1
|
Queathem ED, Stagg DB, Nelson AB, Chaves AB, Crown SB, Fulghum K, d'Avignon DA, Ryder JR, Bolan PJ, Hayir A, Gillingham JR, Jannatpour S, Rome FI, Williams AS, Muoio DM, Ikramuddin S, Hughey C, Puchalska P, Crawford PA. Ketogenesis protects against MASLD-MASH progression through fat oxidation-independent mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618895. [PMID: 39464122 PMCID: PMC11507910 DOI: 10.1101/2024.10.17.618895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) to metabolic-dysfunction-associated steatohepatitis (MASH) involves complex alterations in both liver-autonomous and systemic metabolism that influence the liver's balance of fat accretion and disposal. Here, we quantify the relative contribution of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable-isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis. We found in humans with MASH, that liver injury correlated positively with ketogenesis and total fat oxidation, but not with turnover of the tricarboxylic acid cycle. The use of loss-of-function mouse models demonstrated that disruption of mitochondrial HMG-CoA synthase (HMGCS2), the rate-limiting step of ketogenesis, impairs overall hepatic fat oxidation and induces a MASLD-MASH-like phenotype. Furthermore, disruption of mitochondrial β-hydroxybutyrate dehydrogenase (BDH1), the terminal step of ketogenesis, also impaired fat oxidation, but surprisingly did not exacerbate steatotic liver injury. Taken together, these findings suggest that quantifiable variations in overall hepatic fat oxidation may not be a primary determinant of MASLD-to-MASH progression, but rather, that maintenance of hepatic ketogenesis could serve a protective role through alternative fat oxidation-independent mechanisms.
Collapse
|
2
|
Song Q, Kobayashi S, Kataoka Y, Oda H. Direct Molecular Action of Taurine on Hepatic Gene Expression Associated with the Amelioration of Hypercholesterolemia in Rats. Antioxidants (Basel) 2024; 13:990. [PMID: 39199235 PMCID: PMC11351134 DOI: 10.3390/antiox13080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Taurine can ameliorate hypercholesterolemia by facilitating cholesterol efflux and increasing cytochrome P450 7A1 (CYP7A1) without clear underlying molecular mechanisms. This study aims to elucidate the molecular action of taurine in diet-induced hypercholesterolemia. Male Wistar rats were fed a high cholesterol diet containing 5% taurine for 14 days. Three-dimensional primary hepatocytes from rats were exposed to 10 mM taurine for 24 h. Transcriptome analyses of both the liver and hepatocytes were performed using DNA microarray. Taurine significantly decreased serum cholesterol levels and increased hepatic CYP7A1 mRNA levels and transcription rates in rats. Taurine altered the expression of seventy-seven genes in the liver, involving lipid, drug, amino acid metabolism, and gluconeogenesis pathways. The small heterodimer partner (SHP), a transcription factor regulated by taurine, was suppressed. "Network analysis" revealed a negative correlation between the SHP and induction of CYP7A1 and cytochrome P450 8B1 (CYP8B1). However, CYP7A1 and CYP8B1 levels were not altered by taurine in 3D-primary hepatocytes. Venn diagram analyses of the transcriptomes in both hepatocytes and the liver indicated a consistent upregulation of organic anion transporting polypeptide 2 (OATP2) and betaine homocysteine methyltransferase (BHMT). Taurine ameliorated hypercholesterolemia in rats fed a high cholesterol diet by directly enhancing the hepatic expression of BHMT and OATP2, which modulated the SHP and induced CYP7A1 and CYP8B1, thereby promoting cholesterol catabolism and lowering blood cholesterol levels.
Collapse
Affiliation(s)
| | | | | | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Fakhlaei R, Selamat J, Abdull Razis AF, Sukor R, Ahmad S, Khatib A, Zou X. Development of a zebrafish model for toxicity evaluation of adulterated Apis mellifera honey. CHEMOSPHERE 2024; 356:141736. [PMID: 38554873 DOI: 10.1016/j.chemosphere.2024.141736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Since ancient times, honey has been used for medical purposes and the treatment of various disorders. As a high-quality food product, the honey industry is prone to fraud and adulteration. Moreover, limited experimental studies have investigated the impact of adulterated honey consumption using zebrafish as the animal model. The aims of this study were: (1) to calculate the lethal concentration (LC50) of acid-adulterated Apis mellifera honey on embryos, (2) to investigate the effect of pure and acid-adulterated A. mellifera honey on hatching rate (%) and heart rate of zebrafish (embryos and larvae), (3) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish and (4) to screen the metabolites profile of adulterated honey from blood serum of adult zebrafish. The result indicated the LC50 of 31.10 ± 1.63 (mg/ml) for pure A. mellifera honey, while acetic acid demonstrates the lowest LC50 (4.98 ± 0.06 mg/ml) among acid adulterants with the highest mortality rate at 96 hpf. The treatment of zebrafish embryos with adulterated A. mellifera honey significantly (p ≤ 0.05) increased the hatching rate (%) and decreased the heartbeat rate. Acute, prolong-acute, and sub-acute toxicology tests on adult zebrafish were conducted at a concentration of 7% w/w of acid adulterants. Furthermore, the blood serum metabolite profile of adulterated-honey-treated zebrafish was screened by LC-MS/MS analysis and three endogenous metabolites have been revealed: (1) Xanthotoxol or 8-Hydroxypsoralen, (2) 16-Oxoandrostenediol, and (3) 3,5-Dicaffeoyl-4-succinoylquinic acid. These results prove that employed honey adulterants cause mortality that contributes to higher toxicity. Moreover, this study introduces the zebrafish toxicity test as a new promising standard technique for the potential toxicity assessment of acid-adulterated honey in this study and hazardous food adulterants for future studies.
Collapse
Affiliation(s)
- Rafieh Fakhlaei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd, 212013, Zhenjiang, Jiangsu, China; Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jinap Selamat
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Rashidah Sukor
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd, 212013, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Martino MR, Habibi M, Ferguson D, Brookheart RT, Thyfault JP, Meyer GA, Lantier L, Hughey CC, Finck BN. Disruption of hepatic mitochondrial pyruvate and amino acid metabolism impairs gluconeogenesis and endurance exercise capacity in mice. Am J Physiol Endocrinol Metab 2024; 326:E515-E527. [PMID: 38353639 PMCID: PMC11193532 DOI: 10.1152/ajpendo.00258.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Exercise robustly increases the glucose demands of skeletal muscle. This demand is met by not only muscle glycogenolysis but also accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting hepatic gluconeogenic efficiency and capacity on exercise performance by deleting mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in the liver of mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or postexercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in hepatocytes (double knockout, DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of 2H/1³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. Decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan cross talk during exercise as described by the Cahill and Cori cycles.NEW & NOTEWORTHY Martino and colleagues examined the effects of inhibiting hepatic gluconeogenesis on exercise performance and systemic metabolism during treadmill exercise in mice. Combined inhibition of gluconeogenesis from lactate/pyruvate and alanine impaired exercise endurance and led to hypoglycemia during and after exercise. In contrast, suppressing either pyruvate-mediated or alanine-mediated gluconeogenesis alone had no effect on these parameters. These findings provide new insight into the molecular nodes that coordinate the metabolic responses of muscle and liver during exercise.
Collapse
Affiliation(s)
- Michael R Martino
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mohammad Habibi
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Daniel Ferguson
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Rita T Brookheart
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - John P Thyfault
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Missouri, United States
| | - Gretchen A Meyer
- Department of Medicine, Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Curtis C Hughey
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Brian N Finck
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
5
|
Castillejo-López C, Bárcenas-Walls JR, Cavalli M, Larsson A, Wadelius C. A regulatory element associated to NAFLD in the promoter of DIO1 controls LDL-C, HDL-C and triglycerides in hepatic cells. Lipids Health Dis 2024; 23:48. [PMID: 38365720 PMCID: PMC10870585 DOI: 10.1186/s12944-024-02029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified genetic variants linked to fat metabolism and related traits, but rarely pinpoint causative variants. This limitation arises from GWAS not considering functional implications of noncoding variants that can affect transcription factor binding and potentially regulate gene expression. The aim of this study is to investigate a candidate noncoding functional variant within a genetic locus flagged by a GWAS SNP associated with non-alcoholic fatty liver disease (NAFLD), a condition characterized by liver fat accumulation in non-alcohol consumers. METHODS CRISPR-Cas9 gene editing in HepG2 cells was used to modify the regulatory element containing the candidate functional variant linked to NAFLD. Global gene expression in mutant cells was assessed through RT-qPCR and targeted transcriptomics. A phenotypic assay measured lipid droplet accumulation in the CRISPR-Cas9 mutants. RESULTS The candidate functional variant, rs2294510, closely linked to the NAFLD-associated GWAS SNP rs11206226, resided in a regulatory element within the DIO1 gene's promoter region. Altering this element resulted in changes in transcription factor binding sites and differential expression of candidate target genes like DIO1, TMEM59, DHCR24, and LDLRAD1, potentially influencing the NAFLD phenotype. Mutant HepG2 cells exhibited increased lipid accumulation, a hallmark of NAFLD, along with reduced LDL-C, HDL-C and elevated triglycerides. CONCLUSIONS This comprehensive approach, that combines genome editing, transcriptomics, and phenotypic assays identified the DIO1 promoter region as a potential enhancer. Its activity could regulate multiple genes involved in the NAFLD phenotype or contribute to defining a polygenic risk score for enhanced risk assessment in NAFLD patients.
Collapse
Affiliation(s)
- Casimiro Castillejo-López
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 , Uppsala, Sweden, Box 815, Husargatan 3, BMC
| | - José Ramón Bárcenas-Walls
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 , Uppsala, Sweden, Box 815, Husargatan 3, BMC
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 , Uppsala, Sweden, Box 815, Husargatan 3, BMC
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 , Uppsala, Sweden, Box 815, Husargatan 3, BMC.
| |
Collapse
|
6
|
Ghrayeb A, Finney AC, Agranovich B, Peled D, Anand SK, McKinney MP, Sarji M, Yang D, Weissman N, Drucker S, Fernandes SI, Fernández-García J, Mahan K, Abassi Z, Tan L, Lorenzi PL, Traylor J, Zhang J, Abramovich I, Chen YE, Rom O, Mor I, Gottlieb E. Serine synthesis via reversed SHMT2 activity drives glycine depletion and acetaminophen hepatotoxicity in MASLD. Cell Metab 2024; 36:116-129.e7. [PMID: 38171331 PMCID: PMC10777734 DOI: 10.1016/j.cmet.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.
Collapse
Affiliation(s)
- Alia Ghrayeb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Bella Agranovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Daniel Peled
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - M Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Mahasen Sarji
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natan Weissman
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shani Drucker
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Sara Isabel Fernandes
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Jonatan Fernández-García
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Kyle Mahan
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Zaid Abassi
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ifat Abramovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| | - Inbal Mor
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Eyal Gottlieb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
7
|
Hughey CC, Bracy DP, Rome FI, Goelzer M, Donahue EP, Viollet B, Foretz M, Wasserman DH. Exercise training adaptations in liver glycogen and glycerolipids require hepatic AMP-activated protein kinase in mice. Am J Physiol Endocrinol Metab 2024; 326:E14-E28. [PMID: 37938177 PMCID: PMC11193517 DOI: 10.1152/ajpendo.00289.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023]
Abstract
Regular exercise elicits adaptations in glucose and lipid metabolism that allow the body to meet energy demands of subsequent exercise bouts more effectively and mitigate metabolic diseases including fatty liver. Energy discharged during the acute exercise bouts that comprise exercise training may be a catalyst for liver adaptations. During acute exercise, liver glycogenolysis and gluconeogenesis are accelerated to supply glucose to working muscle. Lower liver energy state imposed by gluconeogenesis and related pathways activates AMP-activated protein kinase (AMPK), which conserves ATP partly by promoting lipid oxidation. This study tested the hypothesis that AMPK is necessary for liver glucose and lipid adaptations to training. Liver-specific AMPKα1α2 knockout (AMPKα1α2fl/fl+AlbCre) mice and littermate controls (AMPKα1α2fl/fl) completed sedentary and exercise training protocols. Liver nutrient fluxes were quantified at rest or during acute exercise following training. Liver metabolites and molecular regulators of metabolism were assessed. Training increased liver glycogen in AMPKα1α2fl/fl mice, but not in AMPKα1α2fl/fl+AlbCre mice. The inability to increase glycogen led to lower glycogenolysis, glucose production, and circulating glucose during acute exercise in trained AMPKα1α2fl/fl+AlbCre mice. Deletion of AMPKα1α2 attenuated training-induced declines in liver diacylglycerides. In particular, training lowered the concentration of unsaturated and elongated fatty acids comprising diacylglycerides in AMPKα1α2fl/fl mice, but not in AMPKα1α2fl/fl+AlbCre mice. Training increased liver triacylglycerides and the desaturation and elongation of fatty acids in triacylglycerides of AMPKα1α2fl/fl+AlbCre mice. These lipid responses were independent of differences in tricarboxylic acid cycle fluxes. In conclusion, AMPK is required for liver training adaptations that are critical to glucose and lipid metabolism.NEW & NOTEWORTHY This study shows that the energy sensor and transducer, AMP-activated protein kinase (AMPK), is necessary for an exercise training-induced: 1) increase in liver glycogen that is necessary for accelerated glycogenolysis during exercise, 2) decrease in liver glycerolipids independent of tricarboxylic acid (TCA) cycle flux, and 3) decline in the desaturation and elongation of fatty acids comprising liver diacylglycerides. The mechanisms defined in these studies have implications for use of regular exercise or AMPK-activators in patients with fatty liver.
Collapse
Affiliation(s)
- Curtis C Hughey
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Deanna P Bracy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Ferrol I Rome
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mickael Goelzer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - E Patrick Donahue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
8
|
Lee G, Lee SM, Kim HU. A contribution of metabolic engineering to addressing medical problems: Metabolic flux analysis. Metab Eng 2023; 77:283-293. [PMID: 37075858 DOI: 10.1016/j.ymben.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Metabolic engineering has served as a systematic discipline for industrial biotechnology as it has offered systematic tools and methods for strain development and bioprocess optimization. Because these metabolic engineering tools and methods are concerned with the biological network of a cell with emphasis on metabolic network, they have also been applied to a range of medical problems where better understanding of metabolism has also been perceived to be important. Metabolic flux analysis (MFA) is a unique systematic approach initially developed in the metabolic engineering community, and has proved its usefulness and potential when addressing a range of medical problems. In this regard, this review discusses the contribution of MFA to addressing medical problems. For this, we i) provide overview of the milestones of MFA, ii) define two main branches of MFA, namely constraint-based reconstruction and analysis (COBRA) and isotope-based MFA (iMFA), and iii) present successful examples of their medical applications, including characterizing the metabolism of diseased cells and pathogens, and identifying effective drug targets. Finally, synergistic interactions between metabolic engineering and biomedical sciences are discussed with respect to MFA.
Collapse
Affiliation(s)
- GaRyoung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Mi Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
The Epigenetic Regulation of RNA N6-Methyladenosine Methylation in Glycolipid Metabolism. Biomolecules 2023; 13:biom13020273. [PMID: 36830642 PMCID: PMC9953413 DOI: 10.3390/biom13020273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The highly conserved and dynamically reversible N6-methyladenine (m6A) modification has emerged as a critical gene expression regulator by affecting RNA splicing, translation efficiency, and stability at the post-transcriptional level, which has been established to be involved in various physiological and pathological processes, including glycolipid metabolism and the development of glycolipid metabolic disease (GLMD). Hence, accumulating studies have focused on the effects and regulatory mechanisms of m6A modification on glucose metabolism, lipid metabolism, and GLMD. This review summarizes the underlying mechanism of how m6A modification regulates glucose and lipid metabolism-related enzymes, transcription factors, and signaling pathways and the advances of m6A regulatory mechanisms in GLMD in order to deepen the understanding of the association of m6A modification with glycolipid metabolism and GLMD.
Collapse
|
10
|
Ghrayeb A, Agranovich B, Peled D, Finney AC, Abramovich I, Garcia JF, Traylor J, Drucker S, Fernandes SI, Weissman N, Chen YE, Rom O, Mor I, Gottlieb E. Fatty liver-mediated glycine restriction impairs glutathione synthesis and causes hypersensitization to acetaminophen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524043. [PMID: 36711913 PMCID: PMC9882121 DOI: 10.1101/2023.01.16.524043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects nearly one third of the population worldwide. Understanding metabolic pathways involved can provide insights into disease progression. Untargeted metabolomics of livers from mice with early-stage steatosis indicated a decrease in methylated metabolites suggesting altered one carbon metabolism. The levels of glycine, a central component of one carbon metabolism, were lower in steatotic mice, in line with clinical evidence. Isotope tracing studies demonstrated that increased synthesis of serine from glycine is the underlying cause for glycine limitation in fatty livers. Consequently, the low glycine availability in steatotic livers impaired glutathione (GSH) synthesis under oxidative stress induced by acetaminophen (APAP), enhancing hepatic toxicity. Glycine supplementation mitigated acute liver damage and overall toxicity caused by APAP in fatty livers by supporting de novo GSH synthesis. Thus, early metabolic changes in NAFLD that lead to glycine depletion sensitize mice to xenobiotic toxicity even at a reversible stage of NAFLD.
Collapse
|
11
|
Rome FI, Shobert GL, Voigt WC, Stagg DB, Puchalska P, Burgess SC, Crawford PA, Hughey CC. Loss of hepatic phosphoenolpyruvate carboxykinase 1 dysregulates metabolic responses to acute exercise but enhances adaptations to exercise training in mice. Am J Physiol Endocrinol Metab 2023; 324:E9-E23. [PMID: 36351254 PMCID: PMC9799143 DOI: 10.1152/ajpendo.00222.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Acute exercise increases liver gluconeogenesis to supply glucose to working muscles. Concurrently, elevated liver lipid breakdown fuels the high energetic cost of gluconeogenesis. This functional coupling between liver gluconeogenesis and lipid oxidation has been proposed to underlie the ability of regular exercise to enhance liver mitochondrial oxidative metabolism and decrease liver steatosis in individuals with nonalcoholic fatty liver disease. Herein we tested whether repeated bouts of increased hepatic gluconeogenesis are necessary for exercise training to lower liver lipids. Experiments used diet-induced obese mice lacking hepatic phosphoenolpyruvate carboxykinase 1 (KO) to inhibit gluconeogenesis and wild-type (WT) littermates. 2H/13C metabolic flux analysis quantified glucose and mitochondrial oxidative fluxes in untrained mice at rest and during acute exercise. Circulating and tissue metabolite levels were determined during sedentary conditions, acute exercise, and refeeding postexercise. Mice also underwent 6 wk of treadmill running protocols to define hepatic and extrahepatic adaptations to exercise training. Untrained KO mice were unable to maintain euglycemia during acute exercise resulting from an inability to increase gluconeogenesis. Liver triacylglycerides were elevated after acute exercise and circulating β-hydroxybutyrate was higher during postexercise refeeding in untrained KO mice. In contrast, exercise training prevented liver triacylglyceride accumulation in KO mice. This was accompanied by pronounced increases in indices of skeletal muscle mitochondrial oxidative metabolism in KO mice. Together, these results show that hepatic gluconeogenesis is dispensable for exercise training to reduce liver lipids. This may be due to responses in ketone body metabolism and/or metabolic adaptations in skeletal muscle to exercise.NEW & NOTEWORTHY Exercise training reduces hepatic steatosis partly through enhanced hepatic terminal oxidation. During acute exercise, hepatic gluconeogenesis is elevated to match the heightened rate of muscle glucose uptake and maintain glucose homeostasis. It has been postulated that the hepatic energetic stress induced by elevating gluconeogenesis during acute exercise is a key stimulus underlying the beneficial metabolic responses to exercise training. This study shows that hepatic gluconeogenesis is not necessary for exercise training to lower liver lipids.
Collapse
Affiliation(s)
- Ferrol I Rome
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Gregory L Shobert
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - William C Voigt
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - David B Stagg
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Shawn C Burgess
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Curtis C Hughey
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
Hughey CC, Puchalska P, Crawford PA. Integrating the contributions of mitochondrial oxidative metabolism to lipotoxicity and inflammation in NAFLD pathogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159209. [DOI: 10.1016/j.bbalip.2022.159209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|
13
|
Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications. Biochem Pharmacol 2022; 200:115033. [PMID: 35395242 DOI: 10.1016/j.bcp.2022.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
As a chronic metabolic disease affecting epidemic proportions worldwide, the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD) is not clear yet. There is also a lack of precise biomarkers and specific medicine for the diagnosis and treatment of NAFLD. Methionine metabolic cycle, which is critical for the maintaining of cellular methylation and redox state, is involved in the pathophysiology of NAFLD. However, the molecular basis and mechanism of methionine metabolism in NAFLD are not completely understood. Here, we mainly focus on specific enzymes that participates in methionine cycle, to reveal their interconnections with NAFLD, in order to recognize the pathogenesis of NAFLD from a new angle and at the same time, explore the clinical characteristics and therapeutic strategies.
Collapse
Affiliation(s)
- Haoyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yanwei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| |
Collapse
|