1
|
Liu Y, Guo X, Fan J, Xie C, Huang T, Fu Y, Zhou R. CREBRF regulates apoptosis and estradiol via ISG15/ISGylation in pig granulosa cells. Free Radic Biol Med 2024; 225:445-455. [PMID: 39419455 DOI: 10.1016/j.freeradbiomed.2024.10.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Granulosa cells play a crucial role in the reproductive processes of female animals, as their proliferation, apoptosis, and hormonal secretion are vital for follicular development and ovulation. Although the role and mechanisms of CREBRF in the reproductive system have been partly reported, its functions in ovarian granulosa cells have not been fully explored. In this study, the results indicated that the expression of CREBRF in the ovaries at 30 days after birth was significantly higher than that during puberty and sexual maturity. Studies on the function of CREBRF found that CREBRF could enhance the synthesis of estradiol and had no effect on progesterone synthesis in pig granulosa cells. At the same time, CREBRF could suppress apoptosis through the Bax/caspase3/caspase9 pathway and modulation of ISG15/ISGylation in pig granulosa cells. During this process, the expression of many genes changed in granulosa cells. Several genes (CMPK2, MX1, MX2, ZBP1, PML, CHAC1, and BAX) which were promoted apoptosis, were upregulated after CREBRF knockdown with siRNA. ISG15-protein conjugation genes (HERC5, UBA7, UBE2L6, ISG15) were also were upregulated. On the contrary, the expression of anti-apoptotic (RFK, SNAP23) genes decreased. In conclusion, CREBRF could enhance the synthesis of estradiol and acted as anti-apoptosis role in pig granulosa cells. This discovery can provide novel insights for further elucidating the molecular mechanisms of granulosa cells in the ovary and potentially identifies CREBRF as a molecular target for improving fertility.
Collapse
Affiliation(s)
- Ying Liu
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; School of Life Science and Technology, Inner Mongolia University of Science & Technology, Inner Mongolia Baotou, 014010, PR China
| | - Xiaorong Guo
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528231, PR China
| | - Jiazhen Fan
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Chundi Xie
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, PR China
| | - Yaxin Fu
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Capital Medical University School of Basic Medical Sciences, Beijing, 100069, PR China
| | - Rong Zhou
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Liaocheng University, Liaocheng, 252059, PR China.
| |
Collapse
|
2
|
Wang Q, Leask MP, Lee K, Jaiswal J, Kallingappa P, Dissanayake W, Puli'uvea C, O'Sullivan C, Watson H, Wilcox P, Murphy R, Merry TL, Shepherd PR. The population-specific Thr44Met OCT3 coding variant affects metformin pharmacokinetics with subsequent effects on insulin sensitivity in C57Bl/6J mice. Diabetologia 2024:10.1007/s00125-024-06287-1. [PMID: 39422716 DOI: 10.1007/s00125-024-06287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024]
Abstract
AIMS/HYPOTHESIS Metformin is an important first-line treatment for type 2 diabetes and acts by increasing the body's ability to dispose of glucose. Metformin's efficacy can be affected by genetic variants in the transporters that regulate its uptake into cells. The SLC22A3 gene (also known as EMT; EMTH; OCT3) codes for organic cation transporter 3 (OCT3), which is a broad-specificity cation transporter that also transports metformin. Most SLC22A3 variants reduce the rate of metformin transport but the rs8187715 variant (p.Thr44Met) is reported to increase uptake of metformin in vitro. However, the impact of this on in vivo metformin transport and efficacy is unknown. Very few carriers of this variant have been reported globally, but, notably, all were of Pacific Island descent. Therefore, this study aims to understand the prevalence of this variant in Polynesian peoples (Māori and Pacific peoples) and to understand its impact on metformin transport and efficacy in vivo. METHODS rs8187715 was genotyped in 310 individuals with Māori and Pacific ancestry recruited in Aotearoa New Zealand. To study this variant in a physiological context, an orthologous knockin mouse model with C57BL/6J background was used. Pharmacokinetic analysis compared uptake rate of metformin into tissues. Plasma growth/differentiation factor 15 (GDF-15) was also measured as a marker of metformin efficacy. Glucose and insulin tolerance was assessed after acute or sustained metformin treatment in knockin and wild-type control mice to examine the impact of the variant on metformin's glycaemic control. RESULTS The minor allele frequency of this variant in the Māori and Pacific participants was 15.4%. There was no association of the variant with common metabolic parameters including diabetes status, BMI, blood pressure, lipids, or blood glucose and HbA1c. However, in the orthologous knockin mouse model, the rate of metformin uptake into the blood and tissues was increased. Acute metformin dosing increased insulin sensitivity in variant knockin mice but this effect was lost after longer-term metformin treatment. Metformin's effects on GDF-15 levels were also lost in variant knockin mice with longer-term metformin treatment. CONCLUSIONS/INTERPRETATION These data provide evidence that the SLC22A3 rs8187715 variant accelerates metformin uptake rate in vivo. While this acutely improves insulin sensitivity, there was no increased effect of metformin with longer-term dosing. Thus, our finding of a high prevalence of this variant specifically in Māori and Pacific peoples identifies it as a potential population-specific pharmacogenetic marker with potential to guide metformin therapy in these peoples.
Collapse
Affiliation(s)
- Qian Wang
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | | | - Kate Lee
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Jagdish Jaiswal
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Prasanna Kallingappa
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Waruni Dissanayake
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Chris Puli'uvea
- Maurice Wilkins Centre, Auckland, New Zealand
- Department of Biomedicine and Diagnostics, Auckland University of Technology, Auckland, New Zealand
| | | | - Huti Watson
- Paratene Ngata Research Centre, Ngati Porou Oranga, Te Puia Springs, New Zealand
| | - Phillip Wilcox
- Maurice Wilkins Centre, Auckland, New Zealand
- Department of Statistics, University of Otago, Dunedin, New Zealand
| | - Rinki Murphy
- Maurice Wilkins Centre, Auckland, New Zealand
- Department of Medicine, University of Auckland, Auckland, New Zealand
- Auckland Diabetes Centre, Te Whatu Ora Health New Zealand, Te Toka Tumai, New Zealand
| | - Troy L Merry
- Maurice Wilkins Centre, Auckland, New Zealand
- Department of Nutrition, University of Auckland, Auckland, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre, Auckland, New Zealand.
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Wang Q, McCormick S, Leask MP, Watson H, O'Sullivan C, Krebs JD, Hall R, Whitfield P, Merry TL, Murphy R, Shepherd PR. A Polynesian-specific SLC22A3 variant associates with low plasma lipoprotein(a) concentrations independent of apo(a) isoform size in males. Biosci Rep 2024; 44:BSR20240403. [PMID: 38896441 DOI: 10.1042/bsr20240403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL)-like particle in which the apolipoprotein B component is covalently linked to apolipoprotein(a) (apo(a)). Lp(a) is a well-established independent risk factor for cardiovascular diseases. Plasma Lp(a) concentrations vary enormously between individuals and ethnic groups. Several nucleotide polymorphisms in the SLC22A3 gene associate with Lp(a) concentration in people of different ethnicities. We investigated the association of a Polynesian-specific (Māori and Pacific peoples) SLC22A3 gene coding variant p.Thr44Met) with the plasma concentration of Lp(a) in a cohort of 302 healthy Polynesian males. An apo(a)-size independent assay assessed plasma Lp(a) concentrations; all other lipid and apolipoprotein concentrations were measured using standard laboratory techniques. Quantitative real-time polymerase chain reaction was used to determine apo(a) isoforms. The range of metabolic (HbA1c, blood pressure, and blood lipids) and blood lipid variables were similar between the non-carriers and carriers in age, ethnicity and BMI adjusted models. However, rs8187715 SLC22A3 variant was significantly associated with lower Lp(a) concentrations. Median Lp(a) concentration was 10.60 nmol/L (IQR: 5.40-41.00) in non-carrier group, and was 7.60 nmol/L (IQR: 5.50-12.10) in variant carrier group (P<0.05). Lp(a) concentration inversely correlated with apo(a) isoform size. After correction for apo(a) isoform size, metabolic parameters and ethnicity, the association between the SLC22A3 variant and plasma Lp(a) concentration remained. The present study is the first to identify the association of this gene variant and low plasma Lp(a) concentrations. This provides evidence for better guidance on ethnic specific cut-offs when defining 'elevated' and 'normal' plasma Lp(a) concentrations in clinical applications.
Collapse
Affiliation(s)
- Qian Wang
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, New Zealand
| | - Sally McCormick
- Maurice Wilkins Centre, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Huti Watson
- Paratene Ngata Research Centre, Ngati Porou Oranga, Te Puia Springs, New Zealand
| | - Conor O'Sullivan
- Maurice Wilkins Centre, New Zealand
- Moko Foundation, Kaitaia, New Zealand
| | - Jeremy D Krebs
- Centre for Endocrine, Diabetes and Obesity Research, Te Whatu Ora New Zealand Capital, Coast and Hutt Valley, Wellington, New Zealand
- Department of Medicine, University of Otago, Wellington, New Zealand
| | - Rosemary Hall
- Department of Medicine, University of Otago, Wellington, New Zealand
| | | | - Troy L Merry
- Maurice Wilkins Centre, New Zealand
- Department of Nutrition, University of Auckland, New Zealand
| | - Rinki Murphy
- Maurice Wilkins Centre, New Zealand
- Auckland Diabetes Center, Te Whatu Ora Health New Zealand, Te Tokai Tumai, New Zealand
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, New Zealand
| |
Collapse
|
4
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Amitrano F, Krishnan M, Murphy R, Okesene-Gafa KAM, Ji M, Thompson JMD, Taylor RS, Merriman TR, Rush E, McCowan M, McCowan LME, McKinlay CJD. The impact of CREBRF rs373863828 Pacific-variant on infant body composition. Sci Rep 2024; 14:8825. [PMID: 38627436 PMCID: PMC11021527 DOI: 10.1038/s41598-024-59417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
In Māori and Pacific adults, the CREBRF rs373863828 minor (A) allele is associated with increased body mass index (BMI) but reduced incidence of type-2 and gestational diabetes mellitus. In this prospective cohort study of Māori and Pacific infants, nested within a nutritional intervention trial for pregnant women with obesity and without pregestational diabetes, we investigated whether the rs373863828 A allele is associated with differences in growth and body composition from birth to 12-18 months' corrected age. Infants with and without the variant allele were compared using generalised linear models adjusted for potential confounding by gestation length, sex, ethnicity and parity, and in a secondary analysis, additionally adjusted for gestational diabetes. Carriage of the rs373863828 A allele was not associated with altered growth and body composition from birth to 6 months. At 12-18 months, infants with the rs373863828 A allele had lower whole-body fat mass [FM 1.4 (0.7) vs. 1.7 (0.7) kg, aMD -0.4, 95% CI -0.7, 0.0, P = 0.05; FM index 2.2 (1.1) vs. 2.6 (1.0) kg/m2 aMD -0.6, 95% CI -1.2,0.0, P = 0.04]. However, this association was not significant after adjustment for gestational diabetes, suggesting that it may be mediated, at least in part, by the beneficial effect of CREBRF rs373863828 A allele on maternal glycemic status.
Collapse
Affiliation(s)
| | - Mohanraj Krishnan
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Department of Medicine, University of Auckland, Auckland, New Zealand
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rinki Murphy
- Department of Medicine, University of Auckland, Auckland, New Zealand
- Te Whatu Ora, Counties Manukau, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Karaponi A M Okesene-Gafa
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Te Whatu Ora, Counties Manukau, Auckland, New Zealand
| | - Maria Ji
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - John M D Thompson
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Rennae S Taylor
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Tony R Merriman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elaine Rush
- Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Megan McCowan
- Te Whatu Ora, Counties Manukau, Auckland, New Zealand
| | - Lesley M E McCowan
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Te Whatu Ora, Counties Manukau, Auckland, New Zealand
| | - Christopher J D McKinlay
- Te Whatu Ora, Counties Manukau, Auckland, New Zealand.
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Li Y, Wang H, Chen H, Liao Y, Gou S, Yan Q, Zhuang Z, Li H, Wang J, Suo Y, Lan T, Liu Y, Zhao Y, Zou Q, Nie T, Hui X, Lai L, Wu D, Fan N. Generation of a genetically modified pig model with CREBRF R457Q variant. FASEB J 2022; 36:e22611. [PMID: 36250915 DOI: 10.1096/fj.202201117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Obesity is among the strongest risk factors for type 2 diabetes (T2D). The CREBRF missense allele rs373863828 (p. Arg457Gln, p. R457Q) is associated with increased body mass index but reduced risk of T2D in people of Pacific ancestry. To investigate the functional consequences of the CREBRF variant, we introduced the corresponding human mutation R457Q into the porcine genome. The CREBRFR457Q pigs displayed dramatically increased fat deposition, which was mainly distributed in subcutaneous adipose tissue other than visceral adipose tissue. The CREBRFR457Q variant promoted preadipocyte differentiation. The increased differentiation capacity of precursor adipocytes conferred pigs the unique histological phenotype that adipocytes had a smaller size but a greater number in subcutaneous adipose tissue (SAT) of CREBRFR457Q variant pigs. In addition, in SAT of CREBRFR457Q pigs, the contents of the peroxidative metabolites 4-hydroxy-nonenal and malondialdehyde were significantly decreased, while the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase, and catalase, was increased, which was in accordance with the declined level of the reactive oxygen species (ROS) in CREBRFR457Q pigs. Together, these data supported a causal role of the CREBRFR457Q variant in the pathogenesis of obesity, partly via adipocyte hyperplasia, and further suggested that reduced oxidative stress in adipose tissue may mediate the relative metabolic protection afforded by this variant despite the related obesity.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hai Wang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Huangyao Chen
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuan Liao
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Quanmei Yan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenpeng Zhuang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hao Li
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Jiaowei Wang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yangyang Suo
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ting Lan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yang Liu
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Tao Nie
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyan Hui
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong SAR
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Donghai Wu
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Nana Fan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
7
|
Aisyah R, Sadewa AH, Patria SY, Wahab A. The PPARGC1A Is the Gene Responsible for Thrifty Metabolism Related Metabolic Diseases: A Scoping Review. Genes (Basel) 2022; 13:1894. [PMID: 36292779 PMCID: PMC9601628 DOI: 10.3390/genes13101894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 07/29/2023] Open
Abstract
The "thrifty genotype" hypothesis has thus far described the relationship between specific genes and the population's resilience to food scarcity circumstances, but its link to the widespread prevalence of genetic diseases and metabolic syndrome has not been adequately mapped. The purpose of the study was to discover genes responsible for thrifty metabolism. A systematic search with keywords was performed for relevant titles. This study used the article's database published by Pubmed, Proquest, and EBSCO from January, 2009 to September, 2022. Out of 418 papers screened for eligibility, the final evaluation determined that five studies should be included in the analysis. Results indicated that PPARGC1A Gly482Ser led to high BMI in the Tongans population but was unrelated to the onset of type 2 diabetes mellitus, but this was not the case in the Maori population. Significantly differing frequencies of PPAR C1431T and Pro12Ala gene polymorphisms were observed in the Iranian population. GWAS identification of additional genes in Asian and European populations did not produce consistent findings. As a summary, PPARGC1A Gly482Ser addresses as the gene responsible for thrifty metabolism in the Pacific population although some studies show inconsistent results.
Collapse
Affiliation(s)
- Riandini Aisyah
- Department of Molecular Biology, Faculty of Medicine, Universitas Muhammadiyah Surakarta, Surakarta 57169, Indonesia
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ahmad Hamim Sadewa
- Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Suryono Yudha Patria
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Abdul Wahab
- Department of Biostatistics, Epidemiology and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|