1
|
Swiderski K, Trieu J, Chee A, Naim T, Brock CJ, Baum DM, Chan AS, Hardee JP, Li W, Kueh AJ, Herold MJ, Murphy KT, Gregorevic P, Lynch GS. Altering phosphorylation of dystrophin S3059 to attenuate cancer cachexia. Life Sci 2025; 362:123343. [PMID: 39740759 DOI: 10.1016/j.lfs.2024.123343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/14/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
AIMS Cancer cachexia affects up to 80 % of patients with advanced cancer and accounts for >20 % of all cancer-related deaths. Sarcolemmal localization of dystrophin, a key protein within the dystrophin-glycoprotein complex (DGC), is perturbed in multiple muscle wasting conditions, including cancer cachexia, indicating a potential role for dystrophin in the maintenance of muscle mass. Strategies to preserve dystrophin expression at the sarcolemma might therefore combat muscle wasting. Phosphorylation of dystrophin serine 3059 (S3059) enhances the interaction between dystrophin and β-dystroglycan and attenuates atrophy of mouse muscle myotubes in vitro when cultured in the presence of colon-26 (C-26) cancer cells. Whether dystrophin S3059 phosphorylation can attenuate cachexia in tumor-bearing mice has not been determined. MATERIALS AND METHODS Mice with systemic mutations of serine 3059 to alanine (DmdS3059A; phospho-null) or glutamate (DmdS3059E; phosphomimetic) were generated to investigate the impact of S3059 phosphorylation on survival and skeletal muscle health in the C-26 tumor-bearing mouse model of cancer cachexia using measures of skeletal muscle function in situ combined with biochemical and histological assessments. KEY FINDINGS In a model of mild cachexia, loss of skeletal muscle mass and function was greater in DmdS3059A mice. Conversely, in a model of severe cachexia, overall survival was prolonged, and markers of protein degradation were decreased in skeletal muscles of DmdS3059E mice. Thus, manipulating dystrophin S3059 phosphorylation can alter the progression of cachexia in tumor-bearing mice. SIGNIFICANCE Strategies to increase phosphorylation of this site, and/or increase dystrophin protein expression, have therapeutic potential for cancer cachexia.
Collapse
Affiliation(s)
- Kristy Swiderski
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Annabel Chee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Christopher J Brock
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Dale M Baum
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Audrey S Chan
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Justin P Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Wenlan Li
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia; Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia; Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Kate T Murphy
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
2
|
Pinheiro A, Petty CA, Stephens CE, Cabrera K, Palanques-Tost E, Gower AC, Marano M, Leviss EM, Boberg MJ, Mahendran J, Bock PM, Fetterman JL, Naya FJ. The Dlk1-Dio3 noncoding RNA cluster coordinately regulates mitochondrial respiration and chromatin structure to establish proper cell state for muscle differentiation. Development 2024; 151:dev203127. [PMID: 39612212 DOI: 10.1242/dev.203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024]
Abstract
The coordinate regulation of metabolism and epigenetics to establish cell state-specific gene expression patterns during lineage progression is a central aspect of cell differentiation, but the factors that regulate this elaborate interplay are not well-defined. The imprinted Dlk1-Dio3 noncoding RNA (ncRNA) cluster has been associated with metabolism in various progenitor cells, suggesting it functions as a regulator of metabolism and cell state. Here, we directly demonstrate that the Dlk1-Dio3 ncRNA cluster coordinates mitochondrial respiration and chromatin structure to maintain proper cell state. Stable mouse muscle cell lines were generated harboring two distinct deletions in the proximal promoter region, resulting in either greatly upregulated or downregulated expression of the entire Dlk1-Dio3 ncRNA cluster. Both mutant lines displayed impaired muscle differentiation along with dysregulated structural gene expression and abnormalities in mitochondrial respiration. Genome-wide chromatin accessibility and histone methylation patterns were also severely affected in these mutants. Our results strongly suggest that muscle cells are sensitive to Dlk1-Dio3 ncRNA dosage, and that the cluster coordinately regulates metabolic activity and the epigenome to maintain proper cell state in the myogenic lineage.
Collapse
Affiliation(s)
- Amanda Pinheiro
- Program in Molecular Biology, Cell Biology, and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Christopher A Petty
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Chelsea E Stephens
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Kevin Cabrera
- Program in Molecular Biology, Cell Biology, and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | - Adam C Gower
- Clinical and Translational Science Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Madison Marano
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Ethan M Leviss
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Matthew J Boberg
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | - Payton M Bock
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Jessica L Fetterman
- Department of Medicine, Vascular Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Francisco J Naya
- Program in Molecular Biology, Cell Biology, and Molecular Biology, Boston University, Boston, MA 02215, USA
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
3
|
Moutachi D, Hyzewicz J, Roy P, Lemaitre M, Bachasson D, Amthor H, Ritvos O, Li Z, Furling D, Agbulut O, Ferry A. Treadmill running and mechanical overloading improved the strength of the plantaris muscle in the dystrophin-desmin double knockout (DKO) mouse. J Physiol 2024; 602:3641-3660. [PMID: 38980963 DOI: 10.1113/jp286425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
Limited knowledge exists regarding the chronic effect of muscular exercise on muscle function in a murine model of severe Duchenne muscular dystrophy (DMD). Here we determined the effects of 1 month of voluntary wheel running (WR), 1 month of enforced treadmill running (TR) and 1 month of mechanical overloading resulting from the removal of the synergic muscles (OVL) in mice lacking both dystrophin and desmin (DKO). Additionally, we examined the effect of activin receptor administration (AR). DKO mice, displaying severe muscle weakness, atrophy and greater susceptibility to contraction-induced functional loss, were exercised or treated with AR at 1 month of age and in situ force production of lower leg muscle was measured at the age of 2 months. We found that TR and OVL increased absolute maximal force and the rate of force development of the plantaris muscle in DKO mice. In contrast, those of the tibialis anterior (TA) muscle remained unaffected by TR and WR. Furthermore, the effects of TR and OVL on plantaris muscle function in DKO mice closely resembled those in mdx mice, a less severe murine DMD model. AR also improved absolute maximal force and the rate of force development of the TA muscle in DKO mice. In conclusion, exercise training improved plantaris muscle weakness in severely affected dystrophic mice. Consequently, these preclinical results may contribute to fostering further investigations aimed at assessing the potential benefits of exercise for DMD patients, particularly resistance training involving a low number of intense muscle contractions. KEY POINTS: Very little is known about the effects of exercise training in a murine model of severe Duchenne muscular dystrophy (DMD). One reason is that it is feared that chronic muscular exercise, particularly that involving intense muscle contractions, could exacerbate the disease. In DKO mice lacking both dystrophin and desmin, characterized by severe lower leg muscle weakness, atrophy and fragility in comparison to the less severe DMD mdx model, we found that enforced treadmill running improved absolute maximal force of the plantaris muscle, while that of tibialis anterior muscle remained unaffected by both enforced treadmill and voluntary wheel running. Furthermore, mechanical overloading, a non-physiological model of chronic resistance exercise, reversed plantaris muscle weakness. Consequently, our findings may have the potential to alleviate concerns and pave the way for exploring the prescription of endurance and resistance training as a viable therapeutic approach for the treatment of dystrophic patients. Additionally, such interventions may serve in mitigating the pathophysiological mechanisms induced by physical inactivity.
Collapse
Affiliation(s)
- Dylan Moutachi
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
| | - Janek Hyzewicz
- Integrare Research Unit UMRS951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Pauline Roy
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
| | - Damien Bachasson
- Institute of Myology, Neuromuscular Investigation Center, Neuromuscular Physiology and Evaluation Laboratory, Paris, France
| | - Helge Amthor
- Université de Versailles Saint-Quentin-en-Yvelines, INSERM U1179, Montigny-le-Bretonneux, France
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zhenlin Li
- Sorbonne Université, Institut de Biologie Paris-Seine, UMR CNRS 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Denis Furling
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine, UMR CNRS 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Arnaud Ferry
- Sorbonne Université, INSERM U974, Centre de Recherche en Myologie, Paris, France
- Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Swiderski K, Chan AS, Herold MJ, Kueh AJ, Chung JD, Hardee JP, Trieu J, Chee A, Naim T, Gregorevic P, Lynch GS. The BALB/c.mdx62 mouse exhibits a dystrophic muscle pathology and is a model of Duchenne muscular dystrophy. Dis Model Mech 2024; 17:dmm050502. [PMID: 38602028 PMCID: PMC11095634 DOI: 10.1242/dmm.050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating monogenic skeletal muscle-wasting disorder. Although many pharmacological and genetic interventions have been reported in preclinical studies, few have progressed to clinical trials with meaningful benefit. Identifying therapeutic potential can be limited by availability of suitable preclinical mouse models. More rigorous testing across models with varied background strains and mutations can identify treatments for clinical success. Here, we report the generation of a DMD mouse model with a CRISPR-induced deletion within exon 62 of the dystrophin gene (Dmd) and the first generated in BALB/c mice. Analysis of mice at 3, 6 and 12 months of age confirmed loss of expression of the dystrophin protein isoform Dp427 and resultant dystrophic pathology in limb muscles and the diaphragm, with evidence of centrally nucleated fibers, increased inflammatory markers and fibrosis, progressive decline in muscle function, and compromised trabecular bone development. The BALB/c.mdx62 mouse is a novel model of DMD with associated variations in the immune response and muscle phenotype, compared with those of existing models. It represents an important addition to the preclinical model toolbox for developing therapeutic strategies.
Collapse
Affiliation(s)
- Kristy Swiderski
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Audrey S. Chan
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marco J. Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Jin D. Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Justin P. Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Annabel Chee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
5
|
Hassani M, Moutachi D, Lemaitre M, Boulinguiez A, Furling D, Agbulut O, Ferry A. Beneficial effects of resistance training on both mild and severe mouse dystrophic muscle function as a preclinical option for Duchenne muscular dystrophy. PLoS One 2024; 19:e0295700. [PMID: 38457407 PMCID: PMC10923407 DOI: 10.1371/journal.pone.0295700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/27/2023] [Indexed: 03/10/2024] Open
Abstract
Mechanical overloading (OVL) resulting from the ablation of muscle agonists, a supra-physiological model of resistance training, reduces skeletal muscle fragility, i.e. the immediate maximal force drop following lengthening contractions, and increases maximal force production, in mdx mice, a murine model of Duchene muscular dystrophy (DMD). Here, we further analyzed these beneficial effects of OVL by determining whether they were blocked by cyclosporin, an inhibitor of the calcineurin pathway, and whether there were also observed in the D2-mdx mice, a more severe murine DMD model. We found that cyclosporin did not block the beneficial effect of 1-month OVL on plantaris muscle fragility in mdx mice, nor did it limit the increases in maximal force and muscle weight (an index of hypertrophy). Fragility and maximal force were also ameliorated by OVL in the plantaris muscle of D2-mdx mice. In addition, OVL increased the expression of utrophin, cytoplamic γ-actin, MyoD, and p-Akt in the D2-mdx mice, proteins playing an important role in fragility, maximal force gain and muscle growth. In conclusion, OVL reduced fragility and increased maximal force in the more frequently used mild mdx model but also in D2-mdx mice, a severe model of DMD, closer to human physiopathology. Moreover, these beneficial effects of OVL did not seem to be related to the activation of the calcineurin pathway. Thus, this preclinical study suggests that resistance training could have a potential benefit in the improvement of the quality of life of DMD patients.
Collapse
Affiliation(s)
- Medhi Hassani
- Sorbonne Université, Institut de Biologie Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, F-75013 France
| | - Dylan Moutachi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | | | - Alexis Boulinguiez
- Department of Biological Sciences, Royal Holloway University of London, Surrey, United Kingdom
| | - Denis Furling
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, F-75013 France
| | - Arnaud Ferry
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
- Université Paris Cité, F-75006 Paris, France
| |
Collapse
|
6
|
Dennhag N, Kahsay A, Nissen I, Nord H, Chermenina M, Liu J, Arner A, Liu JX, Backman LJ, Remeseiro S, von Hofsten J, Pedrosa Domellöf F. fhl2b mediates extraocular muscle protection in zebrafish models of muscular dystrophies and its ectopic expression ameliorates affected body muscles. Nat Commun 2024; 15:1950. [PMID: 38431640 PMCID: PMC10908798 DOI: 10.1038/s41467-024-46187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
In muscular dystrophies, muscle fibers loose integrity and die, causing significant suffering and premature death. Strikingly, the extraocular muscles (EOMs) are spared, functioning well despite the disease progression. Although EOMs have been shown to differ from body musculature, the mechanisms underlying this inherent resistance to muscle dystrophies remain unknown. Here, we demonstrate important differences in gene expression as a response to muscle dystrophies between the EOMs and trunk muscles in zebrafish via transcriptomic profiling. We show that the LIM-protein Fhl2 is increased in response to the knockout of desmin, plectin and obscurin, cytoskeletal proteins whose knockout causes different muscle dystrophies, and contributes to disease protection of the EOMs. Moreover, we show that ectopic expression of fhl2b can partially rescue the muscle phenotype in the zebrafish Duchenne muscular dystrophy model sapje, significantly improving their survival. Therefore, Fhl2 is a protective agent and a candidate target gene for therapy of muscular dystrophies.
Collapse
Affiliation(s)
- Nils Dennhag
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Abraha Kahsay
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Itzel Nissen
- Department of Medical and Translational Biology; Section of Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Hanna Nord
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Maria Chermenina
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Jiao Liu
- Div. Thoracic Surgery, Dept. Clinical Sciences, Lund University, Lund, Sweden
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Anders Arner
- Div. Thoracic Surgery, Dept. Clinical Sciences, Lund University, Lund, Sweden
| | - Jing-Xia Liu
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Ludvig J Backman
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Silvia Remeseiro
- Department of Medical and Translational Biology; Section of Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
| | - Fatima Pedrosa Domellöf
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden.
| |
Collapse
|
7
|
Membrez M, Migliavacca E, Christen S, Yaku K, Trieu J, Lee AK, Morandini F, Giner MP, Stiner J, Makarov MV, Garratt ES, Vasiloglou MF, Chanvillard L, Dalbram E, Ehrlich AM, Sanchez-Garcia JL, Canto C, Karagounis LG, Treebak JT, Migaud ME, Heshmat R, Razi F, Karnani N, Ostovar A, Farzadfar F, Tay SKH, Sanders MJ, Lillycrop KA, Godfrey KM, Nakagawa T, Moco S, Koopman R, Lynch GS, Sorrentino V, Feige JN. Trigonelline is an NAD + precursor that improves muscle function during ageing and is reduced in human sarcopenia. Nat Metab 2024; 6:433-447. [PMID: 38504132 DOI: 10.1038/s42255-024-00997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/26/2024] [Indexed: 03/21/2024]
Abstract
Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.
Collapse
Affiliation(s)
- Mathieu Membrez
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Stefan Christen
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alaina K Lee
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Francesco Morandini
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maria Pilar Giner
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Jade Stiner
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mikhail V Makarov
- Mitchell Cancer Institute, Department of Pharmacology, F. P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Emma S Garratt
- Institute of Developmental Sciences, Human Developmental and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Maria F Vasiloglou
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Lucie Chanvillard
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Leonidas G Karagounis
- Nestlé Health Science, Translation Research, Lausanne, Switzerland
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, F. P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Stacey K H Tay
- KTP-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Matthew J Sanders
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Karen A Lillycrop
- Institute of Developmental Sciences, Human Developmental and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Keith M Godfrey
- Institute of Developmental Sciences, Human Developmental and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Medical Research Council Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Sofia Moco
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - René Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo Sorrentino
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Mucha O, Myszka M, Podkalicka P, Świderska B, Malinowska A, Dulak J, Łoboda A. Proteome Profiling of the Dystrophic mdx Mice Diaphragm. Biomolecules 2023; 13:1648. [PMID: 38002330 PMCID: PMC10669179 DOI: 10.3390/biom13111648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mdx mice with a spontaneous mutation in exon 23 of the Dmd gene represent the most common model to investigate the pathophysiology of Duchenne muscular dystrophy (DMD). The disease, caused by the lack of functional dystrophin, is characterized by irreversible impairment of muscle functions, with the diaphragm affected earlier and more severely than other skeletal muscles. We applied a label-free (LF) method and the more thorough tandem mass tag (TMT)-based method to analyze differentially expressed proteins in the diaphragm of 6-week-old mdx mice. The comparison of both methods revealed 88 commonly changed proteins. A more in-depth analysis of the TMT-based method showed 953 significantly changed proteins, with 867 increased and 86 decreased in dystrophic animals (q-value < 0.05, fold-change threshold: 1.5). Consequently, several dysregulated processes were demonstrated, including the immune response, fibrosis, translation, and programmed cell death. Interestingly, in the dystrophic diaphragm, we found a significant decrease in the expression of enzymes generating hydrogen sulfide (H2S), suggesting that alterations in the metabolism of this gaseous mediator could modulate DMD progression, which could be a potential target for pharmacological intervention.
Collapse
Affiliation(s)
- Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
- Doctoral School of Exact and Natural Sciences, Łojasiewicza 11 Street, 30-348 Kraków, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
| | - Bianka Świderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a Street, 02-106 Warsaw, Poland; (B.Ś.); (A.M.)
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a Street, 02-106 Warsaw, Poland; (B.Ś.); (A.M.)
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
| |
Collapse
|
9
|
Dowling P, Swandulla D, Ohlendieck K. Cellular pathogenesis of Duchenne muscular dystrophy: progressive myofibre degeneration, chronic inflammation, reactive myofibrosis and satellite cell dysfunction. Eur J Transl Myol 2023; 33:11856. [PMID: 37846661 PMCID: PMC10811648 DOI: 10.4081/ejtm.2023.11856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023] Open
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disease of early childhood and characterized by complex pathophysiological and histopathological changes in the voluntary contractile system, including myonecrosis, chronic inflammation, fat substitution and reactive myofibrosis. The continued loss of functional myofibres and replacement with non-contractile cells, as well as extensive tissue scarring and decline in tissue elasticity, leads to severe skeletal muscle weakness. In addition, dystrophic muscles exhibit a greatly diminished regenerative capacity to counteract the ongoing process of fibre degeneration. In normal muscle tissues, an abundant stem cell pool consisting of satellite cells that are localized between the sarcolemma and basal lamina, provides a rich source for the production of activated myogenic progenitor cells that are involved in efficient myofibre repair and tissue regeneration. Interestingly, the self-renewal of satellite cells for maintaining an essential pool of stem cells in matured skeletal muscles is increased in dystrophin-deficient fibres. However, satellite cell hyperplasia does not result in efficient recovery of dystrophic muscles due to impaired asymmetric cell divisions. The lack of expression of the full-length dystrophin isoform Dp427-M, which is due to primary defects in the DMD gene, appears to affect key regulators of satellite cell polarity causing a reduced differentiation of myogenic progenitors, which are essential for myofibre regeneration. This review outlines the complexity of dystrophinopathy and describes the importance of the pathophysiological role of satellite cell dysfunction. A brief discussion of the bioanalytical usefulness of single cell proteomics for future studies of satellite cell biology is provided.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
10
|
Sopariwala DH, Hao NTT, Narkar VA. Estrogen-related Receptor Signaling in Skeletal Muscle Fitness. Int J Sports Med 2023; 44:609-617. [PMID: 36787804 PMCID: PMC11168301 DOI: 10.1055/a-2035-8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Skeletal muscle is a highly plastic tissue that can alter its metabolic and contractile features, as well as regenerative potential in response to exercise and other conditions. Multiple signaling factors including metabolites, kinases, receptors, and transcriptional factors have been studied in the regulation of skeletal muscle plasticity. Recently, estrogen-related receptors (ERRs) have emerged as a critical transcriptional hub in control of skeletal muscle homeostasis. ERRα and ERRγ - the two highly expressed ERR sub-types in the muscle respond to various extracellular cues such as exercise, hypoxia, fasting and dietary factors, in turn regulating gene expression in the skeletal muscle. On the other hand, conditions such as diabetes and muscular dystrophy suppress expression of ERRs in the skeletal muscle, likely contributing to disease progression. We highlight key functions of ERRs in the skeletal muscle including the regulation of fiber type, mitochondrial metabolism, vascularization, and regeneration. We also describe how ERRs are regulated in the skeletal muscle, and their interaction with important muscle regulators (e. g. AMPK and PGCs). Finally, we identify critical gaps in our understanding of ERR signaling in the skeletal muscle, and suggest future areas of investigation to advance ERRs as potential targets for function promoting therapeutics in muscle diseases.
Collapse
Affiliation(s)
- Danesh H. Sopariwala
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Nguyen Thi Thu Hao
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| |
Collapse
|
11
|
Mikhail AI, Ng SY, Mattina SR, Ljubicic V. AMPK is mitochondrial medicine for neuromuscular disorders. Trends Mol Med 2023:S1471-4914(23)00070-9. [PMID: 37080889 DOI: 10.1016/j.molmed.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1), and spinal muscular atrophy (SMA) are the most prevalent neuromuscular disorders (NMDs) in children and adults. Central to a healthy neuromuscular system are the processes that govern mitochondrial turnover and dynamics, which are regulated by AMP-activated protein kinase (AMPK). Here, we survey mitochondrial stresses that are common between, as well as unique to, DMD, DM1, and SMA, and which may serve as potential therapeutic targets to mitigate neuromuscular disease. We also highlight recent advances that leverage a mutation-agnostic strategy featuring physiological or pharmacological AMPK activation to enhance mitochondrial health in these conditions, as well as identify outstanding questions and opportunities for future pursuit.
Collapse
Affiliation(s)
- Andrew I Mikhail
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Sean Y Ng
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Stephanie R Mattina
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Vladimir Ljubicic
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
12
|
Sopariwala DH, Rios AS, Pei G, Roy A, Tomaz da Silva M, Thi Thu Nguyen H, Saley A, Van Drunen R, Kralli A, Mahan K, Zhao Z, Kumar A, Narkar VA. Innately expressed estrogen-related receptors in the skeletal muscle are indispensable for exercise fitness. FASEB J 2023; 37:e22727. [PMID: 36583689 DOI: 10.1096/fj.202201518r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Transcriptional determinants in the skeletal muscle that govern exercise capacity, while poorly defined, could provide molecular insights into how exercise improves fitness. Here, we have elucidated the role of nuclear receptors, estrogen-related receptor alpha and gamma (ERRα/γ) in regulating myofibrillar composition, contractility, and exercise capacity in skeletal muscle. We used muscle-specific single or double (DKO) ERRα/γ knockout mice to investigate the effect of ERRα/γ deletion on muscle and exercise parameters. Individual knockout of ERRα/γ did not have a significant impact on the skeletal muscle. On the other hand, DKO mice exhibit pale muscles compared to wild-type (WT) littermates. RNA-seq analysis revealed a predominant decrease in expression of genes linked to mitochondrial and oxidative metabolism in DKO versus WT muscles. DKO muscles exhibit marked repression of oxidative enzymatic capacity, as well as mitochondrial number and size compared to WT muscles. Mitochondrial function is also impaired in single myofibers isolated from DKO versus WT muscles. In addition, mutant muscles exhibit reduced angiogenic gene expression and decreased capillarity. Consequently, DKO mice have a significantly reduced exercise capacity, further reflected in poor fatigue resistance of DKO mice in in vivo contraction assays. These results show that ERRα and ERRγ together are a critical link between muscle aerobic capacity and exercise tolerance. The ERRα/γ mutant mice could be valuable for understanding the long-term impact of impaired mitochondria and vascular supply on the pathogenesis of muscle-linked disorders.
Collapse
Affiliation(s)
- Danesh H Sopariwala
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Andrea S Rios
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Guangsheng Pei
- Center for Precision Medicine, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Meiricris Tomaz da Silva
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Hao Thi Thu Nguyen
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Addison Saley
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA.,Department of Biosciences, Rice University, Houston, Texas, USA
| | - Rachel Van Drunen
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Anastasia Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristin Mahan
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Medicine, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Vihang A Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences at UTHealth, Houston, Texas, USA
| |
Collapse
|
13
|
Zweyer M, Ohlendieck K, Swandulla D. Histological and Histochemical Microscopy Used to Verify 2D-DIGE Pathoproteomics. Methods Mol Biol 2023; 2596:465-480. [PMID: 36378457 DOI: 10.1007/978-1-0716-2831-7_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Comparative gel electrophoretic analyses of normal versus pathological specimens can swiftly identify proteome-wide changes in the concentration of specific protein isoforms. The application of fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) can be employed for the characterization of complex protein populations in health and disease. In order to verify pathoproteomic findings and correlate them to histopathological alterations, standardized histological and histochemical methodology can be applied for the cell biological analysis of normal versus pathological tissue samples. This chapter outlines the usage of histochemical ATPase staining of fast and slow fiber types in normal versus dystrophic skeletal muscles, as well as the application of hematoxylin and eosin staining of nuclei and the cellular body in kidney cells, and Sudan black staining of lipids in cryo-sections.
Collapse
Affiliation(s)
- Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | |
Collapse
|
14
|
Marchioretti C, Zuccaro E, Pandey UB, Rosati J, Basso M, Pennuto M. Skeletal Muscle Pathogenesis in Polyglutamine Diseases. Cells 2022; 11:2105. [PMID: 35805189 PMCID: PMC9265456 DOI: 10.3390/cells11132105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Polyglutamine diseases are characterized by selective dysfunction and degeneration of specific types of neurons in the central nervous system. In addition, nonneuronal cells can also be affected as a consequence of primary degeneration or due to neuronal dysfunction. Skeletal muscle is a primary site of toxicity of polyglutamine-expanded androgen receptor, but it is also affected in other polyglutamine diseases, more likely due to neuronal dysfunction and death. Nonetheless, pathological processes occurring in skeletal muscle atrophy impact the entire body metabolism, thus actively contributing to the inexorable progression towards the late and final stages of disease. Skeletal muscle atrophy is well recapitulated in animal models of polyglutamine disease. In this review, we discuss the impact and relevance of skeletal muscle in patients affected by polyglutamine diseases and we review evidence obtained in animal models and patient-derived cells modeling skeletal muscle.
Collapse
Affiliation(s)
- Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15100, USA;
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71100 Foggia, Italy;
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38100 Trento, Italy;
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
15
|
Consalvi S, Tucciarone L, Macrì E, De Bardi M, Picozza M, Salvatori I, Renzini A, Valente S, Mai A, Moresi V, Puri PL. Determinants of epigenetic resistance to HDAC inhibitors in dystrophic fibro-adipogenic progenitors. EMBO Rep 2022; 23:e54721. [PMID: 35383427 PMCID: PMC9171680 DOI: 10.15252/embr.202254721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacological treatment of Duchenne muscular dystrophy (DMD) with histone deacetylase inhibitors (HDACi) is currently being tested in clinical trials; however, pre-clinical studies indicated that the beneficial effects of HDACi are restricted to early stages of disease. We show that FAPs from late-stage mdx mice exhibit aberrant HDAC activity and genome-wide alterations of histone acetylation that are not fully reversed by HDACi. In particular, combinatorial H3K27 and/or H3K9/14 hypo-acetylation at promoters of genes required for cell cycle activation and progression, as well as glycolysis, are associated with their downregulation in late-stage mdx FAPs. These alterations could not be reversed by HDACi, due to a general resistance to HDACi-induced H3K9/14 hyperacetylation. Conversely, H3K9/14 hyper-acetylation at promoters of Senescence Associated Secretory Phenotype (SASP) genes is associated with their upregulation in late-stage mdx FAPs; however, HDACi could reduce promoter acetylation and blunt SASP gene activation. These data reveal that during DMD progression FAPs develop disease-associated features reminiscent of cellular senescence, through epigenetically distinct and pharmacologically dissociable events. They also indicate that HDACi might retain anti-fibrotic effects at late stages of DMD.
Collapse
Affiliation(s)
- Silvia Consalvi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
- UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Luca Tucciarone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Elisa Macrì
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Marco De Bardi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Mario Picozza
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Illari Salvatori
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, DAHFMO, University of Rome "La Sapienza", Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, University of Rome "La Sapienza", Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, University of Rome "La Sapienza", Rome, Italy
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, DAHFMO, University of Rome "La Sapienza", Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council (CNR), Rome Unit, Rome, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
16
|
Alves FM, Kysenius K, Caldow MK, Hardee JP, Chung JD, Trieu J, Hare DJ, Crouch PJ, Ayton S, Bush AI, Lynch GS, Koopman R. Iron overload and impaired iron handling contribute to the dystrophic pathology in models of Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2022; 13:1541-1553. [PMID: 35249268 PMCID: PMC9178167 DOI: 10.1002/jcsm.12950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Oxidative stress is implicated in the pathophysiology of Duchenne muscular dystrophy (DMD, caused by mutations in the dystrophin gene), which is the most common and severe of the muscular dystrophies. To our knowledge, the distribution of iron, an important modulator of oxidative stress, has not been assessed in DMD. We tested the hypotheses that iron accumulation occurs in mouse models of DMD and that modulation of iron through the diet or chelation could modify disease severity. METHODS We assessed iron distribution and total elemental iron using LA-ICP-MS on skeletal muscle cross-sections of 8-week-old Bl10 control mice and dystrophic mdx mice (with moderate dystrophy) and dystrophin/utrophin-null mice (dko, with severe dystrophy). In addition, mdx mice (4 weeks) were treated with either an iron chelator (deferiprone 150 mg/kg/day) or iron-enriched feed (containing 1% added iron as carbonyl iron). Immunoblotting was used to determine the abundance of iron- and mitochondria-related proteins. (Immuno)histochemical and mRNA assessments of fibrosis and inflammation were also performed. RESULTS We observed a significant increase in total elemental iron in hindlimb muscles of dko mice (+50%, P < 0.05) and in the diaphragm of mdx mice (+80%, P < 0.05), with both tissues exhibiting severe pathology. Iron dyshomeostasis was further evidenced by an increase in the storage protein ferritin (dko: +39%, P < 0.05) and ferroportin compared with Bl10 control mice (mdx: +152% and dko: +175%, P < 0.05). Despite having features of iron overload, dystrophic muscles had lower protein expression of ALAS-1, the rate-limiting enzyme for haem synthesis (dko -44%, P < 0.05), and the haem-containing protein myoglobin (dko -54%, P < 0.05). Deferiprone treatment tended to decrease muscle iron levels in mdx mice (-30%, P < 0.1), which was associated with lower oxidative stress and fibrosis, but suppressed haem-containing proteins and mitochondrial content. Increasing iron via dietary intervention elevated total muscle iron (+25%, P < 0.05) but did not aggravate the pathology. CONCLUSIONS Muscles from dystrophic mice have increased iron levels and dysregulated iron-related proteins that are associated with dystrophic pathology. Muscle iron levels were manipulated by iron chelation and iron enriched feed. Iron chelation reduced fibrosis and reactive oxygen species (ROS) but also suppressed haem-containing proteins and mitochondrial activity. Conversely, iron supplementation increased ferritin and haem-containing proteins but did not alter ROS, fibrosis, or mitochondrial activity. Further studies are required to investigate the contribution of impaired ferritin breakdown in the dysregulation of iron homeostasis in DMD.
Collapse
Affiliation(s)
- Francesca M Alves
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kai Kysenius
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marissa K Caldow
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Justin P Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dominic J Hare
- Monash eResearch Centre, Monash University, Clayton, Victoria, Australia
| | - Peter J Crouch
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - René Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
18
|
Hardee JP, Caldow MK, Chan ASM, Plenderleith SK, Trieu J, Koopman R, Lynch GS. Dystrophin deficiency disrupts muscle clock expression and mitochondrial quality control in mdx mice. Am J Physiol Cell Physiol 2021; 321:C288-C296. [PMID: 34191629 DOI: 10.1152/ajpcell.00188.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Impaired oxidative capacity and mitochondrial function contribute to the dystrophic pathology in muscles of patients with Duchenne muscular dystrophy (DMD) and in relevant mouse models of the disease. Emerging evidence suggests an association between disrupted core clock expression and mitochondrial quality control, but this has not been established in muscles lacking dystrophin. We examined the diurnal regulation of muscle core clock and mitochondrial quality control expression in dystrophin-deficient C57BL/10ScSn-Dmdmdx (mdx) mice, an established model of DMD. Male C57BL/10 (BL/10; n = 18) and mdx mice (n = 18) were examined every 4 h beginning at the dark cycle. Throughout the entire light-dark cycle, extensor digitorum longus (EDL) muscles from mdx mice had decreased core clock mRNA expression (Arntl, Cry1, Cry2, Nr1d2; P < 0.05) and disrupted mitochondrial quality control mRNA expression related to biogenesis (decreased; Ppargc1a, Esrra; P < 0.05), fission (increased; Dnm1l; P < 0.01), fusion (decreased; Opa1, Mfn1; P < 0.05), and autophagy/mitophagy (decreased: Bnip3; P < 0.05; increased: Becn1; P < 0.05). Cosinor analysis revealed a decrease in the rhythmicity parameters mesor and amplitude for Arntl, Cry1, Cry2, Per2, and Nr1d1 (P < 0.001) in mdx mice. Diurnal oscillations in Esrra, Sirt1, Map1lc3b, and Sqstm1 were absent in mdx mice, along with decreased mesor and amplitude of Ppargc1a mRNA expression (P < 0.01). The expression of proteins involved in mitochondrial biogenesis (decreased: PPARGC1A, P < 0.05) and autophagy/mitophagy (increased: MAP1LC3BII, SQSTM1, BNIP3; P < 0.05) were also dysregulated in tibialis anterior muscles of mdx mice. These findings suggest that dystrophin deficiency in mdx mice impairs the regulation of the core clock and mitochondrial quality control, with relevance to DMD and related disorders.
Collapse
Affiliation(s)
- Justin P Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marissa K Caldow
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Audrey S M Chan
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart K Plenderleith
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - René Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Swiderski K, Lynch GS. Murine models of Duchenne muscular dystrophy: is there a best model? Am J Physiol Cell Physiol 2021; 321:C409-C412. [PMID: 34260298 DOI: 10.1152/ajpcell.00212.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Kristy Swiderski
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|