on DNA binders toward expanding the druggable proteome.
Collapse
Affiliation(s)
| | - Lan Wei
- Chemical Biology, Merck & Co., Inc, Boston, MA 02115, USA
| | - Li Zheng
- Chemical Biology, Merck & Co., Inc, Boston, MA 02115, USA
| | - Smaranda Bodea
- Chemical Biology, Merck & Co., Inc, Boston, MA 02115, USA
| | - Xuan Mo
- Chemical Biology, Merck & Co., Inc, Boston, MA 02115, USA
| | | | | | - Hannes Hahne
- OmicScouts GmbH, 85354 Freising, Bavaria, Germany
| | | | - An Chi
- Chemical Biology, Merck & Co., Inc, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Nasou AG, Pantatosaki E, Papadopoulos GK. A Simulation Study of the Effect of Naturally Occurring Point Mutations on the SRY-DNA Complex. J Phys Chem B 2022; 126:8921-8930. [PMID: 36315187 DOI: 10.1021/acs.jpcb.2c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Molecular dynamics (MD) simulations were conducted in order to investigate the effect of the naturally occurring point mutations of the transcription factor (TF) sex-determining region Y (SRY) on the structure and dynamics of the SRY-DNA complex. The normal SRY, along with the two mutants I13T and G40R, comprising point mutations on the SRY chain, which have been clinically identified in patients with sex developmental disorders, were modeled as DNA complexes. Our modeling work aims at elucidating atomic-level structural determinants of the aberrant SRY-DNA complexation by means of μs-long MD. The results suggest that the observed disorders brought about by the G40R-DNA and I13T-DNA may arise predominantly from the destabilization of the complex being in accord with in vitro assays found elsewhere and from modifications of the DNA bending as revealed in this study. Comparative potential of mean force computations, over a sequence of short separation distances for the three complexes, verified a higher stability of the normal SRY-DNA. Examining the way the SRY mutations modulate the SRY-DNA complex dynamics at the microscopic level is important also toward elucidating molecular determinants of function for proteins capable of binding to DNA.
Collapse
Affiliation(s)
- Angeliki-Georgia Nasou
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Evangelia Pantatosaki
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - George K Papadopoulos
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| |
Collapse
|
29
|
Srivastava R, Fernández-Ginés R, Encinar JA, Cuadrado A, Wells G. The current status and future prospects for therapeutic targeting of KEAP1-NRF2 and β-TrCP-NRF2 interactions in cancer chemoresistance. Free Radic Biol Med 2022; 192:246-260. [PMID: 36181972 DOI: 10.1016/j.freeradbiomed.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 10/31/2022]
Abstract
Drug resistance is one of the biggest challenges in cancer treatment and limits the potential to cure patients. In many tumors, sustained activation of the protein NRF2 makes tumor cells resistant to chemo- and radiotherapy. Thus, blocking inappropriate NRF2 activity in cancers has been shown to reduce resistance in models of the disease. There is a growing scientific interest in NRF2 inhibitors. However, the compounds developed so far are not target-specific and are associated with a high degree of toxicity, hampering clinical applications. Compounds that can enhance the binding of NRF2 to its ubiquitination-facilitating regulator proteins, either KEAP1 or β-TrCP, have the potential to increase NRF2 degradation and may be of value as potential chemosensitising agents in cancer treatment. Approaches based on molecular glue-type mechanisms, in which ligands stabilise a ternary complex between a protein and its binding partner have shown to enhance β-catenin degradation by stabilising its interaction with β-TrCP. This strategy could be applied to rationally discover degradative β-TrCP-NRF2 and KEAP1-NRF2 protein-protein interaction enhancers. We are proposing a novel approach to selectively suppress NRF2 activity in tumors. It is based on recent methodology and has the potential to be a promising new addition to the arsenal of anticancer agents.
Collapse
Affiliation(s)
- Rohini Srivastava
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, UK
| | - Raquel Fernández-Ginés
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - José Antonio Encinar
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche, 03202, Spain
| | - Antonio Cuadrado
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Geoff Wells
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
30
|
Kant R, Manne RK, Anas M, Penugurti V, Chen T, Pan BS, Hsu CC, Lin HK. Deregulated transcription factors in cancer cell metabolisms and reprogramming. Semin Cancer Biol 2022; 86:1158-1174. [PMID: 36244530 PMCID: PMC11220368 DOI: 10.1016/j.semcancer.2022.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/10/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Metabolic reprogramming is an important cancer hallmark that plays a key role in cancer malignancies and therapy resistance. Cancer cells reprogram the metabolic pathways to generate not only energy and building blocks but also produce numerous key signaling metabolites to impact signaling and epigenetic/transcriptional regulation for cancer cell proliferation and survival. A deeper understanding of the mechanisms by which metabolic reprogramming is regulated in cancer may provide potential new strategies for cancer targeting. Recent studies suggest that deregulated transcription factors have been observed in various human cancers and significantly impact metabolism and signaling in cancer. In this review, we highlight the key transcription factors that are involved in metabolic control, dissect the crosstalk between signaling and transcription factors in metabolic reprogramming, and offer therapeutic strategies targeting deregulated transcription factors for cancer treatment.
Collapse
Affiliation(s)
- Rajni Kant
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Mohammad Anas
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Vasudevarao Penugurti
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Tingjin Chen
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA.
| |
Collapse
|
31
|
Wang GJ, Huangfu LT, Gao XY, Gan XJ, Xing XF, Ji JF. A Novel Classification and Scoring Method Based on Immune-Related Transcription Factor Regulation Patterns in Gastric Cancer. Front Oncol 2022; 12:887244. [PMID: 35656510 PMCID: PMC9152319 DOI: 10.3389/fonc.2022.887244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Transcription factors (TFs) play a crucial role in tumorigenesis and anti-tumor immunity. However, the potential role of large-scale transcription factor regulation patterns in the progression in gastric cancer (GC) is unknown. Methods We comprehensively assessed the relevance of immune-related TF (IRTF) regulation patterns in anti-tumor immunity and immunotherapy in 1,136 gastric cancer (GC) patients, and evaluated the IRTF score based on IRTF regulation patterns using random forests. Results Two distinct IRTF regulation patterns were identified, which demonstrating the distinct characteristics in clinical phenotypes, tumor immune microenvironment (TIME), immunogenicity and prognosis in GC. Subsequently, the IRTF score was established to quantify the IRTF regulation pattern for each GC patient. Analysis of large conventional therapy cohorts showed low IRTF score was associated with a better prognosis. In addition, analysis of multiple immunotherapy cohorts showed low IRTF score was also linked to enhanced response to immunotherapy. Conclusion TF regulation patterns were found to play an important role in the complex immune regulatory relationships in GC. Evaluation of the IRTF regulation patterns in patients will enhance our understanding of immune specificities, and thus, provide effective strategies for personalized therapy.
Collapse
Affiliation(s)
- Gang-Jian Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Beijing, China
| | - Long-Tao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Beijing, China
| | - Xiang-Yu Gao
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, China
| | - Xue-Jun Gan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Beijing, China
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Beijing, China
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
32
|
Anagnostopoulos G, Motiño O, Li S, Carbonnier V, Chen H, Sica V, Durand S, Bourgin M, Aprahamian F, Nirmalathasan N, Donne R, Desdouets C, Sola MS, Kotta K, Montégut L, Lambertucci F, Surdez D, Sandrine G, Delattre O, Maiuri MC, Bravo-San Pedro JM, Martins I, Kroemer G. An obesogenic feedforward loop involving PPARγ, acyl-CoA binding protein and GABA A receptor. Cell Death Dis 2022; 13:356. [PMID: 35436993 PMCID: PMC9016078 DOI: 10.1038/s41419-022-04834-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
Acyl-coenzyme-A-binding protein (ACBP), also known as a diazepam-binding inhibitor (DBI), is a potent stimulator of appetite and lipogenesis. Bioinformatic analyses combined with systematic screens revealed that peroxisome proliferator-activated receptor gamma (PPARγ) is the transcription factor that best explains the ACBP/DBI upregulation in metabolically active organs including the liver and adipose tissue. The PPARγ agonist rosiglitazone-induced ACBP/DBI upregulation, as well as weight gain, that could be prevented by knockout of Acbp/Dbi in mice. Moreover, liver-specific knockdown of Pparg prevented the high-fat diet (HFD)-induced upregulation of circulating ACBP/DBI levels and reduced body weight gain. Conversely, knockout of Acbp/Dbi prevented the HFD-induced upregulation of PPARγ. Notably, a single amino acid substitution (F77I) in the γ2 subunit of gamma-aminobutyric acid A receptor (GABAAR), which abolishes ACBP/DBI binding to this receptor, prevented the HFD-induced weight gain, as well as the HFD-induced upregulation of ACBP/DBI, GABAAR γ2, and PPARγ. Based on these results, we postulate the existence of an obesogenic feedforward loop relying on ACBP/DBI, GABAAR, and PPARγ. Interruption of this vicious cycle, at any level, indistinguishably mitigates HFD-induced weight gain, hepatosteatosis, and hyperglycemia.
Collapse
Affiliation(s)
- Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Valentina Sica
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Mélanie Bourgin
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Nitharsshini Nirmalathasan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Romain Donne
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, 75006, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | - Chantal Desdouets
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, 75006, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | | | - Konstantina Kotta
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005, Paris, France
- Bone Sarcoma Research Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Grossetête Sandrine
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005, Paris, France
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, 75005, Paris, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - José Manuel Bravo-San Pedro
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
33
|
Zhou T, Zhu X, Ye Z, Wang YF, Yao C, Xu N, Zhou M, Ma J, Qin Y, Shen Y, Tang Y, Yin Z, Xu H, Zhang Y, Zang X, Ding H, Yang W, Guo Y, Harley JB, Namjou B, Kaufman KM, Kottyan LC, Weirauch MT, Hou G, Shen N. Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative lncRNA and DNA methylation machinery. Nat Commun 2022; 13:1855. [PMID: 35388006 PMCID: PMC8987079 DOI: 10.1038/s41467-022-29514-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite strong evidence that human genetic variants affect the expression of many key transcription factors involved in autoimmune diseases, establishing biological links between non-coding risk variants and the gene targets they regulate remains a considerable challenge. Here, we combine genetic, epigenomic, and CRISPR activation approaches to screen for functional variants that regulate IRF8 expression. We demonstrate that the locus containing rs2280381 is a cell-type-specific enhancer for IRF8 that spatially interacts with the IRF8 promoter. Further, rs2280381 mediates IRF8 expression through enhancer RNA AC092723.1, which recruits TET1 to the IRF8 promoter regulating IRF8 expression by affecting methylation levels. The alleles of rs2280381 modulate PU.1 binding and chromatin state to regulate AC092723.1 and IRF8 expression differentially. Our work illustrates an integrative strategy to define functional genetic variants that regulate the expression of critical genes in autoimmune diseases and decipher the mechanisms underlying the dysregulation of IRF8 expression mediated by lupus risk variants.
Collapse
Affiliation(s)
- Tian Zhou
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032 China ,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China
| | - Xinyi Zhu
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China
| | - Yong-Fei Wang
- grid.194645.b0000000121742757Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, 999077 China
| | - Chao Yao
- grid.9227.e0000000119573309Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031 China
| | - Ning Xu
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Mi Zhou
- grid.16821.3c0000 0004 0368 8293Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240 China
| | - Jianyang Ma
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Yuting Qin
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Yiwei Shen
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Yuanjia Tang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China
| | - Hong Xu
- grid.16821.3c0000 0004 0368 8293Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200127 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200127 China
| | - Yutong Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Xiaoli Zang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Huihua Ding
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China
| | - Wanling Yang
- grid.194645.b0000000121742757Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, 999077 China
| | - Ya Guo
- grid.16821.3c0000 0004 0368 8293Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240 China
| | - John B. Harley
- grid.413848.20000 0004 0420 2128US Department of Veterans Affairs Medical Center, Cincinnati, OH 45229 USA
| | - Bahram Namjou
- grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Kenneth M. Kaufman
- grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| | - Leah C. Kottyan
- grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Matthew T. Weirauch
- grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Guojun Hou
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032 China ,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China
| | - Nan Shen
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001 China ,grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032 China ,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040 China ,grid.239573.90000 0000 9025 8099Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| |
Collapse
|
34
|
Plens-Gałąska M, Woźniak T, Wesoły J, Bluyssen HAR. SINBAD, structural, experimental and clinical characterization of STAT inhibitors and their potential applications. Sci Data 2022; 9:139. [PMID: 35361787 PMCID: PMC8971479 DOI: 10.1038/s41597-022-01243-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
The abnormal activation of signal transducer and activator of transcription (STAT) protein family is recognized as cause or driving force behind multiple diseases progression. Therefore, searching for potential treatment strategy is pursued by multiple scientific groups. We consider that providing comprehensive, integrated and unified dataset for STAT inhibitory compounds may serve as important tool for other researchers. We developed SINBAD (STAT INhbitor Biology And Drug-ability) in response to our experience with inhibitory compound research, knowing that gathering detailed information is crucial for effective experiment design and also for finding potential solutions in case of obtaining inconclusive results. SINBAD is a curated database of STAT inhibitors which have been published and described in scientific articles providing prove of their inhibitory properties. It is a tool allowing easy analysis of experimental conditions and provides detailed information about known STAT inhibitory compounds.
Collapse
Affiliation(s)
- Martyna Plens-Gałąska
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Tomasz Woźniak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Joanna Wesoły
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A R Bluyssen
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
35
|
Binder M, Carr RM, Lasho TL, Finke CM, Mangaonkar AA, Pin CL, Berger KR, Mazzone A, Potluri S, Ordog T, Robertson KD, Marks DL, Fernandez-Zapico ME, Gaspar-Maia A, Patnaik MM. Oncogenic gene expression and epigenetic remodeling of cis-regulatory elements in ASXL1-mutant chronic myelomonocytic leukemia. Nat Commun 2022; 13:1434. [PMID: 35301312 PMCID: PMC8931048 DOI: 10.1038/s41467-022-29142-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Myeloid neoplasms are clonal hematopoietic stem cell disorders driven by the sequential acquisition of recurrent genetic lesions. Truncating mutations in the chromatin remodeler ASXL1 (ASXL1MT) are associated with a high-risk disease phenotype with increased proliferation, epigenetic therapeutic resistance, and poor survival outcomes. We performed a multi-omics interrogation to define gene expression and chromatin remodeling associated with ASXL1MT in chronic myelomonocytic leukemia (CMML). ASXL1MT are associated with a loss of repressive histone methylation and increase in permissive histone methylation and acetylation in promoter regions. ASXL1MT are further associated with de novo accessibility of distal enhancers binding ETS transcription factors, targeting important leukemogenic driver genes. Chromatin remodeling of promoters and enhancers is strongly associated with gene expression and heterogenous among overexpressed genes. These results provide a comprehensive map of the transcriptome and chromatin landscape of ASXL1MT CMML, forming an important framework for the development of novel therapeutic strategies targeting oncogenic cis interactions.
Collapse
Affiliation(s)
- Moritz Binder
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ryan M Carr
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Terra L Lasho
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Christopher L Pin
- Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Kurt R Berger
- Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Amelia Mazzone
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Tamas Ordog
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Keith D Robertson
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - David L Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Alexandre Gaspar-Maia
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Mrinal M Patnaik
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
36
|
Almajali B, Johan MF, Al-Wajeeh AS, Wan Taib WR, Ismail I, Alhawamdeh M, Al-Tawarah NM, Ibrahim WN, Al-Rawashde FA, Al-Jamal HAN. Gene Expression Profiling and Protein Analysis Reveal Suppression of the C-Myc Oncogene and Inhibition JAK/STAT and PI3K/AKT/mTOR Signaling by Thymoquinone in Acute Myeloid Leukemia Cells. Pharmaceuticals (Basel) 2022; 15:ph15030307. [PMID: 35337104 PMCID: PMC8948818 DOI: 10.3390/ph15030307] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022] Open
Abstract
Overexpression of c-Myc plays an essential role in leukemogenesis and drug resistance, making c-Myc an attractive target for cancer therapy. However, targeting c-Myc directly is impossible, and c-Myc upstream regulator pathways could be targeted instead. This study investigated the effects of thymoquinone (TQ), a bioactive constituent in Nigella sativa, on the activation of upstream regulators of c-Myc: the JAK/STAT and PI3K/AKT/mTOR pathways in HL60 leukemia cells. Next-generation sequencing (NGS) was performed for gene expression profiling after TQ treatment. The expression of c-Myc and genes involved in JAK/STAT and PI3K/AKT/mTOR were validated by quantitative reverse transcription PCR (RT-qPCR). In addition, Jess assay analysis was performed to determine TQ’s effects on JAK/STAT and PI3K/AKT signaling and c-Myc protein expression. The results showed 114 significant differentially expressed genes after TQ treatment (p < 0.002). DAVID analysis revealed that most of these genes’ effect was on apoptosis and proliferation. There was downregulation of c-Myc, PI3K, AKT, mTOR, JAK2, STAT3, STAT5a, and STAT5b. Protein analysis showed that TQ also inhibited JAK/STAT and PI3K/AKT signaling, resulting in inhibition of c-Myc protein expression. In conclusion, the findings suggest that TQ potentially inhibits proliferation and induces apoptosis in HL60 leukemia cells by downregulation of c-Myc expression through inhibition of the JAK/STAT and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Belal Almajali
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelatan, Malaysia;
| | | | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Sciences, Mutah University, Alkarak 61710, Jordan; (M.A.); (N.M.A.-T.)
| | - Nafe M. Al-Tawarah
- Department of Medical Laboratory Sciences, Faculty of Sciences, Mutah University, Alkarak 61710, Jordan; (M.A.); (N.M.A.-T.)
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar;
| | - Futoon Abedrabbu Al-Rawashde
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
- Correspondence: ; Tel.: +60-174729012
| |
Collapse
|
37
|
Oyagbemi AA, Adejumobi OA, Jarikre TA, Ajani OS, Asenuga ER, Gbadamosi IT, Adedapo ADA, Aro AO, Ogunpolu BS, Hassan FO, Falayi OO, Ogunmiluyi IO, Omobowale TO, Arojojoye OA, Ola-Davies OE, Saba AB, Adedapo AA, Emikpe BO, Oyeyemi MO, Nkadimeng SM, McGaw LJ, Kayoka-Kabongo PN, Oguntibeju OO, Yakubu MA. Clofibrate, a Peroxisome Proliferator-Activated Receptor-Alpha (PPARα) Agonist, and Its Molecular Mechanisms of Action against Sodium Fluoride-Induced Toxicity. Biol Trace Elem Res 2022; 200:1220-1236. [PMID: 33893992 DOI: 10.1007/s12011-021-02722-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 01/16/2023]
Abstract
Sodium fluoride (NaF) is one of the neglected environmental pollutants. It is ubiquitously found in the soil, water, and environment. Interestingly, fluoride has been extensively utilized for prevention of dental caries and tartar formation, and may be added to mouthwash, mouth rinse, and toothpastes. This study is aimed at mitigating fluoride-induced hypertension and nephrotoxicity with clofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist. For this study, forty male Wistar rats were used and randomly grouped into ten rats per group, control, sodium fluoride (NaF; 300 ppm) only, NaF plus clofibrate (250 mg/kg) and NaF plus lisinopril (10 mg/kg), respectively, for 7 days. The administration of NaF was by drinking water ad libitum, while clofibrate and lisinopril were administered by oral gavage. Administration of NaF induced hypertension, and was accompanied with exaggerated oxidative stress; depletion of antioxidant defence system; reduced nitric oxide production; increased systolic, diastolic and mean arterial pressure; activation of angiotensin-converting enzyme activity and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); and testicular apoptosis. Treatment of rats with clofibrate reduced oxidative stress, improved antioxidant status, lowered high blood pressure through the inhibition of angiotensin-converting enzyme activity, mineralocorticoid receptor over-activation, and abrogated testicular apoptosis. Taken together, clofibrate could offer exceptional therapeutic benefit in mitigating toxicity associated with sodium fluoride.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Theophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumide Samuel Ajani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin, Nigeria
| | | | | | - Abimbola Obemisola Aro
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Iyanuoluwa Omolola Ogunmiluyi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin Obukowho Emikpe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Sanah Malomile Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa
| | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Oxidative Stress Research Centre, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, Cape Town, 7535, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, Texas Southern University, Houston, TX, USA
| |
Collapse
|
38
|
Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 2022; 41:1235-1251. [PMID: 35066574 PMCID: PMC9063229 DOI: 10.1038/s41388-021-02156-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
39
|
Li X, Han M, Zhang H, Liu F, Pan Y, Zhu J, Liao Z, Chen X, Zhang B. Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma. Biomark Res 2022; 10:2. [PMID: 35000617 PMCID: PMC8744215 DOI: 10.1186/s40364-021-00345-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc finger proteins are transcription factors with the finger domain, which plays a significant role in gene regulation. As the largest family of transcription factors in the human genome, zinc finger (ZNF) proteins are characterized by their different DNA binding motifs, such as C2H2 and Gag knuckle. Different kinds of zinc finger motifs exhibit a wide variety of biological functions. Zinc finger proteins have been reported in various diseases, especially in several cancers. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death worldwide, especially in China. Most of HCC patients have suffered from hepatitis B virus (HBV) and hepatitis C virus (HCV) injection for a long time. Although the surgical operation of HCC has been extremely developed, the prognosis of HCC is still very poor, and the underlying mechanisms in HCC tumorigenesis are still not completely understood. Here, we summarize multiple functions and recent research of zinc finger proteins in HCC tumorigenesis and progression. We also discuss the significance of zinc finger proteins in HCC diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Xinxin Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| |
Collapse
|
40
|
Wang C, Zhang Y, Wang J, Xing D. VHL-based PROTACs as potential therapeutic agents: Recent progress and perspectives. Eur J Med Chem 2022; 227:113906. [PMID: 34656901 DOI: 10.1016/j.ejmech.2021.113906] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Proteolysis targeting chimeras (PROTACs), which hijack proteins of interest (POIs) and recruit E3 ligases for target degradation via the ubiquitin-proteasome pathway, are a novel drug discovery paradigm that has been widely used as biological tools and medicinal molecules with the potential of clinical application value. To date, a wide variety of small molecule PROTACs have been developed. Importantly, VHL-based PROTACs have emerged to be a promising approach for proteins, including those non-druggable ones, such as transcriptional factors and scaffold proteins. VHL-based PRTOACs have been developed for the treatment of diseases that are difficult to be dealt with by conventional methods, such as radiotherapy, chemotherapy, and small molecule inhibitors. In this review, the recent advances of VHL-based PRTOACs were summarized, and the chances and challenges associated with this area were also highlighted.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; School of Pharmacy, Qingdao University, Qingdao, 266021, Shandong, China.
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
41
|
Petri L, Ábrányi-Balogh P, Vagrys D, Imre T, Varró N, Mándity I, Rácz A, Wittner L, Tóth K, Tóth EZ, Juhász T, Davis B, Keserű GM. A covalent strategy to target intrinsically disordered proteins:Discovery of novel tau aggregation inhibitors. Eur J Med Chem 2022; 231:114163. [DOI: 10.1016/j.ejmech.2022.114163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022]
|
42
|
Gargini R, Segura-Collar B, Garranzo-Asensio M, Hortigüela R, Iglesias-Hernández P, Lobato-Alonso D, Moreno-Raja M, Esteban-Martin S, Sepúlveda-Sánchez JM, Nevola L, Sánchez-Gómez P. IDP-410: a Novel Therapeutic Peptide that Alters N-MYC Stability and Reduces Angiogenesis and Tumor Progression in Glioblastomas. Neurotherapeutics 2022; 19:408-420. [PMID: 35099769 PMCID: PMC9130446 DOI: 10.1007/s13311-021-01176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/03/2023] Open
Abstract
Glioblastomas (GBMs) are the most frequent and highly aggressive brain tumors, being resistant to all cytotoxic and molecularly targeted agents tested so far. There is, therefore, an urgent need to find novel therapeutic approaches and/or alternative targets to bring treatment options to patients. Here, we first show that GBMs express high levels of N-MYC protein, a transcription factor involved in normal brain development. A novel stapled peptide designed to specifically target N-MYC protein monomer, IDP-410, is able to impair the formation of N-MYC/MAX complex and reduce the stability of N-MYC itself. As a result, the viability of GBM cells is compromised. Moreover, the efficacy is found dependent on the levels of expression of N-MYC. Finally, we demonstrate that IDP-410 reduces GBM growth in vivo when administered systemically, both in subcutaneous and intracranial xenografts, reducing the vascularization of the tumors, highlighting a potential relationship between the function of N-MYC and the expression of mesenchymal/angiogenic genes. Overall, our results strengthen the view of N-MYC as a therapeutic target in GBM and strongly suggest that IDP-410 could be further developed to become a first-in-class inhibitor of N-MYC protein, affecting not only tumor cell proliferation and survival, but also the interplay between GBM cells and their microenvironment.
Collapse
Affiliation(s)
- Ricardo Gargini
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain.
| | | | | | - Rafael Hortigüela
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
- Centro de Investigaciones, Biológicas Margarita Salas-CSIC, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Two decades of research have established that Nuclear Factor-κB (NF-κB) signaling plays a critical role in reprogramming the fat cell transcriptome towards inflammation in response to overnutrition and metabolic stress. Several groups have suggested that inhibition of NF-κB signaling could have metabolic benefits for obesity-associated adipose tissue inflammation. However, two significant problems arise with this approach. The first is how to deliver general NF-κB inhibitors into adipocytes without allowing these compounds to disrupt normal functioning in cells of the immune system. The second issue is that general inhibition of canonical NF-κB signaling in adipocytes will likely lead to a massive increase in adipocyte apoptosis under conditions of metabolic stress, leading full circle into a secondary inflammation (However, this problem may not be true for non-canonical NF-κB signaling.). This review will focus on the research that has examined canonical and non-canonical NF-κB signaling in adipocytes, focusing on genetic studies that examine loss-of-function of NF-κB specifically in fat cells. Although the development of general inhibitors of canonical NF-κB signaling seems unlikely to succeed in alleviating adipose tissue inflammation in humans, the door remains open for more targeted therapeutics. In principle, these would include compounds that interrogate NF-κB DNA binding, protein-protein interactions, or post-translational modifications that partition NF-κB activity towards some genes and away from others in adipocytes. I also discuss the possibility for inhibitors of non-canonical NF-κB signaling to realize success in mitigating fat cell dysfunction in obesity. To plant the seeds for such approaches, much biochemical “digging” in adipocytes remains; this includes identifying—in an unbiased manner–NF-κB direct and indirect targets, genomic DNA binding sites for all five NF-κB subunits, NF-κB protein-protein interactions, and post-translational modifications of NF-κB in fat cells.
Collapse
|
44
|
Eksi SE, Chitsazan A, Sayar Z, Thomas GV, Fields AJ, Kopp RP, Spellman PT, Adey AC. Epigenetic loss of heterogeneity from low to high grade localized prostate tumours. Nat Commun 2021; 12:7292. [PMID: 34911933 PMCID: PMC8674326 DOI: 10.1038/s41467-021-27615-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying precise molecular subtypes attributable to specific stages of localized prostate cancer has proven difficult due to high levels of heterogeneity. Bulk assays represent a population-average, which mask the heterogeneity that exists at the single-cell level. In this work, we sequence the accessible chromatin regions of 14,424 single-cells from 18 flash-frozen prostate tumours. We observe shared chromatin features among low-grade prostate cancer cells are lost in high-grade tumours. Despite this loss, high-grade tumours exhibit an enrichment for FOXA1, HOXB13 and CDX2 transcription factor binding sites, indicating a shared trans-regulatory programme. We identify two unique genes encoding neuronal adhesion molecules that are highly accessible in high-grade prostate tumours. We show NRXN1 and NLGN1 expression in epithelial, endothelial, immune and neuronal cells in prostate cancer using cyclic immunofluorescence. Our results provide a deeper understanding of the active gene regulatory networks in primary prostate tumours, critical for molecular stratification of the disease.
Collapse
Affiliation(s)
- Sebnem Ece Eksi
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA.
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR, 97209, USA.
| | - Alex Chitsazan
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR, 97209, USA
| | - George V Thomas
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
- Department of Pathology & Laboratory Medicine, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Andrew J Fields
- Department of Molecular and Medical Genetics, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Ryan P Kopp
- Department of Urology, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Paul T Spellman
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
- Department of Molecular and Medical Genetics, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Andrew C Adey
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA.
- Department of Molecular and Medical Genetics, School of Medicine, OHSU, Portland, OR, 97239, USA.
| |
Collapse
|
45
|
SOX2 maintains the stemness of retinoblastoma stem-like cells through Hippo/YAP signaling pathway. Exp Eye Res 2021; 214:108887. [PMID: 34890603 DOI: 10.1016/j.exer.2021.108887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE To explore the mechanisms underlying stemness maintenance of retinoblastoma (RB) stem cells (RSCs). METHODS The retinoblastoma stem-like cells (RSLCs) were isolated by single cell cloning in combination of examination of sphere-forming capacities. The stemness of the cells were characterized by the sphere-forming capacity and the expression levels of RSCs markers. Gene manipulation was performed by lentivirus system. Transcriptional regulation was identified by qRT-PCR, luciferase reporter, nuclear run-on and DNA pull-down assay. Spearman analysis was employed for correlation analysis of genes in tumor tissues of RB patients. RESULTS The isolated RSLCs exhibited enhanced sphere-forming capacity and constantly higher levels of CD44, ABCG2, SOX2 and PAX6, but not CD133. SOX2 positively regulated the stemness of RSLCs. SOX2 directly binds to the promoters of WWTR1 and YAP and transcriptionally activates WWTR1 and YAP. Knockdown of WWTR1 or YAP partially abolished the effect of SOX2 on the stemness of RSLCs. CONCLUSIONS SOX2, as a key deriver, maintains RB stemness by activating Hippo/YAP signaling. Inhibition of Hippo/YAP signaling would be an effective strategy for human RB caused by SOX2 upregulation.
Collapse
|
46
|
Brüschweiler S, Fuchs JE, Bader G, McConnell DB, Konrat R, Mayer M. A Step toward NRF2-DNA Interaction Inhibitors by Fragment-Based NMR Methods. ChemMedChem 2021; 16:3576-3587. [PMID: 34524728 PMCID: PMC9293343 DOI: 10.1002/cmdc.202100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/30/2021] [Indexed: 12/30/2022]
Abstract
The NRF2 transcription factor is a key regulator in cellular oxidative stress response, and acts as a tumor suppressor. Aberrant activation of NRF2 has been implicated in promoting chemo-resistance, tumor growth, and metastasis by activating its downstream target genes. Hence, inhibition of NRF2 promises to be an attractive therapeutic strategy to suppress cell proliferation and enhance cell apoptosis in cancer. Direct targeting of NRF2 with small-molecules to discover protein-DNA interaction inhibitors is challenging as it is a largely intrinsically disordered protein. To discover molecules that bind to NRF2 at the DNA binding interface, we performed an NMR-based fragment screen against its DNA-binding domain. We discovered several weakly binding fragment hits that bind to a region overlapping with the DNA binding site. Using SAR by catalogue we developed an initial structure-activity relationship for the most interesting initial hit series. By combining NMR chemical shift perturbations and data-driven docking, binding poses which agreed with NMR information and the observed SAR were elucidated. The herein discovered NRF2 hits and proposed binding modes form the basis for future structure-based optimization campaigns on this important but to date 'undrugged' cancer driver.
Collapse
Affiliation(s)
- Sven Brüschweiler
- Christian Doppler Laboratory for High-Content Structural Biology and BiotechnologyDepartment of Structural and Computational Biology, Max Perutz LabsUniversity of ViennaCampus Vienna Biocenter 51030ViennaAustria
| | - Julian E. Fuchs
- Boehringer Ingelheim RCV GmbH & Co. KGDr. Boehringer Gasse 5–111121ViennaAustria
| | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co. KGDr. Boehringer Gasse 5–111121ViennaAustria
| | - Darryl B. McConnell
- Boehringer Ingelheim RCV GmbH & Co. KGDr. Boehringer Gasse 5–111121ViennaAustria
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and BiotechnologyDepartment of Structural and Computational Biology, Max Perutz LabsUniversity of ViennaCampus Vienna Biocenter 51030ViennaAustria
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co. KGDr. Boehringer Gasse 5–111121ViennaAustria
| |
Collapse
|
47
|
Medina JR, Tian X, Li WH, Suarez D, Mack JF, LaFrance L, Martyr C, Brackley J, Di Marco C, Rivero R, Heerding DA, McHugh C, Minthorn E, Bhaskar A, Rubin J, Butticello M, Carpenter C, Nartey EN, Berrodin TJ, Kallal LA, Mangatt B. Cell-Based Drug Discovery: Identification and Optimization of Small Molecules that Reduce c-MYC Protein Levels in Cells. J Med Chem 2021; 64:16056-16087. [PMID: 34669409 DOI: 10.1021/acs.jmedchem.1c01416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated expression of the c-MYC oncogene is one of the most common abnormalities in human cancers. Unfortunately, efforts to identify pharmacological inhibitors that directly target MYC have not yet yielded a drug-like molecule due to the lack of any known small molecule binding pocket in the protein, which could be exploited to disrupt MYC function. We have recently described a strategy to target MYC indirectly, where a screening effort designed to identify compounds that can rapidly decrease endogenous c-MYC protein levels in a MYC-amplified cell line led to the discovery of a compound series that phenocopies c-MYC knockdown by siRNA. Herein, we describe our medicinal chemistry program that led to the discovery of potent, orally bioavailable c-MYC-reducing compounds. The development of a minimum pharmacophore model based on empirical structure activity relationship as well as the property-based approach used to modulate pharmacokinetics properties will be highlighted.
Collapse
Affiliation(s)
- Jesús R Medina
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Xinrong Tian
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - William H Li
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Dominic Suarez
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - James F Mack
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Louis LaFrance
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Cuthbert Martyr
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - James Brackley
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Christina Di Marco
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Ralph Rivero
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Dirk A Heerding
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Charles McHugh
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Elisabeth Minthorn
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Aishwarya Bhaskar
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Jacob Rubin
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Michael Butticello
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | | | - Eldridge N Nartey
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Thomas J Berrodin
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Lorena A Kallal
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Biju Mangatt
- Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
48
|
Ruan Y, Chen XH, Jiang F, Liu YG, Liang XL, Lv BM, Zhang HY, Zhang QY. Agent Clustering Strategy Based on Metabolic Flux Distribution and Transcriptome Expression for Novel Drug Development. Biomedicines 2021; 9:biomedicines9111640. [PMID: 34829869 PMCID: PMC8615746 DOI: 10.3390/biomedicines9111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
The network module-based method has been used for drug repositioning. The traditional drug repositioning method only uses the gene characteristics of the drug but ignores the drug-triggered metabolic changes. The metabolic network systematically characterizes the connection between genes, proteins, and metabolic reactions. The differential metabolic flux distribution, as drug metabolism characteristics, was employed to cluster the agents with similar MoAs (mechanism of action). In this study, agents with the same pharmacology were clustered into one group, and a total of 1309 agents from the CMap database were clustered into 98 groups based on differential metabolic flux distribution. Transcription factor (TF) enrichment analysis revealed the agents in the same group (such as group 7 and group 26) were confirmed to have similar MoAs. Through this agent clustering strategy, the candidate drugs which can inhibit (Japanese encephalitis virus) JEV infection were identified. This study provides new insights into drug repositioning and their MoAs.
Collapse
|
49
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
ZMYND8-regulated IRF8 transcription axis is an acute myeloid leukemia dependency. Mol Cell 2021; 81:3604-3622.e10. [PMID: 34358447 DOI: 10.1016/j.molcel.2021.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.
Collapse
|